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Abstract

We define generalised chiral vertex operators covariant under the Ocneanu “double triangle
algebra”A, a novel quantum symmetry intrinsic to a given rational 2d conformal field theory. This
provides a chiral approach, which, unlike the conventional one, makes explicit various algebraic
structures encountered previously in the study of these theories and of the associated critical lattice
models, and thus allows their unified treatment. The triangular Ocneanu cells, the 3j -symbols of the
weak Hopf algebraA, reappear in several guises. WithA and its dual algebrâA one associates a pair
of graphs,G andG̃. While G are known to encode complete sets of conformal boundary states, the
Ocneanu graphs̃G classify twisted torus partition functions. The fusion algebra of the twist operators
provides the data determininĝA. The study of bulk field correlators in the presence of twists reveals
that the Ocneanu graph quantum symmetry gives also an information on the field operator algebra.
 2001 Elsevier Science B.V. All rights reserved.

PACS: 11.25.Hf

1. Introduction

This paper stems from the desire to understand Ocneanu recent work on “quantum
groupoids” [1,2], also called, in a loose sense, “finite subgroups of the quantum groups”,
and to reformulate and to exploit it in the context of 2d rational conformal field theories
(RCFT). Our approach is inspired by the study of boundary conditions in CFT, either on
manifolds with boundaries, or on closed manifolds (e.g., a torus) where the introduction of
defect lines (or twists) is possible.

In Boundary CFT (BCFT), the type of boundary states and the corresponding character
multiplicities in cylinder partition functions are conveniently encoded in a graph (or a set
of graphs)G [3], with vertices denoted bya, b. More precisely the adjacency matrices of
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the graphs are given by a set of (nonnegative integer valued) matricesni = {nia
b} forming

a representation of the Verlinde fusion algebra

(1.1)ninj =
∑
k

Nij
knk,

and it is usually sufficient to specify only a “fundamental” subset of them, which generates
the other through fusion.

In accordance with these data we define generalised chiral vertex operators (GCVO),
covariant under Ocneanu “double triangle algebra” (DTA)A, a finite-dimensional “C∗
weak Hopf algebra” (WHA) in the axiomatic setting of [4]. They can be looked at as
extensions to the complex plane of the boundary fields and at the same time they yield
a precise operator meaning to these fields. The fact that the GCVO have nontrivial braiding
allows to give a global operator definition of the half-plane bulk fields, described in the
traditional approach only through their small distance (vanishing imaginary coordinate)
expansion. The bulk fields are defined as compositions of two generalised or conventional
CVO, which makes the construction of their correlators and the derivation of the equations
they satisfy straightforward.

The 3j -symbols(1)F of the Ocneanu quantum symmetry, also called “cells”, reproduce
the boundary field operator product expansion (OPE) coefficients, while the 6j -symbolsF
coincide with the fusing matrices, i.e., the OPE coefficients of the conventional CVO. In
the “diagonal theories”, in which each local field is left-right symmetric, there is a one to
one correspondence between the setI and the spectrum of orthonormal boundary states;
then (1.1) is realised by the Verlinde matrices themselves and the two symbolsF and(1)F

coincide. The 3j -symbols diagonalise the braiding matrices of the generalised CVO (the
R matrix of the quantum symmetry). These new braiding matrices are identified with the
Boltzmann weights (in the limitu→±i∞ of their spectral parameter) of the criticalsl(n)

lattice models which generalise the PasquierADE lattice models and their fused versions.
Once again the 3j -symbols provide the basic ingredients of these models. In particular
their identification with the Ocneanu intertwining cells gives some new solutions for the
boundary field OPE coefficients in the exceptionalEr cases of̂sl(2) theories; for theA
andD-series these constants were computed in [5,6].

Through a discussion parallel to that of boundary states, one may also study the allowed
twists (or defect lines) on a torus. The compatibility with conformal invariance and
a duality argument similar to Cardy’s consistency condition [7] restrict the multiplicities
Ṽii′ = {Ṽii′;xy} of occurrence of representations(i, i ′) in the presence of twistsx, y, to
be now nonnegative integer valued matrix representations of thesquared Verlinde fusion
algebra [8]:

(1.2)Ṽii′ Ṽjj ′ =
∑
k,k′

Nij
kNi′j ′

k′ Ṽkk′, Ṽ 1
ij∗;1=Zij ,

whereZij is the modular invariant matrix. Pairs̃Vi1, Ṽ1i′ of these matrices give rise
to another graph̃G with verticesx, y [1,2]. Combining the concepts of twists and of
boundaries, i.e., inserting twists in the presence of boundaries, leads to yet another set
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of multiplicities, ñx = {ñax
b}, which form a matrix realisation of a new, in general non-

commutative, fusion algebra:

(1.3)ñx ñy =
∑
z

Ñxy
zñz,

(1.4)ÑxÑy =
∑
z

Ñxy
zÑz.

This algebra admits an interpretation as the algebra of the twist operators used in the
construction of the partition functions in [8]. It is associated with the Ocneanu graphG̃

in the sense of the relation

(1.5)Ṽij Ñx =
∑
z

Ṽij ;xzÑz,

and we shall also refer to it as thẽG graph algebra. In the cases described by
a block-diagonal modular invariant (a diagonal invariant of an extended theory) it
possesses subalgebras interpreted as graph algebras of the chiral graphG, and furthermore
a subalgebra identified with the extended fusion algebra. We find, extending the analysis
in [8] to correlators in the presence of twists, that the representations of (1.4) are closely
related to the operator product algebra of the physical local fields of arbitrary spin.

In this approach, we see repeated manifestations of the quantum algebraA and of
its dual algebraÂ, both satisfying the axioms of the WHA of [4]. The structure as
a whole is maybe most easily described in the combinatorial terms of Ocneanu quantum
(co)homology [4] (see also the related notion of “2-category” in [9]2). The latter considers
simplicial 3-complexes built out of the elements depicted on Fig. 1. There are three types

Fig. 1. The simplices.

2 We thank A. Wassermann for pointing this out to us.
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Fig. 2. The double triangles.

of oriented 1-simplices and the triangular 2-simplices come with multiplicities. Each
tetrahedral 3-simplex (arrows omitted in Fig. 1) is assigned aC-valued 3-chain, subject
to a set of pentagon relations (the “Big Pentagon” of [4]); the middle tetrahedron(2)F

appears with its inverse,(2)F̃ , while F , (1)F , (1)F̃ , F̃ can be chosen unitary. These data
enable one to construct on an abstract levelA and its dualÂ, which are matrix algebras
with basis elements represented by two sets of “double triangles”, see Fig. 2, related, up to
a constant, by(2)F .

In the present context, the 1-simplices are labelled by the finite setI of representations
of the Verlinde fusion algebra and by the setsV and Ṽ of vertices of graphsG and
G̃ of cardinality |V| = tr(Z) and |Ṽ| = tr(Z tZ), respectively, whereZ is the modular
invariant matrix. Each triangular 2-simplex comes with a multiplicity labelt = 1, . . . ,Nij

k ,
α = 1, . . . , nia

c, η = 1, . . . , ñax
c, τ = 1, . . . , Ñxy

z, and these multiplicities are subject
to the relations (1.1)–(1.5). The first two tetrahedra on Fig. 1 represent the 6j - and the
3j -symbolsF , (1)F discussed above.

Thus Ocneanu’s double triangle algebra, which is attached specifically to each 2d CFT
and governs many of its aspects — spectrum multiplicities, structure constants, lattice
realisations — appears as its natural quantum symmetry. The problem of identifying the
underlying quantum symmetry of a given CFT is by no means new. Several attempts and
partial answers were achieved at the end of the 80s and beginning of the 90s, see the
discussion below in Sections 4 and 5. The previous approaches dealt with the chiral CFT, or
equivalently, with the diagonal theories. These are also the only examples of CFT discussed
in [4], where the relevance of the WHA as a quantum symmetry was first proposed in the
framework of algebraic QFT; in these diagonal cases the four triangle multiplicities above
coincide with the Verlinde fusion multiplicitiesNij

k and accordingly all the tetrahedra on
Fig. 1 reduce to the RCFT fusing matrixF . The development of BCFT on one hand side
and the work of Ocneanu on the other made available new tools and new ideas; our present
considerations yield in particular explicit and nontrivial examples of the structure of WHA.
The main novelty of the WHA approach is that it has a coassociative coproduct consistent
with the CFT fusion rules (the Ocneanu “horizontal” product). The presence of boundaries
provides an extension of the Hilbert space of the theory consistent with the fusion rules
and basic axioms of the RCFT. At the same time it should be stressed that the parallel
with the previous discussions on the “hidden” quantum group symmetry is to some extent
superficial, or deceptive, since this is only one of the facets of the Ocneanu symmetry; in
contrast to the former the new approach encompasses the full structure of the 2d CFT, so
is much richer in content and applications.

We should not conceal, however, that our understanding is still fragmentary. The
determination of the cells and of the remaining tetrahedra of Fig. 1 from the complicated
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set of equations they satisfy poses a difficult technical problem and only partial results in
the ŝl(2) related models are known. Some of the previous quantities, related in particular
to the dual structure of the DTA, are still awaiting a better field theoretic interpretation.
Moreover, several of our results are conjectures, tested mainly on the case ofŝl(2), but lack
a general proof. On several of these points, it seems that the approach based on the theory of
subfactors [1,10,11] is more systematic. Still, our field theoretic approach provides explicit
realisations and exposes some new facts which show the consistency of the whole picture.

This paper is organised as follows: after a brief summary of notations (Section 2) we
introduce the double triangle algebra (Section 3), then define the GCVO and discuss their
fusing and braiding properties (Section 4). In Section 5 we show how the bulk fields may
be expressed in terms of GCVO and how the equations they satisfy and the various OPE
coefficients may be rederived in a more systematic way. Section 6 discusses briefly the
relation to the lattice models and the determination of their Boltzmann weights in terms
of the cells. Finally, Section 7 deals with the construction of solutions of (1.2)–(1.5) and
of the resulting Ocneanu graphs̃G and contains a derivation of a formula relating the
OPE coefficients of arbitrary spin fields to data of the graph. Details are relegated to two
appendices. Sections 5, 6 and 7 may be read independently of one another.

Preliminary accounts of this work have been reported at several conferences (ICMP,
London, July 2000; 24th Johns Hopkins Workshop, Budapest, August 2000; TMR Network
Conference, Paris, September 2000 [12]; Kyoto Workshop on Modular Invariance, ADE,
Subfactors and Geometry of Moduli Spaces, November, 2000) or have been published
separately [8]. It should be stressed that this work was strongly influenced by Ocneanu’s
(unfortunately unpublished) work and that many of the concepts and results presented here
originate in his work.

2. Notations

A rational conformal field theory is conventionally described by data of different nature:
• Chiral data specify the chiral algebraA and its finite setI of irreducible representa-

tionsVi , i ∈ I, the charactersχi(q)= trVi
qL0−c/24, the unitary and symmetric ma-

trix Sij of modular transformations of theχ , the fusion coefficientsNij
k, i, j, k ∈ I,

assumed to be given by Verlinde formula

(2.1)Nij
k =

∑
&∈I

Si&Sj&Sk&

S1&
.

Our convention is that the labeli = 1 refers to the “vacuum representation”, andVi∗
denotes the representation conjugate toVi . Chiral vertex operatorsφt

ij (z) and their

fusion and braiding matricesFpt [ i jk l
] andBpt [ i lk j

] are also part of the set of chiral
data.

• Spectral data specify which representations ofA⊗ A appear in the bulk: these data
are usually conveniently encoded in the partition function on a torus, with the property
of modular invariance
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(2.2)Z =
∑
i,j∈I

Zijχi(q)
(
χj (q)

)∗;
here, the integerZij specifies the multiplicity of occurrence ofVi ⊗�Vj in the Hilbert
space of the theory; unicity of the vacuum is expressed byZ11= 1.

• Finally these spectral data must be supplemented by data on the structure constants
of the Operator Product Algebra (OPA). This last set of data is the one which is most
difficult to determine as it results from the solution of a large system of nonlinear
equations involving the braiding matrices whose general form is in general unknown.

It has been recognized some time ago that these spectral and OPA data have to do with
graphs. The latter (ADE Dynkin diagrams and their generalizations) (i) encode in the
spectrum of their adjacency matrices the spectral data [13–15]; (ii) contain, through the
so-called Pasquier algebra, information on the OPA structure constants, see [16–18] and
below, Section 7. In fact these graphs are nothing else than the graphs of adjacency matrices
ni of (1.1). These matricesni are diagonalisable in a common orthonormal basis:

(2.3)nia
b =

∑
j∈Exp

Sij

S1j
ψ

j
a ψ

j∗
b

and obey the identities

(2.4)nia
b = ni∗a∗

b∗ = ni∗b
a.

Here and throughout this paper, we make use of the notation Exp to denote the terms
appearing in the diagonal part of the modular invariant (2.2)

(2.5)Exp= {
(j,α),α = 1, . . . ,Zjj

}
.

The two notationsψ(j,α) andψj , j ∈ Exp, will be used interchangeably. In the following,
ψ1 refers to the Perron–Frobenius eigenvector, whose components are all positive. Finally,
in (2.4), the conjugation of verticesa→ a∗ is defined throughψj

a∗ = (ψ
j
a )
∗ =ψ

j∗
a .

A particular set of matricesn is provided by the Verlinde matricesN themselves, which
form the regular representation of the fusion algebra. This is the diagonal case for which
Exp= I and the corresponding torus partition function is simply given byZij = δij .

3. Ocneanu graph quantum algebra

Given a solution of Eq. (1.1) consider an auxiliary Hilbert spaceV j ∼= C
mj with

basis states|ej,γba 〉, γ = 1,2, . . . , nja
b. It has dimensionmj =∑

a,b nja
b =∑

a,b,γ 1, in

particular dimV 1= tr(n1)= |V|. A scalar product in
⊕

j∈I V j is defined as

(3.1)
〈
e
j,γ
ba

∣∣ej ′,γ ′
b′a′

〉= δbb′δaa′δjj ′δγ ′γ

√
PaPb

dj
, dj = Sj1

S11
, Pa = ψ1

a

ψ1
1

.

We define the tensor product decomposition of states|ei,αcb 〉 ⊗ |ej,γb′a 〉 for coincidingb′ = b

according to
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(3.2)
∣∣ei,αcb

〉⊗h

∣∣ej,γba

〉=∑
k∈I

nka
c∑

β=1

Nij
k∑

t=1

(1)F bk

[
i j

c a

]β t

α γ

√
Pb

(
dk

didj

)1/4∣∣ek,βca (ij ; t)〉.
This is a “truncated” tensor product, in the sense that we restrict to a subspaceV i⊗h V

j of
V i⊗V j , (cb)⊗h (b

′a)= δbb′ (cb)⊗(b′a), with dim(V i⊗hV
j )=∑

a,c(ninj )a
c � mimj .

The multiplicity ofV k in V i ⊗h V j is identified with the Verlinde multiplicityNij
k. Then

the counting of states in both sides of (3.2) is consistent, taking into account (1.1). In (3.2)
e
k,β
ca (ij ; t) give a basis, normalised as in (3.1), for the spaceV k in

(3.3)V i ⊗h V j ∼=
⊕
k

Nij
kV k.

The (1)F ∈ C are Clebsch–Gordan coefficients (“3j -symbols”), assumed to satisfy the
conditions:

– if one of the indicesi or j is equal to 1, the tensor product must trivialise and
accordingly

(3.4)(1)Fbk

[
1 j

c a

]β t

α γ

= δkj δbcδβγ δt1δα1;

– the unitarity conditions, expressing the completeness and orthogonality of the bases
in V i ⊗h V j∑

b,α,γ

(1)F
∗
bk′

[
i j

c a

]β ′ t ′

α γ

(1)F bk

[
i j

c a

]β t

α γ

= δkk′δββ ′δtt ′,

(3.5)
∑
k,β,t

(1)F
∗
b′k

[
i j

c a

]β t

α′ γ ′
(1)F bk

[
i j

c a

]β t

α γ

= δbb′δγ γ ′δαα′,

where(1)F ∗ is the complex conjugate of(1)F .
In the original (combinatorial) realisation of [1] (for theADE graphs of the casesl(2)),

V j is the linear space of “essential paths of lengthj ” on the graphG. Then (3.2) is
interpreted as a composition of essential paths, which is not an essential path in general,
but is a linear combination of such paths.

The requirement of associativity of the product (3.2) leads to the “mixed” pentagon
relation

(3.6)F (1)F (1)F = (1)F (1)F ,

or, more explicitly∑
m,β2,t3,t2

Fmp

[
i j

l k

]u2u3

t2t3

(1)F bl

[
i m

a d

]γ1 t2

α1 β2

(1)F cm

[
j k

b d

]β2 t3

α2α3

(3.7)=
∑
β1

(1)F cl

[
p k

a d

]γ1u2

β1α3

(1)F bp

[
i j

a c

]β1u3

α1 α2

.

HereF is the matrix (the “6j -symbols”), unitary in the sense of the analogue of (3.5),
relating the two bases inV i ⊗h V j ⊗h V k . To make contact with the standard notation (cf.,
e.g., [19]),
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Fig. 3. Graphical representation of the(1)F 3j -symbols, of their orthogonality relations, of the
6j -symbols and of the pentagon identity (3.7). Factors depending onPa anddj have been omitted.

(3.8)F ∗mp

[
i j

l k

]
=

{
i j p

k l m

}
.

There is a gauge freedom in(1)F due to the arbitrariness in the choice of basis,e
j,α
cb →∑

α′ U
j,α,α′
cb e

j,α′
cb , whereU is an arbitrary unitary matrix. It is useful to have a graphical

notation for the 3j -symbols(1)F by means of triangles, and for the 6j -symbolsF by
means of tetrahedra (see Fig. 3). Then relations (3.4)–(3.7) are simply depicted.3 In this

3 The reader should not be confused by the multiplicity of graphical representations used in this paper for
the same objects. It turns out that depending on the question, a different representation may be clearer or more
profitable. The triangles used here for the “cells” may be regarded as obtained from the tetrahedra of Fig. 1 with
three• and one◦ by projecting the three edges◦—• with their labela,b, c on the triangle with black vertices.
Likewise, in the representation of Fig. 1, the pentagon identity (3.7) is depicted by the two ways of cutting
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graphical representation, the gauge freedom consists in changing any edgeb
j,α−→ c by

a unitary matrixUj,α,α′
cb .

The pentagon equation (3.7) can be solved forF given the 3j -symbols(1)F and using
the unitarity relation (3.5). Conversely, the relation (3.7) can be interpreted, givenF , as
a (recursive) relation for(1)F . In fact, the matrixF is taken to be the matrix(1)F of
the diagonal case (ni ≡ Ni ), as we identify in that case the 3j - and the 6j -symbols and
Eq. (3.7) coincides then with the standard pentagon identity forF

(3.9)FFF = FF.

We can also look at (3.7) and its solutions(1)F as providing more general realisations of
the pentagon identity (3.9), corresponding to the matrix representationsni of the Verlinde
fusion algebra (1.1). If we consider along with the states|ej,βca 〉 (triangles with one white
and two black vertices), the vector spaces of “diagonal” states|ei,tkj 〉, t = 1,2, . . . ,Nij

k (the
triangles with three black vertices in Fig. 1), we can identify the basis states in the r.h.s.
of (3.2) with the “mixed” products|ek,βca 〉 ⊗ |ei,tkj 〉.

A solution of (3.9) is determined by the chiral data characterising the CFT. For instance,
in the theories based on̂sl(2), the solution provides the fusing matrices of the CVO and is
known to be given in terms of the 6j -symbols of the quantum algebraUq(sl(2)), restricted
to matrix elements consistent with the fusion rules. For givenF the solution of (3.7) is by
definition restricted by the data in (1.1), (2.3).

In agreement with the symmetry (2.4) we introduce two (commuting) antilinear

involutive mapsV j → V j∗ , (ej,βca )∗ = e
j∗,β∗
c∗a∗ , and(ej,βca )+ = e

j∗,β+
ac . Correspondingly there

are two bilinear forms onV j∗ ⊗ V j determined by the sesquilinear form (3.1), i.e., two
dual bases inV j∗ . The first, given by∗, corresponds to the complex conjugation of the
components of the initial basis inV j when it is realised through unit vectors inCmj . The
second basis is determined requiring that

(3.10)

√
dj

Pc

〈
e1
aa(j

∗j)
∣∣ej∗,β+ac ⊗h e

j,β ′
ca′

〉= 〈
e
j,β
ca

∣∣ej,β ′
ca′

〉
,

which implies

(3.11)(1)Fc1

[
j∗ j

a a′
]1 1

β+ β ′
= δaa′δβ ′β

√
Pc

Padj
.

This is a gauge fixing choice consistent with the unitarity condition (3.5) and the relation

(3.12)dpPa =
∑
c

npa
cPc,

derived from (2.3). In the diagonal case it coincides with the standard gauge fixing of
the fusing matricesF of the conformal models based on̂sl(n). Assuming that on tensor
products(x⊗y)∗ = x∗⊗y∗, (x⊗y)+ = y+⊗x+, and denoting the dual basis states in the

a double tetrahedron into two or three tetrahedra.
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tensor productek
∗,β∗

c∗a∗ (i∗j∗; t∗) := (e
k,β
ca (ij); t)∗ ande

k∗,β+
ac (j∗i∗;σ(t∗)) := (e

k,β
ca (ij); t)+

(sinceNk∗
j∗i∗ =Nk

ij ), these maps imply the symmetry relations for the 3j -symbols(1)F

(3.13)(1)F ∗bk
[
i j

c a

]β t

α γ

= (1)F b∗k∗
[
i∗ j∗
c∗ a∗

]β∗ t∗

α∗ γ ∗
= (1)F bk∗

[
j∗ i∗
a c

]β+ σ(t)

γ+ α+
,

while from the pentagon relation taken atl = 1 and (3.11) one derives

(3.14)(1)F bk

[
i j

c a

]β t

α γ

=
√

Pbdk

Pcdj

(1)F
∗
cj

[
i∗ k

b a

]γ t+

α+ β

.

The space
⊕

j∈I End(V j ) is a matrix algebraA =⊕
j∈I Mmj on which a second

product (or a coproduct) is defined via the 3j -symbols(1)F in (3.2). This is the Ocneanu
double triangle algebra [1], an example (and presumably a prototype) of the notion of
weak C∗ Hopf algebra introduced in [4]; this structure has also received the name of
“quantum groupoid” [1,20]; see also [10,11] for recent developments of the original
Ocneanu approach. Together with its dual algebra,A is interpreted in the present context
as the quantum symmetry of the CFT, either diagonal or nondiagonal. We review below
briefly some basic properties ofA and give further details in Appendix A.

The matrix units inMmj (block matrices inA) are identified with states inV j ⊗ V j∗ ,

(3.15)e
(ca),(c′a′)
j ;β,β ′ =

√
dj

(PcPaPc′Pa′)1/4

∣∣ej,βca

〉 〈
e
j,β ′
c′a′

∣∣,
so that

(3.16)e
(c′a′)(c′′a′′)
k;β ′,β ′′

∣∣ei,βca

〉= δikδaa′′δcc′′δββ ′′
(

PaPc

Pa′Pc′

)1/4∣∣ek,β ′
c′a′

〉
.

They are depicted as 4-point blocks in Fig. 4, where the states inV j correspond to
3-point vertices, or, dually, to triangles, whence the name “double triangle algebra” for the
algebraA spanned by the elements (3.15),j ∈ I. Their matrix (“vertical”) multiplication
is simply

(3.17)e
(ca)(c′a′)
j,β,β ′ e

(d ′b′)(db)
i,γ ′,γ = δij δa′b′δc′d ′δβ ′γ ′e

(ca)(db)
j,β,γ .

The product (3.17) is illustrated on Fig. 5 by composing vertically the blocks representing
the two elements (the second above the first), and a similar picture represents (3.16).
The identity element 1v in A with respect to this multiplication is given by 1v =∑

i,c,b,α e
(cb)(cb)
i,α,α .

A second, “horizontal”, product is defined [1], composing two blocks horizontally, see
Fig. 6. Its decomposition is inherited from the r.h.s. of the product⊗h in (3.2), and thus
the r.h.s. in Fig. 6 involves the 3j -symbols(1)F and(1)F ∗. The normalisation constant is

chosen for later convenience as given byg
p;b,b′
ij = cbc

′
i cab

′
j /cac

′
p , with cab

′
j = dj√

PaPb′
S11
ψ1

1
.

Alternatively, we can define [4] a coproduct∆ :A→A⊗A
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Fig. 4. Two alternative representations of (a) the basis vectors(
dj

PaPc
)1/4|ej,βca 〉, (b) the matrix units

e
(ca),(c′a′)
j ;β,β ′ .

Fig. 5. The vertical product.

Fig. 6. The horizontal product.
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∆
(
e
(ca)(c′a′)
k,β,β ′

) :=∑
i,j
t

∑
b,b′

α,α′ ,γ,γ ′

(1)F
∗
bk

[
i j

c a

]β t

α γ

(1)F b′k

[
i j

c′ a′
]β ′ t

α′ γ ′

(3.18)× e
(cb)(c′b′)
i,α,α′ ⊗ e

(ba)(b′a′)
j,γ ,γ ′ .

The unitarity (3.5) of (1)F ensures that∆(ab) = ∆(a)∆(b) while the coproduct is
coassociative,(∆⊗ Id)◦∆= (Id⊗∆)◦∆, whenever there exist a unitaryF (in the sense
of the diagonal analogue of (3.5)), satisfying along with(1)F the pentagon identity (3.7).
The “star” operation inA, (xy)+ = x+y+, is inherited from the map(+) defined above,

(3.19)
(
e
(cb)(c′b′)
i,α,α′

)+ = e
(bc)(b′c′)
i∗,α+,α′+ .

It is a homomorphism of the algebra, i.e., of the vertical product, and an anti-
homomorphism of the horizontal product,(a⊗h b)

+ = b+⊗h a
+, so that∆(a+)=∆(a)+.

The algebraA is given a coalgebra structure defining a counitε :A→C according to

(3.20)ε
(
e
(ca)(c′a′)
j,β,β ′

) := δj1δacδa′c′δβ1δβ ′1,

which satisfies the compatibility condition(ε⊗ Id) ◦∆= Id = (Id ⊗ ε) ◦∆.

The definitions (3.18), (3.20) imply, however, that∆(1v) �= 1v ⊗ 1v and that the counit
is not a homomorphism of the algebra,ε(u)ε(w) �= ε(uw) for general elementsu,w ∈A,
i.e., the DTA is not a Hopf algebra, see the appendix for more details on its structure of
“weak Hopf algebra”; in particular the antipode is defined according to

(3.21)S
(
e
(cb)(c′b′)
i,α,α′

)=√
PbPc′

Pb′Pc

e
(b′c′)(bc)
i∗,α′+,α+ =

√
PbPc′

Pb′Pc

(
e
(c′b′)(cb)
i,α′,α

)+
.

Using the unitarity (3.5) of the 3j -symbols(1)F , it is straightforward to show that the
elements

(3.22)êi =
∑
c,b,α

1

cbci

e
(cb)(cb)
i,α,α ,

realise the Verlinde algebra with respect to the horizontal product inA,

(3.23)êi ⊗h êj =
∑
k

Nij
kêk,

andê1 is the identity matrix ofA for that product.

4. Generalised chiral vertex operators

We now return to the field theory. Leti, j, k ∈ I s.t. Nij
k �= 0 and let I label

descendent states inVi . The chiral vertex operatorφk
ij,t;I(z), with t being a basis label,

t = 1,2, . . . ,Nij
k , is an intertwining operatorVj → Vk [21]. We tensor this field with an

intertwining operatorV j → V k

(4.1)P
k,α;j,γ
cb,ab =

√
dj

PaPb

∣∣ek,αcb

〉 〈
e
j,γ
ab

∣∣,
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which corresponds to a state inV k⊗h V
j∗ . This defines a generalised chiral vertex operator

(GCVO)⊕
j∈I

Vj ⊗ V j →
⊕
k∈I

Vk ⊗ V k,

(4.2)cΨ a
i,β;I(z)=

∑
j,k,t

φk
ij,t;I(z)⊗

∑
b,α,γ

(1)F ak

[
i j

c b

]α t

β γ

P
k,α;j,γ
cb,ab .

The projectors (4.1) satisfy

P
i,α;k,γ
cb,ab P

k′,γ ′;j,δ
a′b′,db′ = δbb′δaa′δkk′δγ γ ′P

i,α;j,δ
cb,db ,

P
k,α;j,γ
cb,ab

∣∣ej ′,γ ′
a′b′

〉= δbb′δaa′δjj ′δγ γ ′
∣∣ek,αcb

〉
,

(4.3)
〈
e1
dd

∣∣Pk,α;j,γ
cb,ab

∣∣e1
d ′d ′

〉= δk1δj1δcdδbdδbd ′δad ′Pa.

From (4.2), (4.3) we have in particular

(4.4)cΨ a
j,β(0)|0〉⊗

∣∣e1
aa

〉= φ
j

j1(0)|0〉⊗
∣∣ej,βca

〉=: |j,β〉, β = 1,2, . . . , nja
c,

where |j,β〉 is the explicit form of the highest weight state of the chiral algebra
representationVj,β , “augmented” with the additional coupling labelβ , used in the
computation of the cylinder partition function in the Hilbert spaceHa|c =⊕

j,β Vj,β , [3].
The correlators of the generalised CVO (4.2) are computed projecting on “vacuum” states
|0〉 ⊗ |e1

aa〉 in the spaceV1 ⊗ V 1; recall thatV 1 has a nontrivial dimension|V|. Since
P

1,1;1,1
ab,db = δabδbdP

1,1;1,1
aa,aa , the first and the last labels of anyn-point correlator coincide,

i.e., we can associate with it a closed path{a, a1, . . . , an−1, a} with elements marked by
the graph indices and passing through the coordinate pointsz1, . . . , zn. E.g., the 2-point
correlator reads

(4.5)
〈a
Ψ c

j∗,β ′(z1)
cΨ a

j,β (z2)
〉
a
= (1)F c1

[
j∗ j

a a

]1 1

β ′ β
Pa〈0|φ1

j∗j (z1)φ
j

j1(z2)|0〉.

For real arguments one recovers the correlators of the boundary fields. Note that the
normalisation of boundary field correlators following from (3.1) differs from that used

in [3], (Eq. (4.7)) by a factorψ1
1/
√
S11, i.e.,〈1〉a = S11

(ψ1
1 )

2 limL/T→∞Z1|ae−
πc
6

L
T = Pa .

The algebraA acts on the operators (4.2) with the help of the antipode (3.21), namely

for ∆
(
e
(c′a′)(c′′a′′)
p;β ′,β ′′

)= e(1)⊗ e(2) we define a representationτ (e)

τ
(
e
(c′a′)(c′′a′′)
p;β ′,β ′′

)
cΨ

a
i,β (z) : = ec(1)Ψ

a
i,β (z)S(e(2))

(4.6)= δipδaa′′δcc′′δββ ′′
(
Pa′Pc

PaPc′

)1/4
c′Ψ

a′
i,β ′(z).

Definition (4.2) has to be compared with earlier work [22,23] based on the use
of quantum groups (Hopf algebras), or some related versions, e.g., [24], obtained by
modifying the standard Hopf algebra axioms (see [4] for a discussion on the latter and
further references). The papers [22–24] deal essentially with the diagonal case, and, more
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importantly, exploit the trueUq(g) 3j -symbols at roots of unity (e.g., forg = sl(2)) in
formulae analogous to (4.2). We stress again that the 3j -symbols(1)F in (4.2) and (3.2)
reduce in the diagonal case to the 6j -symbols of the quantum groupsUq(ḡ) (or products of
them), restricted to labels consistent with the CFT fusion rules. Thus the decomposition of
the Ocneanu horizontal product fits precisely the CFT fusion, without the need of additional
truncation as in the case of quantum group representations. As emphasized in [4], unlike the
alternative approaches which deviate from the standard Hopf algebras, the use of a WHA
as a quantum symmetry retains coassociativity reflected in (3.7). A “price” to be paid is the
multiplicity of vacua, which has, however, a physical interpretation in BCFT, as providing
a complete set of conformal boundary states.

From the operator representation (4.2) one derives various identities. In particular
inserting the r.h.s. of (4.2) in the product of two generalised CVO, then applying the OPE
for the standard CVO and finally using the pentagon identity (3.7), and once again the
representation (4.2), wederive for smallz12 the OPE

cΨ b
i,α(z1)

bΨ
a

j,γ (z2)

=
∑
p,β,t

(1)F bp

[
i j

c a

]β t

α γ

∑
Π

〈p,Π |φp

ij ;t (z12)|j,0〉cΨ a
p,β;Π(z2)

(4.7)=
∑
p,β,t

(1)F bp

[
i j

c a

]β t

α γ

〈p,0|φp

ij ;t (z12)|j,0〉cΨ a
p,β(z2)+ · · · .

For arguments restricted to the real line one recovers the boundary field small distance
expansion [25] with OPE coefficients given by the 3j -symbols of (3.2). Conversely, the
expansion (4.7) was the starting point in [3] for the derivation of the pentagon identity (3.7).

Denote by cUa
j the space of generalised CVO (4.2). The generalised CVO have

a nontrivial braiding defined through a new braiding matrix with 4+ 2 indices of two
types,

(4.8)B̂(ε) :
⊕
b

cUb
i ⊗ bUa

j →
⊕
d

cUd
j ⊗ dUa

i ,

(4.9)cΨ b
i,α(z1)

bΨ
a

j,γ (z2)=
∑

d,α′,γ ′
B̂bd

[
i j

c a

]α′ γ ′

α γ

(ε)cΨ
d
j,α′(z2)

dΨ
a

i,γ ′(z1),

(4.10)B̂12(ε)B̂ 21(−ε)= 1,

consistently with the commutativity of the intertwiners

(4.11)
∑
b

nib
cnja

b =
∑
d

njd
cnia

d .

In (4.9)z12 /∈ R−, andε stands forε12= sign(Im(z12)) and fori = 1 or j = 1 the matrix
B̂ is trivial. The braiding matriceŝB satisfy the “Yang–Baxter (YB) equation”

(4.12)B̂12(ε12)B̂
23(ε13)B̂

12(ε23)= B̂ 23(ε23)B̂
12(ε13)B̂

23(ε12).
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Combining (4.9) with the definition (4.2) of the generalised CVO, using then the braiding
of the standard CVO and projecting on the state|0〉, we obtain the relation

(4.13)
∑

d,α′γ ′
B̂bd

[
i j

c a

]α′ γ ′

α γ

(ε) (1)F dk

[
j i

c a

]β t

α′ γ ′
= e

−iπε∆k
ij (1)F bk

[
i j

c a

]β t

α γ

,

where the phase in the r.h.s., depending on the scaling dimensions∆k
ij =∆i +∆j −∆k,

comes from the standard CVO braiding matrixB. In the diagonal case, where we can
identify (1)F andB̂ with the standard fusing and braiding matrices,F andB, this relation
is nothing else than the simplest hexagon relation (theq-Racah identity). Inverting (4.13)
we get a bilinear representation of̂B in terms of(1)F

(4.14)B̂bd

[
i j

c a

]α′ γ ′

α γ

(ε)=
∑
k,β,t

(1)F bk

[
i j

c a

]β t

α γ

e
−iπε∆k

ij (1)F
∗
dk

[
j i

c a

]β t

α′ γ ′
.

This formula determineŝB whenever we know(1)F and the scaling dimensions∆j , i.e.,
the 3j -symbols(1)Fbi diagonalise the matrix̂Bbd . It also implies the symmetries

B̂bd

[
j k

c a

]
(ε)= B̂b∗d∗

[
k j

a∗ c∗
]
(ε)= B̂db

[
j∗ k∗
a c

]
(ε)

(4.15)= B̂∗b∗d∗
[
j∗ k∗
c∗ a∗

]
(−ε).

The relation (4.13) is a particular case of the more general identity derived by inserting
(4.2) in (4.9) and using the analog of (4.9) for the standard CVO

(1)F (1)FB = B̂(1)F (1)F ,

or, more explicitly

∑
n∈I

(1)F an

[
j m

c b

]
(1)F ck

[
i n

d b

]
Bnl

[
i j

k m

]

(4.16)=
∑
c′∈V

B̂cc′
[
i j

d a

]
(1)F al

[
i m

c′ b

]
(1)F c′k

[
j l

d b

]
,

as illustrated on Fig. 7. Form= 1 we recover (4.13). Eq. (4.16) implies that (products of
two) 3j symbols(1)F intertwine the two representationsB andB̂ of the braiding group.
This is to be compared with the “cells” introduced in lattice models, [26,27,14,28], see
Section 6.

Another relation derived from the product of three GCVOΨ gives a generalisation of
the braiding–fusing identity of Moore–Seiberg [21]

B̂(1)F = B̂B̂(1)F ,
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Fig. 7. Eqs. (4.16), (4.17).

or, ∑
β1

B̂cc′
[
p k

a d

]α′1 γ

β1 α3

(1)F bp

[
i j

a c

]β1 t

α1 α2

(4.17)=
∑

b′,α′2,α′3,γ ′

(1)F b′p

[
i j

c′ d

]γ t

γ ′ α′2
B̂bc′

[
i k

a b′
]α′1 γ ′

α1 α′3
B̂cb′

[
j k

b d

]α′3α′2

α2α3

.

In the diagonal case this is the equation from which one obtains (takingd = 1) the relation
between the braidingB and fusingF matrices; inserting this relation back in (4.17)
reproduces the standard pentagon identity forF . In general (4.17) provides a recursive
construction of̂B in the spirit of [29]. Namely, solving it for thêB matrix in the l.h.s., i.e.,
writing it asB̂ =∑

b,b′
(1)F B̂B̂ (1)F

∗
, we get an equation which determinesB̂ recursively,

given the subset of 3j -symbols with one of the labelsi, j,p fixed to the fundamental
representation(s). Using (4.14) the r.h.s of (4.17) can be completed toB̂23B̂12B̂23, i.e., to
the r.h.s. of the YB equation (4.12). Similarly one derives a second braiding–fusing identity
so that its r.h.s. is completed to the l.h.s. of (4.12). Comparing the two identities and using
twice in the l.h.s. of one of them the pentagon identity (3.7) and the unitarity ofF , one
recovers the YB relation.

Together with the interpretation of(1)F as 3j -symbols, the braiding matrix̂B can
be interpreted as theR — matrix of a quasitriangular WHA, see Appendix A. The
relation (4.14) is an analogue of the representation of theR matrix in terms of the
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3j -symbols, while (4.16) is an analogue of the relation between vertex representation and
path representation of the quantum groupR matrix (Vertex-IRF correspondence), see [30].

There is an important difference in the analogy with the role of quantum groups in CFT.
Namely in the present approach the summations in all identities, like, e.g., overk in (4.14),
or overn in (4.16), run according to the fusion rules, while in their analogues, where
the true quantum group 3j -symbols appear, these summations run within the standard
classical tensor product bounds. When interpreted in the CFT framework the analogue
of the braiding relation (4.9) is then required to hold only on a “physical” subspace, or
alternatively, the conformal Hilbert spaces (and the conventional CVO in the definition of
the covariant CVO of [22]) have to be extended to accomodate “unphysical” intermediate
states incompatible with the fusion rules, [23,31,32], see also the recent work [33] for
a related discussion and further references.

5. Bulk fields — chiral representation

Let now the pairsI = (i, ī), i, ī ∈ I, label the “physical” spectrum, corresponding to
nonzero matrix elements of the modular mass matrixZiī , or, in a more precise notation,
which we will for simplicity skip in this section,(i, ī;α), α = 1,2, . . . ,Ziī . We define
(upper) half-plane bulk fields as compositions of two GCVO (4.2)

ΦH

(i,ī)
(z, z̄)=

∑
a,b,β ′,β

(∑
j,α,u

R(i,ī∗,u)
a,α (j) (1)Fbj

∗
[
i ī∗
a a

]α u

β β ′

)
aΨ

b
i,β (z)

bΨ
a

ī∗,β ′(z̄)

(5.1)=
∑

n,k,l,t,t ′
φn
ik;t ′(z)φ

k

ī∗l;t (z̄)⊗
∑

a,b′,γ ,γ ′
C

n,k,l;t ′,t
(i,ī)a,b′,a;γ,γ ′P

n,γ ;l,γ ′
ab′,ab′ .

Herez̄ ∈H− is the complex conjugate ofz ∈H+ and the fieldΦH
(i,ī)

(z, z̄) transforms under

a tensor product representation of one copy of the chiral algebraA labelled by the pairs
(i, ī∗), see [3,34,35] for discussions of more general gluing conditions.4 The choice of the
constants in (5.1), related according to

(5.2)C
n,k,l;t ′,t
(i,ī)a,b′,a;γ,α =

∑
j,u,u′,α′

R
(i,ī∗,u)
a,α′ (j)(1)F an

[
j l

a b′
]γ u′

α′ α
F ∗kj

[
i ī∗
n l

]u′ u

t ′ t
,

is such that when applying for smallz− z̄= 2iy the OPE (4.7) for the two CVO in (5.1)
(and projecting on|e1

aa〉) we recover in the leading order the boundary fieldaΨ a
j,α(x)

contributing with thebulk-boundary reflection coefficient R
(i,ī∗,u)
a,α (j) = C

j,ī∗,1;u,1
(i,ī)a,a,a;α,1

4 For convenience we keep the same notation for the half-plane fieldΦH
(i,ī)

(with (i, ī∗) appearing in the CVO

product in the r.h.s. of (5.1)) as for its full-plane counterpartΦP
(i,ī)

, with the second label in(i, ī) corresponding

to a representation of a second copy of the chiral algebra; in our convention the diagonal torus modular invariants
correspond to the fieldsΦH

(i,i)
, i ∈ I.
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of [25]. (We denote hereR(i,ī,u)
a,α (j) what was denoteda;αBj ;u

(i,ī)
in [3].) For j = 1 it is

expressed in terms of the graph eigenvector matricesψi
a

(5.3)R(i,i∗)
a (1)= ψi

a

ψ1
a

eiπ∆i

√
di

.

From the operator representations (4.2) and (5.1), which involve the two sets of
constants,(1)F andR (or,C), one recovers all correlators of the fieldsΨ andΦH ; they are
expressed as linear combinations of standard CVO correlators. E.g., the 2-point function
projected on the state|e1

aa〉, is〈c
Ψ b

j,α(z2)Φ
H
I (z, z̄)

〉
a

(5.4)= δabδac
Pa√
dj

∑
t

R
(i,ī∗,t )
a,α+ (j∗)〈0|φ1

jj∗(z2)φ
j∗
iī∗;t (z)φ

ī∗
ī∗1(z̄)|0〉.

In (5.4) we have adopted an ordering corresponding to real parts increasing from right
to left, i.e., Re(z2 − z) > 0. The inverse order would give a function which differs by
a phase (due to the nontrivial braiding of products of CVOs), even if the difference of
scaling dimensions, the spinsI =∆i −∆ī , is (half)integer, as required from the physical
spectrum. The phase vanishes if we furthermore restrict the argumentz2 of the generalised
CVO to the real axis boundary ofH+ and thus the bulk and the boundary fields commute.

Let us now briefly review the derivation of the equations resulting from the sewing con-
straints of Cardy–Lewellen [25,36] in the BCFT. The operator representations introduced
here both for the boundary and the bulk fields make these derivations straightforward (in
fact also slightly more general) and reduce them to the use of the fusing and braiding
relations for the conventional CVO. First requiring locality (commutativity) of a bulk and
boundary operators,ΦH

I (z, z̄)aΨ b
j (x2)= aΨ b

j (x2)Φ
H
I (z, z̄), has further implications, lead-

ing to an equation for the unknown constantC in the operator representation (5.1). It reads,
omitting for simplicity the multiplicity indices∑

l

C
n,k,l

(i,ī)a,b′,a
(1)Fbl

[
j g

a b′
]
Bll′

[
ī∗ j

k g

]
(−)

(5.5)=
∑
k′

C
k′,l′,g
(i,ī)b,b′,b

(1)Fbn

[
j k′
a b′

]
Bk′k

[
j i

n l′
]
(−).

Projecting the product of two fields on|0〉, or on 〈0|, i.e., settingg = 1, or k = 1 in
(5.5), one recovers the (first) bulk-boundary Cardy–Lewellen equation [25,36]; (5.5) is
a slightly more general version of it, corresponding to a 5-point chiral block. This equation
provides a closed expression for the scalar reflection coefficientsR

(i,i∗,t )
a,α (j) in terms of the

3j -symbols(1)F and the modular matrixS(j) of 1-point torus correlators

(5.6)
Pa√
dj

R
(i,i∗)
a (j∗)

R
(i,i∗)
1 (1)

= Si1

∑
k,b

ψi
b

ψi
1

(1)Fak

[
k j

b a

]
Ski∗(j).

In the diagonal case the l.h.s. reproducesSai(j)/S1i [5,3].
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With (5.1) at hand one alsoderives the OPE of two bulk fieldsΦH
K ΦH

L first expressing
their product as a product of four standard CVO, exchanging then the second and third
fields and fusing each of the two pairs labelled by(k, l) and(k̄∗, l̄∗) (this can be depicted by
a 6-point chiral block diagram slightly more general than Fig. 10 of [3]). In the process one
finds an expression for the OPE coefficients, to be denotedd

J ;t,t ′
KL . It reads symbolically,

ordering the constants in the l.h.s. in the sequence they appear in the above steps,

(5.7)FFB(−)CC = dC,

or

C
m,n,g′
(k,k̄)a,b,a

C
g′,n̄,i
(l,l̄)a,b,a

(5.8)=
∑
j,j̄ ,g

dJ
KLBgg′

[
l k̄∗
n n̄

]
(+)F ∗nj

[
k l

m g

]
F ∗
n̄j̄∗

[
k̄∗ l̄∗
g i

]
C

m,g,i

(j,j̄ )a,b,a
.

Settingi = 1 and substituting the constantsC with the reflection coefficientsR as in (5.2),
this can be also rewritten, introducing a new constantM, as

R(k,k̄;u1)
a,α1

(p1)R
(l,l̄;u2)
a,α2

(p2)

(5.9)=
∑

j,j̄ ,p3,u3,α3

M
(j,j̄ ,u3;p3,α3);a
(k,k̄,u1;p1,α1)(l,l̄,u2;p2,α2)

R
(j,j̄ ;u3)
a,α3 (p3)

with u1 = 1, . . . ,Nkk̄
p1, α1 = 1, . . . , np1a

a , etc. This is the second of the two basic bulk-
boundary Lewellen equations [36]. In the diagonal caseK = (k, k) the OPE coefficients
d = d(H) coincide with their full-plane counterpartsd(P ) and in the unitary gauge used

here are simplyd(P )J ;t,t ′
KL = δtt ′ for Nkl

j �= 0.
Eq. (5.9), taken atp1 = p2 = 1, allows to derive and generalise to higher rank cases

(see [37,3]) the empiricalsl(2) result of [17] on the coincidence of the relative scalar OPE
coefficients and the structure constants of the Pasquier algebra [16]. The latter algebra
has 1-dimensional representations (characters) given byψi

a/ψ
1
a = e−πi∆i

√
diR

(i,i∗)
a (1),

cf. (5.3). A generalisation of this result will be discussed in Section 7.
The reflection coefficients satisfy

(5.10)
(
R(i,ī)

a (j)
)∗ =R

(i,ī)
a∗ (j∗)e−iπ∆

j

iī =R(i∗,ī∗)
a (j∗)e−iπ∆

j

iī ,

and furthermore (5.8) implies, choosing (the positive) constantd1
KK∗ = 1.

(5.11)
∑
a,α

R(k,k̄;u)
a,α (j)R(l,l̄;u′)∗

a,α (j)
(
ψ1

a

)2dk

dj
= δlkδl̄k̄δuu′δk̄k∗ .

The identity (5.11) reduces forj = 1 to the orthonormality property ofψl
a (expressing

the completeness of the set of boundary states) and in the diagonal cases to the unitarity
relation for the modular matricesS(j). In generald(H) andd(P ) differ by phases depending
on the spinssK =∆k −∆k̄ ,

(5.12)dJ
KL = e−i π2 (sK+sL−sJ )d

(P )J
KL ,
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reproducing in particular the spin-dependent full-plane 2-point function normalisation,
d
(P )1
KK∗ = (−1)sK , proved to be consistent with the locality and reflection positivity

requirements [38].

6. Relation to integrable lattice models

Some of the identities in Sections 3 and 4, most notably the YB equation, coincide
with the basic identities of the related IRF integrable lattice models. The lattice Boltzmann
weights, however, depend on a spectral parameteru, which does not appear in the CFT,
and to compare the two discussions, a proper limit of this parameter has to be taken. This
correspondence has been established in the diagonal cases, [39], and in this section we
show how it generalises to all models built on graphs related toŝl(n)h−n CFT.

The data required to define the generalisedsl(n)-IRF models that we consider are
a graphG — we postulate that one of the graphs met in the CFT discussion is
appropriate — and a pair of representationsj1 andj2 for sl(n). Then to each vertex of the
square lattice is assigned a vertexa of the graph. The Boltzmann weightsWj1j2

(
c
b
d
a

)
(u) are

functions of the four verticesa, b, c, d around a square face and of a spectral parameteru. It
is conventional to tilt the lattice by 45 degrees and to represent the Boltzmann weights as in
Fig. 8. Representationj1 is assigned to the SW–NE bonds, andj2 to the SE–NW ones [40].
Intuitively, one goes from vertexa to vertexb through the action ofj2, and fromb to c

throughj1, and accordingly, the weights depend also in general on bond labelsα,γ, . . . ,

which specify which path froma to b, from b to c etc. is chosen:α = 1, . . . , nj1b
c,

γ = 1, . . . , nj2a
b, etc.

The Boltzmann weights are solutions of the spectral parameter dependent YB and
inversion (unitarity) equations. Knowing them for the fundamental representation(s)
enables one to construct the other weights by a fusion procedure [41–43].

In the simplest case where implicitly all the bonds carry the fundamental representation
of sl(n), the Boltzmann weights have the general form

(6.1)W

(
c d

b a

)α′ γ ′

α γ

(u)= sin

(
π

h
− u

)
δbd + sin(u)[2]qU

[ c
a

]d α′ γ ′

b α γ
,

where[2]q = 2 cos(π/h) for q = e−2πi h−1
h (h the Coxeter number of the graphG), and

[2]qU are Hecke algebra generators satisfyingU2=U etc. Choosing the labelsj = k =

Fig. 8. (a) The Boltzmann weightW for j1= j2= ; (b) U as a product of two cells.
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in the bilinear representation (4.14) for the braiding matrixB̂, we can cast it into a form
similar to (6.1)

(6.2)B̂bd (ε)= δbdq
aε − qbεCUbd,

with (cf. Fig. 8)

(6.3)U
[ c
a

]d α′ γ ′

b α γ
=

∑
β

(1)F
b

[
c a

]β 1

α γ

(1)F
∗
d

[
c a

]β 1

α′ γ ′
.

The constantsa, b,C are determined from (4.10) and (4.13); from (4.10) we get
C = qa−b + qb−a , and from (4.13) we geta = −h(∆Su− 1

2∆
Su), 2b − a = −h(∆Su−

1
2∆

Su), henceC = [2]q . Here∆Su
λ are Sugawara conformal dimensions, while in (4.13)

enter the dimensions∆λ = ∆Su
λ − 〈λ,ρ〉 of the minimalWn model of central charge

c = (n − 1)[1+ 2n(n + 1) − n(n + 1)( h−1
h
+ h

h−1)]; this shift of the dimensions is ac-
counted for by the sign in front of the second term in (6.2). One obtainsa = (n− 1)/2n,
b=−1/2n.

When (6.2) is inserted in the YB equation (4.12), the latter reduces to the Hecke algebra
relation for the operators[2]qU in (6.3), which can be identified with the operators in the
r.h.s. of (6.1). Thus the Hecke generators are expressed in terms of the 3j -symbols(1)F ,
recovering a formula in [2]. Furthermore comparing (6.1) and (6.2) we obtain

(6.4)B̂bd

[
c a

]α′ γ ′

α γ

(ε)= 2iq−ε 1
2n lim

u→−iε∞ e−iπεuW

(
c d

b a

)α′ γ ′

α γ

(u).

In other words, we can look at the correlators of the generalised CVO with all
representation labels fixed to the fundamental ones as realising a representation of the
corresponding Hecke algebra — in parallel to the path representations of the lattice theory.
In thesl(2) case (6.2), (6.3) reproduce, inserting (3.11), the Boltzmann weight of theADE

Pasquier models [44]

(6.5)q1/4B̂bd

[
f f

a c

]
= q1/2δbd − δac

√
PbPd

Pa

.

There is no general information on(1)F in the higher rank cases, however the particular
(fundamental) matrix elements in (6.3) are recovered from thesl(n) examples of
Boltzmann weights found in the literature, [45–47,14,48]. Recently exhaustive results were
obtained 2 for allsl(3) graphs but one. A general existence theorem for(1)F and W

for a subclass of graphs corresponding to conformal embeddings appears in [49]. On the
other hand, as the counter-example of [2] shows, some solutions of (1.1) do not support
a representation of the Hecke algebra, i.e., a system of 3j -symbols(1)F .

In the sl(2) and sl(3) cases one can formulate [2] a quartic relation directly for the
cells (1)F which in turn implies the Hecke algebra (or YB) relations; in our notation it
reads
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b′,

α1,α2,
α3α4

(1)F
∗
b′

[
a c

]γ1

α1 α2

(1)F
c

[
b′ d

]α3

α2 γ2

(1)F
∗
c′

[
b′ d

]α3

α4 γ3

(1)F
b′

[
a c′

]γ4

α1α4

=
∑
b′,

α1,α2
α3,α4

√
PcPc′

Pb′
(1)F

∗
b′

[
a c

]γ11

α1 α2

(1)F b′ ∗

[ ∗

d c

]γ+2 1

α3 α2

× (1)F
∗
b′ ∗

[ ∗

d c′

]γ+3 1

α3 α4

(1)F
b′

[
a c′

]γ4 1

α1 α4

(6.6)= 1

[2]2
(√

PcPc′

Pa

δadδγ1γ2δγ3γ4 + δcc′δγ1γ4δγ2γ3

)
.

The first delta-term here is present only for thesl(3) case where∗ = and the two 3-point
couplings corresponding to theδ function are identical; forn= 2, where by convention
refers to the identity representation, the first term is zero; accordingly we recover the TLJ
algebra relation.

The fused Boltzmann weights are similarly expected to be related to more general
braiding matrix elements. The recursive construction of the generalB̂ elements using the
fusing–braiding relation (4.17) is analogous to the fusion procedure of the lattice models
yielding the fused Boltzmann weights. The “inversion equation” for the Boltzmann weights
in the lattice models turns into the unitarity identity (4.10). The relation (4.17) taken for
p = 1 leads to the (crossing) identity

(6.7)
∑
b′

B̂cb′
[
i∗ k

b d

]
(ε)B̂bd

[
i k

a b′
]
(ε)

√
Pb′Pa

PbPd

= δac,

while (4.13) withi = 1 reads

(6.8)
∑
d

B̂bd

[
j j∗
a a

]
(ε)

√
Pd =

√
Pb e

−2πiε∆j ,

a property analogous to one satisfied by the full (u-dependent) Boltzmann weights.
We now turn to the relation (4.16), which has the form of the intertwining relation for the

square Ocneanu cells, studied in [26,14,27,28]. To make contact with the notation in [14],
(1)Faj

[
c

i
b

]
is identified withY

[
a
c

i
j

]
with b fixed andi, j, c, a restricted bynib

a, njb
c �= 0.

The data found in those papers provide thus a partial information on the 3j -symbols (i.e.,
on the boundary field OPE coefficients), namely determine those matrix elements in which
one of the representation labels is fixed to the fundamental weightandb fixed to 1. On
the other hand, knowledge of the cells(1)Faj

[
c

i
b

]
for arbitrarya, b, c andi, j is sufficient

to determine all the cells using the pentagon equation, in a way similar to the discussion
at the end of Section 4. A general solution for(1)F for the ŝl(2) D-series has been found
in [6].

We conclude with the remark that it would be interesting to extend the correspondences
discussed in this section to the boundary lattice theories, see [50,51], and in particular to
clarify the role of the reflection equations [52] in the present setting.
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7. Ocneanu graphs and the associated algebras

In the following we shall motivate on physical grounds and by analogy with a situation
already encountered in BCFT the construction of new sets of (nonnegative integer valued)
matrices and their associated graphs. On a mathematical level, this construction has been
justified in the subfactor approach [1,2,10,11], but the field theoretical approach provides
new insight.

In BCFT we know that three sets of matrices play an interlaced role, generalising the
fusion matricesNi . The first is the set of|V|× |V|matricesni defined in (1.1), which form
a representation of the fusion algebra and define the graphG. As recalled in Section 2,
their diagonalisation introduces a set of orthonormal eigenvectorsψ

j
a , a ∈ V , j ∈ Exp.

The second set of matrices, also of size|V| × |V|, denotedN̂a = {N̂ab
c} in [3], forms

the regular representation of an associative algebra,

(7.1)N̂aN̂b = N̂ab
cN̂c

(the Ocneanu algebra) [26,53]. It is attached to the graph in the sense that

(7.2)niN̂a =
∑
b

nia
bN̂b,

i.e., if the matrixN̂a is assigned to vertexa of the graphG, the action ofni on N̂a gives
a sum over the neighbouring matriceŝNb (neighbouring in the sense of the adjacency
matrixnia

b).
In general, these matriceŝNa have entries that are integers, but in general of indefinite

sign.5 At this point, we recall that RCFT and the associated graphsG come in two types.
Those for which the modular invariant partition function is block-diagonal and expressible
in terms of then matrices as

(7.3)Zij =
∑
a∈T

ni1
anj1

a

for a certain subsetT of vertices are called of type I. They are interpreted as diagonal
theories in the sense of some extended chiral algebraAext. The setT is in one-to-one
correspondence with the set of ordinary representations of that algebraAext and the integer
ni1

a is the multiplicity multa(i) of representationVi of A in the representation ofAext

labelled bya. Then all matriceŝNa,a ∈ V have nonnegative integer entries and the subset
{N̂a}a∈T forms a subalgebra isomorphic to the fusion algebra ofAext [15]. 6

An interpretation of the whole set of̂Nab
c as fusion coefficients of a class of “twisted”

representations ofAext broader than considered in Section 2 has been proposed in [3,55],
see also [56]. In contrast, a theory of type II cannot be written as in (7.3) and is obtained

5 A case where this integrality property of thêNab
c seemed invalid was pointed out in [18], but later it was

shown by Xu that integrality could be restored at the expense of commutativity [49], see Section 7.2.
6 These statements are for us empirical facts, of which we know no general proof. They seem to have been

established for a variety of cases in the subfactor approach or are taken as assumptions. Note that our definition of
type I in (7.3) above is slightly more restrictive than the one used previously [3,18]. It rules out one of the graphs

(E(12)
3 in the Table of [3]). See also [54] for cases which go beyond this simple classification.
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from some type I one — its “parent theory” — through an automorphism of its fusion rules
acting on its right sector with respect to the left one [21,57]. We thus expect many of their
properties to be more simply expressed in terms of data pertaining to the parent theory. For
example, their torus partition function reads

(7.4)Zij =
∑
a∈T

ni1
anj1

ζ(a),

where then’s are those of the parent type I theory.
We can then define the dual (in the sense of [58]) of theN̂ algebra by the algebra of

linear mapŝN →C. This algebra, also called the Pasquier algebra, is realised by matrices
M(i,α) labelled by the elements of Exp and as mentioned in Section 5 relates to the scalar
OPE coefficients.

As a side remark, we recall that in thesl(2) case it is thisM algebra which also
appears as the perturbed chiral ring ofN = 2 superconformal CFTs perturbed by their
least relevant operator (or of their topological counterparts) [59], hence as a specialisation
of the Frobenius algebra [60]. We shall return to these algebras and their CFT interpretation
in the next sections.

In the following, we are going to introduce four sets of matrices, which generalise the
previous three, define again graph(s)G̃, and satisfy analogous relations. The matricesn

gives rise to two sets, denoted̃V and ñ, while the dual pair(N̂,M) generalises to a pair
(Ñ, M̃).

7.1. The Ṽ matrices and Ocneanu graphs

We first consider the integral, nonnegative matrix solutions of a system of equations for
commuting matrices̃Vii′;xy with i, i ′ ∈ I. It generalises (1.1), with the Verlinde fusion
multiplicitiesNij

k replaced by the productNij
kNi′j ′k

′

(7.5)
∑
y

Ṽij ;xyṼi′j ′;yz =
∑
i′′,j ′′

Nii′
i′′Njj ′

j ′′ Ṽi′′j ′′;xz.

The labelsx, y, . . . , of these matrices take their values in a finite set denotedṼ , whose
cardinality equals|Ṽ| =∑

j j̄ (Zjj̄ )
2 in terms of the modular invariant matrixZ.

This property, and more generally the physical interpretation of (7.5), follow from the
discussion of torus partition functions in the presence of twist operators (physically defect
lines) denotedXx , see [8] for details. The discussion is parallel to the way Eq. (1.1) appears
in the study of cylinder partition functions and involves the consistency between two
alternative pictures. In one picture, two twist operatorsX

†
x andXy , attached to homology

cycles of typea of the torus, act in the Hilbert space of the ordinary bulk theory,H =
⊕ZiīVi ⊗ V̄ī , and are assumed to commute with the generators of the two copies of

the chiral algebraA. This forces them to be linear combinations of operatorsP (k,k̄;γ,γ ′)
intertwining the different copies of equivalent representations ofA×A
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(7.6)Xx =
∑
i,ī

α,α′=1,...,Z
iī

Ψ
(i,ī;α,α′)
x√
S1iS1ī

P (i,ī;α,α′),

with

(7.7)P (i,ī;α,α′)P (j,j̄ ;β,β ′) = δij δīj̄ δα′βP
(i,ī;α,β ′).

The other picture makes use of a Hilbert spaceHx|y associated with the homology cycles of
typeb; the nonnegative integer̃Vij∗;xy describes the multiplicity of representationVi ⊗ V̄j

in Hx|y . The equality of the twisted partition functions computed in these two alternative
ways leads to a consistency condition of the form

(7.8)Ṽiī;x
y =

∑
J

α,α′=1,...,Z
jj̄

Sij Sīj̄

S1j S1j̄
Ψ

(j,j̄ ;α,α′)
x Ψ

(j,j̄ ;α,α′)∗
y , i, ī ∈ I,

whereΨ (j,j̄ ;α,α′)∗
y is the complex conjugate ofΨ (j,j̄ ;α,α′)

y . ThenΨ = {Ψ (J ;α,β)
x } is assumed

to be a square, unitary matrix, labelled by thex ∈ Ṽ and by the pairsJ = (j, j̄ ) of labels
supplemented by their multiplicities in the spectrumα,β = 1, . . . ,Zjj̄∑

x∈Ṽ
Ψ (J ;α,β)

x Ψ (J ′;α′,β ′)∗
x = δjj ′δj̄ j̄ ′δαα′δββ ′,

(7.9)
∑
J

α,β=1,...,Z
jj̄

Ψ (J ;α,β)
x Ψ

(J ;α,β)∗
x ′ = δxx ′.

Following a standard argument, in (7.8) theΨ (J ;α,β) appear as the eigenvectors and the
ratiosSij Sīj̄ /S1j S1j̄ as the eigenvalues of thẽViī matrices. As the latter satisfy the double

fusion algebra (7.5), so do the matricesṼ .
In fact the integer numbers̃Vij ;xy may be regarded not only as the entries of|Ṽ| × |Ṽ|

matricesṼij , i, j ∈ I, as we just did, but also as those of|I| × |I| matricesṼx
y , x, y ∈ Ṽ .

By convention, the label 1 refers to the trivial (neutral) twist, and it is thus natural to
impose the further constraint that fory = z= 1, Ṽ reduces to the modular invariant matrix,
up to a conjugation

(7.10)Ṽiī∗;1
1=Ziī .

This is consistent with (7.8) if

(7.11)Ψ
(J ;α,α′)
1 =

√
S1j S1j̄ δαα′ =: Ψ (J )

1 δαα′ .

In particularΨ (1)
1 = S11 and denoting̃dx = Ψ

(1)
x /Ψ

(1)
1 , this implies, using the unitarity of

Ψ and of the modular matrixS, the “completeness” relation

(7.12)
∑
x∈Ṽ

d̃2
x =

1

(S11)2 =
∑
i∈I

d2
i
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(see also [10]). It also follows from (7.8) that̃Vij ;xy = Ṽi∗j∗;yx and conversely, this latter
property, together with (7.5), suffices to guarantee the diagonalisability of theṼ in an
orthonormal basis, as in (7.8).

Then, if we define the matricesTx
i,j := Ṽij∗;1x , thusT1=Z, taking thex = z= 1 matrix

element of (7.5) yields

(7.13)
∑
x

Tx
i,jTx

i′∗,j ′∗ =
∑
i′′,j ′′

Nii′
i′′Njj ′

j ′′Zi′′j ′′ ,

which is the way the matricesTx appeared originally in the work of Ocneanu, under the
name of “modular splitting method”.

The set of matrices̃Vij may be regarded as the adjacency matrices of a set of graphs
with a common set of vertices̃V . In any RCFT, the fusion ring is generated by a finite
number of representationsf of I called fundamental, and because of (7.5), it is sufficient
to give the graphs of̃Vf1 and ofṼ1f for these representations to generate the whole set by
fusion. (For example, for thêsl(2) theories,̃V21 andṼ12 suffice.) Following Ocneanu [1],
it is convenient to represent these graphs simultaneously on the same chart, with edges of
different colours. We shall refer to this multiple graph as the Ocneanu graphG̃ associated
with the graphG of the original theory. Examples are given in Fig. 10 of Appendix B for
ŝl(2) theories, and additional ones may be found in [2,11]. If one attaches the matrixTx to
vertexx, the two kinds of edges of the graph describe the action of the fusion matrices on
the left and right indices of theTx . For example, the edges of the first colour (red full lines
on Fig. 10) encode thẽVf 1;yz in

(7.14)Nf i
i′Ti′j

z =
∑
y

Ṽf1;yzTij
y

or in short,(Nf ⊗ I)Tz =∑
y Ṽf1;yzTy , and likewise, those of the second colour (blue,

broken) describe(I ⊗Nf )Tz =∑
y TyṼ1f ;yz.

7.2. The Ñ algebra

In turn, this Ocneanu graph̃G may be used to define a new algebra in the same way as
N̂ was attached to the graphG. To each vertexx of the graph we attach a matrix̃Nx =
{Ñyx

z} of size |Ṽ| × |Ṽ|. For the special vertex 1,̃N1 = I . The matrices̃N are assumed
to satisfy the algebra (1.5):̃Vij Ñx =∑

z Ṽij ;xzÑz (compare with (7.2).) Using the spectral
decomposition (7.8) of thẽV , one may construct an explicit solution for these matricesÑx

(7.15)Ñyx
z =

∑
J ;α

∑
β,γ

Ψ (J ;α,β)
y

Ψ
(J ;β,γ )
x

Ψ
(J )
1

Ψ
(J ;α,γ )∗
z .

Taking into account the orthonormality of theΨ , one finds that̃N1x
z = Ñx1

z = δxz and
thatÑx form a matrix representation of an algebra

(7.16)ÊxÊy =
∑
z

Ñxy
zÊz,
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with an identity and a finite basis. The algebra is associative, but in general non-
commutative if someZij > 1. Indeed, if allZij = 1, the summation overα,β, γ in (7.15)
is trivial, and this equation is, once again, nothing else than the spectral decomposition of
the matrices̃N in terms of the one-dimensional representationsΨx/Ψ1 of the algebra. If,
however, someZij > 1, the matrices̃N are not simultaneously diagonalisable, but rather

block-diagonalisable with blocksγ
(J ;β,γ )
x = Ψ

(J ;β,γ )
x /Ψ

(J )
1 forming aZjj̄ -dimensional

representation of the algebra

(7.17)
∑
β

γ (J ;α,β)
x γ

(J ;β,γ )
y =

∑
z

Ñxy
zγ

(J ;α,γ )
z .

(See also [10] (Lemma 5.2) for a similar although somewhat less explicit variant of (7.15),
with Ñz

xy = 〈βz,βx ◦βy, 〉 being the “sector product matrices”.) By inspection, one checks,
at least in allADE cases (see below and Appendix B), that theseÑ matrices have
nonnegative integer entries. They may indeed be viewed as multiplicities (of dual triangles
with three white vertices), and accordingly the algebra (7.16) appears as the algebra of the
center ofÂ, with the product in the l.h.s. of (7.16) given by the vertical product of [1],
compare with (3.23) and see Appendix A. These matrices are recovered also directly from
(7.6), (7.7),

(7.18)Ñyx
z = Tr

(
XyXxX

†
z

)
using that TrP (J ;α,β) := δαβS1j S1j̄ (this definition of the trace may be justified in unitary
CFT’s in exactly the same way as the norm of the Ishibashi states, via theτ → ∞
asymptotics of the charactersχj (τ ), see [3,61] and (4.2) of [8]). Equivalently, we have

(7.19)XxXy = Ñxy
zXz,

thus justifying the name of twist fusion algebra that we give to theÑ algebra. In this
latter context, the noncommutativity of this̃N algebra may be viewed as coming from
the inpenetrability and the resulting lack of commutativity of the defect lines to which the
twistsXx andXy are attached.

If a conjugation in the set̃V is defined through

(7.20)Ψ
(J ;α,β)
x∗ = (

Ψ (J ;β,α)
x

)∗
(note the reversal of the indicesα andβ !), it follows that

(7.21)Ñyx
1= δxy∗,

and the noncommutativity of̃N modifies the analogue of the symmetry relations (2.4)
according to

(7.22)Ñyx
z = Ñx∗y∗z

∗ = Ñzx∗y.

Eq. (7.15) may be rewritten as a sum of
∑

j j̄ ;α 1 =∑
j j̄ Zjj̄ (matrix) idempotents

eJ ;α
yz;β,γ = 1

Zjj̄
Ψ

(J ;α,β)
y Ψ

(J ;α,γ )∗
z ,

(7.23)
(
eJ ;αeJ ;α

)
xz;β,γ =

∑
y,γ ′

eJ ;α
xy;β,γ ′ e

J ;α
yz;γ ′,β = eJ ;α

xz;α,β,
∑
J,α,β

Zjj̄ eJ ;αβ,β = Ñ1,
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(7.24)Ñx =
∑
J,α

∑
β,γ

Zjj̄ γ
J ;β,γ
x eJ ;αβ,γ =

∑
J

Zjj̄ γ
J
x

∑
α

eJ ;α,

where, suppressing the matrix indices, the sum runs over the physical spectrum(J,α) :=
(J,α,α). These are the labels of the representations of theÑ algebra, which areZjj̄ -

dimensional and given according to (7.17) by the matricesγ J
x , i.e.,

∆J ;α,β : Ñx →∆J ;α,β
(
Ñx

)= γ J ;α,β
x ,

(7.25)∆J ;α,γ
(
ÑxÑy

)=∑
β

∆J ;α,β
(
Ñx

)
∆J ;β,γ

(
Ñy

)=∑
z

Ñz
xy∆J ;α,γ

(
Ñz

)
.

The formula (7.24) is then interpreted as a decomposition of the regular representation
of the Ñ -algebra into a sum of representations∆J each appearing with multiplicityZjj̄

so the dimension is
∑

j j̄ Zjj̄ dim(∆J ) =∑
j j̄ Z

2
j j̄
= |Ṽ|. In [11] a formula analogous to

(7.25), or (7.17) appears directly for the elementsÊx in Â spanning (with respect to the
vertical product) the algebra (1.4), see Appendix A.

We now return to the graph algebrâN of the chiral graphG mentioned in the
introduction to this section. In fact, we shall restrict our attention to type I cases, which are
the only ones for which all the matrix elements of theN̂a are nonnegative integers. Because
in this case, Eq. (7.3) applies, each exponent appears(nj1

a)2 times for each representation
a of the extended algebra, identified with a vertexa ∈ T . It is advantageous to denote
the corresponding eigenvectors of then matrices asψ(j,a;α,β), with α,β = 1, . . . , nj1

a .

In [18], various formulae have been established for the componentsψ
(j,a;α,β)
b , b ∈ T . It is

easy to extend them to

ψ
(j,a;α,β)
1 = δαβψ

(j,a)
1 , ψ

(j,a)
1 =

√
S1j S

ext
1a , for na

j1 �= 0,

(7.26)ψ
(j,a;α,β)
b = δαβψ

(j,a)
1

Sext
ba

Sext
1a

, for a, b ∈ T ,

using the modular invariance identity

(7.27)
∑
i∈I

Sij ni1
b =

∑
a∈T

Sext
ba nj1

a, b ∈ T .

The similarity with the case of thẽN algebra (of which thêN algebra turns out to be
a subalgebra in these type I cases) suggests a formula which encompasses and generalises
all known cases

(7.28)N̂cb
d =

∑
a∈T ,j∈I

α,β,γ=1,...,nja
1

ψ
(j,a;α,β)
c

ψ
(j,a;β,γ )
b

ψ
(j,a)

1

ψ
(j,a;α,γ )∗
d .

It is an easy matter to check that the relations (7.1) and (7.2) are indeed satisfied. We have
checked in the simplest casen = 2 of ŝl(2n)2n ⊂ ŝo(4n2 − 1)1, for which multiplicities
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ni1
a > 1 are known to occur, and we conjecture in general, that this formula always yields

nonnegative integers, and gives an explicit realisation of the considerations of [49,62].7

7.3. The ñ matrices

We then introduce a new set of matricesñx = {ñax
b}, a, b ∈ V , which form a nonnegative

integer valued representation (nimrep) of this̃N algebra, see (1.3), in clear analogy
with (1.1).8 Like the Ñ , these matrices are non-commuting in general, if someZjj̄ > 1,
and they admit a block decomposition like (7.15)

(7.29)ñax
b =

∑
j

∑
α,β=1,...,Zjj

ψ
j,α
a

Ψ
(j,j ;α,β)
x

Ψ
(j,j)

1

ψ
j,β∗
b = ñbx∗a.

One also checks, using the orthonormality and conjugation properties of theψ andΨ , that

(7.30)
∑
x∈Ṽ

ñax
a′ ñb′x∗

b =
∑
i∈I

nia
bni∗b′

a′ .

These matrices are again interpreted as multiplicities: namelyñax
b describes the dimension

of the spacêV b
ax of dual triangles with fixed markingsx, a, b (one black, two white

vertices). Varyinga, b, they form a basis of the dual vector spaceV̂x . Then (1.3) serves
as a consistency condition needed to give sense to the dual (vertical) productV̂x ⊗v V̂y ,
in which V̂z appears with multiplicitỹNxy

z, the latter replacing the Verlinde multiplicities
in a formula analogous to (3.3). On the other hand (7.30) is interpreted as the equality
between the dimensions of the space of double triangles and that of dual double triangles
with a, a′, b, b′ fixed and justifies a change of basis considered in Appendix A (see Fig. 9)
Recalling that in Section 3,mj =∑

a,b∈V nja
b stands for the dimension of the spaceV j

of triangles (or CVOs), we now denotẽmx =∑
a,b∈V ñxa

b the dimension of the spacêVx .

The equality of the dimensions of the double triangle algebraA and of its dualÂ amounts
to the identity

(7.31)
∑
j∈I

m2
j =

∑
x∈Ṽ

m̃2
x,

which results indeed from the summation overa, a′, b, b′ in (7.30). On the other hand a less
trivial equality holds, checked case by case in allsl(2) cases,

(7.32)
∑
j∈I

mj =
∑

Cx,x∈Ṽ
m̃x,

where the sum in the r.h.s. runs over the “classes”Cx in Ṽ (or classes in thẽN algebra),
determined byx ∼ y, iff ∀J , tr(∆J (Ñx))=∑

α,α γ
J,α,α
x = tr(∆J (Ñy)), i.e., the characters

7 It is understood that in cases where exponents come with a nontrivial multiplicity, the remaining arbitrariness
in the choice of theψ is used to make thêN nonnegative integers, and this seems always possible in type I cases.

8 In the subfactor approach, given an inclusion of subfactorsN ⊂M , the equality (1.3) is interpreted as an
associativity condition for theM–M , M–N sectors, similarly as the analogous identity (1.1) for theN–N , N–M
sectors [11].
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of the representations of thẽN algebra are constant on the classCx . For cases with trivial
multiplicitiesZjj̄ = 0,1 the summation in the r.h.s. runs over the setṼ and (7.32) expresses

the equality of dimensions of the regular representations ofA andÂ. In the sl(2) Deven

cases there are two nontrivial classesCx , each containing the fork vertices in the chiral
subgraphs of̃G, see Appendix B.

The physical interpretation of the matrices (7.29) is obtained by looking at the effect
of a twist in the presence of boundaries. One consider the RCFT on a finite cylinder with
boundary states|a〉 and 〈b| at the ends and a twist operatorX

†
x in between. Repeating

the calculations of partition functions carried out in [3,8], one finds that the “open string
channel” is described by a Hilbert space with representationVi occurring with multiplicity
(niñx)a∗b

∗
, i.e., the matrix element of a (commuting) product of the matricesni and ñx .

Thus(ñx)a∗b
∗

is the multiplicity of the identity character in this “twisted” cylinder partition
function.

7.4. The M̃ matrices

The last set of matrices that we may associate with the Ocneanu graph generalises the
Pasquier algebra. We can define a dual (in the sense of [58]) of theÑ algebra by the algebra
of linear maps

∆+
J ;β,β ′ : Ñx →∆+

J ;β,β ′
(
Ñx

)= Ψ
(J ;β,β ′)
1

Ψ 1
x

∆J ;β,β ′
(
Ñx

)= Ψ
(J ;β,β ′)
x

Ψ 1
x

,

(7.33)

(
∆+

I ;α,α′∆
+
J ;β,β ′

)(
Ñx

)=∆+
I ;α,α′

(
Ñx

)
∆+

J ;β,β ′
(
Ñx

)
=

∑
K;γ,γ ′

M̃(I ;α,α′)(J ;β,β ′)(K;γ,γ
′)∆+

K;γ,γ ′
(
Ñx

)
with structure constants

(7.34)M̃(I ;α,α′)(J ;β,β ′)(K;γ,γ
′) =

∑
x

Ψ
(I ;α,α′)
x

Ψ 1
x

Ψ (J ;β,β ′)
x Ψ

(K;γ,γ ′)∗
x .

This algebra is abelian and its 1-dimensional representations, or characters, are given
by (7.33). An involution(∗) in the set{(I ;α,α′)} is defined by the complex conjugation

Ψ
(I ;α,α′)∗
x = Ψ

(I ;α,α′)∗
x so thatM(I ;α,α′)∗ = tM(I ;α,α′). The subset of the numbers formed

by the M̃(I ;α,α)(J ;β,β)(K;γ,γ ), i.e., diagonal in the multiplicity indices, does not form
a subalgebra but does play a physical role. Their explicit computation (again in theADE

cases) shows that (i) they are nonnegative algebraic numbers; (ii) they give the modulus
squares of the relative structure constants of the OPA of the corresponding CFT

(7.35)
∣∣d(I ;α)(J ;β)(K;γ )

∣∣2= M̃(I ;α,α)(J ;β,β)(K;γ,γ ).

We recalled in Section 5 that the Pasquier algebra gives access to the relative structure
constants of spinless fields. The OPA structure constants of non-left–right symmetric fields,
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however, were escaping in general this determination in terms of graph-related data.9 The
empirical result in [17] only states that in the cases of conformal embeddingsD4,E6,E8

the l.h.s. of (7.35) factorises into a product of scalar constants (and hence is expressed
by the Pasquier algebra structure constants) and that for theDevenseries this factorisation
holds in a somewhat weaker sense; this factorisation is confirmed (see Appendix B) by
what is computed for the r.h.s.

In fact (7.35) can be derived extending the consideration of [8] to 4-point functions
of physical fields in the presence of twists; it is sufficient to look at the functions on
the plane, which can be interpreted as theL/T → ∞ limit of the torus correlators,
limL/T→∞ Tr(e−2LH . . .), when we map it to the plane throughw→ z=−2πiw/T . Let us
sketch the argument which is a generalisation of the derivation of the locality equations; we
shall use the convention of notation in [18]. We consider a 4-point function with insertion
of two twist operators (7.6) (omitting the labels(P ) on the fields and the OPE coefficients)

〈0|Φ(J ∗;β∗)(z1, z̄1)Φ(I ∗;α∗)(z2, z̄2)XxΦ(I ;α′)(z3, z̄3)Φ(J ;β ′)(z4, z̄4)X
†
x |0〉

=
∑

k,k̄,γ ,γ ′
d
(1)
(J ∗;β∗)(J ;β) d

(J ;β)
(I ∗;α∗)(K;γ,γ ′)

Ψ
(k,k̄;γ,γ ′)
x

Ψ
(k,k̄)
1

d
(K;γ,γ ′)
(I ;α′)(J ;β ′)

Ψ
(1)
x

Ψ
(1)
1

(7.36)× 〈0|φ1
j∗j (z1)φ

j
i∗k(z2)φ

k
ij (z3)φ

i
i1(z4)|0〉 × (right chiral block),

taking into account thatd(J ;β ′)
(J ;β ′)(1) = 1. This correlator is alternatively written as

〈0|Φ(I ∗;α∗)(z2, z̄2)XxΦ(I ;α′)(z3, z̄3)Φ(J ;β ′)(z4, z̄4)X
†
xΦ(J ∗;β∗)(z1, z̄1)|0〉

=
∑

p,p̄,δ,δ′
d
(1)
(I ∗;α∗)(I ;α)

Ψ
(i,ī;α,α)
x

Ψ
(i,ī)
1

d
(I ;α)
(I ;α′)(P ;δ,δ′)d

(P ;δ,δ′)
(J ;β ′)(J ∗;β∗)

Ψ
(j,j̄ ;β,β)
x

Ψ
(j,j̄ )

1

(7.37)× 〈0|φ1
i∗i (z2)φ

i
ip(z3)φ

p

jj∗(z4)φ
j∗
j∗1(z1)|0〉 × (right chiral block).

Next we use the braiding relations for the chiral blocks to identify the two products of
chiral correlators , i.e., movej∗ andj̄∗ to the very right — this brings about the product of

fusing matricesFkp

[
j∗
i

j
i

]
Fk̄p̄

[
j̄∗
ī

j̄

ī

]
. We equate the coefficients and, furthermore, take the

valuep = 1 in the resulting identity — it impliesα = α′ andβ = β ′ and also trivialises the
fusion matrices to the ones in the diagonal counterpart of (3.11), i.e., we get ratios of square
roots of q-dimensions, which precisely match the factorsΨ1 (7.26) coming from the twists,
and we finally obtain taking also into account the symmetries of the OPE coefficients (this
produces the same sign(−1)sI+sJ in both sides), see [18],

(7.38)
∑

k,k̄,γ ,γ ′

∣∣d(K;γ,γ ′)
(I ;α)(J ;β)

∣∣2Ψ (K;γ,γ ′)
x

Ψ
(1)
x

= Ψ
(I ;α,α)
x

Ψ
(1)
x

Ψ
(J ;β,β)
x

Ψ
(1)
x

,

9 Eq. (5.7) represents the constantsd in terms of the 3j - and 6j -symbols and the general nonscalar reflection
coefficients.
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from which (7.35) follows. In deriving (7.38) we have assumed that the decomposition of
the physical fields involves several copies of each product of left and right chiral blocks,
i.e.,

ΦI ;α(z, z̄)=
∑

j,j̄ ,k,k̄,β,β ′,γ ,γ ′
d
(K;γ,γ ′)
(I ;α)(J ;β,β ′)

(
φk
ij (z)⊗ φk̄

īj̄
(z̄)

)(γ ,γ ′)
(α,α)(β,β ′).

These copies are labelled by the pairs(β,β ′), (γ, γ ′) and they correspond to the

multiplicity of states in the projectorsP (k,k̄;γ,γ ′)
x in (7.6); explicit construction is provided

by the Coulomb gas realisation of the corresponding correlators. In the previous discussion
we have suppressed for simplicity the multiplicity indicest = 1,2, . . . ,Nij

k and t̄ =
1,2, . . . ,Nīj̄

k̄ , appearing in the higher rank cases; when restored the modulus square in

the l.h.s. of (7.38) and (7.35) is replaced by
∑

t,t̄

∣∣d(K;γ,γ ;t,t̄)
(I ;α)(J ;β)

∣∣2. Note that in the presence
of a twist operator the identity 1-point function appears normalised as〈0|Φ(1)Xx |0〉 =
Ψ

(1)
x /Ψ

(1)
1 = d̃x .

An intriguing issue is the fact that from a mathematical point of view, the indicesx play
a role dual to that of representation labelsi ∈ I (dual in the algebraic sense, going from
a linear space to the space of its linear functionals, see Appendix A and also Eq. (7.12)),
while from a physical point of view, they play a role dual to that of the labels of bulk fields:
this is apparent in Eq. (7.15) where there is a (Fourier-like) duality between the setṼ of x
and the set̃Exp of pairs(J ) counted with a multiplicity(Zjj̄ )

2, that is between the vertices

and the “exponents” of the graph̃G.
We conclude this subsection with the remark that some correlators including twist

operators may be interpreted as generalised order–disorder field correlators, compare
with [38], where such functions matching the operator content of theZ2-twisted torus
partition functions of [63,64] were constructed and their OPE coefficients computed. We
recall [8] that the partition functions of [63,64] provide the simplest examples of solutions
of (7.13).

7.5. Constructing the G̃ graphs

Let us see now how the matrices̃V1
x and Ψ , from which the graph̃G and all the

other matrices̃V , Ñ , ñ andM̃ may be constructed, can be determined in a given CFT,
i.e., starting from a given modular invariantZ and the associated graphG. (See [65] for
a detailed discussion of the particularE6 case of̂sl(2) following a different approach.)

First, in the case of a diagonal theory,Zij = δij , it is natural to identify the set̃V with
the setI of representations, since their cardinality agrees, and to take

(7.39)Ṽij =NiNj

understood as a matrix product, i.e.,Ṽijx
y =∑

k∈I Nix
kNjk

y , in particularṼij ;1k =Nij
k .

The correspondingΨ (j,j)
x are just the modular matrix elementsSxj and the Ocneanu graph

G̃ = Ã, which is generated by the “fundamental”̃Vf1 and Ṽ1f , both equal toNf , is
identical to the ordinary graphG=A.
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As a second case, consider a nondiagonal theory with a matrixZij = δiζ(j), where
ζ is the conjugation of representations or some other automorphism of the fusion rules
(like the Z2 automorphism in theD2&+1 cases ofŝl(2) theories). TheñV = I, and
Ṽij = Ṽ

(diag)
iζ(j) =NiNζ(j). The graph is generated bỹVf1=Nf andṼ1f =Nζ(f ), each one

giving a subgraph isomorphic toA (see Fig. 10 for the case ofDodd). TheΨ (J )
x = Sxj δjζ(j̄ ),

and one finds that thẽN matrices reduce to those of the diagonal case, i.e.,Ñxy
z = Nxy

z,
x, y, z ∈ I, while ñax

b = nxa
b andM̃(i,ζ(i))(j,ζ(j))

(k,ζ(k)) =Nij
k .

General expressions may be obtained for type I theories (7.3). The algebra (7.1) en-
ables one to define a partition of the setV into equivalence classesTκ : a ∼ a′ if
∃b ∈ T : N̂ab

a′ �= 0 [14,58]. The number of such classes equals the number of represen-
tations of A coupled to the identity in the modular invariant, i.e., ofi ∈ I such that
Z1i �= 0.10 Since (7.3) applies to the matrixT1 = Z, it suggests to look for similar ex-
pressions for the otherTx . We find that in all known type I cases, in particular forŝl(2)
theories, the labelsx may be taken of the form(a, b, κ), a, b ∈ V , κ a class label, and

(7.40)Tx
ij = Ṽij∗;1(a,b,κ) = P

(κ)
ab :=

∑
c∈Tκ

nic
anjc

b

with c running over a certain subsetTκ of vertices, or equivalently

(7.41)Ṽij ;1(a,b,κ) =
∑
c∈Tκ

nic
anjb

c.

One checks that indeedT1 = Z, the modular invariant matrix as given in (7.3). As the
matricesni form a representation of the fusion algebra,ninj = Nij

knk , one finds that
upon left multiplication by anyNf ,

(7.42)Nf .P
(κ)
ab =

∑
a′

nfa′
aP

(κ)

a′b

and likewise, upon right multiplicationP (κ)
ab .Nf ∗ = ∑

d P
(κ)
ad nf d

b by repeated use of
nT
f = nf ∗ .

In theories likeZn orbifolds of ŝl(n) theories, there is a partition of the set of vertices
into classesTα such that

(7.43)∀a, a′ ∈ Tα, ∀b ∈ Tβ �= T , N̂ba
a′ = 0,

because thêN algebra respects theZn grading of the vertices. Then let us prove that (7.13)
follows from the ansatz (7.41) withx = (a,1, κ)∑

a

∑
κ

(
P

(κ)
a1

)
ij

(
P

(κ)
a1

)
i′∗j ′∗ =

∑
c∼c′

∑
i′′∈I

Nii′
i′′ ∑

d

ni′′1
dN̂dc′

cnj1
cnj ′1

c′∗

=
∑
c,c′

∑
i′′∈I

Nii′
i′′ ∑

d∈T
ni′′1

dN̂dc′
cnj1

cnj ′1
c′∗

10 This may be established in cases where theN̂ algebra is commutative, and where the structure constants of
both N̂ and its dualM are nonnegative, following the work of [58]. It seems to extend to noncommutative cases
as well, as we checked on the aforementioned case ofŝl(4)4, where some entries ofM are negative or even
imaginary.
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(7.44)=
∑
i′′,j ′′

Nii′
i′′Njj ′

j ′′Zi′′j ′′

where we have repeatedly used (7.2) and (1.1) and on the second line, we have used (7.43)
to restrict the summation overd to the setT ; the constraintc ∼ c′ is then automatically
enforced, which enables us to sum over independentc andc′.

For the case of a conformal embeddingĥk ⊂ ĝ1, we checked in all̂sl(2) cases and
conjecture in general that the labelκ may be dropped, andx represented by a pair of
vertices(a, b), a ∈ V , and b running over a subset of vertices. Then we make use of
formula (7.26) to express the eigenvectorsψ

j,d;α,β
c , c ∈ T , in terms of the modularSext

matrix of the extended algebra (i.e., of theĝ1 current algebra). In that way we find,
multiplying (7.41) withSi∗j Sī∗ j̄ ,

(7.45)
∑
γ

Ψ
(J ;γ,γ )
x =

∑
d,α,ᾱ

ψ
(j,d;α,α)
a ψ

(j̄ ,d;ᾱ,ᾱ)∗
b

Sext
1d

, x = (a, b),

where the sum in the l.h.s. runs according toγ = 1, . . . ,Zjj̄ =
∑

d∈T nj1
dnj̄1

d, and

that in the r.h.s. runs onα = 1, . . . , nj1
d , ᾱ = 1, . . . , nj̄1

d . If there is only oned ∈ T

in the sum we can identifyγ = (α, ᾱ), if there are more, firstγ has to be split into
a multiple index and then each identified with a pair(α, ᾱ) depending ond . For a ∈ T

Ψ
(J ;γ,γ ′)
a = δγ γ ′Ψ

(J )
1 Sext

ad /S
ext
1d is consistent with (7.45) and implies that̃Nab

c = extNab
c

for a, b, c ∈ T , using
∑

j,j̄∈d Zjj̄ S1j S1j̄ = (Sext
1d )2, and hence, that̃Na , a ∈ T , form

a subalgebra isomorphic to the extended fusion algebra.
In particular in the cases with commutativẽN algebra one computes

Ṽi,j ;(a1,b1)
(a2,b2) =

∑
c∈T

(
niN̂a1

)
c
a2
(
nj∗N̂b1

)
c
b2,

Ñ(a1,b1)(a2,b2)
(a3,b3) =

∑
c∈T

(
Ña1N̂a2

)
c
a3
(
N̂b1N̂b2

)
c
b3,

(7.46)ñ(a,b) = N̂aN̂b,

which ensures that these matrices are integral, nonnegative valued. In particular

Ṽ(i,1)(a11)
(a2,1) = nia1

a2, Ṽ(1,j)(1,b1)
(1,b2) = njb1

b2.

The description ofTx as a bilinear form in then matrices does not seem to restrict to
type I theories like in (7.41). Indeed, this is what happens in theDodd andE7 cases of̂sl(2)
theories. Knowledge of theTx matrices (and in general of̃V x

ij ;(1,1,κ) for anyκ) determines
the whole structure. It is easy to invert the (block-)diagonalisation formula of theTx and
to get, using also (7.11),

(7.47)
∑
γ

Ψ
(J ;γ,γ )∗
x =

√
S1j S1j̄

∑
i,ī∈I

Tx

iī∗Si∗j Sī∗ j̄ .

This determinesΨx completely for cases withZjj̄ = 1, while higher multiplicitiesZjj̄ > 1
require a little more work and care, see Appendix B for an illustration on theD2& case of
ŝl(2). OnceΨ is known, it is a simple matter to obtain allñ, Ñ , Ṽ andM̃ matrices.
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8. Conclusions and perspectives

The reader who has followed us that far should by now be convinced of the relevance
and utility of Ocneanu’s DTAA in the detailed study of rational CFT. In our view, two
new concepts developed in this paper in connection with this quantum algebra have proved
particularly useful:

– the generalised CVO, which are covariant under the action ofA, unify the treatment
of bulk and boundary fields and permit a more direct discussion of their operator
algebras;

– the twist operators, whose role manifests itself in several ways, give a physical
interpretation to the abstract labelsx of the dual algebrâA and to the coefficients̃Nxy

z

and also, through their interplay with bulk fields, provide a new way to determine the
general OPA structure constants in the bulk.

Several points deserve further investigation. First, as already pointed out in the
Introduction, many of our statements which rely on the explicit examination of particular
cases, mainly based onsl(2) andsl(3), and which are presented as conjectures in general,
should be extended in a systematic way to all RCFT. The case of orbifold theories, in which
the relevant graphs would beaffine Dynkin diagrams and their generalisations, should be
quite instructive. Other directions of generalisations include irrational CFTs (genericc � 1
CFTs orN = 2 superconformal CFTs) or noncompact theories like Liouville [66].

Secondly, among the five types of 3-chains∗F attached to the tetrahedra of Fig. 1, only
two, namelyF and (1)F have received a physical interpretation, as they underlie both
the CFT and the related integrable critical lattice models. Understanding the meaning of
the others, which all involve one or several twist labelsx, presumably requires a deeper
discussion of the interplay of twist operators with bulk and/or boundary fields.

In fact the general properties of twists and their relations with “twisted” representations
of the underlying chiral algebraA await a good discussion. We regard as quite significant
that all partition functions either on a torus or on a cylinder with or without defect lines
(twists) are expressible as linear or bilinear forms with nonnegative integer coefficients of
the |V| linear combinations of characters

(8.1)χ̂a :=
∑

ni1
aχi =Za|1.

This follows from Eqs. (7.3), (7.4) and from our ansatz (7.41) that in type I the matrices
Tx are bilinear in then’s. (In type II theories, we recall that then’s that appear here are
those of the parent type I theory.) Theχ̂a thus appear as the building blocks of all partition
functions. Their natural interpretation, as alluded above, is that they are the characters
of a class of more general representations of the extended algebraAext. Among them, the
subseta ∈ T represents the ordinary, untwisted, representations. The other have been called
twisted [3], or solitonic [55]. The induction/restriction method [49,62] of constructing
these “twisted sectors” essentially amounts to the recursive solution of the system of
Eqs. (1.1), (7.2), (7.1). On the other hand, the direct definition of (some) of these twisted
representations, closer in spirit to the concept of twist as developed in Section 7, has been
achieved only in a limited number of cases, see, e.g., [56].
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Appendix A. Ocneanu DTA — dual structure

This appendix contains some more details on the Ocneanu DTA [1,11] and its WHA
interpretation [4].

The coproduct (3.18) does not preserve the identity, i.e.,

(A.1)∆(1v)=
∑
b

∑
i,j,a,c,α,γ

e
(cb)(cb)
i,α,α ⊗ e

(ba)(ba)
j,γ ,γ

(=: 1v(1)⊗ 1v(2)
) �= 1v ⊗ 1v,

while ∆(1)= 1⊗ 1 is one of the axioms of a Hopf algebra.
Foru,w ∈A anduw — the matrix (vertical) product, one has

(A.2)ε(uw)=
∑

i,j,a,b,c,α,γ

ε
(
ue

(cb)(cb)
i,α,α

)
ε
(
e
(ba)(ba)
j,γ ,γ w

)(=: ε(u1v(1)
)
ε
(
1v(2)w

))
,

e.g., foru =∑
a,b Ca,be

aa,bb
1 , w =∑

a,b C
′
a,be

aa,bb
1 — one getsε(uw) = tr(CC

′
), and

ε(u)ε(w)=∑
a,b Cab

∑
a′,b′ C

′
a′b′ �= ε(uw) in general, while the counit of a Hopf algebra

is an algebra homomorphism.
The antipode is a linear anti-homomorphismS(uw) = S(w)S(u), defined according to

(3.21), and so thatS−1(u)= (S(u∗))∗. It is also an anti-cohomomorphism, i.e., inverts the
coproduct, in the sense that

(A.3)∆ ◦ S = (S ⊗ S) ◦∆op.

Here∆op(u)= u(2)⊗u(1) for ∆(u)= u(1)⊗u(2). Furthermore, instead of the Hopf algebra
postulateS(u(1))u(2) = 1vε(u) the antipode of a WHA satisfies

(A.4)S
(
u(1)

)
u(2)⊗ u(3) =

(
1v ⊗ u

)
∆(1v)

(= 1v(1)⊗ u1v(2)
)
.

The relations (A.3), (A.4) are checked using both unitarity relations (3.5), as well as (3.13),
(3.14); the choice of the coefficient in (3.21) is essential.

One turnsA into a quasitriangular WHA by defining anR-matrix, i.e., an element
R ∈∆op(1v)A⊗A∆(1v), which intertwines the two coproducts,

(A.5)∆op(u)R=R∆(u),
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subject to the constraints,

(A.6)(∆⊗ Id)R=R13R23, (Id ⊗∆)R=R13R12.

Namely,

R=
∑
i,j,p

a,a′,b,c,c′ ,d
α,α′ ,γ,γ ′ ,β,β′ ,t

(1)F bp

[
i j

c′ a′
]β ′ t

α′ γ ′
w

i,j,p

a,a′;c,c′;β,β ′

(A.7)× (1)F
∗
dp

[
j i

c a

]β t

α γ

e
(ba′)(cd)
j,γ ′,α ⊗ e

(c′b)(da)
i,α′,γ .

Here w
i,j,p

a,a′;c,c′;β,β ′ is a unitary matrix and to make contact with the CFT under
consideration we choose

(A.8)w
i,j,p

a,a′;c,c′;β,β ′ = δββ ′δaa′δcc′e
−iπ∆

p
ij ,

so that the coefficient in (A.7) reproduces the braiding matrixB̂(+) in (4.14). Similarly one
definesR∗ ∈∆(1v)A⊗A∆op(1v), corresponding tôB(−); the inversion relation (4.10)
is equivalent toR∗R=∆(1v), RR∗ =∆op(1v). The relations (A.6) are equivalent to the
fusing–braiding relation (4.17) and its counterpart discussed in Section 4. Denoting byP

the permutation operator inV i ⊗ V j , the definition (A.7) with the choice (A.8) implies

(A.9)PR 1√
Pb

e
i,α′
cb ⊗h e

j,γ ′
ba =

∑
d,
α,γ

B̂∗bd
[
i j

c a

]α γ

α′ γ ′
(−)

1√
Pd

e
j,α

cd ⊗h e
i,γ

da .

The horizontal product inA depicted on Fig. 6 reads more explicitly

e
(cb)(c′b′)
i,α,α′ ⊗h e

(da)(d ′a′)
j,γ ,γ ′ = δbdδb′d ′

∑
p

β,β′ ,t

g
p;b,b′
ij

(1)Fbp

[
i j

c a

]β t

α γ

(A.10)× (1)F
∗
b′p

[
i j

c′ a′
]β ′ t

α′ γ ′
e
(ca)(c′a′)
p,β,β ′ .

The dual algebraÂ of A is the space of linear functionals onA. It is a matrix algebra

Â =⊕
x∈Ṽ Matm̃x

with matrix unit basis{E(a′a;η)(d ′d;ζ )
x , x ∈ Ṽ}, depicted by double

triangles, or blocks, with an intermediate indexx see Figs. 2, 9. The indices(a, a′;η),
a, a′ ∈ V, η = 1,2, . . . , ñax

a′ , label the states in a linear vector spaceV̂x of dimension
dim(V̂x)=∑

a,a′ ñax
a′ = m̃x . They are depicted in Fig. 1 as triangles with two white and

Fig. 9. Relating the two bases.
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1 black vertices. The vertical and horizontal products are exchanged in the dual algebra,
i.e., the horizontal product is the matrix product in̂A and the vertical product for the basis
elementsEx is given by a dual analogue of (A.10), with the convention that the second
element appears above the first. In this product the role of the multiplicitiesNj andnj

is taken over bỹNx and ñx , with the relation (1.3) serving now as a consistency relation
replacing (1.1). The dual 3j - and 6j -symbols(1)F̃ andF̃ , the last two of the tetrahedra
in Fig. 1, satisfy unitarity relations analogous to (3.5) and two more pentagon relations
parallel to (3.9) and (3.7), respectively. The matrix̃F dual to the fusing matrixF has all

indices of typex, while (1)F̃bz

[
y
c
x
a

]
is a matrix with 3+ 3 indices of typea, b, c ∈ V and

x, y, z ∈ Ṽ . All the steps of Section 2 can be repeated, in particular we can choose a gauge
fixing for (1)F̃ analogous to (3.11), using thatd̃xPa =∑

b ñax
bPb.

The finite dimensional algebrasA andÂ can be identified, looking at{eα,α′j } and{Eη,ζ
x }

as providing different bases, see Fig. 9. This introduces a new “fusing” matrix(2)F , given,
up to a constant, by the numerical value of the linear functionalE

η,ζ
x (e

α,α′
j ) ∈ C. (2)F is

the third tetrahedron on Fig. 1, supported by two black and two white vertices, and two
types of triangles of multiplicitiesnj andñx . More explicitly we have

Eηζ
x

(
eαα

′
j

)=E
(a′a)(d ′d)
x;η,ζ

(
e
(cb)(c′b′)
j ;αα′

)
(A.11)= δacδbdδa′c′δb′d ′c

da′
j c̃da

′
x

(2)F bc′
[
j b′
c x

]ηα′

α ζ

with

(A.12)cbc
′

j c̃bc
′

x = d̃xdj

PbPc′

(
S11

ψ1
1

)2

.

The equality (7.30) ensures that the number of elements on both sides of Fig. 9 for fixed
a, a′, d, d ′ and varyingj andx is the same, so the linear transformation(2)F is invertible,
the inverse denoted(2)F̃ ∗, in the sense of the relations∑

x,η,ζ

cbc
′

j c̃bc
′

x
(2)Fbc′

[
j b′
c x

]ηβ

α ζ

(2)F̃
∗
bc′

[
j ′ b′
c x

]ηβ ′

α′ ζ
= δjj ′δαα′δββ ′,

(A.13)
∑
j,α,β

cbc
′

j c̃bc
′

x
(2)Fbc′

[
j b′
c x ′

]ηβ

α ζ

(2)F̃ ∗bc′
[
j b′
c x

]η′ β

α ζ ′
= δxx ′δζζ ′δηη′ .

We shall require that(2)F and(2)F̃ are trivial forx = 1 andj = 1, analogously to (3.4).
This is consistent with the inverse relations (A.13), inserting (A.12) and using that

(A.14)
∑
x

ñax
bd̃x =

(
ψ1

1

S11

)2

PaPb =
∑
j

nja
bdj .

We recall that the ratio of constantscbc
′

j appears in the normalisation of the horizontal

product (A.10), and similarly a ratio of the constantsc̃bc
′

x determines the constant in
the vertical product of the dual basis elements. Inserting the relation in Fig. 9 in both
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sides of the horizontal product (A.10) and using furthermore that the horizontal product
acts trivially on the dual basis by a formula analogous to (3.22), one gets the pentagon
relation [1]∑

b′,α′,γ ′,ζ

(1)F b′p

[
i j

a′ c′
]β ′ t

γ ′ α′
(2)F ba′

[
i b′
a x

]η γ ′

γ ζ

(2)F cb′
[
j c′
b x

]ζ α′

α η′

(A.15)=
∑
β

(1)F bp

[
i j

a c

]β t

γ α

(2)F ca′
[
p c′
a x

]ηβ ′

β η′
.

In terms of the functional values (A.11) the identity (A.15) reads [1]

(A.16)
∑
ζ

Eηζ
x

(
e
γα
i

)
E

ζη′
x ′

(
e
γ ′α′
j

)= δxx ′E
ηη′
x

(
e
γα
i ⊗h e

γ ′α′
j

)
.

Similarly starting from the vertical product analogue of (A.10) for the dual basis we obtain
the dual analogue of (A.15), with(1)F and(2)F replaced by(1)F̃ and(2)F̃ . The relation in
Fig. 9 allows to define a sesquilinear form in the algebra determined by the pairing (A.11)
on A⊗ Â, s.t. 〈Ex,Ex ′ 〉 = δxx ′ c̃x . Assuming furthermore that〈ej , ej ′ 〉 = δjj ′cj leads to
the identification(2)F = (2)F̃ . Then the above two dual pentagon identities are equivalent
to the identities relating, via the pairing, the coproduct in each of the two algebras to the
product in its dual [4],

〈ExEy, ep〉 =
〈
Ex ⊗Ey,∆(ep)

〉
,

(A.17)〈Ez, eiej 〉 =
〈
∆(Ez), ei ⊗ ej

〉
,

where the products in the l.h.s. stand for the algebra multiplications inÂ andA (i.e., the
horizontal and vertical products, respectively).11 The coproduct and the horizontal product
are related via the scalar product inA defined above

(A.18)
〈
ei ⊗h ej , ep

〉= 〈
ei ⊗ ej ,∆(ep)

〉
.

We shall furthermore assume the analogues of the symmetry relations (3.13), (3.14)
(compatible with the form of(2)F and with the relatioñnax

b = ñbx∗a )

(A.19)(2)Fbc′
[
j b′
c x

]
=

√
PbPc′

Pb′Pc

(2)F
∗
cb′

[
j∗ c′
b x

]
= (2)F c′b

[
j∗ c

b′ x∗
]
.

Inserting the first equality of (A.19) in the relation obtained from (A.15) forp = 1, one
obtains using (3.11)

(A.20)
∑

b′,ζ,γ ′

(2)F
∗
ab′

[
j a′
b x

]ζ γ ′

γ η

(2)F cb′
[
j a′
b x

]ζ η′

α ζ ′
= δacδαγ δηη′ .

11 The above identification(2)F = (2)F̃ appears in [4] (up to different notation) as a solution in the diagonal
cases, where the r.h.s. of (A.12) simplifies to a ratio of q-dimensions. In general the matrix defining the pairing
onA⊗ Â and its inverse are left unrelated and the equalities (A.17) lead to dual (with respect to the 3j -symbols)
pentagons in both of which only the inverse matrix enters. We are indebted to Gabriella Böhm and Kornél
Szlachányi for a clarifying e-mail correspondence on this point.
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Using (A.19) one also checks that the conjugation operation+ computed directly from
(A.11) coincides withE+(e)= E(S−1(e)+). To make contact with the basis for the dual
triangles exploited in [4] one has to introduce

φ(cc′)(bb′)
x :=

√
PbPc′

Pb′Pc

E(cc′)(bb′)
x = S

(
E

(b′b)(c′c)
x∗

)
,

so that〈φ+, e〉 = 〈φ,S(e)+〉.
The identity (A.15) and its dual complete the set of pentagon type relations called “the

Big Pentagon” in [4]. In the diagonal caseZjj̄ = δj j̄ where all multiplicitiesNi , ni , Ñx

andñx coincide with the Verlinde one, one can identify(1)F = F = (2)F = (1)F̃ = F̃ since
all pentagon relations involved coincide with (3.9) and the unitarity relations (3.5) and their
dual counterparts, as well as (A.13), reduce to the unitarity ofF . The next simple cases
are the permutation modular invariantsZjj̄ = Z

diag
jζ(j̄ )

, whereζ is an automorphism of the

fusion rules. For any of these casesṼ is identified withI, Ñ =N , ñ= n, and accordingly
F̃ = F , (1)F̃ = (1)F . We notice that in these cases the pentagon identity (A.16) looks like
the fusing–braiding identity (4.16) and this suggests that given(1)F , and hence by (4.14),
given B̂ , the latter matrix may provide, up to some constant, a solution for(2)F . In the
simplest example of theDodd sl(2) series the matrices(1)F were computed in [6].

Defining the dual counterparts of (3.22)

(A.21)Êx =
∑
c,b,η

1

c̃bcx
E(cb)(cb)

x,η,η ,

and using the analogues of (A.10) and (3.5) with(1)F replaced by(1)F̃ one obtains the
algebra (7.16) with the multiplication identified with the vertical product

(A.22)Êx ⊗v Êy =
∑
z

Ñxy
zÊz.

The identity inÂ is given by1h =∑
x,c,b,η E

(cb)(cb)
x,η,η and (A.11), (A.13) ensure that1h

coincides with the counit1|I|ε. 12 The dual algebraÂ cannot be turned in general into
a quasitriangular WHA.

The relations (A.22), (7.5), (1.5), imply that the “chiral generators”

(A.23)p+j =
∑
x

Ṽ(j1)1
xÊx, p−j =

∑
x

Ṽ(1j∗)1
xÊx,

satisfy the Verlinde algebra

(A.24)p±i ⊗v p±j =
∑
k

Nij
k p±k ,

12 The factor 1/PbPc′ in (A.12), dictated by the requirement of consistency of the full set of pentagon and
inversion equations, can be assigned entirely to one of the constantscj or ĉx . Then one of the formulae (3.22)
or (A.21) gives elements in the center of the corresponding algebra, the so called “minimal central projections”.
However there seems to exist no consistent renormalisation of the two products and of the relation on Fig. 9
making central the basis elements of both algebras (3.23) and (A.22).
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while

(A.25)p+i ⊗v p−j =
∑
z

Tz
ij Êz.

Since 1

|Ṽ |
ε̃(Êz)= δz1, applying 1

|Ṽ |
ε̃ to (A.25) reproduces in the r.h.s. the modular invariant

matrixZij = T1
ij [1]; in [11] the analogous relation reads〈α+i , α−j 〉 =Zij .

Appendix B. The sl(2) theories

In this appendix, we illustrate the construction of Ocneanu graphs and of the associated
matrix algebras on thêsl(2) theories and modular invariants ofADE type.

The cases ofAn andD2&+1 have been covered by the discussion in Section 7.5: the
A cases are diagonal theories and theD2&+1 case is obtained from the diagonal caseA4&−1

with the same Coxeter numberh= 4& by theZ2 automorphismζ(j)= h− j of the fusion
rules. TheD2&, E6 andE8 cases have also been implicitly covered there. But we shall
collect here additional data on them and present theE7 case which does not follow from
the previous formulae. Throughout this appendix, we follow the notations of [3] on the
vertices and on the eigenvectors of ordinary Dynkin diagrams.

For theD2& theories, in which condition (7.43) is satisfied, formula (7.41) applies with
b = 1 andκ = 0,1. Diagonalising the matrices̃V1

x as explained in Section 7.5, and with
a little extra insight to find the appropriate combinations of eigenvectorsΨ with exponent
(J )= (j, j̄ )= (2&− 1,2&− 1) of multiplicity (Zjj̄ )

2= 4, we find that

{Ψ (J ;α,β)
x }

(B.1)=
( ψ

j
a√
2

ψ
j
a√
2

ψ
h−j
a√

2
ψ

h−j
a√

2

ψ
j
a√
2
−ψ

j
a√
2
−ψ

h−j
a√

2
ψ

h−j
a√

2︸ ︷︷ ︸
j=1,3,...,2&−3

ψ
(2&−1,+)
a ψ

(2&−1,−)
a 0 0

0 0 ψ
(2&−1,+)
a ψ

(2&−1,−)
a

)

which should be understood as follows: the exponent ofψ in the first four columns run over
j = 1,3, . . . ,2&− 3 (h= 4&− 2 is the Coxeter number), and for eachj the corresponding
value of the pair(J )= (j, j̄ ) is successively(j, j), (j, h− j), (h− j, j), (h− j,h− j).
In the last four columns, the exponent ofΨ is ( h2,

h
2;α,β) with successively(α,β) =

(1,1), (2,2), (1,2), (2,1). The row indexx is of the formx = (a, κ), as in Section 7.5,
and the first line of (B.1) refers toκ = 0, the second toκ = 1.

It is then easy to compute the various sets of matrices discussed in Section 7. One finds
that

(B.2)Ṽij =


(
ninj 0

0 ninj

)
, if j is odd,(

0 ninj

ninj 0

)
, if j is even,
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(B.3)Ñx =


(
N̂a 0
0 N̂ac

)
, if κ = 0,(

0 N̂a

N̂ac 0

)
, if κ = 1,

and

(B.4)ñx =
{
N̂a, if κ = 0,
N̂aC, if κ = 1,

where the indexc in (B.3) denotes theZ2 involution of vertices of the (ordinary)D2&

diagram which exchanges the two vertices of the fork and leaves the other invariant,
andCab = δabc . Using these data, one checks (7.31) and (7.32). Finally the matricesM̃

restricted to the “physical” subset, i.e., those that do not involvej = j̄ = 2&−1 with labels
α �= β , are all nonnegative. Forj1, j̄1, . . . �= h/2= 2&− 1:

M̃(j1,j̄1)(j2,j̄2)
(j3,j̄3) =

Mj1j2
j3, if there is 0 or 2 pairs of(j, h− j)

among(j1, j̄1), (j2, j̄2), (j3, j̄3),

0, otherwise,

M̃(j1,j̄1)(j2,j̄2)
(2&−1,2&−1;α,α)= 1√

2
Mj1j2

(2&−1,α),

M̃(2&−1,2&−1,α,α),(2&−1,2&−1,β,β)
(J ) =M(2&−1,α)(2&−1,β)

j ,

M̃(2&−1,2&−1,α,α),(2&−1,2&−1,β,β)
(2&−1,2&−1,γ ,γ )=√2M(2&−1,α)(2&−1,β)

(2&−1,γ ),

in terms of the “ordinary” Pasquier algebra structure constantsMj1j2
j3 for which explicit

expressions can be found in Appendix A of [17].13 These expressions of̃M are in
agreement with their connection with the relative structure constants (7.35).

We now turn to the three exceptional cases.

The case of E6

In that case, it suffices to takex = (a, b), a = 1, . . . ,6, b = 1,2, and thẽV1
x equal to

the matricesPab := P
(1)
ab . According to what was stated above in Eq. (7.42), the two sets

{Pa1} and {Pa2} are separately closed upon the left action ofN2. Moreover, because of
symmetriesP13= P62, P14= P52, P16= P61, P15= P51, P32= P23, P42= P24 the two
sets may also be regarded as{P1a} and{P2a}, a = 1, . . . ,6, and are separately closed upon
right action ofN2. See Fig. 10 on which each vertexx of the graphẼ6 is assigned its
matrix Ṽ x .

Using (7.45), it is easy to compute the various sets of matrices discussed in Section 7.
One finds, in accordance with (7.46), that

(B.5)Ñx =


(
N̂a 0
0 N̂a

)
, if x = (a,1),(

0 N̂a

N̂a N̂aN̂6

)
, if x = (a,2),

13 With unfortunately a misprint which we correct here: in the last line of (A.2), the 1/2 should read 1/
√

2.
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Fig. 10. The Ocneanu graphs ofADE type: each vertexx is assigned its matrix̃V x
1 , written as aP

or P̃ matrix as in (7.41) or in (B.8). Edges of̃V21, respecvtivelyṼ12 are shown in red full lines,
respectively blue broken ones, and the vertices of the different “cosets” for the action ofṼ21 are
depicted in different colours.

andñx is given by the last equation (7.46). One also computesmj = 6,10,14,18,20,20,
20,18,14,10,6 for j = 1, . . . ,11; m̃x = 6,10,14,10,6,8 and 10,20,28,20,10,14 for
x = (a, b = 1) and(a,2), respectively,a = 1, . . . ,6. Hence one checks (7.32):

∑
j mj =

156=∑
x m̃x , and (7.31):

∑
j m

2
j =

∑
x m̃

2
x = 2512. Finally the matrices̃M factorise into

a product of ordinary Pasquier matrices

(B.6)M̃(I )(J )
(K) =Mij

kMīj̄
k̄ .

The case of E8

In that case there are 8× 8/2= 32 matrices that may be taken either as the four sets
{Pa1}, {Pa2}, {Pa3} and {Pa8}, a = 1,2, . . . ,8, or using once again their symmetries, as
{P1a}, {P2a}, {P3a} and{P8a}, a = 1,2, . . . ,8. See Fig. 10.



492 V.B. Petkova, J.-B. Zuber / Nuclear Physics B 603 [PM] (2001) 449–496

One then computes

Ñx =


N̂a 0 0 0
0 N̂a 0 0
0 0 N̂a 0
0 0 0 N̂a

 , if x = (a,1),

Ñx =


0 N̂a 0 0
N̂a 0 N̂a 0
0 N̂a 0 N̂7N̂a

0 0 N̂7N̂a 0

 , if x = (a,2),

Ñx =


0 0 N̂a 0
0 N̂a 0 N̂7N̂a

N̂a 0 (N̂1+ N̂7)N̂a 0
0 N̂7N̂a 0 N̂7N̂a

 , if x = (a,3),

(B.7)Ñx =


0 0 0 N̂a

0 0 N̂7N̂a 0
0 N̂7N̂a 0 N̂7N̂a

N̂a 0 N̂7N̂a 0

 , if x = (a,8),

and ñx as in (7.46). Alsomj = m30−j = 8,14,20,26,32,38,44,48,52,56,60,62,64,
64,64 for j = 1, . . . ,15; m̃x = (8,14,20,26,32,22,12,16), (14,28,40,52,64,44,
22,32), (20,40,60,78,96,64,32,48) and(16,32,48,64,78,52,26,40) for x = (a, b =
1), (a,2), (a,3) and(a,8), respectively,a = 1, . . . ,8. Hence one checks

∑
j mj = 1240=∑

x m̃x ,
∑

j m
2
j =

∑
x m̃

2
x = 63136. Finally the matrices̃M factorise again into a product

of ordinary Pasquier matrices, like in (B.6).

The case of E7

This case is known to be related to theD10 case. TheP (1)
ab matrices ofD10 were defined

in (7.41) by(
P

(1)
ab

)
ij
=

∑
c∈T={1,3,5,7,9,10}

nia
cnjb

c,

with n the solutions of (1.1) pertaining toD10. Using the same matrices, let us now define
theP̃ matrices (twisted version of theP ’s) by

(B.8)
(
P̃ab

)
ij
=

∑
c∈{1,3,5,7,9,10}

nia
cnjb

ζ(c),

with ζ the usual involution acting on the vertices ofT

{1,3,5,7,9,10} $→ {1,9,5,7,3,10}.
As in Section 7 (Eq. (7.42)), we have the property that upon left (respectively right) mul-

tiplication by N2, N2.P̃ab =∑
a′ n2a

a′(P̃a′b), (respectively,P̃ab.N2 =∑
b′(P̃ab′)n2b′b).

Recall that heren2 is the adjacency matrix ofD10. This relation explains theD10 pat-
tern of the two chiral parts of the Ocneanu graph̃E7 on Fig. 10: the red full (respectively
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blue broken) thick line represents left (respectively right) fusion byN2 and connects the
matricesP̃a1 (respectivelỹP1a), a = 1, . . . ,10.

These matrices have to be supplemented by others to produce the full set of matricesTx

and the second part (the “coset” [1]) of the graph̃E7. Using the symmetries(P̃ab)
T = P̃ba

etc., of the matrices̃P , we find that starting with matrix̃P12, left multiplication byN2

produces the chain of matrices forming the coset

P̃16

↑
P̃12→ P̃22→ P̃32= P̃18→ P̃42= P̃24→ P̃14→X := P̃26− P̃24,

where the splitting of̃P52 into the sumP̃14+ P̃16 has formed the triple point of theE7

diagram. The matrixX itself may be expressed as a bilinear form in the matricesn (relative
to D10)

(B.9)X =
∑

a,b=2,4,6,8

(
N̂7− N̂9

)
a
bni1

anj1
b

in such a way that the pairs(a, b) that are summed over are

(a, b) ∈ {(4,4), (6,6), (8,8), (2,6), (6,2), (4,8), (8,4), (6,8), (8,6)}.
One finds, following downward first theD10 subgraph, and then theE7 coset

Ñx =
(
N̂x 0
0 n

(E7)
x

)
, x = 1,8; Ñ9=

(
N̂9 0
0 n

(E7)
9 − n

(E7)
3

)
;

(B.10)Ñ10=
(
N̂10 0
0 n

(E7)
3

)
, Ñx =

(
0 ňx−10

ňT
x−10 0

)
, x = 11, . . . ,17,

wheren(E7) denote then-matrices ofE7, andN̂ are relative toD10; ňb, b = 1, . . . ,7, are
seven 10×7 rectangular matrices intertwining theD10 andE7 adjacency matrices (see [3],
Section 3.3, for a formula),

ñx = n
(E7)
i , x = 1,8; ñ9= n

(E7)
3 ; ñ10= n

(E7)
9 − n

(E7)
3 ;

ñ11= n
(E7)
2 ; ñ12= n

(E7)
1 + n

(E7)
3 ; ñ13= n

(E7)
8 ; ñ14= n

(E7)
3 + n

(E7)
5 ;

ñ15= n
(E7)
8 ; ñ16= n

(E7)
3 + n

(E7)
5 ; ñ17= n

(E7)
7 − n

(E7)
3 .

One also computesmi =m18−i = 7,12,17,22,27,30,33,34,35 for 1� i � 9, andm̃x =
7,12,17,22,27,30,33,34,17,18; 12,24,34,44,30,16,22, so that

∑
i mi = ∑

m̃x =
399,

∑
i m

2
i =

∑
x m̃

2
x = 10905. Finally, theM̃ matrices may also be computed, and yield

nonnegative numbers (0, 1
4,

1
2,

1√
2
, 3

4,1,
√

2,2), which match what was computed on the

relative structure constantsd2.
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