Public Member Functions | |
VoronoiAreaCalc (const vector< PseudoJet >::const_iterator &, const vector< PseudoJet >::const_iterator &, double effective_R) | |
constructor that takes a range of a vector together with the effective radius for the intersection of discs with voronoi cells | |
double | area (int index) const |
return the area of the particle associated with the given index | |
Private Member Functions | |
double | edge_circle_intersection (const Point &p0, const GraphEdge &edge) |
compute the intersection of one triangle with the circle the area is returned | |
double | circle_area (const double d12_2, double d01_2, double d02_2) |
get the area of a circle of radius R centred on the point 0 with 1 and 2 on each "side" of the arc. | |
Private Attributes | |
std::vector< double > | _areas |
areas, numbered as jets | |
double | _effective_R |
effective radius | |
double | _effective_R_squared |
effective radius squared |
Definition at line 49 of file ClusterSequenceVoronoiArea.cc.
|
constructor that takes a range of a vector together with the effective radius for the intersection of discs with voronoi cells
Definition at line 172 of file ClusterSequenceVoronoiArea.cc. References _areas, _effective_R, _effective_R_squared, edge_circle_intersection(), fastjet::VoronoiDiagramGenerator::generateVoronoi(), fastjet::VoronoiDiagramGenerator::getNext(), fastjet::pi, fastjet::VoronoiDiagramGenerator::resetIterator(), and fastjet::twopi. 00174 { 00175 00176 assert(effective_R < 0.5*pi); 00177 00178 vector<Point> voronoi_particles; 00179 vector<int> voronoi_indices; 00180 00181 _effective_R = effective_R; 00182 _effective_R_squared = effective_R*effective_R; 00183 00184 double minrap = numeric_limits<double>::max(); 00185 double maxrap = -minrap; 00186 00187 unsigned int n_tot = 0, n_added = 0; 00188 00189 // loop over jets and create the triangulation, as well as cross-referencing 00190 // info 00191 for (vector<PseudoJet>::const_iterator jet_it = jet_begin; 00192 jet_it != jet_end; jet_it++) { 00193 _areas.push_back(0.0); 00194 if ((jet_it->perp2()) != 0.0 || (jet_it->E() != jet_it->pz())){ 00195 // generate the corresponding point 00196 double rap = jet_it->rap(), phi = jet_it->phi(); 00197 voronoi_particles.push_back(Point(rap, phi)); 00198 voronoi_indices.push_back(n_tot); 00199 n_added++; 00200 00201 // insert a copy of the point if it falls within 2*_R_effective 00202 // of the 0,2pi borders (because we are interested in any 00203 // voronoi edge within _R_effective of the other border) 00204 if (phi < 2*_effective_R) { 00205 voronoi_particles.push_back(Point(rap,phi+twopi)); 00206 voronoi_indices.push_back(-1); 00207 n_added++; 00208 } else if (twopi-phi < 2*_effective_R) { 00209 voronoi_particles.push_back(Point(rap,phi-twopi)); 00210 voronoi_indices.push_back(-1); 00211 n_added++; 00212 } 00213 00214 // track the rapidity range 00215 maxrap = max(maxrap,rap); 00216 minrap = min(minrap,rap); 00217 } 00218 n_tot++; 00219 } 00220 00221 assert(n_added > 0); 00222 00223 // add extreme cases (corner particles): 00224 double max_extend = 2*max(maxrap-minrap+4*_effective_R, twopi+8*_effective_R); 00225 voronoi_particles.push_back(Point(0.5*(minrap+maxrap)-max_extend, pi)); 00226 voronoi_particles.push_back(Point(0.5*(minrap+maxrap)+max_extend, pi)); 00227 voronoi_particles.push_back(Point(0.5*(minrap+maxrap), pi-max_extend)); 00228 voronoi_particles.push_back(Point(0.5*(minrap+maxrap), pi+max_extend)); 00229 00230 // Build the VD 00231 VoronoiDiagramGenerator vdg; 00232 vdg.generateVoronoi(&voronoi_particles, 00233 0.5*(minrap+maxrap)-max_extend, 0.5*(minrap+maxrap)+max_extend, 00234 pi-max_extend, pi+max_extend); 00235 00236 vdg.resetIterator(); 00237 GraphEdge *e=NULL; 00238 unsigned int v_index; 00239 int p_index; 00240 vector<PseudoJet>::const_iterator jet; 00241 00242 while(vdg.getNext(&e)){ 00243 v_index = e->point1; 00244 if (v_index<n_added){ // this removes the corner particles 00245 p_index = voronoi_indices[v_index]; 00246 if (p_index!=-1){ // this removes the copies 00247 jet = jet_begin+voronoi_indices[v_index]; 00248 _areas[p_index]+= 00249 edge_circle_intersection(voronoi_particles[v_index], *e); 00250 } 00251 } 00252 v_index = e->point2; 00253 if (v_index<n_added){ // this removes the corner particles 00254 p_index = voronoi_indices[v_index]; 00255 if (p_index!=-1){ // this removes the copies 00256 jet = jet_begin+voronoi_indices[v_index]; 00257 _areas[p_index]+= 00258 edge_circle_intersection(voronoi_particles[v_index], *e); 00259 } 00260 } 00261 } 00262 00263 00264 }
|
|
return the area of the particle associated with the given index
Definition at line 60 of file ClusterSequenceVoronoiArea.cc. Referenced by fastjet::ClusterSequenceVoronoiArea::_initializeVA(). 00060 {return _areas[index];};
|
|
get the area of a circle of radius R centred on the point 0 with 1 and 2 on each "side" of the arc. dij is the distance between point i and point j and all distances are squared Definition at line 77 of file ClusterSequenceVoronoiArea.cc. Referenced by edge_circle_intersection(). 00077 { 00078 return 0.5*_effective_R_squared 00079 *acos((d01_2+d02_2-d12_2)/(2*sqrt(d01_2*d02_2))); 00080 }
|
|
compute the intersection of one triangle with the circle the area is returned
Definition at line 88 of file ClusterSequenceVoronoiArea.cc. References _effective_R_squared, circle_area(), fastjet::norm(), fastjet::scalar_product(), fastjet::vector_product(), fastjet::Point::x, fastjet::GraphEdge::x1, fastjet::GraphEdge::x2, fastjet::Point::y, fastjet::GraphEdge::y1, and fastjet::GraphEdge::y2. Referenced by VoronoiAreaCalc(). 00089 { 00090 Point p1(edge.x1-p0.x, edge.y1-p0.y); 00091 Point p2(edge.x2-p0.x, edge.y2-p0.y); 00092 Point pdiff = p2-p1; 00093 00094 //fprintf(stdout, "\tpt(%f,%f)\n", p0.x, p0.y); 00095 00096 double cross = vector_product(p1, p2); 00097 double d12_2 = norm(pdiff); 00098 double d01_2 = norm(p1); 00099 double d02_2 = norm(p2); 00100 00101 // compute intersections between edge line and circle 00102 double delta = d12_2*_effective_R_squared - cross*cross; 00103 00104 // if no intersection, area=area_circle 00105 if (delta<=0){ 00106 return circle_area(d12_2, d01_2, d02_2); 00107 } 00108 00109 // we'll only need delta's sqrt now 00110 delta = sqrt(delta); 00111 00112 // b is the projection of 01 onto 12 00113 double b = scalar_product(pdiff, p1); 00114 00115 // intersections with the circle: 00116 // we compute the "coordinate along the line" of the intersection 00117 // with t=0 (1) corresponding to p1 (p2) 00118 // points with 0<t<1 are within the circle others are outside 00119 00120 // positive intersection 00121 double tp = (delta-b)/d12_2; 00122 00123 // if tp is negative, tm also => inters = circle 00124 if (tp<0) 00125 return circle_area(d12_2, d01_2, d02_2); 00126 00127 // we need the second intersection 00128 double tm = -(delta+b)/d12_2; 00129 00130 // if tp<1, it lies in the circle 00131 if (tp<1){ 00132 // if tm<0, the segment has one intersection 00133 // with the circle at p (t=tp) 00134 // the area is a triangle from 1 to p 00135 // then a circle from p to 2 00136 // several tricks can be used: 00137 // - the area of the triangle is tp*area triangle 00138 // - the lenght for the circle are easily obtained 00139 if (tm<0) 00140 return tp*0.5*fabs(cross) 00141 +circle_area((1-tp)*(1-tp)*d12_2, _effective_R_squared, d02_2); 00142 00143 // now, 0 < tm < tp < 1 00144 // the segment intersects twice the circle 00145 // area = 2 cirles at ends + a triangle in the middle 00146 // again, simplifications are staightforward 00147 return (tp-tm)*0.5*fabs(cross) 00148 + circle_area(tm*tm*d12_2, d01_2, _effective_R_squared) 00149 + circle_area((1-tp)*(1-tp)*d12_2, _effective_R_squared, d02_2); 00150 } 00151 00152 // now, we have tp>1 00153 00154 // if in addition tm>1, intersectino is a circle 00155 if (tm>1) 00156 return circle_area(d12_2, d01_2, d02_2); 00157 00158 // if tm<0, the triangle is inside the circle 00159 if (tm<0) 00160 return 0.5*fabs(cross); 00161 00162 // otherwise, only the "tm point" is on the segment 00163 // area = circle from 1 to m and triangle from m to 2 00164 00165 return (1-tm)*0.5*fabs(cross) 00166 +circle_area(tm*tm*d12_2, d01_2, _effective_R_squared); 00167 }
|
|
areas, numbered as jets
Definition at line 60 of file ClusterSequenceVoronoiArea.cc. Referenced by VoronoiAreaCalc(). |
|
effective radius
Definition at line 64 of file ClusterSequenceVoronoiArea.cc. Referenced by VoronoiAreaCalc(). |
|
effective radius squared
Definition at line 65 of file ClusterSequenceVoronoiArea.cc. Referenced by edge_circle_intersection(), and VoronoiAreaCalc(). |