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The discrete symmetries of conformal theories are related to the various twisted boundary conditions that may be imposed 
in a toroidal geometry. The corresponding partition functions are only invariant under a specific subgroup of the modular 
group. This is illustrated on the Ising, Potts and RSOS models. Conversely, some of the discrete symmetries should be 
recovered from the various submodular invariants that may be constructed as bilinears in the Virasoro characters. 

Identification of each conformal invariant 2D 
theory [1] with some underlying critical statistical 
model has so far been mainly empirical, and relies 
on the coincidence of critical exponents. Clearly 
some information about the possible symmetries 
would be very helpful in this identification. It has 
been recently shown [2,3] that the constraint of 
modular invariance of the partition function of a 
conformal unitary [4] theory constructed on a 
torus restricts the operator content of the theory a 
great deal and may lead to a classification of the 
consistent conformal theories. In this note, I want 
to show that similar considerations also tell us 
something about symmetries. It is known [4] that 
unitary c < 1 conformal theories cannot admit any 
continuous symmetry, as testified by the absence 
Of h = 1 (corresponding to a conserved current) in 
the table of conformal weights. Hence, we look for 
discrete symmetries. These symmetries must mani- 
fest themselves by the various twisted boundary 
conditions (or frustration lines) that may be im- 
posed on the system: this was recently exemplified 
on the case of the three-state Potts model [5]. 

Consider a statistical model on a finite M × N 
rectangular lattice of hamiltonian 

M N 

Z E h(o,.,o,+,,,) 
i l j l 

The spin-spin interaction h is invariant under 
a discrete symmetry group G: H(~o, ~ o ' ) =  
h(o, o'). Under these circumstances, any twisted 

boundary condition in G may be imposed: 

O M + l , j = g l O 1 , j  • O/.N+I =g2Oi , l ,  g l ,  g2 E G ,  

(1) 

and is consistent with the translation symmetry of 
the torus: the lines along which the identification 
(1) are performed may be shifted on the torus, 
using the G-invariance of .~.  

Let us assume that in the continuous critical 
theory, the conformal fields q~ may be assigned 
similar twisted boundary conditions. Restricting 
ourselves for simplicity to the case of G = Z  x 
cyclic group: 

qv(z + na¢01 + v/2~2) 

= e x p [ ( Z i ~ r / N ) ( n l p  , + n 2 p z ) ] ~ ( z ) ,  (2) 

where w 1 and ~2 are two (complex) periods of the 
torus and Pl,  P2 are mod N integers. By the 
mapping w = exp(2~riz/wl) translations along ~l 
are mapped on the 2~r rotations of the plane_, 
under which the field ¢p of conformal weights h, h 
behaves as 

cp(z + n,w,) = exp[2i~'(h - h)nl]  q~(z) 

= e x p ( Z i ~ r p ~ / n ) e p ( z ) .  

In the unitary model of central charge % = 1 - 

6 / m ( r n +  1), h - h  is rational, of denominator 
4 m ( m  + 1). Taking Pl and N coprimes, we con- 
clude that N must  divide 4 m ( m  + 1). This is a first 
necessary condition on the possible values of N to 
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have a Z,~ symmetry in the model of  central 
charge c,,,. 

The partition function Zp,.p,(r) in the presence 
of the boundary  conditions (2) is not invariant 
under  the full modular  group F [2,3] but only 
under  the subgroup that leaves (2) invariant (see 
ref. [6] for similar ideas in the context of strings). 
In particular the parti t ion function Zp,.0 must be 
invariant under the subgroup I ' ° ( N )  of unimodu-  
lar t ransformations r ~ (a t  + b) / (cr  + d) such 
that a = d = _ + l  mod N, b = 0 m o d  N. (Here 1 
assume that Zp,.o is real: Zp,.o = Z p,.0, and Pl, 
N coprimes) Ze~.0 can also be expanded on char- 
acters of the Virasoro algebra as 

Zp,,o = (qFq) ,./24 ~_, Nhs, xh(q)xT,(Fq) ' (3) 

where the coefficients Nh.~, are non-negative in- 
tegers because Zp.,0 may be regarded as the criti- 
cal limit of  the trace of  the transfer matrix of a 
frustrated system, to which the usual arguments 
[2,3] apply. Therefore, the existence of positive 
bilinear combinat ions (3) invariant under F ° ( N )  
is a second necessary condition for a Z u symme- 
try. 

Conversely, if Z ( r )  is invariant under F ° ( N ) ,  
the action of the full group F on Z defines new 
functions [ '~Iz(r) =- Z('%), invariant under the 
conjugate group g - l~ 0g ;  there are as many such 
functions as there are equivalence classes [g] in 
the coset F / F ° ( N ) ,  i.e. their number  is the index 
of ~,o in F [7] 

N 2 
I N = ~ -  l - [ ( 1 - 1 / p  2) i f N > ~ 3 ,  

p / N  

p prime divisors of N, (4) 

12 = 3. 

All these functions are invariant under F ( N ) ,  the 
largest subgroup common  to all the conjugate 
groups g - ~ 0 g :  F(N)  is the principal congruence 
subgroup of  level N: a = d =  + 1 rood N, b = c = 
0 mod N, and it is normal in F [7]. Therefore 
F l Y ( N ) =  PSL(2, ZN) is a finite group, which 
permutes the various types of boundary  condi- 
tions and the functions lxlZ. The I N functions [,~]Z 
represent the I N real partit ion functions Zp~,p, = 

Z z,,. p. with a non-trivial twist (p l  or P2 =~ 0). 
Each individual function Exlz = Zv,.r ~ is actually 
left invariant by a group G-1F°g /F(N) i somor-  
phic to Z.,,.: in each sector, the Z x symmetry is 
still present. The functions Zr,,.z,, all have the 
general form (qq)-'/24£N,~.~xh(q)xT,(q), with 
coefficients which are not necessarily positive in- 
tegers if p,  4= 0. 

This general discussion will be illustrated on 
the case of the rn = 3 (Ising), m = 5 or 6 (Ports) 
and generic m (RSOS model [8]), with N = 2, 3, 2 
respectively. For  N ~< 4, the group ~0(N ) is gener- 
ated by the two transformations r - ~  r + N and 
r ~ r / ( r +  1). For the Ising model (m = 3), the 
most general invariant under [ '°(2) reads 

Z1,0 = ( q c l )  - 1 / 4 s  

×[(N,- U2)( IXol 2 + IX~/212 + Ix , /~ l  2 ) 

+ N2( ]Xo + X1/212 + 21X,/1612)], (5) 

where the first term is the Zoo function and the 
second one contains the spin ½ contribution of the 
Ising fermion. By the action, of r---, - l / r ,  this 
gives 

Z o ,  1 = (qq) 1/48[(N 1 +N2) ( ]Xo[ 2+ IX1/2[ 2) 

+(N1 - N2)]X1/16 12] . (6) 

The latter is the critical limit of t r ( ~ [ ~ - )  with 
the transfer matrix of the Ising model, and o~ the 
operator  that reverses spins. In the large imagin- 
ary r = iT limit, the effect of ~ is negligible, and 
we expect Zol --* Zoo. This fixes N 1 + N 2 = 1 with 
N 24:0 ,  hence N ~ = 0 ,  N 2 = 1 .  Consider the ratio 
Zlo/Zoo = e x p ( -  Tf), with f the interface self-en- 
ergy in a finite geometry. In a selfdual theory 
where duality exchanges the spin-spin  correlation 
function with the interface energy f ,  one expects 
f - r r ~ / L  for a system of finite width L = I~0,1 

I [9]. In the present case, this gives rj = 4. 
A similar procedure is applied to the three-state 

critical and tricritical Potts model, m = 5 (respec- 
tively m = 6). Modular  invariants are constructed 
in terms of characters Xr, of odd s (respectively 
odd r)  only [2,3]. 
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F o r  m = 5 : 

Zl,o = Z2.o = (qq) , '/24 

2 

× E [(x,, IXr, r 2] 
r= l  

= - , / , O [ ( x o  + 

+ (X2/5 + XT/5)X~/]5 + c.c. 

+ [X2/3 ] 2 + [X1/,5 12], (7) 

and  for m = 6 :  

Z~o = (qq) - ' / 2S[ (Xo  + Xs )X]/3 

+ (xt/  + + (x F + 

+ c . c . +  1X4/312+ [X]o/2t :+ IX1/zt[2]. 
(8) 

Both are invar iant  under  / '0(3), m agreement  with 
the Z 3 symmet ry  and exhibit  the spin ½ cont r ibu-  
t ion of the Pot ts  pseudofermion.  The ope ra to r  
conten t  of Zl0 (m = 5) agrees with the results of 

4 ref. [5]. Divid ing  Zlo by  Zoo, one extracts  ~ -  ts 
for m = 5 and T/= ~ for m = 6. 

F ina l ly  for the generic model  of the main  se- 
quence [3], in te rpre ted  as a mult icr i t ical  model  [8]: 

rn--I m 
Zl.O = ½(q~)-c/24 E E Xr~'X*rm+l-,, (9) 

r= l  s~ l  

is invar iant  under  the group F°(2) ,  in agreement  
with the 7 2 symmet ry  of  the RSOS model  [8]. 
This  case encompasses  the cri t ical  and  tricri t ical  
Is ing models  (m = 3 and 4). The lowest d imens ion  
ope ra to r  in (9) gives the behavior  of  the interface 
energy:  

f =  2~" min (h r ,  + hr,.~ ) 

2w (m - 1 ) (m  + 3) = m odd ,  
8m(rn + 1) 

2v ( r n -  2 ) ( m  + 2) 
= m even. (10) 

8m(m + 1) 

This is consis tent  with 71 = ~ for the tr icri t ical  
Is ing model.  

This p rocedure  poss ib ly  ex tended  to a rb i t ra ry  
subgroups  of  the modu la r  group should now be 
app l ied  to o ther  models :  those of  the "comple -  
men ta ry  sequence"  [3] that  general ize the Potts  

model ,  or others  newly discovered [10]. The generic 
model  of the complemen ta ry  series for example  
admi t  [ N / 2 ]  invar iants  under  r - - ,  r / ( 1  + r )  and 
r --* r + N where N = [ l ( m  + 1)]: their impl ica t ion  

on symmetr ies  will be discussed elsewhere. 

Note added. As this let ter  was being comple ted ,  
I received a paper  by Cardy  [11] which over laps  
s t rongly with the present  work. Cardy ' s  work is 
more  systematic  in his s tudy of the various kinds 
of b o u n d a r y  condi t ions  for the Ising and Potts  
models,  and of  their  impl ica t ions  on the opera to r  
content .  My approach ,  which emphasizes  the role 
of  the invariance under  subgroups  of the modu la r  
group,  seems more  general  in view of the discus- 
sion of  o ther  cases. 
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thank par t icu lar ly  Claude  I tzykson,  for several 
i l luminat ing  and crucial  suggestions. Final ly ,  I 
thank  G. yon Gehlen  and V. Ri t tenberg  for send- 
ing me before  publ ica t ion  their  paper ,  which 
p layed  a seminal  role in this work. 
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