Some aspects of Horn’s problem

Jean-Bernard Zuber (LPTHE, Sorbonne Université)

Toulouse, 30 June 2023



Some aspects of Horn’s problem

Jean-Bernard Zuber (LPTHE, Sorbonne Université)

Toulouse, 30 June 2023

Collaboration with Robert Coquereaux and Colin McSwiggen




What is Horn's problem 7
Given two Hermitian nxn matrices A and B, of known spectrum

a={a1>ar>>an}

and B8 ={B81 > B> > > By}, what can be said on the spectrum
v={y1>7v2> >y} of their sum C=A+B ?

An old problem, with a rich history. ..
Obviously, ¥7_; (vx — ax - Bk) = 0, thus the stage is in R*"1.
In general, set of /linear inequalities between the a's, 3's, v's.

For example, v1 < a1 + (1, (Obvious: recall that oy =supy, (Eﬁl’}ﬁ)), etc)




What is Horn's problem 7

Given two Hermitian n xn matrices A and B, of known spectrum

a={a1>2ar>>a,}

and B={B1>p>>->p8,}, what can be said on the spectrum ~ = {1 >y > - >y, }
of their sum C=A+B 7

An old problem, with a rich history. ..
Obviously, Y717 — ar - Br = 0, thus the stage is in R 1.
In general, set of /linear inequalities between the a's, 8's, «'s.

For example, v1 < aq + B1,
or Weyl's inequality (1912)
1+7-1<n = 7i+j_1£ozi+ﬁj, etc.

H. Weyl



What is Horn's problem 7

Given two Hermitian n xn matrices A and B, of known spectrum

a={a1>a > >a,}

and B ={B12 P22 B,}, what can be said on the spectrum v ={y1 >y2 >
of their sum C=A+B 7

An old problem, with a rich history. ..

Obviously, Y117 —ar - Bk =0, thus the stage is in R*1.

In general, set of l/inear inequalities between the a's, 8's, v's.
For example, y1<ai+B1 0ori+j5-1<n = .1 <q;+3;, etc.

Horn (1962) conjectured the form of
a (necessary and sufficient) set of in-
equalities
> WSy i+ ) B
ke K el ged -
for some triplets {I, J, K} of subsets of {1,---,n},
11| =|J| = |K|, determined recursively.

A. Horn
Thus the ~'s belong to a convex polytope in R*1.

e 2 /yn}



Horn’s inequalities
For example, for n=3

Yamin = @3+ B3 < vz <Min(ay + f3,a0 + B2, a3 + 1) = V3maz
Yomin = MaxX(az + B3,az + P2) < 2 <min(ai + B2,a2 + B1) = Y2max
Yimin = MaX(aq + B3, a0 + B2,a3+ 1) < v1 <1+ B1 = Yima -
in addition to
Y3<Y2 <M1
and

Y1+y2+73 =) (05 + ;)
7



What is Horn's problem 7

Given two Hermitian n xn matrices A and B, of known spectrum

a={a1>az > >a,}

and B={B1 > P22 >B,}, what can be said on the spectrum ~v = {y1 >y > > ~,}
of their sum C=A+B 7

An old problem, with a rich history. ..

Obviously, >7_1 v — ax - Bk = 0, thus the stage is in R* 1.

In general, set of /inear inequalities between the a's, 8's, v's.
For example, v1 < a1 + B1.

Horn (1962) conjectured the form of a (necessary and sufficient) set of in-

equalities

D WSy i+ ) B

ke K 1el ged
for some triplets {I,J, K} of subsets of {1,---,n}, |I| =|J|=|K|, determined re-
cursively.

Thus the ~'s belong to a convex polytope in Rn1,

Klyachko (1998) and Knutson and Tao (1999) prove Horn's con-
jecture.



A. Klyachko A. Knutson T. Tao



Problem interesting by its many facets and ramifications, in sym-
plectic geometry (Atiyah—Guillemin-Sternberg convexity theorem), 1IN algebraic
geometry, representation theory & combinatorics, etc ...

See a beautiful introduction by A. Knutson and T. Tao (Notices of the AMS, 2001)

and a comprehensive review by W. Fulton (Bull. Am. Math. Soc. 2000)



Qutline of this talk
1. The classical Horn's problem revisited
2. Explicit results for SU(n) orbits, n=2,3

3.7 Extension and generalizations. SO(n) orbits of real symmet-
ric matrices

4. Connection with representation theory and combinatorics

5. Summary and open issues



1. The classical Horn’s problem revisited

Rephrase the problem as follows:
Let O, be the orbit of diag (aq,as, -, ay) under action by conju-

gation of U(n),
Oq ={Udiag (a1, a9, ,an)U"|U e U(n)}

and likewise (’)5.
Which orbits O, appear in the “sum of orbits” OQOB?



Two possible generalizations:

Up to a factor i, Hermitian matrices live in the Lie algebra su(n).
Orbits are “coadjoint orbits” of SU(n). This suggests two nat-
ural generalizations of Horn's original problem.

— Coadjoint orbits of other (simple, connected, compact) Lie
groups and algebras. Symplectic geometry, piecewise polynomi-
ality of measure, convexity theorems, etc [Heckman '82, Knutson '01, .. .]

— Other “self-adjoint” n xn matrices: A= (A®)*

Orbits of Real Symmetric | Complex Hermitian | Quaternionic self-dual

Conjugation by SO(n) SU(n) USp(n)




More specific questions

unique invariant normalized measure du(U) =du(VU) = du(UV')

e Suppose we take A uniformly distributed on O, (for the Haar
measure), and likewise B on Og, and independent of A, can one
determine the PDF (probability distribution function) of ~v 7

e Compute this PDF for the coadjoint orbits of various Lie alge-
bras, see below.

e What about orbits of self-adjoint matrices?
Compare real symmetric, complex Hermitian and quaternionic
self-dual matrices.

A general result by Fulton: Horn's inequalities on the ~'s are
the same for these three cases. Hence the ~’'s lie in the same
polytope (for given n and «, ).

What about their distribution 7



More specific questions

e Suppose we take A uniformly distributed on O, (for the Haar measure),
and likewise B on Og, and independent of A, can one determine the PDF
(probability distribution function) of ~ 7

e Compute this PDF for the coadjoint orbits of various Lie algebras.

e \What about orbits of self-adjoint matrices?
Compare real symmetric, complex Hermitian and quaternionic self-dual ma-
trices.

A general result by Fulton: Horn’s inequalities on the ~'s are the same. Hence
the ~'s lie in the same polytope (for given «,f3).

What about their distribution ?

Make a (numerical) experiment | Take n=3, aa=p8=(1,0,-1),
generate big samples of C =diag (a)+V -diag(8)-V -1, diagonalize
them and plot (v1,72). Recall by convention vyq > vo > v3 = —v1—-72.



n=3 a=8=(1,0,-1). Plot of (y1,72)

Y1 =72

action of SO(3)

of USp(3)

Observe

Same polygon of support (as expected)
Distribution more condensed for USp(3)
Lines of enhancement in the SO(3) case 77



action of SO(3)

Plot and histogram of (v1,v2)

of USp(3)



Another example: a=(7,3,0), 3=(6,5,0)

.
T
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|94
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Question:

Can one compute the PDF for the three cases and understand
the origin, location and nature of the singularities in the orthog-
onal case ?



The locus of singularities

Compare the three “self-adjoint cases’” , of real symmetric, complex Hermitian
or quaternionic self-dual, n xn (traceless) matrices.

For given n and «, 3, not only the support of the ~'s is the same ([Fulton])
but also the locus of non-differentiability (although of quite different nature)

Proposition 1 [C-MS-Z]The PDF is a piecewise real analytic function of ~.
Non analyticities occur only when ~ lies on hyperplanes of the form

2. k=2 0t ), B

ke K 1€l jedJ
with I,J,K c {1, n}, |I|=|J]=|K

, independently on the pair (G, M,)

Hint of proof: look at points where the differential of the map ® : GxG - M9,
(91,92) » C=A+B=g1-a+gx- B is not surjective.

Remarks:
— includes boundaries of Horn's domain other than the hyperplanes ~; = v;.
— a nhecessary, not a sufficient condition ! Which singularities do occur 7



Computing the PDF

A central role is played by the orbital integral (aka generalized or
multivariate Bessel function)

%Q(A,X):/C;Qexp(tr(VAV‘lX))dV

where 6 = %7 17 2 (ha|f Dyson index) and normalized Haar measure

A X Gy
Real Symmetric SO(n)
Complex Hermitian SU(n)
Quaternionic Self-Dual | USp(n)

NI =NH D

Likewise for coadjoint orbits Hy(A, X) = [~exp(gAgt, X)dg.

Note

e H(A,i X) = Fourier transform of the orbital measure.

e 7(A, X) only function of e-values a and x of A and X. Denote
it also H(a,x).



Proposition 2 . fFor self-adjoint matrices A and B, indepen-
dently and uniformly distributed on their Gg-orbits O, and (’)5,
PDF of ~ is

p(vler B) = const(0,m) [AMP? [ d"w| A @) Hyla i) Hy(B, 1) Hy(v,12)".

where A(x) = [1;<;(x; — ;) is the Vandermonde determinant. For
coadjoint orbits, similar formula with = et and |A(z)|?? changed
to Ag(aj) = [Tas0{0r, )2 (t a Cartan subalgebra, o the +ve roots).

Elementary proof: H(A,iX) is the characteristic function of the random variable A € O,.
Characteristic function of C = A+ B is the product H(A,i X)H(B,iX). The PDF of C then
obtained by inverse Fourier transform. The A's come from Jacobians. O.

See also [Dooley—Repka—Wildberger 1993; Frumkin& Goldberger 2006; Suzuki 2013; Kuijlaars

& Roman 2016]



T he orbital integrals, self-adjoint and coadjoint cases
In the unitary (6 =1) case, explicit formula known for long

[Harish-Chandra 1957, Itzykson—Z 1980] (for A and X *“regular”, i.e., o; #+ o;j and z; # ),

(det elx Oé]) 1<1 ]<’I’L
Aliz)A(a)

HQ(O(,iZU) _ Su(n) ItI’(XVAV*) dV = H p
p=

i.e., semi-classical approximation is exact ! [Duistermaat-Heckman 1982].

Generalizes to other coadjoint orbits. [Harish-Chandral

In the symplectic (# =2) case,
[Brézin—Hikami 2002]

| Z] T;op;

Ha(a,ixz) = const.
Pgn A3(Z$)A3(O‘P)

fr @ polynomial in the variables 7, ; := (z;—-x;)(api—ap;), deg(f2) =1, deg(f3) = 3, etc. (Recursive

fn(z,ap),

formula for higher f,...)

In the orthogonal (0 =3) case, 777



Explicit computation of the PDF p(vy) in the SU(n) case.
Make use of HCIZ integral

A(y) d™x

det e'¥% det e' P det ¢ #7;

p(vle, ) = const.

-1

~ T pl A(v) :
- 1n! 5(;(%—%—&))A(Q)A(B)jn(a’ﬁﬁ)

\ “volume function”

A priori, J,(v) is a distribution (generalized function), in fact

— a piece-wise polynomial of degree (n-1)(n-2)/2

(also a general result in symplectic geometry, [Heckman],[Duistermaat—Heckman],...)
and

— a function of differentiability class C"3, for n>?2
(a consequence of Riemann—Lebesgue theorem; also [Guillemin—Lerman—Sternberg])

Group theoretic and geometric interpretations of 7, ...yet to come



Example: n=3, a=5=(1,0,-1).

0.0006
0.0004
0.0002
0.0000

left: distribution of 10,000 eigenvalues in the ~1,7v> plane; middle: histogram

of 5 x 10 eigenvalues; right: plot of the PDF as computed above



Another example: a=(7,3,0), 8=(6,5,0)

V2

(=

y V1




3. Extensions and generalizations

* USp(n) orbits of quaternionic self-dual matrices: generalized H-C formula
for n=2,3,4 [Brézin-Hikami]. PDF of differentiability class C2(n-2). v

0.0010
0.0005

0.0000

n=3, a=p5={1,0,-1}



3. Extensions and generalizations

* USp(n) orbits of quaternionic self-dual matrices: generalized H-C formula for n = 2,3,4
[Brézin-Hikami]. PDF of differentiability class C2(n-2), v

» O(n) or SO(n) orbits of real symmetric matrices 77 (No Harish-Chandra
formula for n>2 1),



3. Extensions and generalizations

* USp(n) orbits of quaternionic self-dual matrices: generalized H-C formula for n = 2,3,4
[Brézin-Hikami]. PDF of differentiability class C2(»-2), v

» O(n) or SO(n) orbits of real symmetric matrices 77 (No Harish-Chandra
formula for n>2 1),

Plot and Singularities of p(v1,72) for n=3, a=£8={1,0,-1} [Coquereaux-Z]




4. Connection with representation theory

G a simple simply-connected compact Lie group, V, its irreducible represen-
tations (irreps) labelled by a highest weight (h.w.) « (a vector in the r-dim space
t*, r the rank).

Decompose the tensor product into irreps
Va®Vg=,C),V, (1)

with “Littlewood—Richardson multiplicities” Cgﬁ (aka “Clebsch—Gordan de-
composition™).

Q: Which ~ in ()? How to compute the C7 ;7

Using orthonormal characters x,(g), one may write

Cop= fG dg xa(9)x5(9)x5(9) -

Littlewood—Richardson algorithm (for SU(n)): Young diagrams. ..
Also Kostant—Steinberg formulae, Brauer, Racah—Speiser, Klimyk rules. . .
Also various combinatorial models (“pictographs”) that count the CZB:

Berenstein—Zelevinsky triangles, Knutson—Tao honeycombs/hives, Ocneanu blades, etc



An example in su(4): a=(21,13,5), 5=(7,10,12), v=(20,11,9), 035:367

63
63 34
68 35

43 17

71 37

BZ triangle and hive

20 11 9
Ocneanu blade and its metric dual

12

14



In fact, LR problem s closely connected to Horn’s problem!
Horn’'s problem = semi-classical approximation of L—R problem
or conversely

L—-R problem = “quantum’ Horn's problem [Knutson—Tao]
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or conversely

L—R problem = “quantum” Horn’'s problem [knutson—Tao]

— Semi-classical version of multiplicity problems [Heckman 1982]
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Horn's problem = semi-classical approximation of L—R problem

or conversely
L—R problem = “quantum” Horn’'s problem [knutson—Tao]

— Semi-classical version of multiplicity problems [Heckman 1982]

— It was noticed that (in SU(n)) the ~ that appear in a® satisfy
Horn's inequalities !



In fact, LR problem s closely connected to Horn’s problem!
Horn's problem = semi-classical approximation of L—R problem

or conversely
L—R problem = “quantum’” Horn’'s problem [knutson-Tao]

— Semi-classical version of multiplicity problems [Heckman 19382]
— It was noticed that (in SU(n)), the v that appear in a®f satisfy
Horn's inequalities |

* Similarity between CZB:degXa(g)Xﬁ(g)Xé(g) and
expression of J(a, B;7) o< [idx|Ag(z)]? H(ay,iz)H(B,iz)H(y,iz)*

t =Cartan subalgebra. Recall Agy(x) :=[laso{a, ), a the roots of g.



In fact, LR problem s closely connected to Horn’s problem!
Horn's problem = semi-classical approximation of L—R problem

or conversely
L—R problem = "“quantum’” Horn's problem [Knutson—Tao]

— Semi-classical version of multiplicity problems [Heckman 1982]

— It was noticed that (in SU(n)), the ~ that appear in a® 8 satisfy Horn's
inequalities !

* Similarity between CgB:degxa(g)xﬁ(g)x§(g) and

expression of J(a, B;7) o< [idx|Ag(z)|? H(a,ix)H(B,iz)H(y,ix)*

t =Cartan subalgebra. Recall Ay(z) = [Igs0{@, ), a the roots of g.

x Kirillov orbit theory: orbit < irrep.

/on(eix) _ Ag(iz)

dimv. —Ag(eix)H(owrp,lx) x €t

Wey!| character

where p = %Zmoa and Ag(e'?) = TTas0 (e'§<a>f”’> - e"§<a>"’>) is “Weyl
denominator’ .



In fact, LR problemis closely connected to Horn’s prob-
lem!

Horn's problem = a semi-classical approximation of L—R problem

— Semi-classical version of multiplicity problems [Heckman 1982], [Guillemin—Lerman—Sternberg]
— It was noticed that (in SU(n)), the v that appear in a® 8 satisfy Horn's inequalities !

» Similarity between C;B = Jadgxa(9)xs(9)x3(g) and

expression of J(a, ;) o< [ dx|Ag(z)|? H(c,iz)H(B,iz)H(v,ix)* t=Cartan subalgebra

x Kirillov orbit theory: orbit « irrep.

iz A (i
Weyl character — i;?::vj = A;((GZ))H(Q +p,ix) ret

where p=1Y, 0a and Ay(e*) = [To0 (eiﬂa@ —e‘i5<°‘79”>) is “Weyl denominator”.
= In fact, if Cgﬂ + 0 [Coquereaux—McSwiggen—Z]

J(a+p,B+p,v+p)= Z 'I“HCZBCTV,1

keK,T

K a finite, G-dependent but «, 8-independent, set of weights, r, > 0.
[Coquereaux—Z, Etingof—Rains]

For example in g=s5u(3), K={0}; J(a+p,B+p,v+p)= Cgﬁ.

» Can one invert and express the LR coefficients in terms of the volumes J7
(“Box spline deconvolution”) [McSwiggen|



In fact, LR problemis closely connected to Horn’s problem!
Horn's problem = semi-classical approximation of L—R problem

or conversely

L—R problem = “quantum” Horn's problem [Knutson—Tao]

— Semi-classical version of multiplicity problems [Heckman 1982]

— It was noticed that (in SU(n)), the v that appear in a® 8 satisfy Horn’s inequalities !
* Similarity between C’gﬁ = [adgxa(9)xs(9)x3(g) and
expression of J oc [ da|Ay(x)]? H(e, iz)H(B,ix)H(v,iz)* t=Cartan subalgebra

= Kirillov orbit theory: orbit « irrep.

Xa(€®) _ Agy(ix)
dimV, A,(e)

H(a+p,ix) xet

where p=1%, ca and Ay(el*):= Ha>0( 'ia"”—e‘ii(a’x)) is “Weyl denominator” .

x Combinatorial viewpoint: C’gﬁ —nhumber of integer points in a
certain polytope of volume o« J [Berenstein—Zelevinsky '90s, Knutson—Tao '99]
hence expect for “large weights”, Volume = J(a, B;~) ~ #points = Cg[),

rescaling by seN ol _P”Y (3) = 52T (ar, B; ) + -

sSQx'S

Pgﬂ(s): Ehrhart (quasi-)polynomial d<(n-1)(n-2)/2 for su(n)



The BZ polytope for su(4), and a=(21,13,5), 8=(7,10,12), v=(20,11,9). It has Cgﬂ =367

integer points and a volume J(«,8;7v) =742/3



Summary and open issues

PDF in SU(n) cases and other coadjoint orbits v
USp(n) orbits of Quaternionic Self-Dual matrices v

In the SO(3) case, general formula for PDF p(v1,72)
— which reproduces (in the special case a=5=(1,0,-1)) the numerical simulations,
— and enables one to determine the nature of these divergences.

Extend the discussion to similar cases: Schur/Kostka, minor/branching ...[C—Z, 7],
“quantum marginals” [Collins—McS, McS—Matsumoto]

What is missing

*» a better, more systematic approach to p, its singularities, etc.

» what happens in SO(n) for n>37 Singularities, but of which type ?

» geometric interpretation of singularities? coordinate singularity [C—McS-Z]. . .
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Combinatorial /probabilistic issues. . .
«+« Crossover between finite n and n — oo limit (free probability) [Biane]



Summary and open issues

PDF in SU(n) cases and other coadjoint orbits
USp(n) orbits of Quaternionic Self-Dual matrices v

In the SO(3) case, general formula for PDF p(p,q) or p(v1,72)
— which reproduces (in the special case a=3=(1,0,-1)) the numerical simulations,
— and enables one to determine the nature of these divergences.

Extend the discussion to similar cases:. Schur/Kostka, minor/branching ...[C—Z, 7],
“quantum marginals” [Collins—McS, McS—Matsumoto]

What is missing

x» a better, more systematic approach to p, its singularities, etc.

» what happens in SO(n) for n>37 Singularities, but of which type ?

» geometric interpretation of singularities? coordinate singularity [C—McS-Z]. . .

Combinatorial /probabilistic issues. . .

«+~ Crossover between finite n and n - o« limit (free probability) [Biane]
[Narayanan—Sheffield—Tao]

Another challenging question (for the physicist):
*x* are the enhancements of certain eigenvalues observable in some physical
process 7



T hank you !



Appendices

A little calculation. . . Notation o/ = a +p etc. St = 2o i)
Assume a+ 3 -v¢Q (otherwise Ogﬂ =0)

T(, 814 - dimVadimV/gdimVWf: x| Ay () PH( i) H(B ) (H(y 1))
- [lagen)? (<.>) o (€ ) (e%) (3 (€))°
Vv o (6 (:EHS)) i (z+ i (x+ i(x+ *
Meypy - [ ar gg(i(w 577 Xa(e O xa(e! ) 0 (1))

_ o) Dg(e' ) iz i iy *
: TdT&;e o el 5))2%(6 () (6 ()

/dT > rexw(T) Xa(€®)x(e®) (x4 ()"

rkeK

- Z Ir“CT,B Z AN a/Bﬁ

keK,T reK

with a finite set of weights K independent of «,3,~, r. >0, Y, r.dimV,=1.

" 1
n=-00 y+(2mw)n = 2sin(u/2)

Generalization of }.7°



From Knutson—Tao’s honeycombs to Horn’s inequalities. Example n =3

3

-1 —7Y2 —3

max(aq —v1 + 72,73 — 3,2, -B2+ Y2, 1 + a3+ f1 - Y1,a1 + a2+ B2 — Y1)
<E<min(ag, -3 +y2, a1 +ax+ 1 —71)

< Horn's inequalities (for n =3)



