

Introduction to Random Matrices from a physicist's perspective

Jean-Bernard Zuber

Berkeley March 2007
Random matrices: a major theme in theoretical physics since Wigner (1951); a major theme in mathematical physics and mathematics for the last 20 years.

Plan of talk

- A short history of the subject
- Random systems, from nuclear Hamiltonians to mesoscopic systems to financial markets...
- Large N limit of $U(N)$ gauge theory \Rightarrow "Topological expansion" and the counting of maps and other "planar" objects \Rightarrow Stat mech models on "random lattices"
- Double scaling limit and 2D quantum gravity
- QCD, Dijkgraaf-Vafa, etc
- Feynman diagrams and large N limit
- Counting of maps or triangulations (cf Edouard Maurel-Segala's talk)
- Computational methods: saddle point; [loop equations (cf EMS)]; [orthogonal polynomials (cf Paul Zinn-Justin)]

A short history of the subject

1. Random systems [Wigner 1951]

Study of spectrum of large size Hamiltonians of big nuclei, regarded as Gaussian random matrices, subject to some symmetry or reality property (GOE, GUE, GSE, ...)

Eugene P. Wigner

$$
1902-1995
$$

Freeman Dyson
1923 -

Madan Lal Mehta
1932-2006

Statistics of energy levels of random Hamiltonians

Level spacing histogram for a large set of nuclear levels
("Nuclear Data Ensemble",
[O. Bohigas et al]).

Other random systems and random matrices : from transport properties (for ex. universal fluctuations of electric conductivity) in disordered mesoscopic systems to financial markets...

2. Large N limit of $U(N)$ gauge theories

Gauge theories : quantum field theories based on a principal fibre bundle with a compact group G. "Gauge field" A (connection) lives in Lie algebra of G. For $G=U(N), A$ is a $N \times N$ (anti-Hermitian) matrix.
In the search of a non-trivial approximation, it is natural to look at large N limit, expansion parameter $1 / N^{2}$, ['t Hooft 1974], see below.

Indeed, major simplification in the large N limit of Feynman expansions of matrix field theories...

Consider toy field theories : integrals over a finite number of (large size) matrices.

Basics of Feynman diagrams

Consider a Gaussian integral over n real variables $x_{i}, A=A^{T}>0$ def. matrix

$$
\begin{aligned}
\int d^{n} x e^{-\frac{1}{2} \sum x_{i} A_{i j} x_{j}} & =\frac{(2 \pi)^{n / 2}}{\operatorname{det}^{\frac{1}{2}} A} \\
\int d^{n} x \mathrm{e}^{-\frac{1}{2} \sum x_{i} A_{i j} x_{j}+\sum b_{i} x_{i}} & =\frac{(2 \pi)^{n / 2}}{\operatorname{det}^{\frac{1}{2}} A} \mathrm{e}^{\frac{1}{2} \sum b_{i} A_{i j}^{-1} b_{j}}
\end{aligned}
$$

Differentiate w.r.t. b_{i}
$\left\langle x_{k_{1}} x_{k_{2}} \cdots x_{k_{\ell}}\right\rangle:=\frac{\int d^{n} x x_{k_{1}} x_{k_{2}} \cdots x_{k_{\ell}} e^{-\frac{1}{2} x \cdot A \cdot x}}{\int d^{n} x e^{-\frac{1}{2} x \cdot A \cdot x}}=\left.\frac{\partial}{\partial b_{k_{1}}} \cdots \frac{\partial}{\partial b_{k_{\ell}}} \mathrm{e}^{\frac{1}{2} b \cdot A^{-1} \cdot b}\right|_{b=0}$

$$
=\sum_{\substack{\text { all distinct } \\ \text { pairings } P \text { of the } k}} A_{k_{P_{1}} k_{P_{2}}}^{-1} \cdots A_{k_{P_{\ell-1}}^{-1} k_{P_{\ell}}} \quad \text { propagators }
$$

Wick theorem

Wick theorem also applies to monomials ($n=1$ variable for simplicity):

Non Gaussian integrals $(g<0)$: power series "perturbative" expansions

$$
\begin{aligned}
Z & =\int d x \mathrm{e}^{-\frac{1}{2} A x^{2}+\frac{g}{4!} x^{4}}=\left(\frac{2 \pi}{A}\right)^{\frac{1}{2}} \sum_{p=0}^{\infty} \frac{g^{p}}{p!} \int d x\left(\frac{x^{4}}{4!}\right)^{p} \mathrm{e}^{-\frac{1}{2} A x^{2}} \\
& =\left(\frac{2 \pi}{A}\right)^{\frac{1}{2}} \sum_{p=0}^{\infty} \sum_{\substack{\text { graphs } \\
\text { and } p \text { with } 2 p \text { lines } \\
4-\text { valent vertices }}} \frac{g^{p}}{\mid \text { Aut } \mathcal{G} \mid} A^{-2 p}
\end{aligned}
$$

$\log Z=\underline{\text { connected Feynman diagrams }}$

$$
\begin{array}{ll}
=\frac{g}{8 A^{2}} & +\frac{g^{2}}{A^{4}}\left(\frac{1}{2.4!}+\frac{1}{2^{4}}\right)+\cdots \\
=\infty & \infty
\end{array}
$$

Matrix Integrals: Feynman Rules

$N \times N$ Hermitean matrices $M, d M=\prod_{i} d M_{i i} \prod_{i<j} d \Re e M_{i j} d \Im m M_{i j}$

$$
Z=: e^{F}=\int d M \mathrm{e}^{N\left[-\frac{1}{2} \operatorname{tr} M^{2}+\frac{g}{4} \operatorname{tr} M^{4}\right]}
$$

Feynman rules: propagator ${ }_{j}^{i} \longleftrightarrow{ }_{k}^{l}=\frac{1}{N} \delta_{i \ell} \delta_{j k} \quad$ ['t Hooft]
4 -valent vertex :

For each connected diagram contributing to $\log Z$: fill each closed index loop with a disk \Rightarrow discretized closed 2 -surface Σ

Power of N in a connected diagram

- each vertex $\rightarrow N$;
- each double line $\rightarrow N^{-1}$;
- each loop $\rightarrow N$.

Thus $N^{\# \text { vert. }-\# \text { lines }+\# \text { loops }}=N^{\chi \text { Euler }(\Sigma)}$

['t Hooft (1974)]. For example, compare

A topological expansion : $\quad F=\log Z=\sum_{\text {conn. surf. } \Sigma} N^{2-2 \operatorname{genus}(\Sigma)} \frac{g^{\# \text { vert.(} \Sigma)}}{\text { symm. factor }}$

$$
=\sum_{h=0}^{\infty} N^{2-2 h} F^{(h)}(g) .
$$

Thus large N limit of matrix integral $\int D M e^{-N \operatorname{tr}\left(M^{2}+\frac{g}{4} M^{4}\right)}=$ generating function of planar 4-valent graphs. . .(cf census of planar maps by Tutte) [Brézin, Itzykson, Parisi, Z. 1978]

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \log Z=\sum_{\substack{\text { planar diagrams } \\ \text { with } n 4-\text { vertices }}} \frac{g^{n}}{\text { symm.factor }}
$$

or in a dual way, of quadrangulations of 2D surfaces of genus 0

[Kazakov; David; Kazakov-Kostov-Migdal; Ambjørn-Durhuus-Fröhlich '85]

Thus large N limit of matrix integral $\int D M e^{-N \operatorname{tr}\left(M^{2}+\frac{g}{3} M^{3}\right)}=$ generating function of planar 3-valent graphs. .. [Brézin, Itzykson, Parisi, Z. 1978] or in a dual way, of triangulations of 2D surfaces of genus 0

```
[Kazakov; David; Kazakov-Kostov-Migdal; Ambjørn-Durhuus-Fröhlich '85]
```

Triangulated surfaces and discrete 2D gravity

Thus : Large N limit of matrix integrals \Rightarrow Counting of planar objects : maps, triangulations, "alternating" knots and links [P Z-J \& J-B Z], etc, or of objects of higher topology ...

Large N limit of matrix integral $\int D A D B e^{-N \operatorname{tr}\left(A^{2}+c A B+B^{2}+g A^{4}+g B^{4}\right)}=$ generating function of bicolored planar 4-valent graphs...

Large N limit of matrix integral $\int D A D B e^{-N \operatorname{tr}\left(A^{2}+c A B+B^{2}+g A^{4}+g B^{4}\right)}=$ generating function of bicolored planar 4-valent graphs...
i.e. describes Ising model on a random quadrangulated sphere
[Boulatov-Kazakov 1985]

etc etc, many variations on that theme

Two remarks useful in connection with free probabilities. . .

- Factorization property $\left\langle\frac{1}{N} \operatorname{tr} P_{1} \frac{1}{N} \operatorname{tr} P_{2}\right\rangle=\underbrace{\left\langle\frac{1}{N} \operatorname{tr} P_{1}\right\rangle\left\langle\frac{1}{N} \operatorname{tr} P_{2}\right\rangle}_{\text {disconnected diagrams }}+O\left(\frac{1}{N^{2}}\right)$
- Compare (in Gaussian theory $e^{-\operatorname{tr}\left(M_{1}^{2}+M_{2}^{2}\right)}$)

$$
\left.\left\langle\frac{1}{N} \operatorname{tr} M_{1}^{2} M_{2}^{2}\right\rangle \quad \text { and } \quad\left\langle\frac{1}{N} \operatorname{tr} M_{1} M_{2} M_{1} M_{2}\right)\right\rangle
$$

Similar behavior in non Gaussian theory $e^{-\operatorname{tr}\left(V_{1}\left(M_{1}\right)+V_{2}\left(M_{2}\right)\right)}$ provided

$$
\left\langle M_{1}\right\rangle=0,\left\langle M_{2}\right\rangle=0 .
$$

If $\left\langle M_{1}\right\rangle \neq 0,\left\langle M_{2}\right\rangle \neq 0$,

Compare $\tau\left(a_{1} a_{2} a_{1} a_{2}\right)=\tau\left(a_{1}^{2}\right) \tau^{2}\left(a_{2}\right)+\tau^{2}\left(a_{1}\right) \tau\left(a_{2}^{2}\right)-\tau^{2}\left(a_{1}\right) \tau^{2}\left(a_{2}\right)$ for two free variables

3. Double scaling limit

[Brézin-Kazakov; Douglas-Shenker; Gross-Migdal 1989, ...]
$F^{(0)}(g)$ and more generally $F^{(h)}(g)$ have a singularity at $g=g_{c}$,

$$
F^{(h)}(g) \sim\left(g_{c}-g\right)^{\left(2-\gamma_{\mathrm{str}}\right)(1-h)}
$$

with $\gamma_{\text {str }}$, the "string susceptibility", typically equal to $-1 / 2$ (for the simplest models M^{3} or M^{4} above), see below.
As $g \rightarrow g_{c},\langle \#$ triangles $\rangle=\frac{\partial \log F}{\partial g}$ diverges. Expect to make contact with continuum 2D gravity. Keep all genera h in $\sum_{h=0} N^{2-2 h} F^{(h)}(g)$ by letting $g_{c}-g \rightarrow 0$ as $N \rightarrow \infty$ in such a way that $\left(g_{c}-g\right)^{\left(2-\gamma_{\mathrm{str}}\right) / 2} N=\kappa$ fixed.

Very interesting limit : appearance of integrable equations ($\mathrm{KdV} \ldots$...), solutions to Painlevé equations ...

Thus, double scaling limit \Rightarrow models of 2D quantum gravity

4. Other physical applications

- Cell decomposition of moduli space of Riemann surfaces, intersection numbers ...
[Witten, Kontsevich, 1991 ...]
- QCD, the Dirac operator $\not D=\not D+\not A$ in the presence of a gauge field and RMT [Verbaarschot et al.]
- Dijkgraaf-Vafa 2002 : computing the effective action of supersymmetric gauge theories in terms of matrix integrals etc etc

Computational techniques

Consider integral over $N \times N$ Hermitian matrices

$$
Z=\int d M e^{-N \operatorname{tr} V(M)}
$$

$V(M)$ a polynomial of degree $d+1$. For ex. $V_{3}(M)=\left(\frac{1}{2} M^{2}+\frac{g}{3} M^{3}\right)$ and $V_{4}(M)=\left(\frac{1}{2} M^{2}+\frac{g}{4} M^{4}\right)$. Note that multi-traces are excluded, for example $\left(\operatorname{tr} M^{2}\right)^{2}$.

Integrand and measure are invariant under $U(N)$ transformations $M \rightarrow U M U^{\dagger}$. Express both in terms of eigenvalues $\lambda_{1}, \cdots, \lambda_{N}$ of M :

$$
Z=\int \prod_{i=1}^{N} d \lambda_{i} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} e^{-N \sum_{i=1}^{N} V\left(\lambda_{i}\right)}
$$

Several ways to treat this integral: saddle point approximation; orthogonal polynomials; "loop equation"...

1. Saddle point approximation

Rewrite

$$
Z=\int \prod_{i=1}^{N} d \lambda_{i} \exp \left(2 \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|-N \sum_{i=1}^{N} V\left(\lambda_{i}\right)\right)
$$

In the large N limit, if $\lambda \sim O(1)$, both terms in exponential are of order N^{2}.
Look for the stationary point, i.e. the solution of

$$
\begin{equation*}
\frac{2}{N} \sum_{j \neq i} \frac{1}{\lambda_{i}-\lambda_{j}}=V^{\prime}\left(\lambda_{i}\right) \tag{*}
\end{equation*}
$$

To solve this problem, introduce the resolvent

$$
G(x)=\frac{1}{N}\left\langle\operatorname{tr} \frac{1}{x-M}\right\rangle=\left\langle\frac{1}{N} \sum_{i=1}^{N} \frac{1}{x-\lambda_{i}}\right\rangle .
$$

Computing its square leads after some algebra to
$G^{2}(x)=\frac{1}{N^{2}}\left\langle\sum_{i, j=1, \cdots, N} \frac{1}{\left(x-\lambda_{i}\right)\left(x-\lambda_{j}\right)}\right\rangle=\cdots=-\frac{1}{N} G^{\prime}(x)+V^{\prime}(x) G(x)-P(x)$
with $P(x):=\frac{1}{N}\left\langle\sum_{i=1}^{N} \frac{V^{\prime}(x)-V^{\prime}\left(\lambda_{i}\right)}{x-\lambda_{i}}\right\rangle$ a polynomial in x of degree $d-1$, i.e.

$$
G^{2}(x)-V^{\prime}(x) G(x)+\frac{1}{N} G^{\prime}(x)+P(x)=0
$$

(Beware! Not exact for N finite!) For N large, neglect the $1 / N$ term \Rightarrow quadratic equation for $G(x)$, with yet unknown polynomial P, hence

$$
G(x)=\frac{1}{2}\left(V^{\prime}(x)-\sqrt{V^{\prime}(x)^{2}-4 P(x)}\right)
$$

(minus sign in front of $\sqrt{ }$ dictated by the requirement that for large $|x|$, $G(x) \sim 1 / x$.

In that large N limit, the λ 's form a continuous distribution with density
$\rho(\lambda)$ on a support $S, \int_{S} d \lambda \rho(\lambda)=1$, and $G(x)=\int_{-2 a^{\prime}}^{2 a^{\prime \prime}} \frac{d \mu \rho(\mu)}{x-\mu}$.
For a purely Gaussian potential $V(\lambda)=\frac{1}{2} \lambda^{2}$, Wigner's "semi-circle law": $\rho(\lambda)=\frac{1}{2 \pi} \sqrt{4-\lambda^{2}}$ on the segment $\lambda \in[-2,2]$.
For more general potentials, assume first S to be still a finite segment $\left[-2 a^{\prime}, 2 a^{\prime \prime}\right]$, in such a way that (*) becomes

$$
\text { 2P.P. } \int_{-2 a^{\prime}}^{2 a^{\prime \prime}} \frac{d \mu \rho(\mu)}{\lambda-\mu}=V^{\prime}(\lambda) \quad \text { if } \lambda \in\left[-2 a^{\prime}, 2 a^{\prime \prime}\right]
$$

(P.P. = principal part), expressing that, along its cut,

$$
\begin{aligned}
G(x \pm i \varepsilon)= & \frac{1}{2} V^{\prime}(\lambda) \mp i \pi \rho(x) \quad x \in\left[-2 a^{\prime}, 2 a^{\prime \prime}\right] . \\
& G(x)=\frac{1}{2} V^{\prime}(x)-Q(x) \sqrt{\left(x+2 a^{\prime}\right)\left(x-2 a^{\prime \prime}\right)}
\end{aligned}
$$

where the coefficients of the polynomial $Q(x)$ and $a^{\prime}, a^{\prime \prime}$ are determined by the condition that $G(x) \sim 1 / x$ for large $|x| . Q$ is of degree $d-1$. The solution is unique (under the one-cut assumption).

Example For the quartic potential $V(\lambda)=\frac{1}{2} \lambda^{2}+\frac{g}{4} \lambda^{4}$, by symmetry $a^{\prime}=a^{\prime \prime}=: a$,

$$
G(x)=\frac{1}{2}\left(x+g x^{3}\right)-\left(\frac{1}{2}+\frac{g}{2} x^{2}+g a^{2}\right) \sqrt{x^{2}-4 a^{2}}
$$

with a^{2} the solution of

$$
\begin{equation*}
3 g a^{4}+a^{2}-1=0 \tag{2}
\end{equation*}
$$

which goes to 1 as $g \rightarrow 0$ (a limit where we recover Wigner's semi-circle law). From this we extract

$$
\rho(\lambda)=\frac{1}{\pi}\left(\frac{1}{2}+\frac{g}{2} \lambda^{2}+g a^{2}\right) \sqrt{4 a^{2}-\lambda^{2}}
$$

and we may compute all invariant quantities like the free energy or the moments

$$
G_{2 p}:=\left\langle\frac{1}{N} \operatorname{tr} M^{2 p}\right\rangle=\int d \lambda \lambda^{2 p} \rho(\lambda) .
$$

For example $G_{2}=\left(4-a^{2}\right) a^{2} / 3, G_{4}=\left(3-a^{2}\right) a^{4}$, etc. All these functions
of a^{2} are singular as functions of g at the point $g_{c}=-\frac{1}{12}$ where the two roots of $\left(E Q a^{2}\right)$ coalesce. For example the genus 0 free energy

$$
\begin{align*}
F^{(0)}(g): & =\lim _{N \rightarrow \infty}\left(1 / N^{2}\right) \log \left(\frac{Z(g)}{Z(0)}\right)=\frac{1}{2} \log a^{2}-\frac{1}{24}\left(a^{2}-1\right)\left(9-a^{2}\right) \\
& =\sum_{p=1}\left(\frac{3 g}{t^{2}}\right)^{p} \frac{(2 p-1)!}{p!(p+2)!} \quad[\text { Tutte 62, BIPZ 78] } \tag{Tutte62,BIPZ78}
\end{align*}
$$

\bigcirc

has a power-law singularity

$$
F^{(0)}(g) \underset{g \rightarrow g_{c}}{\approx}\left|g-g_{c}\right|^{5 / 2}
$$

which reflects on its series expansion

$$
F^{(0)}(g)=\sum_{n=0}^{\infty} f_{n} g^{n}, \quad f_{n} \underset{n \rightarrow \infty}{\approx} \operatorname{const}\left|g_{c}\right|^{-n} n^{-7 / 2}
$$

Comments

i) Nature of the $1 / N^{2}$ and of the g expansions, algebraic singularity at finite g_{c}
ii) "Universal" singular behavior at g_{c}
iii) Extension to several cuts, the rôle of the algebraic curve (cf Eynard).
iv) Connected correlation functions and "free (or non crossing) cumulants"
v) Factorization property, localization of the matrix integral and the "master field" [...]

2. Orthogonal polynomials

$$
\int d \lambda P_{m}(\lambda) P_{n}(\lambda) e^{-N V(\lambda)}=h_{n} \delta_{m n}
$$

[Mehta, Bessis, ...]
cf Paul Z-J ...
3. Loop (or Schwinger-Dyson) equations

$$
\int d M \frac{\partial}{\partial M_{i j}}\left\{\cdots e^{-N \operatorname{tr} V(M)}\right\}=0
$$

and make use of factorization property ...
cf Edouard M-S ...

Comments on "Free" or "non-crossing" cumulants f_{n}
[BIPZ 78, Cvitanovic 81, Voiculescu 85, Speicher 94, Biane, PZ-J]
Generating function of moments $m_{n}=\frac{1}{N} \operatorname{tr} M^{n}$

$$
Z(j)=\left\langle\frac{1}{N} \operatorname{tr} \frac{1}{1-j M}\right\rangle=\sum_{n=0}^{\infty} j^{n} m_{n}
$$

or $G(u)=u^{-1} Z\left(u^{-1}\right)=\sum_{n=0}^{\infty} u^{-n-1} m_{n}$. The generating function of free cumulants

$$
W(z)=1+\sum_{n=1}^{\infty} z^{n} f_{n}=1+\widetilde{W}(z)
$$

or $P(z)=z^{-1} W(z)$, is defined by the relations

$$
W(z)=Z(j(z)) \quad \text { with } \quad j(z)=z / W(z)
$$

or equivalently

$$
Z(j)=W(z(j)) \quad \text { with } \quad z(j)=j Z(j)
$$

Graphically [Cvitanovic]

These relations amount to saying that P et G are functional inverses of one another $P \circ G(u)=u$. Indeed
$P(G(u))=G^{-1}(u) W(G(u))=u Z^{-1}\left(u^{-1}\right) W\left(u^{-1} Z\left(u^{-1}\right)\right)=u$, since
$Z\left(u^{-1}\right)=W\left(u^{-1} Z\left(u^{-1}\right)\right)$.
Using Lagrange formula, one computes

$$
m_{k}=\sum_{\alpha \vdash k} \frac{k!}{\left(k+1-\sum \alpha_{q}\right)!} \frac{f_{1}^{\alpha_{1}}}{\alpha_{1}!} \frac{f_{2}^{\alpha_{2}}}{\alpha_{2}!} \cdots
$$

$$
\text { or conversely } f_{k}=-\sum_{\alpha \vdash k} \frac{\left(k-2+\sum \alpha_{q}\right)!}{k!} \frac{\left(-m_{1}\right)^{\alpha_{1}}}{\alpha_{1}!} \frac{\left(-m_{2}\right)^{\alpha_{2}}}{\alpha_{2}!} \cdots
$$

End of Act I

