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This will not be a portrait of John as a

Musketeer. . .



This will be a review of an outstanding 5-year

period 1984-1988±ε in John’s career

As a tribute of admiration and gratitude to

John,

who has influenced so deeply so many of us. . .
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+ many other papers on other aspects of CFT’s,

perturbation away from criticality, random sys-

tems, universal quantities, finite size corrections,

d > 2, etc.

+ many other review articles and courses, in-

cluding Les Houches 1988





Conformal Invariance And Universality In Finite Size

Scaling.

Conformal invariance useful not only for local

infinitesimal transformations, but also mappings

from one domain to another.

On a cylinder (aka strip of width L with pbc),

w = u+ iv, for large |u1 − u2|

〈ϕ(w1)ϕ(w2)〉cyl ∼ exp−2πx
|u1 − u2|

L

where x = conformal dimension of scaling field ϕ.

This results simply from mapping z = e2πw/L of cylinder
to plane and 〈ϕ(z1)ϕ(z2)〉 = |z1 − z2|−2x

Indeed for ϕ(z) a primary (spinless) field,

〈ϕ(w1)ϕ(w2)〉cyl =

∣∣∣∣ dz1dw1

∣∣∣∣x ∣∣∣∣ dz2dw2

∣∣∣∣x 〈ϕ(z1)ϕ(z2)〉
=

(
2π

L

)2x |z1z2|x

|z1 − z2|2x

=

(
2π

L

)2x

|2 sinh(π(w1 − w2)/L)|−2x

∼ exp

(
−

2πx

L
|u1 − u2|

)
QED





Conformal Invariance and Surface Critical Behavior

Surface critical behaviour in arbitrary d : con-

straints from conformal invariance.

General form of the two-point function in semi-half space.

In d = 2, general setting of conformal invariance

in the presence of a boundary, the foundation

of future “BCFT”, (with later applications to

many situations in stat. mech, cond. mat. and

string theory, branes . . . ).

Consider upper half-plane. Conformal transf.

must respect that geometry. Instead of two in-

dependent T (z) and T̄ (z̄) and two commuting

copies of Virasoro algebra, T (z) and T̄ (z̄) are

analytic continuations of one another, and there

is only one copy of Virasoro.

Two-point function in half-plane : same equation as four-

point function in bulk.

Numerous applications to various critical models, Ising,

Potts, O(n), explicit two-point function, surface critical

exponents, . . .



Non unitary cft’s may also be interesting !

Lee-Yang cft has c = −22/5,

it is the “(2,5) minimal model”





Conformal Invariance, the Central Charge, and Uni-

versal Finite Size Amplitudes at Criticality.

The interpretation of the central charge as a

Casimir effect, i.e. as a finite size correction to

the (free) energy.

(Simultaneously, same observation by I. Affleck)

Fundamental for stat. phys. interpretation of central
charge c and its identification from numerical or from an-
alytical computations on finite width strips.

Transformation of T (z) involves schwarzian derivative

T̃ (w) =
(
dz
dw

)2
T (z)+ c

12
{z, w}, ({z, w} = z′′′

z′
− 3

2

(
z′′

z′

)2
), hence

for z = e2πw/L,

Tcyl(w) =

(
2π

L

)2 (
z2T (z)−

c

24

)
hence Lcyl

−1 = 2π
L
(L0− c

24
) and the Hamiltonian = generator

of (“time”) translations along the cylinder
H = Lcyl

−1 + L̄cyl
−1 = 2π

L

(
L0 + L̄0 − c

12

)
In a unitary theory, lowest eigenvalue of L0 is zero, whence
“ground state energy” is E0 = − πc

6L
. Alternatively finite

size correction to free energy per unit length

lim
T→∞

logZ(L, T )

T
= fL+

cπ

6L

In a non unitary theory, ceff = c− 24hmin

[Itzykson-Saleur-Z ’86]





Operator Content of Two-Dimensional Conformally

Invariant Theories.

Three important results

1. all universal quantities defining a cft –the

central charge c, the conformal weights (hi, h̄i),

the structure constants of OPE Cijk– appear

in and may be read off from properties of the

transfer matrix (on a cylinder) and the finite

size corrections to correlation functions.

2. A unitary theory with a finite number of pri-

mary fields ⇒ c < 1

3. On a parallelogram with pbc, consistency

due to symmetry puts strong constraints on

operator content.





1. all universal quantities defining a cft –the

central charge c, the conformal weights (hi, h̄i),

the structure constants of OPE Cijk– appear

in and may be read off from properties of the

transfer matrix (on a cylinder) and the finite size

corrections to correlation functions.

continuation of previous argument on connection between

spectrum of Hamiltonian/transfer matrix and L0+L̄0− c
12



2. In a unitary theory with a finite number of

primary fields ⇒ c < 1

Compute the partition function on a rectangle L×T with
doubly pbc, aspect ratio δ = T/L,

Z(L, T ) = tr e−TH = tr e
−2πT

L
(L0+L̄0− c

12
)

= e
2πc

12
δ

∑
(h,h̄)

∑
descendents

at level N,N̄

e−2πδ(h+N+h̄+N̄)

≤ e
πc

6
δ

∑
(h,h̄)

e−2πδ(h+h̄)∏
n(1− qn)2

= e
πc

6
δ

∑
(h,h̄)

e−2πδ(h+h̄)δ∏
n(1− q̃n)2

e−π(δ−δ
−1)/6

using Poisson summation formula to transform product∏
n(1− qn) under q = e−2πδ → q̃ = e−2π/δ.

Hence in the limit δ → 0, q → 1, δ̃ →∞, q̃ → 0

N δ exp
( π
6δ

)
≥ Z(L, T ) = Z(T,L) ∼ exp

(πc
6δ

)
If N = # of primary fields is finite, this is consistent only
if c < 1. QED

The conclusion also holds for non unitary theories [Altschuler,

’89]



3. On a parallelogram with pbc, consistency due
to symmetry puts strong constraints on operator
content.

• Partition function on torus of modular ratio τ = iδ

Z(τ) = tr qL0− c

24 q̄L̄0− c

24 =
∑
h,h̄

Nh,h̄χh(q)χh̄(q̄)

with q = e2πiτ and character χh(q) = tr qL0− c

24 (count-
ing function of states in the h conformal tower.)

• In a (unitary) c < 1 theory, c = 1 − 6/m(m + 1),
m = 3,4, · · · and h, h̄ take their values in the Kac
table [Friedan, Qiu, Shenker]

hpq =
(p(m+ 1)− qm)2 − 1

4m(m+ 1)
1 ≤ q ≤ p ≤ m− 1

Characters are explicitly known [Rocha-Caridi, Feigin–
Fuks] and transform among themselves under the ac-
tion of τ 7→ −1/τ (Poisson transformation)

χh(τ) = Shh′ χh′(−1/τ)

(and also of τ 7→ τ + 1);

• Consistency, i.e. modular invariance of partition fn,

yields constraints, “sum rules” N = SNS†, or

S is unitary, hence “diagonal solution” Nhh̄ = δhh̄
always modular invariant but ∃ also other solu-
tions, for ex., 3-state (tri)critical Potts model
. . . and more [Itzykson–Z ’86]



A fundamental paper in several respects

– Gives a physical interpretation to the mathe-

matical fact that characters have modular prop-

erties (i.e. form a finite diml reprn of modular group).

– Opens the route to a classification of cft’s.

Classification of c < 1 completed soon after

[Cappelli–Itzykson–Z; Gepner–Qiu; CIZ, Kato ’87]

with some insight from lattice theories [Pasquier].

– Uncovers hidden sectors of theory; for ex.

Ising : 1, ε, but also σ forced upon us by mod-

ular invariance.

Earlier observation of modular properties of partition func-

tion [Fisher-Ferdinand, Thorn] or of spectrum [Nahm]

Parallel work by Gepner and Witten, Gepner. . .

Paper also remarkable by the “economy of means”







Modular transformations also useful in connect-

ing or constraining other types of boundary con-

ditions

• Periodic, Antiperiodic, Cyclic or Twisted (for
a ZN theory like Potts)
Consider again partition function on rectangle of aspect
ratio δ and P or A b.c. in the two directions

ZPP(δ) =
∑
h,h̄

N P
hh̄ χh(q)χh̄(q)

ZPA(δ) =
∑
h,h̄

εhh̄︸︷︷︸
Z2 charge

N P
hh̄ χh(q)χh̄(q)

ZAP(δ) = ZPA(1/δ) =
∑
h,h̄

NA
hh̄ χh(q)χh̄(q)

thus knowledge of charges in periodic sector + modular

transform gives us operator content in antiperiodic sec-

tor ! Same argument for T, C b.c. Applications to Ising,

Potts, etc

• Free or fixed

ZFP is now a linear combination of characters, see below,

but again consistency constraints from modular transfor-

mation. . .

Parallel work on ZAP etc and their (sub)modular proper-

ties [Z ’86].





One more fundamental paper ! The key con-

cepts of Boundary CFT : boundary condition

changing operators, Cardy (boundary) states and

fields, Cardy (consistency) equation, . . .

+ a physicist’s proof of Verlinde fusion formula

In the upper half plane, insertion of boundary cond.
changing operator Ψh

ab on real axis creates mixed b.c.

Consider again the partition function, now in an annulus

Boundary states |a〉 must satisfy (Ln− L̄−n)|a〉 = 0 : su-
perpositions of “Ishibashi states” |h〉〉, in one-to-one cor-
respondence with h = h̄ primary bulk operators, (in a
diagonal theory, but also in general [Watts ’97])

Zba(δ) =
∑
h

nhbaχh(q) q = e−πT/L q̃ = e−4πL/T

= 〈b|q̃
1

2
(L0+L̄0− c

12
)|a〉 = · · · =

∑
h

〈b|h〉〉〈〈h|a〉χ(q̃)

whence nhba =
∑

h′ Shh′〈b|h′〉〉〈〈h′|a〉 Cardy’s equation .
In diagonal minimal theories, |a〉〉 ↔ h̃, conformal weight
of a primary field, and 〈〈h′|a〉 = Sh̃h′/(S0h′)1/2 whence

nhba = nh
h̃1h̃2

=
∑
h′

Shh′Sh̃1h′
Sh̃2h′

S0h′

which is Verlinde formula for the fusion coefficients Nh
h̃1h̃2

!



A paper with some antecedents [John’s previ-

ous paper, Saleur and Bauer], but a conceptual

breakthrough, and a long filiation. . .

By John himself, from percolation (“Cardy (cross-

ing) formula”), . . . to SLE.

Applications from cond. mat. physics, [Affleck,

Ludwig, Oshikawa, Saleur, . . . ]

to string theory : [Pradisi–Sagnotti–Stanev, Recknagel–

Schomerus, Fuchs–Schweigert, Runkel,. . . ]

[Di Francesco–Z ’89, Behrend–Pearce–Petkova–

Z ’98] Cardy’s equation explains why graphs are

the good way to encode the spectrum of cft’s. . .

niba =
∑
j

Sijψ
j∗
b ψ

j
a

S0j

are the adjacency matrices of graphs and form a

representation of the fusion algebra ni nj = Nk
ijnk.

In fact classification of boundary states reduced

to classification of “nimreps” (non negative in-

teger valued representations) of fusion algebra.

Further generalization to defects lines. . . [Petkova–

Z 2000, Fröhlich–Fuchs–Runkel–Schweigert, . . .

Runkel, Bachas–Brunner]



BCFT requests more than list of boundary states
and spectrum.

〈a|Φ(z)|a〉, expansion of bulk fields Φ on bound-
ary fields Ψ, . . .

Again a filiation of papers, “bulk-boundary alge-
bra”, fusion of boundary fields and their struc-
ture constants, etc. [Lewellen ’92, Runkel ’98-
99, . . . ], connections with integrable lattice mod-
els, . . .





Congratulations, John,

and best wishes

for many new ascents

to new summits !

?


