Some aspects of Horn's problem

Jean-Bernard Zuber (LPTHE, Sorbonne Université)

Toulouse, 30 June 2023

Some aspects of Horn's problem

Jean-Bernard Zuber (LPTHE, Sorbonne Université)

Toulouse, 30 June 2023
Collaboration with Robert Coquereaux and Colin McSwiggen

What is Horn's problem ?

Given two Hermitian $n \times n$ matrices A and B, of known spectrum

$$
\alpha=\left\{\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}\right\}
$$

and $\beta=\left\{\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}\right\}$, what can be said on the spectrum $\gamma=\left\{\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{n}\right\}$ of their sum $C=A+B$?

An old problem, with a rich history...
Obviously, $\sum_{k=1}^{n}\left(\gamma_{k}-\alpha_{k}-\beta_{k}\right)=0$, thus the stage is in \mathbb{R}^{n-1}. In general, set of linear inequalities between the α 's, β^{\prime} s, γ^{\prime} s.
For example, $\gamma_{1} \leq \alpha_{1}+\beta_{1}$, (Obvious: recall that $\alpha_{1}=\sup _{\psi} \frac{(\psi, A \psi)}{(\psi, \psi)}$, etc)

What is Horn's problem ?

Given two Hermitian $n \times n$ matrices A and B, of known spectrum

$$
\alpha=\left\{\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}\right\}
$$

and $\beta=\left\{\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}\right\}$, what can be said on the spectrum $\gamma=\left\{\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{n}\right\}$ of their sum $C=A+B$?

An old problem, with a rich history. .
Obviously, $\sum_{k=1}^{n} \gamma_{k}-\alpha_{k}-\beta_{k}=0$, thus the stage is in \mathbb{R}^{n-1}.
In general, set of linear inequalities between the α 's, β 's, γ^{\prime} s.
For example, $\gamma_{1} \leq \alpha_{1}+\beta_{1}$, or Weyl's inequality (1912)
$i+j-1 \leq n \Rightarrow \gamma_{i+j-1} \leq \alpha_{i}+\beta_{j}$, etc.

H. Weyl

What is Horn's problem ?

Given two Hermitian $n \times n$ matrices A and B, of known spectrum

$$
\alpha=\left\{\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}\right\}
$$

and $\beta=\left\{\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}\right\}$, what can be said on the spectrum $\gamma=\left\{\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{n}\right\}$ of their sum $C=A+B$?

An old problem, with a rich history...
Obviously, $\sum_{k=1}^{n} \gamma_{k}-\alpha_{k}-\beta_{k}=0$, thus the stage is in \mathbb{R}^{n-1}.
In general, set of linear inequalities between the α 's, β 's, γ 's.
For example, $\gamma_{1} \leq \alpha_{1}+\beta_{1}$ or $i+j-1 \leq n \Rightarrow \gamma_{i+j-1} \leq \alpha_{i}+\beta_{j}$, etc.
Horn (1962) conjectured the form of a (necessary and sufficient) set of inequalities

$$
\sum_{k \in K} \gamma_{k} \leq \sum_{i \in I} \alpha_{i}+\sum_{j \in J} \beta_{j}
$$

for some triplets $\{I, J, K\}$ of subsets of $\{1, \cdots, n\}$, $|I|=|J|=|K|$, determined recursively.

A. Horn

Thus the γ^{\prime} s belong to a convex polytope in \mathbb{R}^{n-1}.

Horn's inequalities

For example, for $n=3$

$$
\begin{aligned}
& \gamma_{3 \min }:=\alpha_{3}+\beta_{3} \leq \gamma_{3} \leq \min \left(\alpha_{1}+\beta_{3}, \alpha_{2}+\beta_{2}, \alpha_{3}+\beta_{1}\right)=: \gamma_{3 \max } \\
& \gamma_{2 \min }:=\max \left(\alpha_{2}+\beta_{3}, \alpha_{3}+\beta_{2}\right) \leq \gamma_{2} \leq \min \left(\alpha_{1}+\beta_{2}, \alpha_{2}+\beta_{1}\right)=: \gamma_{2 \max } \\
& \gamma_{1 \min }:=\max \left(\alpha_{1}+\beta_{3}, \alpha_{2}+\beta_{2}, \alpha_{3}+\beta_{1}\right) \leq \gamma_{1} \leq \alpha_{1}+\beta_{1}=: \gamma_{1 \max } .
\end{aligned}
$$

in addition to

$$
\gamma_{3} \leq \gamma_{2} \leq \gamma_{1}
$$

and

$$
\gamma_{1}+\gamma_{2}+\gamma_{3}=\sum_{i}\left(\alpha_{i}+\beta_{i}\right)
$$

What is Horn's problem ?

Given two Hermitian $n \times n$ matrices A and B, of known spectrum

$$
\alpha=\left\{\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}\right\}
$$

and $\beta=\left\{\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}\right\}$, what can be said on the spectrum $\gamma=\left\{\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{n}\right\}$ of their sum $C=A+B$?

An old problem, with a rich history. . .
Obviously, $\sum_{k=1}^{n} \gamma_{k}-\alpha_{k}-\beta_{k}=0$, thus the stage is in \mathbb{R}^{n-1}.
In general, set of linear inequalities between the α 's, β 's, γ^{\prime} s.
For example, $\gamma_{1} \leq \alpha_{1}+\beta_{1}$.
Horn (1962) conjectured the form of a (necessary and sufficient) set of inequalities

$$
\sum_{k \in K} \gamma_{k} \leq \sum_{i \in I} \alpha_{i}+\sum_{j \in J} \beta_{j}
$$

for some triplets $\{I, J, K\}$ of subsets of $\{1, \cdots, n\},|I|=|J|=|K|$, determined recursively.
Thus the γ 's belong to a convex polytope in \mathbb{R}^{n-1}.
\vdots
Klyachko (1998) and Knutson and Tao (1999) prove Horn's conjecture.

Problem interesting by its many facets and ramifications, in symplectic geometry (Atiyah-Guillemin-Sternberg convexity theorem), in algebraic geometry, representation theory \& combinatorics, etc ...

See a beautiful introduction by A. Knutson and T. Tao (Notices of the AMS, 2001) and a comprehensive review by W. Fulton (Bull. Am. Math. Soc. 2000)

Outline of this talk

1. The classical Horn's problem revisited
2. Explicit results for $\operatorname{SU}(n)$ orbits, $n=2,3$
3.? Extension and generalizations. $\mathrm{SO}(n)$ orbits of real symmetric matrices
3. Connection with representation theory and combinatorics
4. Summary and open issues

1. The classical Horn's problem revisited

Rephrase the problem as follows:
Let \mathcal{O}_{α} be the orbit of diag $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$ under action by conjugation of $U(n)$,

$$
\mathcal{O}_{\alpha}=\left\{U \operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) U^{*} \mid U \in \cup(n)\right\}
$$

and likewise \mathcal{O}_{β}.
Which orbits \mathcal{O}_{γ} appear in the "sum of orbits" $\mathcal{O}_{\alpha} \boxplus \mathcal{O}_{\beta}$?

Two possible generalizations:
Up to a factor \mathbf{i}, Hermitian matrices live in the Lie algebra $\mathfrak{s u}(n)$. Orbits are "coadjoint orbits" of $\mathrm{SU}(n)$. This suggests two natural generalizations of Horn's original problem.

- Coadjoint orbits of other (simple, connected, compact) Lie groups and algebras. Symplectic geometry, piecewise polynomiality of measure, convexity theorems, etc [Heckman '82, Knutson '01, ...]
- Other "self-adjoint" $n \times n$ matrices: $A=\left(A^{T}\right)^{*}$

Orbits of	Real Symmetric	Complex Hermitian	Quaternionic self-dual
Conjugation by	$\mathrm{SO}(n)$	$\mathrm{SU}(n)$	$\mathrm{USp}(n)$

More specific questions

```
unique invariant normalized measure }d\mu(U)=d\mu(VU)=d\mu(UV
```

- Suppose we take A uniformly distributed on \mathcal{O}_{α} (for the Haar measure), and likewise B on \mathcal{O}_{β}, and independent of A, can one determine the PDF (probability distribution function) of γ ?
- Compute this PDF for the coadjoint orbits of various Lie algebras, see below.
- What about orbits of self-adjoint matrices?

Compare real symmetric, complex Hermitian and quaternionic self-dual matrices.

A general result by Fulton: Horn's inequalities on the γ 's are the same for these three cases. Hence the γ 's lie in the same polytope (for given n and α, β).
What about their distribution ?

More specific questions

- Suppose we take A uniformly distributed on \mathcal{O}_{α} (for the Haar measure), and likewise B on \mathcal{O}_{β}, and independent of A, can one determine the PDF (probability distribution function) of γ ?
- Compute this PDF for the coadjoint orbits of various Lie algebras.
- What about orbits of self-adjoint matrices?

Compare real symmetric, complex Hermitian and quaternionic self-dual matrices.

A general result by Fulton: Horn's inequalities on the γ 's are the same. Hence the γ 's lie in the same polytope (for given α, β).

What about their distribution ?

Make a (numerical) experiment! Take $n=3, \alpha=\beta=(1,0,-1)$, generate big samples of $C=\operatorname{diag}(\alpha)+V \cdot \operatorname{diag}(\beta) \cdot V^{-1}$, diagonalize them and plot $\left(\gamma_{1}, \gamma_{2}\right)$. Recall by convention $\gamma_{1} \geq \gamma_{2} \geq \gamma_{3}=-\gamma_{1}-\gamma_{2}$.
$n=3 \quad \alpha=\beta=(1,0,-1)$. Plot of $\left(\gamma_{1}, \gamma_{2}\right)$

Observe
Same polygon of support (as expected)
Distribution more condensed for $\mathrm{USp}(3)$
Lines of enhancement in the $\mathrm{SO}(3)$ case ??

$$
n=3 \quad \alpha=\beta=(1,0,-1) . \text { Plot and histogram of }\left(\gamma_{1}, \gamma_{2}\right)
$$

Another example: $\alpha=(7,3,0), \beta=(6,5,0)$

Question:

Can one compute the PDF for the three cases and understand the origin, location and nature of the singularities in the orthogonal case?

The locus of singularities

Compare the three "self-adjoint cases", of real symmetric, complex Hermitian or quaternionic self-dual, $n \times n$ (traceless) matrices.

For given n and α, β, not only the support of the γ 's is the same ([Fulton]) but also the locus of non-differentiability (although of quite different nature)

Proposition 1 [C-MS-Z] The PDF is a piecewise real analytic function of γ. Non analyticities occur only when γ lies on hyperplanes of the form

$$
\sum_{k \in K} \gamma_{k}=\sum_{i \in I} \alpha_{i}+\sum_{j \in J} \beta_{j}
$$

with $I, J, K \subset\{1, \cdots, n\},|I|=|J|=|K|$, independently on the pair $\left(G, \mathcal{M}_{n}\right)$
Hint of proof: look at points where the differential of the map $\Phi: G \times G \rightarrow \mathcal{M}_{n}^{0}$, $\left(g_{1}, g_{2}\right) \mapsto C=A+B=g_{1} \cdot \alpha+g_{2} \cdot \beta$ is not surjective.

Remarks:

- includes boundaries of Horn's domain other than the hyperplanes $\gamma_{i}=\gamma_{i+i}$
- a necessary, not a sufficient condition! Which singularities do occur ?

Computing the PDF

A central role is played by the orbital integral (aka generalized or multivariate Bessel function)

$$
\mathcal{H}_{\theta}(A, X)=\int_{G_{\theta}} \exp \left(\operatorname{tr}\left(V A V^{-1} X\right)\right) d V
$$

where $\theta=\frac{1}{2}, 1,2$ (half Dyson index) and

θ	A, X	G_{θ}
$\frac{1}{2}$	Real Symmetric	$\mathrm{SO}(n)$
1	Complex Hermitian	$\mathrm{SU}(n)$
2	Quaternionic Self-Dual	$\mathrm{USp}(n)$

Likewise for coadjoint orbits $\mathcal{H}_{\mathfrak{g}}(A, X)=\int_{G} \exp \left\langle g A g^{-1}, X\right\rangle d g$.
Note

- $\mathcal{H}(A, i X)=$ Fourier transform of the orbital measure.
- $\mathcal{H}(A, X)$ only function of e-values α and x of A and X. Denote it also $\mathcal{H}(\alpha, x)$.

Proposition 2 . For self-adjoint matrices A and B, independently and uniformly distributed on their G_{θ}-orbits \mathcal{O}_{α} and \mathcal{O}_{β}, PDF of γ is
$\mathrm{p}(\gamma \mid \alpha, \beta)=\operatorname{const}(\theta, n)|\Delta(\gamma)|^{2 \theta} \int_{\mathbb{R}^{n}} d^{n} x|\Delta(x)|^{2 \theta} \mathcal{H}_{\theta}(\alpha, \mathbf{i} x) \mathcal{H}_{\theta}(\beta, \mathbf{i} x) \mathcal{H}_{\theta}(\gamma, \mathbf{i} x)^{*}$.
where $\Delta(x)=\prod_{i<j}\left(x_{i}-x_{j}\right)$ is the Vandermonde determinant. For coadjoint orbits, similar formula with $x \in \mathfrak{t}$ and $|\Delta(x)|^{2 \theta}$ changed to $\Delta_{\mathfrak{g}}^{2}(x):=\prod_{\boldsymbol{\alpha}>0}\langle\boldsymbol{\alpha}, x\rangle^{2} \quad$ (t a Cartan subalgebra, $\boldsymbol{\alpha}$ the + ve roots).

Elementary proof: $\mathcal{H}(A, i X)$ is the characteristic function of the random variable $A \in \mathcal{O}_{\alpha}$. Characteristic function of $C=A+B$ is the product $\mathcal{H}(A, i X) \mathcal{H}(B, i X)$. The PDF of C then obtained by inverse Fourier transform. The Δ 's come from Jacobians.

See also [Dooley-Repka-Wildberger 1993; Frumkin\&Goldberger 2006; Suzuki 2013; Kuijlaars
\& Roman 2016]

The orbital integrals, self-adjoint and coadjoint cases

In the unitary $(\theta=1)$ case, explicit formula known for long
[Harish-Chandra 1957, Itzykson-Z 1980] (for A and X "regular", i.e., $\alpha_{i} \neq \alpha_{j}$ and $x_{i} \neq x_{j}$),

$$
\mathcal{H}_{2}(\alpha, \mathrm{i} x)=\int_{\mathrm{SU}(n)} e^{\mathrm{i} \operatorname{tr}\left(X V A V^{*}\right)} d V=\prod_{p=1}^{n-1} p!\frac{\left(\operatorname{det} e^{\mathrm{i} x_{i} \alpha_{j}}\right)_{1 \leq i, j \leq n}}{\Delta(i x) \Delta(\alpha)},
$$

i.e., semi-classical approximation is exact! [Duistermaat-Heckman 1982].

Generalizes to other coadjoint orbits. [Harish-Chandra]
In the symplectic $(\theta=2)$ case,
[Brézin-Hikami 2002]

$$
\mathcal{H}_{4}(\alpha, \text { i } x)=\text { const. } \sum_{P \in S_{n}} \frac{e^{\mathrm{i} \sum_{j} x_{j} \alpha_{P j}}}{\Delta^{3}(i x) \Delta^{3}\left(\alpha_{P}\right)} f_{n}\left(x, \alpha_{P}\right),
$$

f_{n} a polynomial in the variables $\tau_{i, j}:=\left(x_{i}-x_{j}\right)\left(\alpha_{P i}-\alpha_{P j}\right), \operatorname{deg}\left(f_{2}\right)=1, \operatorname{deg}\left(f_{3}\right)=3$, etc. (Recursive formula for higher $f_{n} \ldots$)

In the orthogonal $\left(\theta=\frac{1}{2}\right)$ case, ???

Explicit computation of the PDF $p(\gamma)$ in the $\operatorname{SU}(n)$ case.

 Make use of HCIZ integral$$
\begin{aligned}
\mathrm{p}(\gamma \mid \alpha, \beta) & =\text { const. } \frac{\Delta(\gamma)}{\Delta(\alpha) \Delta(\beta)} \int \frac{d^{n} x}{\Delta(x)} \operatorname{det} e^{\mathrm{i} x_{i} \alpha_{j}} \operatorname{det} e^{\mathrm{i} x_{i} \beta_{j}} \operatorname{det} e^{-\mathrm{i} x_{i} \gamma_{j}} \\
& =\frac{\prod_{1}^{n-1} p!}{n!} \delta\left(\sum_{k}\left(\gamma_{k}-\alpha_{k}-\beta_{k}\right)\right) \frac{\Delta(\gamma)}{\Delta(\alpha) \Delta(\beta)} \mathcal{J}_{n}(\alpha, \beta ; \gamma)
\end{aligned}
$$

A priori, $\mathcal{J}_{n}(\gamma)$ is a distribution (generalized function), in fact

- a piece-wise polynomial of degree $(n-1)(n-2) / 2$
(also a general result in symplectic geometry, [Heckman],[Duistermaat-Heckman],...) and
- a function of differentiability class C^{n-3}, for $n>2$
(a consequence of Riemann-Lebesgue theorem; also [Guillemin-Lerman-Sternberg])
Group theoretic and geometric interpretations of $\mathcal{J}_{n} \ldots$ yet to come

Example: $n=3, \alpha=\beta=(1,0,-1)$.

left: distribution of 10,000 eigenvalues in the γ_{1}, γ_{2} plane; middle: histogram of 5×10^{6} eigenvalues; right: plot of the PDF as computed above

Another example: $\alpha=(7,3,0), \beta=(6,5,0)$

3. Extensions and generalizations

* $\mathrm{USp}(n)$ orbits of quaternionic self-dual matrices: generalized $\mathrm{H}-\mathrm{C}$ formula for $n=2,3,4$ [Brézin-Hikami]. PDF of differentiability class $C^{2(n-2)}$.

$$
n=3, \alpha=\beta=\{1,0,-1\}
$$

3. Extensions and generalizations

* $\operatorname{USp}(n)$ orbits of quaternionic self-dual matrices: generalized $\mathrm{H}-\mathrm{C}$ formula for $n=2,3,4$ [Brézin-Hikami]. PDF of differentiability class $C^{2(n-2)}$.
* $\bigcirc(n)$ or $\mathrm{SO}(n)$ orbits of real symmetric matrices ?? (No Harish-Chandra formula for $n>2$!!).

3. Extensions and generalizations

* $\operatorname{USp}(n)$ orbits of quaternionic self-dual matrices: generalized $\mathrm{H}-\mathrm{C}$ formula for $n=2,3,4$ [Brézin-Hikami]. PDF of differentiability class $C^{2(n-2)}$.
* $\mathrm{O}(n)$ or $\mathrm{SO}(n)$ orbits of real symmetric matrices ?? (No Harish-Chandra formula for $n>2$!!).

Plot and Singularities of $\mathrm{p}\left(\gamma_{1}, \gamma_{2}\right)$ for $n=3, \alpha=\beta=\{1,0,-1\}$ [Coquereaux-Z]

4. Connection with representation theory

G a simple simply-connected compact Lie group, V_{α} its irreducible representations (irreps) labelled by a highest weight (h.w.) α (a vector in the r-dim space \mathfrak{t}^{*}, r the rank).

Decompose the tensor product into irreps

$$
\begin{equation*}
V_{\alpha} \otimes V_{\beta}=\oplus_{\gamma} C_{\alpha \beta}^{\gamma} V_{\gamma} \tag{1}
\end{equation*}
$$

with "Littlewood-Richardson multiplicities" $C_{\alpha \beta}^{\gamma}$ (aka "Clebsch-Gordan decomposition").
Q: Which γ in (1)? How to compute the $C_{\alpha \beta}^{\gamma}$?
Using orthonormal characters $\chi_{\alpha}(g)$, one may write

$$
C_{\alpha \beta}^{\gamma}=\int_{G} d g \chi_{\alpha}(g) \chi_{\beta}(g) \chi_{\gamma}^{*}(g) .
$$

Littlewood-Richardson algorithm (for $\operatorname{SU}(n)$): Young diagrams..
Also Kostant-Steinberg formulae, Brauer, Racah-Speiser, Klimyk rules...
Also various combinatorial models ("pictographs") that count the $C_{\alpha \beta}^{\gamma}$:
Berenstein-Zelevinsky triangles, Knutson-Tao honeycombs/hives, Ocneanu blades, etc

An example in su(4): $\alpha=(21,13,5), \beta=(7,10,12), \gamma=(20,11,9), C_{\alpha \beta}^{\gamma}=367$

63
$63 \quad 34$
68
35
12

and hive

Ocneanu blade

20
its metric dual

In fact, LR problem is closely connected to Horn's problem! Horn's problem $=$ semi-classical approximation of $L-R$ problem or conversely
L-R problem = "quantum" Horn's problem [Knutson-Tao]

In fact, LR problem is closely connected to Horn's problem! Horn's problem $=$ semi-classical approximation of L-R problem or conversely
L-R problem = "quantum" Horn's problem [Knutson-Tao]

- Semi-classical version of multiplicity problems [Heckman 1982]

In fact, LR problem is closely connected to Horn's problem! Horn's problem $=$ semi-classical approximation of $L-R$ problem or conversely
L-R problem = "quantum" Horn's problem [Knutson-Tao]

- Semi-classical version of multiplicity problems [Heckman 1982]
- It was noticed that (in $\operatorname{SU}(n)$) the γ that appear in $\alpha \otimes \beta$ satisfy Horn's inequalities!

In fact, LR problem is closely connected to Horn's problem! Horn's problem $=$ semi-classical approximation of L-R problem or conversely
L-R problem = "quantum" Horn's problem [Knutson-Tao]

- Semi-classical version of multiplicity problems [Heckman 1982]
- It was noticed that (in $\operatorname{SU}(n)$), the γ that appear in $\alpha \otimes \beta$ satisfy Horn's inequalities !
\star Similarity between $C_{\alpha \beta}^{\gamma}=\int_{G} d g \chi_{\alpha}(g) \chi_{\beta}(g) \chi_{\gamma}^{*}(g)$ and expression of $\mathcal{J}(\alpha, \beta ; \gamma) \propto \int_{\mathfrak{t}} d x\left|\Delta_{\mathfrak{g}}(x)\right|^{2} \mathcal{H}(\alpha, \mathbf{i} x) \mathcal{H}(\beta, \mathbf{i} x) \mathcal{H}(\gamma, \mathbf{i} x)^{*}$ $\mathfrak{t}=$ Cartan subalgebra. Recall $\Delta_{\mathfrak{g}}(x):=\prod_{\boldsymbol{\alpha}\rangle 0}\langle\boldsymbol{\alpha}, x\rangle, \boldsymbol{\alpha}$ the roots of \mathfrak{g}.

In fact, LR problem is closely connected to Horn's problem!

Horn's problem $=$ semi-classical approximation of $L-R$ problem
or conversely
L-R problem = "quantum" Horn's problem [Knutson-Tao]

- Semi-classical version of multiplicity problems [Heckman 1982]
- It was noticed that (in $\operatorname{SU}(n)$), the γ that appear in $\alpha \otimes \beta$ satisfy Horn's inequalities !
* Similarity between $C_{\alpha \beta}^{\gamma}=\int_{G} d g \chi_{\alpha}(g) \chi_{\beta}(g) \chi_{\gamma}^{*}(g)$ and expression of $\mathcal{J}(\alpha, \beta ; \gamma) \propto \int_{\mathfrak{t}} d x\left|\Delta_{\mathfrak{g}}(x)\right|^{2} \mathcal{H}(\alpha, \mathbf{i} x) \mathcal{H}(\beta, \mathbf{i} x) \mathcal{H}(\gamma, \mathbf{i} x)^{*}$ $\mathfrak{t}=$ Cartan subalgebra. Recall $\Delta_{\mathfrak{g}}(x):=\Pi_{\alpha>0}\langle\boldsymbol{\alpha}, x\rangle, \boldsymbol{\alpha}$ the roots of \mathfrak{g}.
* Kirillov orbit theory: orbit \leftrightarrow irrep.

$$
\text { Weyl character } \frac{\chi_{\alpha}\left(e^{\mathfrak{i} x}\right)}{\operatorname{dim} V_{\alpha}}=\frac{\Delta_{\mathfrak{g}}(\mathfrak{i} x)}{\widehat{\triangle}_{\mathfrak{g}}\left(e^{\mathfrak{i} x}\right)} \mathcal{H}(\alpha+\rho, \mathfrak{i} x) \quad x \in \mathfrak{t}
$$

where $\rho=\frac{1}{2} \sum_{\boldsymbol{\alpha}>0} \boldsymbol{\alpha}$ and $\widehat{\Delta}_{\mathfrak{g}}\left(e^{\mathrm{i} x}\right):=\prod_{\boldsymbol{\alpha}>0}\left(e^{\frac{i}{2}\langle\boldsymbol{\alpha}, x\rangle}-e^{-\frac{i}{2}\langle\boldsymbol{\alpha}, x\rangle}\right)$ is "Weyl denominator".

In fact, LR problem is closely connected to Horn's problem!

Horn's problem $=$ a semi-classical approximation of $L-R$ problem

- Semi-classical version of multiplicity problems [Heckman 1982], [Guillemin-Lerman-Sternberg]
- It was noticed that (in $\operatorname{SU}(n)$), the γ that appear in $\alpha \otimes \beta$ satisfy Horn's inequalities !
* Similarity between $C_{\alpha \beta}^{\gamma}=\int_{G} d g \chi_{\alpha}(g) \chi_{\beta}(g) \chi_{\gamma}^{*}(g)$ and
expression of $\mathcal{J}(\alpha, \beta ; \gamma) \propto \int_{\mathfrak{t}} d x\left|\Delta_{\mathfrak{g}}(x)\right|^{2} \mathcal{H}(\alpha, \mathfrak{i} x) \mathcal{H}(\beta, \mathfrak{i} x) \mathcal{H}(\gamma, \mathfrak{i} x)^{*} \quad \mathfrak{t}=$ Cartan subalgebra
* Kirillov orbit theory: orbit \leftrightarrow irrep.

$$
\text { Weyl character } \frac{\chi_{\alpha}\left(e^{\mathrm{i} x}\right)}{\operatorname{dim} V_{\alpha}}=\frac{\Delta_{\mathfrak{g}}(\mathrm{i} x)}{\widehat{\Delta}_{\mathfrak{g}}\left(e^{\mathfrak{i} x}\right)} \mathcal{H}(\alpha+\rho, \mathfrak{i} x) \quad x \in \mathfrak{t}
$$

where $\rho=\frac{1}{2} \sum_{\boldsymbol{\alpha}>0} \boldsymbol{\alpha}$ and $\widehat{\Delta}_{\mathfrak{g}}\left(e^{\mathfrak{i} x}\right):=\prod_{\boldsymbol{\alpha}>0}\left(e^{\frac{i}{2}\langle\boldsymbol{\alpha}, x\rangle}-e^{-\frac{i}{2}\langle\boldsymbol{\alpha}, x\rangle}\right)$ is "Weyl denominator".

* In fact, if $C_{\alpha \beta}^{\gamma} \neq 0$ [Coquereaux-McSwiggen-Z]

$$
\mathcal{J}(\alpha+\rho, \beta+\rho ; \gamma+\rho)=\sum_{\kappa \in K, \tau} r_{\kappa} C_{\alpha \beta}^{\tau} C_{\tau \kappa}^{\gamma}
$$

K a finite, G-dependent but α, β-independent, set of weights, $r_{\kappa}>0$.
[Coquereaux-Z, Etingof-Rains]
For example in $\mathfrak{g}=\mathfrak{s u}(3), K=\{0\} ; \quad \mathcal{J}(\alpha+\rho, \beta+\rho ; \gamma+\rho)=C_{\alpha \beta}^{\gamma}$.

* Can one invert and express the LR coefficients in terms of the volumes \mathcal{J} ?
("Box spline deconvolution") [McSwiggen]

In fact, LR problem is closely connected to Horn's problem!

Horn's problem $=$ semi-classical approximation of $L-R$ problem
or conversely
L-R problem = "quantum" Horn's problem [Knutson-Tao]

- Semi-classical version of multiplicity problems [Heckman 1982]
- It was noticed that (in $\operatorname{SU}(n)$), the γ that appear in $\alpha \otimes \beta$ satisfy Horn's inequalities !
* Similarity between $C_{\alpha \beta}^{\gamma}=\int_{G} d g \chi_{\alpha}(g) \chi_{\beta}(g) \chi_{\gamma}^{*}(g)$ and
expression of $\mathcal{J} \propto \int_{\mathfrak{t}} d x\left|\Delta_{\mathfrak{g}}(x)\right|^{2} \mathcal{H}(\alpha, \mathfrak{i} x) \mathcal{H}(\beta, \mathfrak{i} x) \mathcal{H}(\gamma, \mathfrak{i} x)^{*} \quad \mathfrak{t}=$ Cartan subalgebra
* Kirillov orbit theory: orbit \leftrightarrow irrep.

$$
\frac{\chi_{\alpha}\left(e^{i x}\right)}{\operatorname{dim} V_{\alpha}}=\frac{\Delta_{\mathfrak{g}}(\mathrm{i} x)}{\widehat{\Delta}_{\mathfrak{g}}\left(e^{i x}\right)} \mathcal{H}(\alpha+\rho, \mathrm{i} x) \quad x \in \mathfrak{t}
$$

where $\rho=\frac{1}{2} \sum_{\alpha>0} \boldsymbol{\alpha}$ and $\widehat{\Delta}_{\mathfrak{g}}\left(e^{\mathbf{i} x}\right):=\prod_{\boldsymbol{\alpha}>0}\left(e^{\frac{1}{2}\langle\boldsymbol{\alpha}, x\rangle}-e^{-\frac{1}{2}\langle\boldsymbol{\alpha}, x\rangle}\right)$ is "Weyl denominator".

* Combinatorial viewpoint: $C_{\alpha \beta}^{\gamma}=$ number of integer points in a certain polytope of volume $\propto \mathcal{J}$ [Berenstein-Zelevinsky '90s, Knutson-Tao' '99] hence expect for "large weights", Volume $=\mathcal{J}(\alpha, \beta ; \gamma) \approx \#$ points $=C_{\alpha \beta}^{\gamma} \ldots$
rescaling by $s \in \mathbb{N}$

$$
C_{s \alpha s \beta}^{s \gamma}=P_{\alpha \beta}^{\gamma}(s)=s^{d} \mathcal{J}(\alpha, \beta ; \gamma)+\cdots
$$

$$
P_{\alpha \beta}^{\gamma}(s): \text { Ehrhart (quasi-)polynomial } \quad d \leq(n-1)(n-2) / 2 \text { for } s u(n)
$$

The BZ polytope for $s u(4)$, and $\alpha=(21,13,5), \beta=(7,10,12), \gamma=(20,11,9)$. It has $C_{\alpha \beta}^{\gamma}=367$ integer points and a volume $\mathcal{J}(\alpha, \beta ; \gamma)=742 / 3$

Summary and open issues

PDF in $\operatorname{SU}(n)$ cases and other coadjoint orbits \checkmark $\operatorname{USp}(n)$ orbits of Quaternionic Self-Dual matrices \checkmark
In the SO(3) case, general formula for PDF $p\left(\gamma_{1}, \gamma_{2}\right)$

- which reproduces (in the special case $\alpha=\beta=(1,0,-1)$) the numerical simulations,
- and enables one to determine the nature of these divergences.

Extend the discussion to similar cases: Schur/Kostka, minor/branching ... [C-Z,Z], "quantum marginals" [Collins-McS, McS-Matsumoto]

What is missing

* a better, more systematic approach to ρ, its singularities, etc.
* what happens in $\mathrm{SO}(n)$ for $n>3$? Singularities, but of which type ?
* geometric interpretation of singularities? coordinate singularity [C-McS-Z]. . .

Summary and open issues

PDF in SU(n) cases and other coadjoint orbits \checkmark $\operatorname{USp}(n)$ orbits of Quaternionic Self-Dual matrices
In the SO(3) case, general formula for PDF $p\left(\gamma_{1}, \gamma_{2}\right)$

- which reproduces (in the special case $\alpha=\beta=(1,0,-1)$) the numerical simulations,
- and enables one to determine the nature of these divergences.

Extend the discussion to similar cases: Schur/Kostka, minor/branching ... [C-Z,Z], "quantum marginals" [Collins-McS, McS-Matsumoto]

What is missing

* a better, more systematic approach to ρ, its singularities, etc.
* what happens in $\mathrm{SO}(n)$ for $n>3$? Singularities, but of which type ?
* geometric interpretation of singularities? coordinate singularity [C-McS-Z]. . .

Combinatorial/probabilistic issues...
** Crossover between finite n and $n \rightarrow \infty$ limit (free probability) [Biane]

Summary and open issues

PDF in $\operatorname{SU}(n)$ cases and other coadjoint orbits \checkmark $\operatorname{USp}(n)$ orbits of Quaternionic Self-Dual matrices
In the SO(3) case, general formula for PDF $\rho(p, q)$ or $\mathrm{p}\left(\gamma_{1}, \gamma_{2}\right)$

- which reproduces (in the special case $\alpha=\beta=(1,0,-1)$) the numerical simulations,
- and enables one to determine the nature of these divergences.

Extend the discussion to similar cases: Schur/Kostka, minor/branching ... [C-Z,Z], "quantum marginals" [Collins-McS, McS-Matsumoto]

What is missing

* a better, more systematic approach to ρ, its singularities, etc.
* what happens in $\mathrm{SO}(n)$ for $n>3$? Singularities, but of which type ?
* geometric interpretation of singularities? coordinate singularity [C-McS-Z]. . .

Combinatorial/probabilistic issues. . .
** Crossover between finite n and $n \rightarrow \infty$ limit (free probability) [Biane]
[Narayanan-Sheffield-Tao]
Another challenging question (for the physicist):
** are the enhancements of certain eigenvalues observable in some physical process ?

Thank you!

Appendices

A little calculation. . Notation $\alpha^{\prime}=\alpha+\rho$ etc. $\quad \frac{\chi_{\alpha}\left(e^{i x x}\right)}{\operatorname{dim} V_{\alpha}}=\frac{\Delta_{\mathfrak{g}}(\mathrm{i} x)}{\Delta_{\mathfrak{g}}\left(e^{i x}\right)} \mathcal{H}\left(\alpha^{\prime}, \mathfrak{i} x\right)$
Assume $\alpha+\beta-\gamma \in Q$ (otherwise $C_{\alpha \beta}^{\gamma}=0$)

$$
\begin{aligned}
\mathcal{J}\left(\alpha^{\prime}, \beta^{\prime} ; \gamma^{\prime}\right) & :=\operatorname{dim} V_{\alpha} \operatorname{dim} V_{\beta} \operatorname{dim} V_{\gamma} \int_{\mathfrak{t} \sim \mathbb{R}^{r}} d^{r} x\left|\Delta_{\mathfrak{g}}(x)\right|^{2} \mathcal{H}\left(\alpha^{\prime}, \mathrm{i} x\right) \mathcal{H}\left(\beta^{\prime}, \mathrm{i} x\right)\left(\mathcal{H}\left(\gamma^{\prime}, \mathrm{i} x\right)\right)^{*} \\
& =\int_{t} \underbrace{d^{r} x\left|\widehat{\Delta}_{\mathfrak{g}}\left(e^{\mathrm{i} x}\right)\right|^{2}} \frac{\widehat{\Delta}_{\mathfrak{g}}\left(e^{\mathrm{i} x}\right)}{\Delta_{\mathfrak{g}}(\mathrm{i} x)} \chi_{\alpha}\left(e^{\mathrm{i} x}\right) \chi_{\beta}\left(e^{\mathrm{i} x}\right)\left(\chi_{\gamma}\left(e^{\mathrm{i} x}\right)\right)^{*} \\
& =\int_{\mathbb{T}} d T \sum_{\delta \in P^{\vee}} \frac{\widehat{\Delta}_{\mathfrak{g}}\left(e^{\mathrm{i}(x+\delta)}\right)}{\Delta_{\mathfrak{g}}(\mathrm{i}(x+\delta))} \chi_{\alpha}\left(e^{\mathrm{i}(x+\delta)}\right) \chi_{\beta}\left(e^{\mathrm{i}(x+\delta)}\right)\left(\chi_{\gamma}\left(e^{\mathrm{i}(x+\delta)}\right)\right)^{*} \\
& =\int_{\mathbb{T}} d T \underbrace{\sum_{\kappa \in K} r_{\kappa} \chi_{\kappa}(T)}_{\widehat{\Delta}_{\mathfrak{L} \in P^{\vee}}^{\left(e^{\mathrm{i}\langle\rho, \delta\rangle} \frac{\widehat{\Delta}_{\mathfrak{g}}\left(e^{\mathrm{i}(x+\delta)}\right)}{\Delta_{\mathfrak{g}}(\mathrm{i}(x+\delta))}\right)} \chi_{\alpha}\left(e^{\mathrm{i} x}\right) \chi_{\beta}\left(e^{\mathrm{i} x}\right)\left(\chi_{\gamma}\left(e^{\mathrm{i} x}\right)\right)^{*}} \chi_{\alpha}\left(e^{\mathrm{i} x}\right) \chi_{\beta}\left(e^{\mathrm{i} x}\right)\left(\chi_{\gamma}\left(e^{\mathrm{i} x}\right)\right)^{*} \\
& =\int_{\mathbb{T}} d T \underbrace{}_{\kappa \in K, \tau} r_{\kappa} C_{\alpha \beta}^{\tau} C_{\tau \kappa}^{\nu}=\sum_{\kappa \in K} r_{\kappa} N_{\alpha \beta \kappa}^{\nu} .
\end{aligned}
$$

with a finite set of weights K independent of $\alpha, \beta, \gamma, r_{\kappa} \geq 0, \sum_{\kappa} r_{\kappa} \operatorname{dim} V_{\kappa}=1$.
Generalization of $\sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{u+(2 \pi) n}=\frac{1}{2 \sin (u / 2)}$

From Knutson-Tao's honeycombs to Horn's inequalities. Example $n=3$

$$
\begin{aligned}
& \max \left(\alpha_{1}-\gamma_{1}+\gamma_{2}, \gamma_{3}-\right.\left.\beta_{3}, \alpha_{2},-\beta_{2}+\gamma_{2}, \alpha_{1}+\alpha_{3}+\beta_{1}-\gamma_{1}, \alpha_{1}+\alpha_{2}+\beta_{2}-\gamma_{1}\right) \\
& \leq \xi \leq \min \left(\alpha_{1},-\beta_{3}+\gamma_{2}, \alpha_{1}+\alpha_{2}+\beta_{1}-\gamma_{1}\right) \\
&\Leftrightarrow \text { Horn's inequalities (for } n=3)
\end{aligned}
$$

