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What is Horn’s problem ?
Given two Hermitian n×n matrices A and B, of known spectrum

α = {α1 ≥ α2 ≥ ⋯ ≥ αn}

and β = {β1 ≥ β2 ≥ ⋯ ≥ βn}, what can be said on the spectrum

γ = {γ1 ≥ γ2 ≥ ⋯ ≥ γn} of their sum C = A +B ?

An old problem, with a rich history. . .

Obviously, ∑nk=1(γk −αk − βk) = 0, thus the stage is in Rn−1.

In general, set of linear inequalities between the α’s, β’s, γ’s.

For example, γ1 ≤ α1 + β1, (Obvious: recall that α1 = supψ
(ψ,Aψ)
(ψ,ψ) , etc)



What is Horn’s problem ?
Given two Hermitian n ×n matrices A and B, of known spectrum

α = {α1 ≥ α2 ≥ ⋯ ≥ αn}
and β = {β1 ≥ β2 ≥ ⋯ ≥ βn}, what can be said on the spectrum γ = {γ1 ≥ γ2 ≥ ⋯ ≥ γn}
of their sum C = A +B ?

An old problem, with a rich history. . .

Obviously, ∑nk=1 γk −αk − βk = 0, thus the stage is in Rn−1.

In general, set of linear inequalities between the α’s, β’s, γ’s.

For example, γ1 ≤ α1 + β1,

or Weyl’s inequality (1912)

i + j − 1 ≤ n ⇒ γi+j−1 ≤ αi + βj, etc.

H. Weyl



What is Horn’s problem ?
Given two Hermitian n ×n matrices A and B, of known spectrum

α = {α1 ≥ α2 ≥ ⋯ ≥ αn}
and β = {β1 ≥ β2 ≥ ⋯ ≥ βn}, what can be said on the spectrum γ = {γ1 ≥ γ2 ≥ ⋯ ≥ γn}
of their sum C = A +B ?

An old problem, with a rich history. . .

Obviously, ∑nk=1 γk −αk − βk = 0, thus the stage is in Rn−1.

In general, set of linear inequalities between the α’s, β’s, γ’s.

For example, γ1 ≤ α1 + β1 or i + j − 1 ≤ n ⇒ γi+j−1 ≤ αi + βj, etc.

Horn (1962) conjectured the form of

a (necessary and sufficient) set of in-

equalities

∑
k∈K

γk ≤∑
i∈I
αi + ∑

j∈J
βj

for some triplets {I, J,K} of subsets of {1,⋯, n},
∣I ∣ = ∣J ∣ = ∣K ∣, determined recursively. A. Horn

Thus the γ’s belong to a convex polytope in Rn−1.



Horn’s inequalities
For example, for n = 3

γ3min ∶= α3 + β3 ≤ γ3 ≤ min(α1 + β3,α2 + β2,α3 + β1) =∶ γ3max

γ2min ∶= max(α2 + β3,α3 + β2) ≤ γ2 ≤ min(α1 + β2,α2 + β1) =∶ γ2max

γ1min ∶= max(α1 + β3,α2 + β2,α3 + β1) ≤ γ1 ≤ α1 + β1 =∶ γ1max .

in addition to

γ3 ≤ γ2 ≤ γ1

and

γ1 + γ2 + γ3 =∑
i

(αi + βi)



What is Horn’s problem ?
Given two Hermitian n ×n matrices A and B, of known spectrum

α = {α1 ≥ α2 ≥ ⋯ ≥ αn}
and β = {β1 ≥ β2 ≥ ⋯ ≥ βn}, what can be said on the spectrum γ = {γ1 ≥ γ2 ≥ ⋯ ≥ γn}
of their sum C = A +B ?

An old problem, with a rich history. . .
Obviously, ∑nk=1 γk −αk − βk = 0, thus the stage is in Rn−1.
In general, set of linear inequalities between the α’s, β’s, γ’s.
For example, γ1 ≤ α1 + β1.

Horn (1962) conjectured the form of a (necessary and sufficient) set of in-
equalities

∑
k∈K

γk ≤∑
i∈I
αi +∑

j∈J
βj

for some triplets {I, J,K} of subsets of {1,⋯, n}, ∣I ∣ = ∣J ∣ = ∣K ∣, determined re-

cursively.

Thus the γ’s belong to a convex polytope in Rn−1.

⋮
Klyachko (1998) and Knutson and Tao (1999) prove Horn’s con-
jecture.



A. Klyachko A. Knutson T. Tao



Problem interesting by its many facets and ramifications, in sym-

plectic geometry (Atiyah–Guillemin-Sternberg convexity theorem), in algebraic

geometry, representation theory & combinatorics, etc . . .

See a beautiful introduction by A. Knutson and T. Tao (Notices of the AMS, 2001)

and a comprehensive review by W. Fulton (Bull. Am. Math. Soc. 2000)



Outline of this talk

1. The classical Horn’s problem revisited

2. Explicit results for SU(n) orbits, n = 2,3

3.? Extension and generalizations. SO(n) orbits of real symmet-

ric matrices

4. Connection with representation theory and combinatorics

5. Summary and open issues



1. The classical Horn’s problem revisited

Rephrase the problem as follows:

Let Oα be the orbit of diag (α1,α2,⋯,αn) under action by conju-

gation of U(n),

Oα = {Udiag (α1,α2,⋯,αn)U∗ ∣U ∈ U(n)}

and likewise Oβ.

Which orbits Oγ appear in the “sum of orbits” Oα ⊞Oβ?



Two possible generalizations:

Up to a factor i , Hermitian matrices live in the Lie algebra su(n).
Orbits are “coadjoint orbits” of SU(n). This suggests two nat-

ural generalizations of Horn’s original problem.

– Coadjoint orbits of other (simple, connected, compact) Lie

groups and algebras. Symplectic geometry, piecewise polynomi-

ality of measure, convexity theorems, etc [Heckman ’82, Knutson ’01, . . . ]

– Other “self-adjoint” n ×n matrices: A = (AT )∗

Orbits of Real Symmetric Complex Hermitian Quaternionic self-dual
Conjugation by SO(n) SU(n) USp(n)



More specific questions

unique invariant normalized measure dµ(U) = dµ(V U) = dµ(UV )
HH
HHHj

● Suppose we take A uniformly distributed on Oα (for the Haar
measure), and likewise B on Oβ, and independent of A, can one
determine the PDF (probability distribution function) of γ ?

● Compute this PDF for the coadjoint orbits of various Lie alge-
bras, see below.

● What about orbits of self-adjoint matrices?
Compare real symmetric, complex Hermitian and quaternionic
self-dual matrices.

A general result by Fulton: Horn’s inequalities on the γ’s are
the same for these three cases. Hence the γ’s lie in the same
polytope (for given n and α,β).

What about their distribution ?



More specific questions

● Suppose we take A uniformly distributed on Oα (for the Haar measure),
and likewise B on Oβ, and independent of A, can one determine the PDF
(probability distribution function) of γ ?

● Compute this PDF for the coadjoint orbits of various Lie algebras.

● What about orbits of self-adjoint matrices?
Compare real symmetric, complex Hermitian and quaternionic self-dual ma-
trices.

A general result by Fulton: Horn’s inequalities on the γ’s are the same. Hence

the γ’s lie in the same polytope (for given α,β).

What about their distribution ?

Make a (numerical) experiment ! Take n = 3, α = β = (1,0,−1),
generate big samples of C = diag (α)+V ⋅diag (β) ⋅V −1, diagonalize

them and plot (γ1, γ2). Recall by convention γ1 ≥ γ2 ≥ γ3 = −γ1−γ2.



n = 3 α = β = (1,0,−1). Plot of (γ1, γ2)

action of SO(3) of SU(3) of USp(3)

γ1 = γ2
HHHj

γ3 ≥ α3 + β3
����

γ1 ≤ α1 + β1

HH
HYγ2 = γ3

�
��*

Observe
Same polygon of support (as expected)

Distribution more condensed for USp(3)

Lines of enhancement in the SO(3) case ??



n = 3 α = β = (1,0,−1). Plot and histogram of (γ1, γ2)

action of SO(3) of SU(3) of USp(3)



Another example: α = (7,3,0), β = (6,5,0)

Question:

Can one compute the PDF for the three cases and understand

the origin, location and nature of the singularities in the orthog-

onal case ?



The locus of singularities

Compare the three “self-adjoint cases” , of real symmetric, complex Hermitian
or quaternionic self-dual, n ×n (traceless) matrices.

For given n and α,β, not only the support of the γ’s is the same ([Fulton])
but also the locus of non-differentiability (although of quite different nature)

Proposition 1 [C-MS-Z]The PDF is a piecewise real analytic function of γ.
Non analyticities occur only when γ lies on hyperplanes of the form

∑
k∈K

γk =∑
i∈I
αi +∑

j∈J
βj

with I, J,K ⊂ {1,⋯, n}, ∣I ∣ = ∣J ∣ = ∣K ∣, independently on the pair (G,Mn)

Hint of proof: look at points where the differential of the map Φ : G×G→M0
n,

(g1, g2)↦ C = A +B = g1 ⋅α + g2 ⋅ β is not surjective.

Remarks:
– includes boundaries of Horn’s domain other than the hyperplanes γi = γi+i
– a necessary, not a sufficient condition ! Which singularities do occur ?



Computing the PDF

A central role is played by the orbital integral (aka generalized or

multivariate Bessel function)

Hθ(A,X) = ∫
Gθ

exp(tr (V AV −1X))dV

where θ = 1
2,1, 2 (half Dyson index) and normalized Haar measure

H
HHY

?

θ A,X Gθ
1
2 Real Symmetric SO(n)
1 Complex Hermitian SU(n)
2 Quaternionic Self-Dual USp(n)

Likewise for coadjoint orbits Hg(A,X) = ∫G exp⟨gAg−1,X⟩dg .

Note
● H(A, iX) = Fourier transform of the orbital measure.
● H(A,X) only function of e-values α and x of A and X. Denote
it also H(α,x).



Proposition 2 . For self-adjoint matrices A and B, indepen-

dently and uniformly distributed on their Gθ-orbits Oα and Oβ,
PDF of γ is

p(γ∣α,β) = const(θ,n) ∣∆(γ)∣2θ ∫Rn
dnx ∣∆(x)∣2θHθ(α, ix)Hθ(β, ix)Hθ(γ, ix)∗ .

where ∆(x) =∏i<j(xi − xj) is the Vandermonde determinant. For

coadjoint orbits, similar formula with x ∈ t and ∣∆(x)∣2θ changed

to ∆2
g(x) ∶=∏ααα>0⟨ααα,x⟩2 (t a Cartan subalgebra, ααα the +ve roots).

Elementary proof: H(A, iX) is the characteristic function of the random variable A ∈ Oα.

Characteristic function of C = A +B is the product H(A, iX)H(B, iX). The PDF of C then

obtained by inverse Fourier transform. The ∆’s come from Jacobians. 2.

See also [Dooley–Repka–Wildberger 1993; Frumkin&Goldberger 2006; Suzuki 2013; Kuijlaars

& Roman 2016]



The orbital integrals, self-adjoint and coadjoint cases

In the unitary (θ = 1) case, explicit formula known for long
[Harish-Chandra 1957, Itzykson–Z 1980] (for A and X “regular”, i.e., αi ≠ αj and xi ≠ xj),

H2(α, ix) = ∫
SU(n)

ei tr (XV AV ∗) dV =
n−1
∏
p=1

p!
(deteixiαj)1≤i,j≤n

∆(ix)∆(α)
,

i.e., semi-classical approximation is exact ! [Duistermaat-Heckman 1982].

Generalizes to other coadjoint orbits. [Harish-Chandra]

In the symplectic (θ = 2) case,
[Brézin–Hikami 2002]

H4(α, ix) = const. ∑
P ∈Sn

ei ∑j xjαPj

∆3(ix)∆3(αP )
fn(x,αP ) ,

fn a polynomial in the variables τi,j ∶= (xi−xj)(αPi−αPj), deg(f2) = 1, deg(f3) = 3, etc. (Recursive

formula for higher fn. . . )

In the orthogonal (θ = 1
2) case, ???



Explicit computation of the PDF p(γ) in the SU(n) case.
Make use of HCIZ integral

p(γ∣α,β) = const.
∆(γ)

∆(α)∆(β) ∫
dnx

∆(x)
deteixiαj deteixiβj dete−ixiγj

= ∏n−1
1 p!

n!
δ(∑

k

(γk −αk − βk))
∆(γ)

∆(α)∆(β)
Jn(α,β;γ)

“volume function”A
A
AK

A priori, Jn(γ) is a distribution (generalized function), in fact
– a piece-wise polynomial of degree (n − 1)(n − 2)/2
(also a general result in symplectic geometry, [Heckman],[Duistermaat–Heckman],. . . )

and
– a function of differentiability class Cn−3, for n > 2
(a consequence of Riemann–Lebesgue theorem; also [Guillemin–Lerman–Sternberg])

Group theoretic and geometric interpretations of Jn . . . yet to come



Example: n = 3, α = β = (1,0,−1).

left: distribution of 10,000 eigenvalues in the γ1, γ2 plane; middle: histogram

of 5 × 106 eigenvalues; right: plot of the PDF as computed above



Another example: α = (7,3,0), β = (6,5,0)

9 10 11 12 13
γ1

6

7

8

9
γ2



3. Extensions and generalizations
* USp(n) orbits of quaternionic self-dual matrices: generalized H-C formula
for n = 2,3,4 [Brézin-Hikami]. PDF of differentiability class C2(n−2). ✓

n = 3 , α = β = {1,0,−1}



3. Extensions and generalizations
* USp(n) orbits of quaternionic self-dual matrices: generalized H-C formula for n = 2,3,4

[Brézin-Hikami]. PDF of differentiability class C2(n−2). ✓

⋆ O(n) or SO(n) orbits of real symmetric matrices ?? (No Harish-Chandra
formula for n > 2 !!).



3. Extensions and generalizations
* USp(n) orbits of quaternionic self-dual matrices: generalized H-C formula for n = 2,3,4

[Brézin-Hikami]. PDF of differentiability class C2(n−2). ✓

⋆ O(n) or SO(n) orbits of real symmetric matrices ?? (No Harish-Chandra
formula for n > 2 !!).

Plot and Singularities of p(γ1, γ2) for n = 3, α = β = {1,0,−1} [Coquereaux-Z]

∼ Log|γ1-1|

∼ Log|γ2|

∼ Log|γ3+1|

∼ |γ2
-1/2

∼ |γ2
-1/2

1 2
γ1

-1

-0.5

0.5

1

γ2



4. Connection with representation theory

G a simple simply-connected compact Lie group, Vα its irreducible represen-
tations (irreps) labelled by a highest weight (h.w.) α (a vector in the r-dim space
t∗, r the rank).

Decompose the tensor product into irreps

Vα ⊗ Vβ = ⊕γCγ
αβVγ (1)

with “Littlewood–Richardson multiplicities” Cγ
αβ (aka “Clebsch–Gordan de-

composition”).

Q: Which γ in (1)? How to compute the Cγ
αβ?

Using orthonormal characters χα(g), one may write

Cγ
αβ = ∫G

dg χα(g)χβ(g)χ∗γ(g) .

Littlewood–Richardson algorithm (for SU(n)): Young diagrams. . .

Also Kostant–Steinberg formulae, Brauer, Racah–Speiser, Klimyk rules. . .

Also various combinatorial models (“pictographs”) that count the Cγ
αβ:

Berenstein–Zelevinsky triangles, Knutson–Tao honeycombs/hives, Ocneanu blades, etc



An example in su(4): α = (21,13,5), β = (7,10,12), γ = (20,11,9), Cγ
αβ = 367
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In fact, LR problem is closely connected to Horn’s problem!

Horn’s problem = semi-classical approximation of L–R problem

or conversely

L–R problem = “quantum” Horn’s problem [Knutson–Tao]
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– Semi-classical version of multiplicity problems [Heckman 1982]

– It was noticed that (in SU(n)), the γ that appear in α⊗β satisfy
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In fact, LR problem is closely connected to Horn’s problem!

Horn’s problem = semi-classical approximation of L–R problem

or conversely

L–R problem = “quantum” Horn’s problem [Knutson–Tao]

– Semi-classical version of multiplicity problems [Heckman 1982]

– It was noticed that (in SU(n)), the γ that appear in α ⊗ β satisfy Horn’s

inequalities !

⋆ Similarity between C
γ
αβ

= ∫G dg χα(g)χβ(g)χ∗γ(g) and

expression of J (α,β;γ)∝ ∫t dx ∣∆g(x)∣2 H(α, ix)H(β, ix)H(γ, ix)∗
t =Cartan subalgebra. Recall ∆g(x) ∶=∏ααα>0⟨ααα,x⟩, ααα the roots of g.

⋆ Kirillov orbit theory: orbit ↔ irrep.

Weyl character �
��*χα(eix)

dimVα
=

∆g(ix)
∆̂g(eix)

H(α + ρ, ix) x ∈ t

where ρ = 1
2∑ααα>0ααα and ∆̂g(eix) ∶= ∏ααα>0 (e

i
2⟨ααα,x⟩ − e−

i
2⟨ααα,x⟩) is “Weyl

denominator”.



In fact, LR problem is closely connected to Horn’s prob-
lem!

Horn’s problem = a semi-classical approximation of L–R problem
– Semi-classical version of multiplicity problems [Heckman 1982], [Guillemin–Lerman–Sternberg]

– It was noticed that (in SU(n)), the γ that appear in α⊗ β satisfy Horn’s inequalities !

⋆ Similarity between Cγ
αβ = ∫G dg χα(g)χβ(g)χ∗γ(g) and

expression of J (α,β;γ)∝ ∫t dx∣∆g(x)∣2H(α, ix)H(β, ix)H(γ, ix)∗ t =Cartan subalgebra

⋆ Kirillov orbit theory: orbit ↔ irrep.

Weyl character �
�* χα(eix)

dimVα
=

∆g(ix)
∆̂g(eix)

H(α + ρ, ix) x ∈ t

where ρ = 1
2∑ααα>0ααα and ∆̂g(eix) ∶=∏ααα>0 (e

i
2 ⟨ααα,x⟩ − e− i

2 ⟨ααα,x⟩) is “Weyl denominator”.

⋆ In fact, if Cγ
αβ ≠ 0 [Coquereaux–McSwiggen–Z]

J (α + ρ,β + ρ;γ + ρ) = ∑
κ∈K,τ

rκC
τ
αβC

γ
τ κ

K a finite, G-dependent but α, β-independent, set of weights, rκ > 0.
[Coquereaux–Z, Etingof–Rains]

For example in g = su(3), K = {0}; J (α + ρ,β + ρ;γ + ρ) = Cγ
αβ.

⋆ Can one invert and express the LR coefficients in terms of the volumes J ?
(“Box spline deconvolution”) [McSwiggen]



In fact, LR problem is closely connected to Horn’s problem!
Horn’s problem = semi-classical approximation of L–R problem
or conversely
L–R problem = “quantum” Horn’s problem [Knutson–Tao]
– Semi-classical version of multiplicity problems [Heckman 1982]

– It was noticed that (in SU(n)), the γ that appear in α⊗ β satisfy Horn’s inequalities !
⋆ Similarity between Cγ

αβ = ∫G dg χα(g)χβ(g)χ∗γ(g) and

expression of J ∝ ∫t dx∣∆g(x)∣2H(α, ix)H(β, ix)H(γ, ix)∗ t =Cartan subalgebra

⋆ Kirillov orbit theory: orbit ↔ irrep.

χα(eix)
dimVα

=
∆g(ix)
∆̂g(eix)

H(α + ρ, ix) x ∈ t

where ρ = 1
2∑ααα>0ααα and ∆̂g(eix) ∶=∏ααα>0 (e

i
2 ⟨ααα,x⟩ − e− i

2 ⟨ααα,x⟩) is “Weyl denominator”.

⋆ Combinatorial viewpoint: C
γ
αβ

=number of integer points in a

certain polytope of volume ∝ J [Berenstein–Zelevinsky ’90s, Knutson–Tao ’99]

hence expect for “large weights”, Volume = J (α,β;γ) ≈ #points = Cγ
αβ . . .

rescaling by s ∈ N C
sγ
sαsβ

= P γ
αβ
(s) = sdJ (α,β;γ) +⋯

P γ
αβ(s): Ehrhart (quasi-)polynomial d ≤ (n − 1)(n − 2)/2 for su(n)



The BZ polytope for su(4), and α = (21,13,5), β = (7,10,12), γ = (20,11,9). It has Cγ
αβ = 367

integer points and a volume J (α,β;γ) = 742/3



Summary and open issues
PDF in SU(n) cases and other coadjoint orbits ✓
USp(n) orbits of Quaternionic Self-Dual matrices ✓
In the SO(3) case, general formula for PDF p(γ1, γ2)
– which reproduces (in the special case α = β = (1,0,−1)) the numerical simulations,
– and enables one to determine the nature of these divergences.

Extend the discussion to similar cases: Schur/Kostka, minor/branching . . . [C–Z,Z],
“quantum marginals” [Collins–McS, McS–Matsumoto]

What is missing
⋆ a better, more systematic approach to ρ, its singularities, etc.
⋆ what happens in SO(n) for n > 3? Singularities, but of which type ?
⋆ geometric interpretation of singularities? coordinate singularity [C–McS-Z]. . .
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⋆⋆ Crossover between finite n and n→∞ limit (free probability) [Biane]



Summary and open issues
PDF in SU(n) cases and other coadjoint orbits ✓
USp(n) orbits of Quaternionic Self-Dual matrices ✓
In the SO(3) case, general formula for PDF ρ(p, q) or p(γ1, γ2)
– which reproduces (in the special case α = β = (1,0,−1)) the numerical simulations,
– and enables one to determine the nature of these divergences.

Extend the discussion to similar cases: Schur/Kostka, minor/branching . . . [C–Z,Z],
“quantum marginals” [Collins–McS, McS–Matsumoto]

What is missing
⋆ a better, more systematic approach to ρ, its singularities, etc.
⋆ what happens in SO(n) for n > 3? Singularities, but of which type ?
⋆ geometric interpretation of singularities? coordinate singularity [C–McS-Z]. . .

Combinatorial/probabilistic issues. . .
⋆⋆ Crossover between finite n and n→∞ limit (free probability) [Biane]

[Narayanan–Sheffield–Tao]

Another challenging question (for the physicist):
⋆⋆ are the enhancements of certain eigenvalues observable in some physical
process ?



Thank you !



Appendices
A little calculation. . . Notation α′ = α + ρ etc. χα(e

ix
)

dimVα
= ∆g(ix)

∆̂g(eix
)
H(α′, ix)

Assume α + β − γ ∈Q (otherwise Cγ
αβ = 0)

J (α′, β′;γ′) ∶= dimVαdimVβ dimVγ ∫
t≃Rr

drx ∣∆g(x)∣2H(α′, ix)H(β′, ix)(H(γ′, ix))∗

= ∫
t
drx ∣∆̂g(eix)∣2
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∆̂g(eix)
∆g(ix)

χα(eix)χβ(eix)(χγ(eix))∗

(T = t/P ∨) = ∫
T

dT ∑
δ∈P ∨

∆̂g(ei (x+δ))
∆g(i (x + δ))

χα(ei (x+δ))χβ(ei (x+δ))(χγ(ei (x+δ)))∗

= ∫
T
dT(∑

δ∈P ∨
ei ⟨ρ,δ⟩ ∆̂g(ei (x+δ))

∆g(i (x + δ))
)
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χα(eix)χβ(eix)(χγ(eix))∗

= ∫
T
dT ∑

κ∈K
rκχκ(T ) χα(eix)χβ(eix)(χγ(eix))∗

= ∑
κ∈K,τ

rκC
τ
αβC

ν
τκ = ∑

κ∈K
rκN

ν
αβκ .

with a finite set of weights K independent of α,β, γ, rκ ≥ 0, ∑κ rκdimVκ = 1.

Generalization of ∑∞n=−∞
(−1)n

u+(2π)n = 1
2 sin(u/2)



From Knutson–Tao’s honeycombs to Horn’s inequalities. Example n = 3
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β3

−γ1 −γ2 −γ3

max(α1 − γ1 + γ2, γ3 − β3,α2,−β2 + γ2,α1 +α3 + β1 − γ1,α1 +α2 + β2 − γ1)
≤ ξ ≤ min(α1,−β3 + γ2,α1 +α2 + β1 − γ1)

⇔ Horn’s inequalities (for n = 3)


