fastjet 2.4.3
Public Member Functions | Private Member Functions | Private Attributes

CDFJetCluPlugin Class Reference

a plugin for fastjet-v2.1 that provides an interface to the CDF jetclu algorithm More...

#include <CDFJetCluPlugin.hh>

Inheritance diagram for CDFJetCluPlugin:
Inheritance graph
[legend]
Collaboration diagram for CDFJetCluPlugin:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 CDFJetCluPlugin (double cone_radius, double overlap_threshold, double seed_threshold=1.0, int iratch=1)
 a compact constructor
 CDFJetCluPlugin (double seed_threshold, double cone_radius, int adjacency_cut, int max_iterations, int iratch, double overlap_threshold)
 a constructor that looks like the one provided by CDF
double seed_threshold () const
double cone_radius () const
int adjacency_cut () const
int max_iterations () const
int iratch () const
double overlap_threshold () const
virtual std::string description () const
 return a textual description of the jet-definition implemented in this plugin
virtual void run_clustering (ClusterSequence &) const
 given a ClusterSequence that has been filled up with initial particles, the following function should fill up the rest of the ClusterSequence, using the following member functions of ClusterSequence:

  • plugin_do_ij_recombination(...)
  • plugin_do_iB_recombination(...)

virtual double R () const
 the plugin mechanism's standard way of accessing the jet radius

Private Member Functions

void _insert_unique (PseudoJet &jet, std::map< double, int > &jetmap) const
 given a jet try inserting its energy into the map -- if that energy entry already exists, modify the jet infinitesimally so as ensure that the jet energy is unique

Private Attributes

double _seed_threshold
double _cone_radius
int _adjacency_cut
int _max_iterations
int _iratch
double _overlap_threshold

Detailed Description

a plugin for fastjet-v2.1 that provides an interface to the CDF jetclu algorithm

Definition at line 44 of file CDFJetCluPlugin.hh.


Constructor & Destructor Documentation

CDFJetCluPlugin::CDFJetCluPlugin ( double  cone_radius,
double  overlap_threshold,
double  seed_threshold = 1.0,
int  iratch = 1 
) [inline]

a compact constructor

Definition at line 47 of file CDFJetCluPlugin.hh.

CDFJetCluPlugin::CDFJetCluPlugin ( double  seed_threshold,
double  cone_radius,
int  adjacency_cut,
int  max_iterations,
int  iratch,
double  overlap_threshold 
) [inline]

a constructor that looks like the one provided by CDF

Definition at line 59 of file CDFJetCluPlugin.hh.


Member Function Documentation

void CDFJetCluPlugin::_insert_unique ( PseudoJet &  jet,
std::map< double, int > &  jetmap 
) const [private]

given a jet try inserting its energy into the map -- if that energy entry already exists, modify the jet infinitesimally so as ensure that the jet energy is unique

int CDFJetCluPlugin::adjacency_cut ( ) const [inline]

Definition at line 76 of file CDFJetCluPlugin.hh.

References _adjacency_cut.

{return _adjacency_cut     ;}
double CDFJetCluPlugin::cone_radius ( ) const [inline]

Definition at line 75 of file CDFJetCluPlugin.hh.

References _cone_radius.

Referenced by R().

{return _cone_radius       ;}
string CDFJetCluPlugin::description ( ) const [virtual]

return a textual description of the jet-definition implemented in this plugin

Implements JetDefinition::Plugin.

Definition at line 46 of file CDFJetCluPlugin.cc.

                                           {
  ostringstream desc;
  
  desc << "CDF JetClu jet algorithm with " 
       << "seed_threshold = "     << seed_threshold    () << ", "
       << "cone_radius = "        << cone_radius       () << ", "
       << "adjacency_cut = "      << adjacency_cut     () << ", " 
       << "max_iterations = "     << max_iterations    () << ", "
       << "iratch = "             << iratch            () << ", "
       << "overlap_threshold = "  << overlap_threshold () ;

  return desc.str();
}
int CDFJetCluPlugin::iratch ( ) const [inline]

Definition at line 78 of file CDFJetCluPlugin.hh.

References _iratch.

{return _iratch            ;}
int CDFJetCluPlugin::max_iterations ( ) const [inline]

Definition at line 77 of file CDFJetCluPlugin.hh.

References _max_iterations.

{return _max_iterations    ;}
double CDFJetCluPlugin::overlap_threshold ( ) const [inline]

Definition at line 79 of file CDFJetCluPlugin.hh.

References _overlap_threshold.

{return _overlap_threshold ;}
virtual double CDFJetCluPlugin::R ( ) const [inline, virtual]

the plugin mechanism's standard way of accessing the jet radius

Implements JetDefinition::Plugin.

Definition at line 86 of file CDFJetCluPlugin.hh.

References cone_radius().

{return cone_radius();}
void CDFJetCluPlugin::run_clustering ( ClusterSequence ) const [virtual]

given a ClusterSequence that has been filled up with initial particles, the following function should fill up the rest of the ClusterSequence, using the following member functions of ClusterSequence:

  • plugin_do_ij_recombination(...)
  • plugin_do_iB_recombination(...)

Implements JetDefinition::Plugin.

Definition at line 61 of file CDFJetCluPlugin.cc.

References ClusterSequence::jets(), ClusterSequence::plugin_record_iB_recombination(), ClusterSequence::plugin_record_ij_recombination(), and sort_indices().

                                                                      {
 
  // create the physics towers needed by the CDF code
  vector<PhysicsTower> towers;
  towers.reserve(clust_seq.jets().size());

  // create a map to identify jets (actually just the input particles)...
  //map<double,int> jetmap;

  for (unsigned i = 0; i < clust_seq.jets().size(); i++) {
    PseudoJet particle(clust_seq.jets()[i]);
    //_insert_unique(particle, jetmap);
    LorentzVector fourvect(particle.px(), particle.py(),
                           particle.pz(), particle.E());
    PhysicsTower tower(fourvect);
    // add tracking information for later
    tower.fjindex = i;
    towers.push_back(tower);
  }

  // prepare the CDF algorithm
  JetCluAlgorithm j(seed_threshold(), cone_radius(), adjacency_cut(),
                    max_iterations(), iratch(), overlap_threshold());
    
  // run the CDF algorithm
  std::vector<Cluster> jets;
  j.run(towers,jets);


  // now transfer the jets back into our own structure -- we will
  // mimic the cone code with a sequential recombination sequence in
  // which the jets are built up by adding one particle at a time

  // NB: with g++-4.0, the reverse iterator code gave problems, so switch
  //     to indices instead
  //for(vector<Cluster>::const_reverse_iterator jetIter = jets.rbegin(); 
  //                                    jetIter != jets.rend(); jetIter++) {
  //  const vector<PhysicsTower> & tower_list = jetIter->towerList;
  //  int jet_k = jetmap[tower_list[0].fourVector.E];
  //
  //  int ntow = int(jetIter->towerList.size());

  for(int iCDFjets = jets.size()-1; iCDFjets >= 0; iCDFjets--) {

    const vector<PhysicsTower> & tower_list = jets[iCDFjets].towerList;
    int ntow = int(tower_list.size());
    
    // 2008-09-04: sort the towerList (according to fjindex) so as
    //             to have a consistent order for particles in jet
    //             (necessary because addition of ultra-soft particles
    //             sometimes often modifies the order, while maintaining
    //             the same overall set)
    vector<int>    jc_indices(ntow);
    vector<double> fj_indices(ntow); // use double: benefit from existing routine
    for (int itow = 0; itow < ntow; itow++) {
      jc_indices[itow] = itow;
      fj_indices[itow] = tower_list[itow].fjindex;
    }
    sort_indices(jc_indices, fj_indices);

    int jet_k = tower_list[jc_indices[0]].fjindex;
  
    for (int itow = 1; itow < ntow; itow++) {
      if (tower_list[jc_indices[itow]].Et() > 1e-50) {
      }
      int jet_i = jet_k;
      // retrieve our index for the jet
      int jet_j;
      jet_j = tower_list[jc_indices[itow]].fjindex;

      // safety check
      assert (jet_j >= 0 && jet_j < int(towers.size()));

      // do a fake recombination step with dij=0
      double dij = 0.0;

      // JetClu does E-scheme recombination so we can stick with the
      // simple option
      clust_seq.plugin_record_ij_recombination(jet_i, jet_j, dij, jet_k);

    }
  
    // NB: put a sensible looking d_iB just to be nice...
    double d_iB = clust_seq.jets()[jet_k].perp2();
    clust_seq.plugin_record_iB_recombination(jet_k, d_iB);
  }


  // following code is for testing only
  //cout << endl;
  //for(vector<Cluster>::const_iterator jetIter = jets.begin(); 
  //                                    jetIter != jets.end(); jetIter++) {
  //  cout << jetIter->fourVector.pt() << " " << jetIter->fourVector.y() << endl;
  //}
  //cout << "-----------------------------------------------------\n";
  //vector<PseudoJet> ourjets(clust_seq.inclusive_jets());
  //for (vector<PseudoJet>::const_iterator ourjet = ourjets.begin();
  //     ourjet != ourjets.end(); ourjet++) {
  //  cout << ourjet->perp() << " " << ourjet->rap() << endl;
  //}
  //cout << endl;
}
double CDFJetCluPlugin::seed_threshold ( ) const [inline]

Definition at line 74 of file CDFJetCluPlugin.hh.

References _seed_threshold.

{return _seed_threshold    ;}

Member Data Documentation

Definition at line 93 of file CDFJetCluPlugin.hh.

Referenced by adjacency_cut().

Definition at line 92 of file CDFJetCluPlugin.hh.

Referenced by cone_radius().

int CDFJetCluPlugin::_iratch [private]

Definition at line 95 of file CDFJetCluPlugin.hh.

Referenced by iratch().

Definition at line 94 of file CDFJetCluPlugin.hh.

Referenced by max_iterations().

Definition at line 96 of file CDFJetCluPlugin.hh.

Referenced by overlap_threshold().

Definition at line 91 of file CDFJetCluPlugin.hh.

Referenced by seed_threshold().


The documentation for this class was generated from the following files: