AN UPDATED LIST OF ERRATA

QUANTUM FIELD THEORY

C. Itzykson and J.-B. Zuber

CHAPTER I

Page 16, line 1, after "force law", add "it follows that"

Page 16, line 3, instead of "we learn ..."

read "This expression holds for a weak magnetic field when we average over the motion of the orbiting particle. It amounts to dropping total time derivatives, and shows ... "

Page 20, eq. (1-88), instead of "
$$\frac{\partial I}{\partial t_2} - \frac{\partial I}{\partial t_1} = 0$$
" read " $\frac{\partial I}{\partial t_2} + \frac{\partial I}{\partial t_1} = 0$ "

instead of "
$$\widetilde{\Theta}^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{i})}\partial_{\nu}\phi_{i} - g_{\mu\nu}\mathcal{L}$$
", read " $\widetilde{\Theta}^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{i})}\partial^{\nu}\phi_{i} - g^{\mu\nu}\mathcal{L}$ "

instead of "
$$\pi(\mathbf{x},t) = \frac{\partial L}{\partial \partial_0 \varphi(\mathbf{x},t)} = \cdots$$
", read " $\pi(\mathbf{x},t) = \frac{\delta L}{\delta \partial_0 \varphi(\mathbf{x},t)} = \cdots$ "

instead of "
$$J^{\mu} = j^{\mu} + \frac{\partial \mathcal{L}_{int}}{\partial [\partial_{\mu} \alpha(x)]} = \cdots$$
" read " $J^{\nu} = j^{\nu} + \frac{\partial \mathcal{L}_{int}}{\partial [\partial_{\nu} \alpha(x)]} = \cdots$ "

instead of "
$$\widetilde{G}_{\text{adv}}^{\text{ret}}(p) = \frac{-1}{(p_0 \pm i\varepsilon) - \mathbf{p}^2 - m^2}$$
" read " $\widetilde{G}_{\text{adv}}^{\text{ret}}(p) = \frac{-1}{(p_0 \pm i\varepsilon)^2 - \mathbf{p}^2 - m^2}$ "

Page 34, eq. (1-172), instead of "
$$e^{\pm i\omega_p x_0 + \cdots}$$
" read " $e^{\mp i\omega_p x_0 + \cdots}$ "

Page 35, last line, instead of "Sec. 1-2" read "Sec. 1-1-2"

Page 41, eq. (1-212), instead of "
$$\cdots = -j.\widetilde{j}^*$$
" read " $\cdots = -\widetilde{j}.\widetilde{j}^*$ "

CHAPTER II

Page 47, eq. (2-3) instead of "
$$\left(\frac{\partial^2}{\partial t^2} - \nabla^2 - m^2\right) \psi(\mathbf{x}, t) = 0$$
" read " $\left(\frac{\partial^2}{\partial t^2} - \nabla^2 + m^2\right) \psi(\mathbf{x}, t) = 0$ "

instead of "
$$P(n_k)\Lambda_{\pm}(k) = \left(I \pm \frac{\mathbf{\Sigma}.\mathbf{k}}{|\mathbf{k}|}\right)\Lambda_{\pm}(k)$$
" read " $P(n_k)\Lambda_{\pm}(k) = \frac{1}{2}\left(I \pm \frac{\mathbf{\Sigma}.\mathbf{k}}{|\mathbf{k}|}\right)\Lambda_{\pm}(k)$ "

instead of "
$$\frac{\cancel{k}+m}{2}$$
" read " $\frac{\cancel{k}+m}{2m}$ "; instead of " $\frac{-\cancel{k}+m}{2}$ " read " $\frac{-\cancel{k}+m}{2m}$ "

Page 61, line –9, instead of "
$$b/d^*$$
" read " d^*/b "

Page 66, lines 5, 7 and 12, instead of "
$$\frac{e\hbar}{2mc}$$
" read $\frac{e\hbar}{2m}$ "

Page 66, line 7, instead of " $\frac{e\hbar}{mc}$ " read $\frac{e\hbar}{m}$ "

Page 82, line 13, instead of " $\frac{mZ^4\alpha^5}{n^3}$ " read " $\frac{mZ^4\alpha^5}{\pi n^3}$ "

Page 84, line 1,

instead of "
$$E_{\text{tot}} = m + M - \frac{\alpha}{2n^2} \frac{mM}{m+M} + \cdots$$
" read " $E_{\text{tot}} = m + M - \frac{\alpha^2}{2n^2} \frac{mM}{m+M} + \cdots$ "

Page 93, eq. (2-118)

instead of "
$$e \int d^4x_2 \mathcal{A}(x_2) S_A(x_2, x_1)$$
" read " $e \int d^4x_2 S_F(x_3, x_2) \mathcal{A}(x_2) S_A(x_2, x_1)$ "

CHAPTER III

Page 109, eq. (3-16), last line

instead of "
$$[a_k, a_{k'}] = \delta(k - k')$$
" read " $[a_k, a_{k'}^{\dagger}] = \delta(k - k')$ "

Page 117, eq. (3-56), instead of "
$$\Delta(x-y) = \cdots$$
" read " $\Delta(x) = \cdots$ "

Page 119, second line

instead of "
$$D(\eta_2)|\eta_1) = |\eta_1 + \eta_2|$$
" read " $D(\eta_2)|\eta_1) = e^{i\int d\widetilde{k} \operatorname{Im}(\eta_1^* \eta_2)} |\eta_1 + \eta_2|$ "

Page 119, eq. (3-67)

instead of "
$$\widetilde{f}_n(k) = \int d^3x \, e^{i\mathbf{k}.\mathbf{x}} F_n(\mathbf{x}) = \widetilde{F}_n(\mathbf{k})$$
", read " $\widetilde{f}_n(k) = \int d^3x \, e^{-i\mathbf{k}.\mathbf{x}} F_n(\mathbf{x}) = \widetilde{F}_n(\mathbf{k})$ "

Page 120, eq. (3-69)

instead of "
$$\varphi_c(\mathbf{x}) = \sum_n \varphi_{n,c} \int d\widetilde{k} e^{-i\mathbf{k}.\mathbf{x}} F_n^*(\mathbf{k})$$
", read " $\varphi_c(\mathbf{x}) = \sum_n \varphi_{n,c} \int d\widetilde{k} e^{-i\mathbf{k}.\mathbf{x}} \widetilde{F}_n^*(\mathbf{k})$ "

Page 135, eq. (3-136), end of first line

instead of "
$$k^0 = \sqrt{k^2 + \mu^2}$$
" read " $k^0 = \sqrt{\mathbf{k}^2 + \mu^2}$ "

Page 135, line -6, first part of the equation

instead of "
$$\varepsilon^{(\lambda)}(k).\varepsilon^{(\lambda')}(k) = \delta_{\lambda\lambda'}$$
" read " $\varepsilon^{(\lambda)}(k).\varepsilon^{(\lambda')}(k) = -\delta_{\lambda\lambda'}$ "

Page 140, line 11, instead of "
$$u=a^2k^2/\pi$$
" read " $u=a^2k^2/\pi^2$ "

Page 149, eq. (3-169), instead of "
$$\{\psi_{\xi}(x), \bar{\psi}_{\xi'}(x')\} = \cdots$$
", read " $\{\psi_{\xi}(x), \bar{\psi}_{\xi'}(y)\} = \cdots$ "

Page 153, line 5, instead of "
$$C = i\gamma^0\gamma^2$$
" read " $C = i\gamma^2\gamma^0$ "

Page 156, line 17, instead of "
$$\gamma^5 Cu^*(\hat{k}, \varepsilon) = \cdots$$
" read " $\gamma^5 Cu^*(\tilde{k}, \varepsilon) = \cdots$ "

Page 159, line -6

instead of "
$$\gamma^0 O^{\mu}(p', p)^{\dagger} \gamma^0 = O^{\mu}(p', p)$$
" read " $\gamma^0 O^{\mu}(p', p)^{\dagger} \gamma^0 = O^{\mu}(p, p')$ "

Page 160, line 6, in the bracket of Eq. (3.203), add a fourth term
$$+\gamma^5(q^2\gamma^\mu - \not q q^\mu)F_4(q^2)$$

Page 160, lines 10-11

instead of " $F_3(q^2) = -F_3(q^2)$. Thus parity conservation alone yields $F_3 = 0$."

read " $F_3(q^2) = -F_3(q^2)$ and $F_4(q^2) = -F_4(q^2)$. Thus parity conservation alone yields $F_3 = F_4 = 0$."

Page 160, lines 14, instead of " $\epsilon_1 = \epsilon_2 = -\epsilon_3 = 1$." read " $\epsilon_1 = \epsilon_2 = -\epsilon_3 = \epsilon_4 = 1$."

Page 161, line 2, instead of " $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$ " read " $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$ "

CHAPTER IV

Page 179, line 17, instead of "
$$\sum_{1 \leq k < l \leq N}$$
 " — read " $\sum_{1 \leq l < k \leq N}$ "

Page 188, line 15, instead of " $\mathcal{F}(A)$ " read " $\mathcal{T}(A)$ "

Page 193, eq. (4-113), line 1, instead of " $(P-eA)^2 - m^2 = \cdots$ " read " $(P-eA)^2 = \cdots$ "

CHAPTER V

Page 207, first line of eq. (5-28)

instead of " $\langle p_1, \ldots, p_n, \text{in} | S | q_1, \ldots, q_l, \text{out} \rangle$ " read " $\langle p_1, \ldots, p_n, \text{in} | S | q_1, \ldots, q_l, \text{in} \rangle$ "

Page 209, line 4, instead of " $\cdots = \frac{a^{\dagger m}|0\rangle\langle 0|a^n}{m!n!}\cdots$ " read " $\cdots = \sum_{m,n=0}^{\infty} \frac{a^{\dagger m}|0\rangle\langle 0|a^n}{m!n!}\cdots$ "

Page 215, line -5, middle line of the equation

instead of " $\cdots - iZ^{-1/2} \int d^3x \cdots$ " read " $\cdots - iZ^{-1/2} \int d^4x \cdots$ "

Page 222, eq. (5-88), instead of " $\varepsilon_i.j(x)$ " read " $\varepsilon_i.j(y)$ "

Page 223, line 12,

delete ", using the fact that $W_M(x-y)$ depends only on $(x-y)^2$ "

Page 225, line –6, instead of " $\cdots b^{\dagger}(q_i, \alpha_i)|0\rangle$ " read " $\cdots b^{\dagger}(p_i, \alpha_i)|0\rangle$ "

Page 228, line –3, instead of " = $8k_i \cdot p_i k_f \cdot p_f [\cdots]$ " read " = $8k_i \cdot p_i k_f \cdot p_i [\cdots]$ "

Page 232, eq. (5-120), instead of " $-4(\varepsilon_1.\varepsilon_2)$ " read " $-4(\varepsilon_1.\varepsilon_2)^2$ "

Page 239, line –3, instead of " \cdots $(\not p_f + \not k + m)\gamma^0(\not p_f + \not k + m)\cdots$ " read " \cdots $(\not p_f + \not k + m)\gamma^0(\not p_i + m)\gamma^0(\not p_f + \not k + m)\cdots$ "

Page 240, line 3, instead of " $\cdots p_i.k p_j.k$ " read " $\cdots p_i.k p_f.k$ "

Page 240, third line of eq. (5-150)

instead of " $2\omega^2 \frac{p_i^2 \sin^2 \theta_i + p_f^2 \sin^2 \theta_f}{(E_f - p_f \cos \theta_f)(E_i - p_i \sin \theta_i)}$ ", read " $2\omega^2 \frac{p_i^2 \sin^2 \theta_i + p_f^2 \sin^2 \theta_f}{(E_f - p_f \cos \theta_f)(E_i - p_i \cos \theta_i)}$ "

Page 246, line 9, instead of "...complex field φ to describe ..." read "...complex field φ , creating A and annihilating \overline{A} , to describe ..."

CHAPTER VI

Page 278, eq. (6-39), instead of "
$$\frac{m^2e^4}{4E^2(2\pi)^2}$$
 " read " $\frac{m^4e^4}{4E^2(2\pi)^2}$ "

instead of "
$$\frac{\alpha}{2E^2} \left[\frac{5}{4} - \frac{8E^4 - m^4}{E^2(E^2 - m^2)(1 - \cos \theta)} + \cdots \right]$$

read " $\frac{\alpha^2}{2E^2} \left[\frac{5}{4} - \frac{8E^4 - m^4}{4E^2(E^2 - m^2)(1 - \cos \theta)} + \cdots \right]$ "

Page 286, one line before eq. (6-65)

instead of "
$$|\mathcal{T}|^2 = 4[\cdots]$$
" read " $|\mathcal{T}|^2 = 4[\cdots]^2$ "

Page 290, line –7, instead of "
$$i\frac{\delta}{\partial \varphi_c(x)}$$
 " read " $i\frac{\delta}{\delta \varphi_c(x)}$ "

Page 298, line -2, instead of "
$$2L - 4V + 4 < 0$$
" read " $2I - 4V + 4 < 0$ "

Page 303, line -4, instead of "
$$z_i = z_j^0$$
" read " $z_j = z_j^0$ "

Page 311, four lines after eq. (6-119)

instead of "after elimination of
$$\alpha_1=1-\alpha_2-\alpha_3$$
, yield, for $\alpha=\alpha_2=\alpha_3$ ($0<\alpha<\frac{1}{2}$ since $0<\alpha_1<1$)"

read "after elimination of $\alpha_3 = 1 - \alpha_1 - \alpha_2$, yield, for $\alpha = \alpha_1 = \alpha_2$ $(0 < \alpha < \frac{1}{2} \text{ since } 0 < \alpha_3 < 1)$ "

CHAPTER VII

Page 326, line 10, instead of "
$$\log(\Lambda^2/m^2)$$
" read " $\ln(\Lambda^2/m^2)$ "

Page 333, line -10

instead of "...ultraviolet divergent." read "...ultraviolet convergent."

Page 345, line -11, instead of "Sec. 3-3-4" read "Sec. 4-3-4"

Page 354, line -2

instead of "
$$\varphi \tanh \varphi + (1 - \varphi \tanh \varphi)$$
" read " $\frac{1}{2}\varphi \tanh \varphi + (1 - \varphi \coth \varphi)$ "

Page 355, line 8, instead of "contributions" read "contribution"

Page 361, line –10, instead of "
$$B = \frac{\alpha}{4\pi^2} \cdots$$
" read " $B = \frac{\alpha}{2\pi^2} \cdots$ "

Page 370, line -5, instead of "vol. 75, p. 1912, " read "vol. 75, p. 898, "

CHAPTER VIII

instead of "
$$\frac{k_{\mu}k_{\nu}\delta^{\mu\nu}-m_{2}^{2}}{[(p-k)^{2}-m_{1}^{2}]^{n}(k^{2}-m_{2}^{2})^{p}}$$
 " read " $\frac{k_{\mu}k_{\nu}\delta^{\mu\nu}+m_{2}^{2}}{[(p-k)^{2}+m_{1}^{2}]^{n}(k^{2}+m_{2}^{2})^{p}}$ "

instead of "
$$\frac{1}{[(p-k)^2-m_1^2]^n(k^2-m_2^2)^{p-1}}$$
 " read " $\frac{1}{[(p-k)^2+m_1^2]^n(k^2+m_2^2)^{p-1}}$ "

Page 380, line 17, instead of "Therefore ω_v is " read "Therefore $\hat{\omega}_v$ is "

Page 381, line 8, instead of "at least an ... " read "at least one ... "

Page 383, eq. (8-23), instead of " $\cdots = 2L_l - 4I_l$ " read " $\cdots = 4L_l - 2I_l$ "

Page 408, end of eq. (8-78), instead of " $A_{\sigma}(x)|0\rangle$ " read " $A_{\sigma}(0)|0\rangle$ "

Page 409, line 6, instead of " $-i\frac{M^2}{\mu^2(k^2-M^2)}$ " read " $-i\frac{M^2k_{\sigma}}{\mu^2(k^2-M^2)}$ "

Page 409, line 13, instead of " $B(k^2) = \lambda \frac{k^2 - M^2}{k^2}$ " read " $B(k^2) = -\lambda \frac{k^2 - M^2}{k^2}$ "

Page 410, line 5, instead of "Contracting Eq. (8-83) with k_{σ} and ..." read "Contracting Eq. (8-83) with q_{σ} and ..."

Page 410, last line, instead of " p_1, p_2, p_3, p_4 " read " k_1, k_2, k_3, k_4 "

Page 413, line –6, instead of " $+eZ_1\bar{\psi}\not\!A\psi$ " read " $-eZ_1\bar{\psi}\not\!A\psi$ "

Page 421, eq. (8-124), instead of " C_2 " read " C_1 "

Page 421, line –7, instead of " $[\cdots]^{d/2-4}$ " read " $[\cdots]^{d-4}$ "

CHAPTER IX

Page 430, line -3

instead of "
$$M_{k,k+1} = M_{k-1,k} = \cdots$$
 $1 \le k \le n-1$ " read " $M_{k,k+1} = M_{k+1,k} = \cdots$ $0 \le k \le n-1$ "

Page 437, eq. (9-46), instead of "
$$A = \sum_{n,m} A_{n,m} \cdots$$
" read " $A = \sum_{n,m} \frac{A_{n,m}}{\sqrt{n!m!}} \cdots$ "

Page 438, line 2

instead of "exp
$$\left[\bar{z}_n z_{n-1} - \sum_{1}^{n-1} \bar{z}_k z_k + \bar{z}_1 z_0 - i \cdots\right]$$
" read "exp $\left[\sum_{0}^{n-1} \bar{z}_{k+1} z_k - \sum_{1}^{n-1} \bar{z}_k z_k - i \cdots\right]$ "

Page 438, line 10, instead of "which requires to " read "which requires us to "

Page 442, eq. (9-77), instead of "
$$\frac{\bar{\eta}\dot{\eta} - \dot{\bar{\eta}}\eta}{2i}$$
" read " $\frac{\dot{\bar{\eta}}\eta - \bar{\eta}\dot{\eta}}{2i}$ "

Page 459, after eq. (9-155), instead of "A canonical..." read "Requiring that the q's have vanishing Poisson brackets, a canonical..."

Page 471, line 8

instead of "integrate the normalized version of $\dot{\widetilde{\varphi}}$ in the subspace orthogonal to ψ ." read "integrate in the subspace orthogonal to ψ , the normalized version of $\widetilde{\varphi}$."

CHAPTER X

Page 480, interchange figures 10-3 and 10-4 but **not** their captions.

Page 480, eq. (10-24), instead of "
$$S(x_1, y_1; x_2, y_2; J)|_{J=0}$$
", read " $S(x_1, x_2; y_1, y_2; J)|_{J=0}$ "

Page 492, eq. (10-72), instead of "
$$D^{-3}\chi(P)$$
" read " $D^{-3}\chi(p)$ "

Page 497, line 9, instead of "
$$p_0 = \mp E/2 + \omega - i\varepsilon$$
" read " $p_0 = \mp E/2 - \omega - i\varepsilon$ "

Page 499, line –7, instead of "
$$(E'-E)\int d^3p\,\eta^{\dagger}(\mathbf{p})\varphi(\mathbf{p})$$
", read " $(E'-E)\int d^3p\,\eta^{\dagger}(\mathbf{p})\varphi'(\mathbf{p})$ "

Page 499, eq. (10-107), instead of "
$$\eta^*(\mathbf{p})$$
" read " $\eta^{\dagger}(\mathbf{p})$ "

Page 504, second line of eq. (10-120), instead of "
$$(k^0+m^2)-\cdots$$
" read " $(k^0+m)^2-\cdots$ "

CHAPTER XI

Page 523, lines 4-6, instead of "the lagrangian reads \dots decoupled massless fields," read "the lagrangian has the form

$$\mathcal{L} = \frac{1}{2} (\partial \rho)^2 + \frac{1}{2} (\partial \xi)^2 \left(1 + \frac{\rho}{v} \right)^2 \left(1 + f \left(\frac{\xi}{v} \right) \right) - \frac{\mu^2}{2} (v + \rho)^2 - \frac{\lambda}{4} (v + \rho)^4$$

with some function f. From this we see that the ξ correspond to (n-1) massless fields,"

Page 547, last equation before Figure 11-13 $\,$

instead of "
$$\cdots = \delta^4(x-y) T_{kl}^{\alpha}[\phi_l(y) + v_l]$$
" read " $\cdots = -i\delta^4(x-y) T_{kl}^{\alpha}[\phi_l(y) + v_l]$ "

Page 551, replace lines 1-5 by

"At $k_1^2 = k_2^2 = 0$, hence $k_1.q = k_2.q = k_1.k_2$, only two independent tensors are consistent with these requirements:

$$\mathcal{B}_{1\,\mu\nu\rho} = \varepsilon_{\mu\nu\sigma\tau} k_1^{\sigma} k_2^{\tau} q_{\rho}$$

and $\mathcal{B}_{2\,\mu\nu\rho} = \left(\varepsilon_{\mu\rho\sigma\tau}k_{1\,\nu} - \varepsilon_{\nu\rho\sigma\tau}k_{2\,\mu}\right)k_1^{\sigma}k_2^{\tau} - \varepsilon_{\mu\nu\rho\sigma}(k_1^{\sigma} - k_2^{\sigma})\,k_1.k_2 \ .$

A third possible tensor $\mathcal{B}_{3\,\mu\nu\rho}=(\varepsilon_{\mu\rho\sigma\tau}k_{2\,\nu}-\varepsilon_{\nu\rho\sigma\tau}k_{1\,\mu})k_1^\sigma k_2^\tau$ is actually not independent, because of the identity $q_\sigma\varepsilon_{\tau\mu\nu\rho}+q_\rho\varepsilon_{\sigma\tau\mu\nu}+q_\nu\varepsilon_{\rho\sigma\tau\mu}+q_\mu\varepsilon_{\nu\rho\sigma\tau}+q_\tau\varepsilon_{\mu\nu\rho\sigma}=0$. This expresses that a totally antisymmetric rank 5 tensor vanishes in four dimensions. Contracted with $k_1^\sigma k_2^\tau$, this yields $\mathcal{B}_{1\,\mu\nu\rho}=\mathcal{B}_{2\,\mu\nu\rho}+\mathcal{B}_{3\,\mu\nu\rho}$. We therefore write the following expression when $k_1^2=k_2^2=0$

$$T_{\mu\nu\rho}(k_1, k_2) = \varepsilon_{\mu\nu\sigma\tau} k_1^{\sigma} k_2^{\tau} q_{\rho} T_1(q^2)$$

$$+ \left[\left(\varepsilon_{\mu\rho\sigma\tau} k_{1\nu} - \varepsilon_{\nu\rho\sigma\tau} k_{2\mu} \right) k_1^{\sigma} k_2^{\tau} - \varepsilon_{\mu\nu\rho\sigma} (k_1^{\sigma} - k_2^{\sigma}) k_1 . k_2 \right] T_2(q^2) .$$
(11 – 188)

Consequently,

$$q^{\rho}T_{\mu\nu\rho} = \varepsilon_{\mu\nu\sigma\tau}k_1^{\sigma}k_2^{\tau}q^2 \left[T_1(q^2) + T_2(q^2)\right]$$
 (11 – 189) "

Page 553, line 7, an updated value is $\Gamma^{\text{exp}} = (7.75 \pm 0.5) \, \text{eV}$.

CHAPTER XII

Page 564, line 6, instead of "
$$s(0) = x_1, s(1) = x_2$$
" read " $x(0) = x_1, x(1) = x_2$ "

Page 574, line -13, instead of "the latter" read " Γ "

Page 577, line 12, instead of "
$$\mathcal{M}_0 = -\Delta \delta_{ij} \cdots$$
" read " $\mathcal{M}_0 = -\Delta \delta_{ab} \cdots$ "

Page 595, replace lines 1–7 in small characters by the following, also in small characters

To be precise we write det $\mathcal{M}_{\mathcal{F}}(A) \equiv \Delta_{\mathcal{F}}(A, \mathcal{F}(A))$ according to the definition

$$\Delta_{\mathcal{F}}^{-1}(A,C) = \int \mathcal{D}(g) \, \delta(\mathcal{F}({}^{g}A) - C)$$

 $\Delta_{\mathcal{F}}^{-1}(A,C) = \int \mathcal{D}(g) \, \delta(\mathcal{F}({}^g\!A) - C)$ For a gauge transformation independent of A we have obviously

$$\Delta_{\mathcal{F}}({}^{g}A,C) = \Delta_{\mathcal{F}}(A,C)$$

 $\Delta_{\mathcal{F}}({}^g\!A,C) = \Delta_{\mathcal{F}}(A,C)$ due to the group invariance of the measure $\mathcal{D}(g)$. In the present case however where

$$A' = {}^{g(A)}A$$
 $\mathcal{F}(A) = \mathcal{F}'(A') = \mathcal{F}'\left({}^{g(A)}A\right)$

the gauge transformation depends on the potential. We shall show that the jacobians in $\mathcal{D}(A)$ and $\Delta_{\mathcal{F}}$ conspire to cancel. Consider

$$\int \mathcal{D}(A)\Delta_{\mathcal{F}}(A,\mathcal{F}(A)) = \int \mathcal{D}(A)\Delta_{\mathcal{F}}(A,\mathcal{F}(A)) \left[\int \mathcal{D}(A')\,\delta\left(A' - {}^{g(A)}A\right) \right] \\ \times \left[\Delta_{\mathcal{F}'}(A,\mathcal{F}(A))\,\int \mathcal{D}(g)\,\delta\left(\mathcal{F}'\left({}^{g}A\right) - \mathcal{F}(A)\right) \right]$$

Both terms between brackets on the right hand side are equal to unity. The argument of the last δ -function vanishes for g = g(A), we can therefore substitute the generic g for g(A) in the first δ -function. We then set $A = g^{-1}B$, recognize that $\mathcal{D}(A) = \mathcal{D}(B)$ and integrate over B. Thus, using the invariance of Δ under potential independent gauge transformations

$$\int \mathcal{D}(A) \, \Delta_{\mathcal{F}}(A, \mathcal{F}(A)) =
= \int \mathcal{D}(A') \mathcal{D}(g) \, \Delta_{\mathcal{F}}\left(A', \mathcal{F}\left(g^{-1}A'\right)\right) \, \Delta_{\mathcal{F}'}\left(A', \mathcal{F}\left(g^{-1}A'\right)\right) \, \delta\left(\mathcal{F}'(A') - \mathcal{F}\left(g^{-1}A'\right)\right)
= \int \mathcal{D}(A') \mathcal{D}(g) \, \Delta_{\mathcal{F}}(A', \mathcal{F}'(A')) \, \Delta_{\mathcal{F}'}(A', \mathcal{F}'(A')) \, \delta\left(\mathcal{F}'(A') - \mathcal{F}\left(g^{-1}A'\right)\right)
= \int \mathcal{D}(A') \, \Delta_{\mathcal{F}'}(A', \mathcal{F}'(A'))$$

The last equality follows from the integration over g and translates in precise terms Eq. (12-129).

Page 596, eq. (12-137), erase the first "0="

Page 600, line –10, instead of "
$$\widetilde{I}_1 = I - \cdots$$
 " read " $\widetilde{I}_1 = \widetilde{I} - \cdots$ "

Page 603, line –9, instead of "involve no λ_5 matrix" read "involve no γ_5 matrix"

Page 611, line –10, instead of "
$$(k^2 - m^2)^{-1}$$
" read " $(k^2 - M^2)^{-1}$ "

Page 625, line 8, an updated value is $\sin^2 \theta_W \simeq 0.23$.

CHAPTER XIII

Page 635, line 11

instead of "the derivative $(\partial/\partial x)d^{as}(\alpha_1,x)$ " read "the derivative $(\partial/\partial x)d^{as}(\alpha,x)$ "

Page 648, eq. (13-61), instead of " $\cdots = m_0 \frac{\partial}{\partial m_0} \cdots$ read " $\cdots = \frac{1}{2} m_0 \frac{\partial}{\partial m_0} \cdots$

Page 649, eq.(13-65), instead of " $\frac{\partial m_0(\Lambda/m,g)}{\partial m}$ " read " $\frac{\partial m_0(\Lambda/m,g_0)}{\partial m}$ "

Page 653, line -3, instead of "...Migdal"

read " \dots Migdal, as well as the three-loop one worked out by Tarasov, Vladimirov and Zharkov "

Page 653, line –2, instead of " $+O(g^7)$ " read " $+\frac{g^7}{(4\pi)^6}\left(-\frac{2857}{54}C^3 + \frac{1415}{27}C^2T_f - \frac{158}{27}CT_f^2 + \frac{205}{9}CC_fT_f - \frac{44}{9}C_fT_f^2 - 2C_f^2T_f\right) + O(g^9)$ "

Page 660, line 14, instead of ". A mean" read ". A means"

Page 662, line –3, instead of "Experimental conditions, $\sin^2(\theta/2) \ll 1$," read "Experimental limitations on the accessible range of $\sin^2(\theta/2)$ "

Page 670, eq. (13-124), instead of " $m_\mu^2/q^2 \to \infty$ " read " $m_\mu^2/q^2 \to 0$ "

Page 676, eq. (13-144), instead of " $\int \frac{d^4p}{(2\pi)^4}$ " read " $\int \frac{d^4q}{(2\pi)^4}$ "

Page 683, line 4, instead of "which play" read "which plays"

Page 683, line -5

instead of " $W(q^2, -\omega) = -W(q^2, -\omega)$ " read " $W(q^2, -\omega) = -W(q^2, \omega)$ "

Page 689, line 9, add

"For the three-loop calculation, see O.V. Tarasov, A.A. Vladimirov and A.Yu. Zharkov, *Phys. Lett.*, ser. B, vol. 93, p. 429, 1980."

APPENDIX

Page 696, line -2, eq. (A-40), instead of " $(2\pi^3)$ " read " $(2\pi)^3$ "

INDEX

Page 702, left column, line -6

instead of "paramagnetic representation" read "parametric representation"

Page 702, right column, line 26

instead of "Gell-Mann low function" read "Gell-Mann Low function"