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Abstract

We define generalised chiral vertex operators covariant under the Ocneanu “double triangle
algebra” A, a novel quantum symmetry intrinsic to a given rational 2d conformal field theory. This
provides a chiral approach, which, unlike the conventional one, makes explicit various algebraic
structures encountered previously in the study of these theories and of the associated critical lattice
models, and thus allows their unified treatment. The triangular Ocneanu cellg-tiyen®ols of the
weak Hopf algebrad, reappear in several guises. Withand its dual algebraA\ one associates a pair
of graphs,G andG. While G are known to encode complete sets of conformal boundary states, the
Ocneanu graphs classify twisted torus partition functions. The fusion algebra of the twist operators
provides the data determinin@. The study of bulk field correlators in the presence of twists reveals
that the Ocneanu graph quantum symmetry gives also an information on the field operator algebra.
0 2001 Elsevier Science B.V. All rights reserved.

PACS 11.25.Hf

1. Introduction

This paper stems from the desire to understand Ocneanu recent work on “quantum
groupoids” [1,2], also called, in a loose sense, “finite subgroups of the quantum groups”,
and to reformulate and to exploit it in the context of 2d rational conformal field theories
(RCFT). Our approach is inspired by the study of boundary conditions in CFT, either on
manifolds with boundaries, or on closed manifolds (e.g., a torus) where the introduction of
defect lines (or twists) is possible.

In Boundary CFT (BCFT), the type of boundary states and the corresponding character
multiplicities in cylinder partition functions are conveniently encoded in a graph (or a set
of graphs)G [3], with vertices denoted by, b. More precisely the adjacency matrices of
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the graphs are given by a set of (nonnegative integer valued) matfiee$:;,”} forming
a representation of the Verlinde fusion algebra

nin; :ZNijknk, (1.2)
k

and it is usually sufficient to specify only a “fundamental” subset of them, which generates
the other through fusion.

In accordance with these data we define generalised chiral vertex operators (GCVO),
covariant under Ocneanu “double triangle algebra” (DTA)a finite-dimensional €*
weak Hopf algebra” (WHA) in the axiomatic setting of [4]. They can be looked at as
extensions to the complex plane of the boundary fields and at the same time they yield
a precise operator meaning to these fields. The fact that the GCVO have nontrivial braiding
allows to give a global operator definition of the half-plane bulk fields, described in the
traditional approach only through their small distance (vanishing imaginary coordinate)
expansion. The bulk fields are defined as compositions of two generalised or conventional
CVO, which makes the construction of their correlators and the derivation of the equations
they satisfy straightforward.

The 3j-symbols? F of the Ocneanu quantum symmetry, also called “cells”, reproduce
the boundary field operator product expansion (OPE) coefficients, whilejtegrébolsF
coincide with the fusing matrices, i.e., the OPE coefficients of the conventional CVO. In
the “diagonal theories”, in which each local field is left-right symmetric, there is a one to
one correspondence between theBend the spectrum of orthonormal boundary states;
then (1.1) is realised by the Verlinde matrices themselves and the two symaoig® F
coincide. The 3-symbols diagonalise the braiding matrices of the generalised CVO (the
R matrix of the quantum symmetry). These new braiding matrices are identified with the
Boltzmann weights (in the limit — +ioco of their spectral parameter) of the criticél(n)
lattice models which generalise the PasquiérE lattice models and their fused versions.
Once again the @symbols provide the basic ingredients of these models. In particular
their identification with the Ocneanu intertwining cells gives some new solutions for the
boundary field OPE coefficients in the exceptiofal cases on(Z) theories; for theA
and D-series these constants were computed in [5,6].

Through a discussion parallel to that of boundary states, one may also study the allowed
twists (or defect lines) on a torus. The compatibility with conformal invariance and
a duallty argument similar to Cardy’s consistency condition [7] restrict the multiplicities
Vi = {Viyr .x”} of occurrence of representatiofisi’) in the presence of twists, y, to
be now nonnegative integer valued matrix representations aitreeed Verlinde fusion
algebra [8]:

Vie Vi =Y Nif*Noj* Vi, V=2, (1.2)
k,k'
where Z;; is the modular invariant matrix. Pairﬁil, Vli/ of these matrices give rise
to another graphG with verticesx, y [1,2]. Combining the concepts of twists and of
boundaries, i.e., inserting twists in the presence of boundaries, leads to yet another set
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of multiplicities, nn, = {fiax"}, which form a matrix realisation of a new, in general non-
commutative, fusion algebra:

fixiiy =y Ny, (1.3)
Z
NeNy =) NN, (1.4)

Z

This algebra admits an interpretation as the algebra of the twist operators used in the
construction of the partition functions in [8]. It is associated with the Ocneanu graph
in the sense of the relation

ViiNe =Y Vi, (1.5)
z

and we shall also refer to it as th€ graph algebra. In the cases described by
a block-diagonal modular invariant (a diagonal invariant of an extended theory) it
possesses subalgebras interpreted as graph algebras of the chiral gasphfurthermore
a subalgebra identified with the extended fusion algebra. We find, extending the analysis
in [8] to correlators in the presence of twists, that the representations of (1.4) are closely
related to the operator product algebra of the physical local fields of arbitrary spin.

In this approach, we see repeated manifestations of the quantum aldedna of
its dual algebrad, both satisfying the axioms of the WHA of [4]. The structure as
a whole is maybe most easily described in the combinatorial terms of Ocneanu quantum
(co)homology [4] (see also the related notion of “2-category” indR]The latter considers
simplicial 3-complexes built out of the elements depicted on Fig. 1. There are three types

[ ] O

i a
o——@ O—>—=0 O——>—""=>0

Fig. 1. The simplices.

2 e thank A. Wassermann for pointing this out to us.
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Fig. 2. The double triangles.

of oriented 1-simplices and the triangular 2-simplices come with multiplicities. Each
tetrahedral 3-simplex (arrows omitted in Fig. 1) is assignéthalued 3-chain, subject

to a set of pentagon relations (the “Big Pentagon” of [4]); the middle tetrah€dtbn
appears with its inversé? F, while F, ®F, OF, F can be chosen unitary. These data
enable one to construct on an abstract le¢ednd its duald, which are matrix algebras

with basis elements represented by two sets of “double triangles”, see Fig. 2, related, up to
a constant, by? F.

In the present context, the 1-simplices are labelled by the finité sétepresentations
of the Verlinde fusion algebra and by the sétsand Y of vertices of graphsG and
G of cardinality |V| = tr(Z) and V| =tr(Z '2), respectively, where is the modular
invariant matrix. Each triangular 2-simplex comes with a multiplicity labeld, . .., N,-j",
a=1....n,n=1...,10.k° 1= 1,...,1\~/xyz, and these multiplicities are subject
to the relations (1.1)—(1.5). The first two tetrahedra on Fig. 1 representjthaen@d the
3j-symbolsF, D F discussed above.

Thus Ocneanu’s double triangle algebra, which is attached specifically to each 2d CFT
and governs many of its aspects — spectrum multiplicities, structure constants, lattice
realisations — appears as its natural quantum symmetry. The problem of identifying the
underlying quantum symmetry of a given CFT is by no means new. Several attempts and
partial answers were achieved at the end of the 80s and beginning of the 90s, see the
discussion below in Sections 4 and 5. The previous approaches dealt with the chiral CFT, or
equivalently, with the diagonal theories. These are also the only examples of CFT discussed
in [4], where the relevance of the WHA as a quantum symmetry was first proposed in the
framework of algebraic QFT; in these diagonal cases the four triangle multiplicities above
coincide with the Verlinde fusion multiplicities’;;* and accordingly all the tetrahedra on
Fig. 1 reduce to the RCFT fusing matrix The development of BCFT on one hand side
and the work of Ocneanu on the other made available new tools and new ideas; our present
considerations yield in particular explicit and nontrivial examples of the structure of WHA.
The main novelty of the WHA approach is that it has a coassociative coproduct consistent
with the CFT fusion rules (the Ocneanu “horizontal” product). The presence of boundaries
provides an extension of the Hilbert space of the theory consistent with the fusion rules
and basic axioms of the RCFT. At the same time it should be stressed that the parallel
with the previous discussions on the “hidden” quantum group symmetry is to some extent
superficial, or deceptive, since this is only one of the facets of the Ocheanu symmetry; in
contrast to the former the new approach encompasses the full structure of the 2d CFT, so
is much richer in content and applications.

We should not conceal, however, that our understanding is still fragmentary. The
determination of the cells and of the remaining tetrahedra of Fig. 1 from the complicated
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set of equations they satisfy poses a difficult technical problem and only partial results in
the s/(2) related models are known. Some of the previous quantities, related in particular
to the dual structure of the DTA, are still awaiting a better field theoretic interpretation.
Moreover, several of our results are conjectures, tested mainly on the od6d) pbut lack

a general proof. On several of these points, it seems that the approach based on the theory of
subfactors [1,10,11] is more systematic. Still, our field theoretic approach provides explicit
realisations and exposes some new facts which show the consistency of the whole picture.

This paper is organised as follows: after a brief summary of notations (Section 2) we
introduce the double triangle algebra (Section 3), then define the GCVO and discuss their
fusing and braiding properties (Section 4). In Section 5 we show how the bulk fields may
be expressed in terms of GCVO and how the equations they satisfy and the various OPE
coefficients may be rederived in a more systematic way. Section 6 discusses briefly the
relation to the lattice models and the determination of their Boltzmann weights in terms
of the cells. Finally, Section 7 deals with the construction of solutions of (1.2)—(1.5) and
of the resulting Ocneanu graplﬁ% and contains a derivation of a formula relating the
OPE coefficients of arbitrary spin fields to data of the graph. Details are relegated to two
appendices. Sections 5, 6 and 7 may be read independently of one another.

Preliminary accounts of this work have been reported at several conferences (ICMP,
London, July 2000; 24th Johns Hopkins Workshop, Budapest, August 2000; TMR Network
Conference, Paris, September 2000 [12]; Kyoto Workshop on Modular Invariance, ADE,
Subfactors and Geometry of Moduli Spaces, November, 2000) or have been published
separately [8]. It should be stressed that this work was strongly influenced by Ocneanu’s
(unfortunately unpublished) work and that many of the concepts and results presented here
originate in his work.

2. Notations

A rational conformal field theory is conventionally described by data of different nature:

o Chiral data specify the chiral algebr and its finite sef of irreducible representa-
tionsV, i € Z, the characterg; (q) = try, g-°=¢/?4, the unitary and symmetric ma-
trix S;; of modular transformations of the, the fusion coeﬁicientw,-j", i,j,kel,
assumed to be given by Verlinde formula

SieSieSke

k

N;i;i* = E i Sjlz . (2.1)
el

Our convention is that the labgk= 1 refers to the “vacuum representation”, and
denotes the representation conjugat&’toChiral vertex operator$fj (z) and their

fusion and braiding matrices), [/} and B,,,[,x.] are also part of the set of chiral
data.

e Spectral data specify which representations 2f® 2 appear in the bulk: these data
are usually conveniently encoded in the partition function on a torus, with the property
of modular invariance
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Z=Y" Zijxi@(xj@)" (2.2)
i,jeT
here, the integeZ;; specifies the multiplicity of occurrence ¥f ® V; in the Hilbert
space of the theory; unicity of the vacuum is expressedfay= 1.

o Finally these spectral data must be supplemented by data on the structure constants
of the Operator Product Algebra (OPA). This last set of data is the one which is most
difficult to determine as it results from the solution of a large system of nonlinear
equations involving the braiding matrices whose general form is in general unknown.

It has been recognized some time ago that these spectral and OPA data have to do with
graphs. The latterADE Dynkin diagrams and their generalizations) (i) encode in the
spectrum of their adjacency matrices the spectral data [13-15]; (ii) contain, through the
so-called Pasquier algebra, information on the OPA structure constants, see [16—-18] and
below, Section 7. In fact these graphs are nothing else than the graphs of adjacency matrices
n; of (1.1). These matrices are diagonalisable in a common orthonormal basis:

i = Y Lyl 2:3)
j€Exp 1
and obey the identities
nia” = nias? = npt. (2.4)
Here and throughout this paper, we make use of the notation Exp to denote the terms
appearing in the diagonal part of the modular invariant (2.2)

Exp= {(j,a),a:l,...,ij}. (2.5)

The two notationgs**) andy/, j € Exp, will be used interchangeably. In the following,
¥ refers to the Perron—Frobenius elgenvector whose components are all posmve Finally,
in (2.4), the conjugation of vertices— a* is defined througl*wf* =W =y .

A particular set of matrices is provided by the Verlinde matriceé themselves, which
form the regular representation of the fusion algebra. This is the diagonal case for which
Exp=Z and the corresponding torus partition function is simply giverzhy=é;;.

3. Ocneanu graph quantum algebra

Given a solution of Eqg. (1.1) consider an auxiliary Hilbert space= C™ with
basis statee;)”), y = 1,2,...,n;.". It has dimensiomn = Yapnia” =Y ap, 1,00
particular dimV! =tr(n1) = |V|. A scalar product "@/ez V/ is defined as

P, Py Si1 Yl
< V|eb, / )— Sbb/(Saa/(Sjj/(Sy/y %, dj = SLll, Pa = w—‘i (31)
J 1

We define the tensor product decomposition of stﬁgﬁé ) ® |e ) for coincidingd’ = b
according to
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e 0 W g J ﬁt\/? di \"* KBy 39
e e el (1y;1)). .
| ®h| ;;; bk|: ai|ay b<didj) | ca(] )) ( )
This is a “truncated” tensor product, in the sense that we restrict to a subgpageV/ of

VIQ VY, (cb)®n (b'a) = 8y (ch) @ (b'a), With dim(VI®, V) =", (ninj)a <mim;.

The multiplicity of VKin Vi ®, V/ is identified with the Verlinde multiplicityvij". Then

the counting of states in both sides of (3.2) is consistent, taking into account (1.1). In (3.2)
e'jf (ij; 1) give a basis, normalised as in (3.1), for the speéén

Vien vi=P NV (3.3)
k
The W F e C are Clebsch-Gordan coefficients {*38ymbols”), assumed to satisfy the
conditions:
— if one of the indices or j is equal to 1, the tensor product must trivialise and
accordingly
1 1P
D Fyp [C 2] = 8kj8bcdpy 8118a1s (3.4)
ay
— the unitarity conditions, expressing the completeness and orthogonality of the bases
inVig,Vvi
. Lapt . .qBt
S @E, [l J] W, [z J] S,
oy C aly, c aly,
. . Bt . . Bt
Z (1)Fz/k |:l ]i| (1)Fbk |:l ]] = (Sbb’ayy’(soux’a (35)
kBt c da o'y c a ay

where™® F* is the complex conjugate 6F F.
In the original (combinatorial) realisation of [1] (for theD E graphs of the casd (2)),
V7 is the linear space of “essential paths of lengthon the graphG. Then (3.2) is
interpreted as a composition of essential paths, which is not an essential path in general,
but is a linear combination of such paths.
The requirement of associativity of the product (3.2) leads to the “mixed” pentagon
relation

F(l)F(l)Fz(l)F(l)F, (3.6)
or, more explicitly

; . uou3 i m yit2 ik Bat3
O I M e

m,Ba.13,t2 1213 a1 B2 a3
k riv2 . . B1u3
=seraly G el I @)
B1 a Bias @ Clayap

Here F is the matrix (the “G-symbols”), unitary in the sense of the analogue of (3.5),
relating the two bases Wi’ ®), V/ ®;, V¥. To make contact with the standard notation (cf.,

e.g., [19]),
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3.5b ;
(3.5b) z 60( o SW

Fig. 3. Graphical representation of th® F 3j-symbols, of their orthogonality relations, of the
6j-symbols and of the pentagon identity (3.7). Factors depending, amdd; have been omitted.

o A A D R A
sl 1101 1)
There is a gauge freedom iR F due to the arbitrariness in the choice of basj§°‘ —

> Uj};“'“,egl’,"‘/, whereU is an arbitrary unitary matrix. It is useful to have a graphical
notation for the 3-symbols™ F by means of triangles, and for thg-8ymbolsF by
means of tetrahedra (see Fig. 3). Then relations (3.4)—(3.7) are simply depictatis

3 The reader should not be confused by the multiplicity of graphical representations used in this paper for
the same objects. It turns out that depending on the question, a different representation may be clearer or more
profitable. The triangles used here for the “cells” may be regarded as obtained from the tetrahedra of Fig. 1 with
threee and oneo by projecting the three edges—e with their labela, b, ¢ on the triangle with black vertices.
Likewise, in the representation of Fig. 1, the pentagon identity (3.7) is depicted by the two ways of cutting
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graphical representation, the gauge freedom consists in changing any e]é%ec by
a unitary matrixt/ Cj};"‘"",.

The pentagon equation (3.7) can be solvedAagiven the 3-symbols™® F and using
the unitarity relation (3.5). Conversely, the relation (3.7) can be interpreted, givas
a (recursive) relation fofY F. In fact, the matrixF is taken to be the matri{) F of
the diagonal case: = N;), as we identify in that case thej3and the §-symbols and
Eq. (3.7) coincides then with the standard pentagon identity for

FFF = FF. (3.9)

We can also look at (3.7) and its solutiofsF as providing more general realisations of
the pentagon identity (3.9), corresponding to the matrix representatiaighe Verlinde
fusion algebra (1.1). If we consider along with the stataéﬁ (triangles with one white

and two black vertices), the vector spaces of “diagonal” sﬂal?}a r=12,..., ,.," (the
triangles with three black vertices in Fig. 1) we can identify the basis states in the r.h.s.
of (3.2) with the “mixed” product$e]§a ) ® Iek ).

A solution of (3.9) is determined by the chlral data characterising the CFT. For instance,
in the theories based oi(2), the solution provides the fusing matrices of the CVO and is
known to be given in terms of thejésymbols of the quantum algebtg (s/(2)), restricted
to matrix elements consistent with the fusion rules. For giFahe solution of (3.7) is by
definition restricted by the data in (1.1), (2.3).

In agreement with the symmetry (2 4) we introduce two (commuting) antilinear
involutive maps// — v (ej ﬂ)* = ec*a* ,and(e’c’g)Jr = em AT . Correspondingly there
are two bilinear forms orv/" ® V/ determined by the sesquilinear form (3.1), i.e., two
dual bases iv/". The first, given by, corresponds to the complex conjugation of the
components of the initial basis ¥/ when it is realised through unit vectors@t';. The
second basis is determined requiring that

dj
\/;< el G ped?” @n ey = (el |e1F), (3.10)

which implies

it P

c

DFE, |: g ,] = 8aa’Sp'B P d. (3.11)
Bt p a®j

This is a gauge fixing choice consistent with the unitarity condition (3.5) and the relation

dpPaZanaCPC» (3.12)
c

derived from (2.3). In the diagonal case it coincides with the standard gauge fixing of
the fusing matriceg” of the conformal models based ohn). Assuming that on tensor
productsx ® y)* =x*® y*, (x®y)"T =yt ®xT, and denoting the dual basis states in the

a double tetrahedron into two or three tetrahedra.
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K B* P N 27 - TIPSR k*.ﬂ+ EEE N * e kB +
tensor prOdUCbC*a* @*j* 5 %) = (ecq (ij); )" andey” (j*i*;0(t%)) := (ecq (ij):t)
(sinceNj.‘f,.* = N{;), these maps imply the symmetry relations for thesymbols®) F

. .qpt e sk BT .« xBTo@®
(1)F;§‘k[l ]} =(1)Fb*k*|:l* ’*} =(1)Fbk*|:] l] . (3.13)
c da ay C a

aky* c y+ at

while from the pentagon relation taken/at 1 and (3.11) one derives

. . Bt Prd itk yt+
O, " — ﬂ(l)F:_ L _ (3.14)
¢ al,, P.dj TN b a ot B

The spaced ;.7 End(V/) is a matrix algebrad = @ ;.7 M,,; on which a second
product (or a coproduct) is defined via thg-8ymbols® F in (3.2). This is the Ocneanu
double triangle algebra [1], an example (and presumably a prototype) of the notion of
weak C* Hopf algebra introduced in [4]; this structure has also received the name of
“quantum groupoid” [1,20]; see also [10,11] for recent developments of the original
Ocneanu approach. Together with its dual algelras interpreted in the present context
as the quantum symmetry of the CFT, either diagonal or nondiagonal. We review below
briefly some basic properties gf and give further details in Appendix A.

The matrix units inM,,; (block matrices ind) are identified with states w eV,

(ca),(cd’) _ Vdj

iB

Jj.B
HBF = (PP Po PR eV elit |, (3.15)
so that
T IN (A . P P 1/4 kB
el((i/g’,)/f;’c’ @) eéaﬂ> = (Sik(saa/’SCC”aﬁﬁ”< aPC ) |ec”aﬁi > (316)
a ¢

They are depicted as 4-point blocks in Fig. 4, where the statés/ icorrespond to
3-point vertices, or, dually, to triangles, whence the name “double triangle algebra” for the
algebrad spanned by the elements (3.15)% Z. Their matrix (“vertical”) multiplication
is simply

e(ca)(c"a’) e(d’b’)(db) _

a)(db
o el 0 = SiibaSoardyy ey, (3.17)

The product (3.17) is illustrated on Fig. 5 by composing vertically the blocks representing
the two elements (the second above the first), and a similar picture represents (3.16).
The identity element ,1in A with respect to this multiplication is given by, &=

» (cb)(cb)‘

i,c,b,a %i,a,a

A second, “horizontal”, product is defined [1], composing two blocks horizontally, see
Fig. 6. Its decomposition is inherited from the r.h.s. of the producin (3.2), and thus
the r.h.s. in Fig. 6 involves thejasymbols® F and® F*. The normalisation constant is

. i b i d:
chosen for later convenience as g|vengj}'/b'b = e jeac', with ¢4V = L34

PPy VL

Alternatively, we can define [4] a coprodugt: A —> A® A
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J
J
(a) c a
C a
C) *+ a)
9_[%_
J
(b)
—_—
C B a
Fig. 4. Two alternative representations of (a) the basis vectpfﬂgc)l/ 41608 (b) the matrix units
(ca),(c'a’)
JsB.B
d b
~ 1
— J
= 8 88008,
+B—é
C a
Fig. 5. The vertical product.
c b’ b’ a c b’ a c a’
— - _—
i J — i J — (D (D p
X, — — X ¢""F, F}
-l < B -1 <
c b b a c b a c a

Fig. 6. The horizontal product.
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(el i’ i 1

ca)(c'a M @

CYIDED DD Fbk[ a} Fb'k[c/ a,}
ay

1Ayl

ij bb’ ay
oad
(cb)(c’b ) (ba)(b’a’)
X oo Qe jvy (318)

The unitarity (3.5) of ®F ensures thatA(ab) = A(a)A(b) while the coproduct is

coassociativelA ® Id) o A = (Id ® A) o A, whenever there exist a unitafy(in the sense

of the diagonal analogue of (3.5)), satisfying along wWittF the pentagon identity (3.7).

The “star” operation ind, (xy)™ =x*y™, is inherited from the map+) defined above,
() = ek (3.19)

It is a homomorphism of the algebra, i.e., of the vertical product, and an anti-

homomorphism of the horizontal produ¢t,®;, b)) = b* ®,a™, sothatA(@™) = A(a)*.

The algebrad is given a coalgebra structure defining a counitd — C according to
e(ef95 ) 1= 6 118acburerdp18p1, (3.20)

which satisfies the compatibility conditida ® Id) o A =1d = (Id ® €) o A.

The definitions (3.18), (3.20) imply, however, thatl,) # 1, ® 1, and that the counit

is not a homomorphism of the algebrau) e (w) # e (uw) for general elements, w € A,

i.e., the DTA is not a Hopf algebra, see the appendix for more details on its structure of

“weak Hopf algebra”; in particular the antipode is defined according to

(cb)(c b’ Py Py (b’c’)(bc) Py Py (c’b’)(cb) (3.21)

i o Py P, €;x ot at = Py P, o a

Using the unitarity (3.5) of the 3symbolsV F, it is straightforward to show that the
elements

1
6= Tlian (3.22)
C:
c,byo 1
realise the Verlinde algebra with respect to the horizontal produdt in
e éj = ZN,’jkék, (3.23)

k
andes is the identity matrix ofA4 for that product.

4. Generalised chiral vertex operators

We now return to the field theory. Let j,k € Z s.t. N,'j" # 0 and letu label
descendent states . The chiral vertex operata;lsl] - 1 (2), with ¢ being a basis label,
tr=12,..., Nij , Is an intertwining operatoy; — V. [21]. We tensor this field with an
intertwining operatoi// — V¥

ko jy d; ek,a)( Iy
cb,ab T Pan €ab

, (4.1)
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which corresponds to a statelitf @, V/". This defines a generalised chiral vertex operator
(GCVO)

Pvievi>Prevh

jeT keZ
. .qat
k 1 L koo j,
Y@= 5@ Y PFu [C b] PRI 4.2)
Jok.,t b,a,y By
The projectors (4.1) satisfy

i,a;k,y pk'.y':j.8
Pcbab P/b' db’ _Bbb’(saa'akk'a)/)/’Pcbdb )

kaav] sV

ch,ab |€ " >_8bb/85’a/8jj/3 elccl; )’

k,
(edal P bf Y ek o) = 8k18/18cabadbarSaar Pa (4.3)

From (4.2), (4.3) we have in particular

WL0)[0) ® |el,) =911 010 @ |ell) =1 1. 8), B=12....nj° (4.4

where |j, B) is the explicit form of the highest weight state of the chiral algebra
representation); g, “augmented” with the additional coupling labgl, used in the
computation of the cylinder partition function in the Hilbert spatg. = Gaj,ﬁ Vg [3].
The correlators of the generalised CVO (4.2) are computed projecting on “vacuum” states
10) ® |el,) in the spaces ® V1; recall thatV! has a nontrivial dimensiofV|. Since
Pal,;’lﬁ;l = SubObd Palé;,ljzﬁ’l, the first and the last labels of amypoint correlator coincide,
i.e., we can associate with it a closed péihas, ..., a,—1, a} with elements marked by
the graph indices and passing through the coordinate pgints., z,. E.g., the 2-point
correlator reads
.l ]

("W 5 (@)W 4(22), = VFa [fa ZL//B Pa(0l¢}: (z1)$71(22)10). (4.5)
For real arguments one recovers the correlators of the boundary fields. Note that the
normalisation of boundary field correlators foIIowmg from (3.1) differs from that used

ﬂL

in 3], (Eq. (4.7)) by afactoyd/v/Si, ie.,(a = 8 IM1y7soe Zige ™8 1 = o,
The algebrad acts on the operators (4.2) with the help of the antipode (3.21), namely

for A(e Ef,/g:)fg‘,,” ”)) = e(1) ® e(2) We define a representatiaite)

T (eﬁfg,);ﬁ “ ))ClI/ﬁﬂ () := efl) lllif’ﬁ (2)S(e)

1/4 /

Py P /o a

= (Sl'paaa,/acc”aﬂﬂ”<PaPC) ¢ lI/i,ﬂ/(Z)' (46)
al'c

Definition (4.2) has to be compared with earlier work [22,23] based on the use
of quantum groups (Hopf algebras), or some related versions, e.g., [24], obtained by
modifying the standard Hopf algebra axioms (see [4] for a discussion on the latter and
further references). The papers [22—24] deal essentially with the diagonal case, and, more
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importantly, exploit the trud/,(g) 3j-symbols at roots of unity (e.g., far=s/(2)) in
formulae analogous to (4.2). We stress again that theydnbols® F in (4.2) and (3.2)
reduce in the diagonal case to the $ymbols of the quantum group (g) (or products of
them), restricted to labels consistent with the CFT fusion rules. Thus the decomposition of
the Ocneanu horizontal productfits precisely the CFT fusion, without the need of additional
truncation as in the case of quantum group representations. As emphasized in [4], unlike the
alternative approaches which deviate from the standard Hopf algebras, the use of a WHA
as a quantum symmetry retains coassociativity reflected in (3.7). A “price” to be paid is the
multiplicity of vacua, which has, however, a physical interpretation in BCFT, as providing

a complete set of conformal boundary states.

From the operator representation (4.2) one derives various identities. In particular
inserting the r.h.s. of (4.2) in the product of two generalised CVO, then applying the OPE
for the standard CVO and finally using the pentagon identity (3.7), and once again the
representation (4.2), waerive for smallz12 the OPE

b by
‘v, (22)
. .mpt
l .
=2 <1>Fb,,[c 2] > (p M) (2121 J. O W .y (22)

p.B.t ®Y

. .ABt
=2 VFy [lc ;] (P, 01, (2121, O W, g(z2) +---. (4.7)
p.Bit «y
For arguments restricted to the real line one recovers the boundary field small distance
expansion [25] with OPE coefficients given by the-8/mbols of (3.2). Conversely, the
expansion (4.7) was the starting point in [3] for the derivation of the pentagon identity (3.7).
Denote byCZ/l;.Z the space of generalised CVO (4.2). The generalised CVO have
a nontrivial braiding defined through a new braiding matrix with-2 indices of two
types,

Ble): P u} o "u; > Pui ou;, (4.8)
b d
c a %) i i1 c a
Wl (2" 2= ) Bbd[c Zl ] €W (22" W; ,(z0), (4.9)
d,O(’,]// ay
B¥2(e)B%(—¢) =1, (4.10)

consistently with the commutativity of the intertwiners
Znibcnjab = andcniad. (4.11)
b d

In (4.9)z12 ¢ R_, ande stands fork12 = sign(iIm(z12)) and fori =1 or j = 1 the matrix
B is trivial. The braiding matrice8 satisfy the “Yang—Baxter (YB) equation”

B2(e12) B?3(€13) B (€ 23) = B X (e23) B*(e13) BZ(e12). (4.12)
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Combining (4.9) with the definition (4.2) of the generalised CVO, using then the braiding
of the standard CVO and projecting on the stée we obtain the relation

S T 1 A i i1
> Bbd[ } (€) (1)de|: ] =e " (l)Fbk|: } : (4.13)
c da ay c a c da

d,a'y’ o'y ay

where the phase in the r.h.s., depending on the scaling dimensf?asAi + Aj — A,
comes from the standard CVO braiding matBx In the diagonal case, where we can
identify @ F and B with the standard fusing and braiding matricEsand B, this relation

is nothing else than the simplest hexagon relation {tfiacah identity). Inverting (4.13)
we get a bilinear representation Bfin terms of Y F

R i j / . ﬂt . Ak " j i ﬁt
Bpa |: i| (6) Z (1)Fbk |: i| e 1TEA) (1)de |: i| . (4.14)
c da ay a ay C a

k.ot o'y’

This formula determines whenever we knoW! F and the scaling dimensions;, i.e.,
the 3j-symbols® F;,; diagonalise the matri®B,,. It also implies the symmetries

§bd|:] k}(€)=§b*d*[k* J*j|(€)=§db|:] g }(6)
c a a Cc a C
. K
:B;*d*[i* a*}(—e). (4.15)

The relation (4.13) is a particular case of the more general identity derived by inserting
(4.2) in (4.9) and using the analog of (4.9) for the standard CVO

(€ ALE0) ~F - S §(1)F(1)F,

or, more explicitly

@ Jomiq i n i
ZI Fan|:c bi| Fck|:d b]Bnl[k m]
ne
~ [i j i m il
:ZBCC,[d a](l)F“l[c’ b](l)FC,k[d b], (4.16)

eV
as illustrated on Fig. 7. Forn = 1 we recover (4.13). Eq. (4.16) implies that (products of
two) 3j symbolsV F intertwine the two representatiomandﬁ of the braiding group.
This is to be compared with the “cells” introduced in lattice models, [26,27,14,28], see
Section 6.
Another relation derived from the product of three GCWYQOgives a generalisation of
the braiding—fusing identity of Moore—Seiberg [21]

BYF=BBVF,
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by
B

Fig. 7. Egs. (4.16), (4.17).

or,

ayy . Bt
5. [7 K] wp, [
ﬂ“ad Pla ¢
1

102

Savt . ay . agay
SEDDRT A 1 Ll B 1 P (R
b o,y v, agog a3

In the diagonal case this is the equation from which one obtains (taking) the relation
between the braidingd and fusingF matrices; inserting this relation back in (4.17)
reproduces the standard pentagon identity forin general (4.17) provides a recursive
construction off in the spirit of [29]. Namely, solving it for thé matrix in the L.h.s., i.e.,
writingitasB =Y, , Y FBB W F", we get an equation which determirgsecursively,
given the subset of @symbols with one of the labels j, p fixed to the fundamental
representation(s). Using (4.14) the r.h.s of (4.17) can be Comp|et§ﬂ3§.’12§23, i.e., to
ther.h.s. of the YB equation (4.12). Similarly one derives a second braiding—fusing identity
so that its r.h.s. is completed to the |.h.s. of (4.12). Comparing the two identities and using
twice in the l.h.s. of one of them the pentagon identity (3.7) and the unitarify, @ne
recovers the YB relation.

Together with the interpretation dP’ F as 3j-symbols, the braiding matrix@ can
be interpreted as th&® — matrix of a quasitriangular WHA, see Appendix A. The
relation (4.14) is an analogue of the representation of ‘’henatrix in terms of the
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3j-symbols, while (4.16) is an analogue of the relation between vertex representation and
path representation of the quantum gr@upmatrix (Vertex-IRF correspondence), see [30].
There is an important difference in the analogy with the role of quantum groups in CFT.
Namely in the present approach the summations in all identities, like, e.gk ovét.14),
or overn in (4.16), run according to the fusion rules, while in their analogues, where
the true quantum groupj3symbols appear, these summations run within the standard
classical tensor product bounds. When interpreted in the CFT framework the analogue
of the braiding relation (4.9) is then required to hold only on a “physical” subspace, or
alternatively, the conformal Hilbert spaces (and the conventional CVO in the definition of
the covariant CVO of [22]) have to be extended to accomodate “unphysical” intermediate
states incompatible with the fusion rules, [23,31,32], see also the recent work [33] for
a related discussion and further references.

5. Bulk fields— chiral representation
Let now the pairs = (i, i), i,i € Z, label the “physical” spectrum, corresponding to
nonzero matrix elements of the modular mass méfiix or, in a more precise notation,

which we will for simplicity skip in this section(i,i;a), « = 1,2, ..., Z;z. We define
(upper) half-plane bulk fields as compositions of two GCVO (4.2)

_ FCEY . l l_* wu =
Pin D= ) (ZRQ',}Q ’”)(J)(l)be*[a a] )awgﬁ(@b"”?*,ﬁ/(z)

a,b,B’,B \j,o,u BE

_ n k - nk,l;t't ny;ly'

= Z Pk (P52 @ Z C(i,z_')a,b’,a;y,y’Pab’vab/ ' 6.1
n.k,l,t,t' abyy'

Herez € H_ is the complex conjugate afe H, and the fleld@(H )(z 7) transforms under
a tensor product representation of one copy of the chiral alg#headelled by the pairs
(i,i*), see [3,34,35] for discussions of more general gluing conditfofise choice of the
constants in (5.1), related according to

- . yu' . Txuu
A _ G, (1) J o1 w |01
C(i,l_')a,b/,a;y,a - Z Ra’a/ (.]) Fan [a b/ , Fk/ n l , ) (52)
j,Ll,Ll/,Ol/ o' o t't
is such that when applying for small z = 2iy the OPE (4.7) for the two CVO in (5.1)
(and projecting onel,)) we recover in the leading order the boundary fiétﬁﬁa(x)
contributing with thebulk-boundary reflection coefficient R(” W) = C(’;,’i;’;;zl;;’;zl,a 1
4 For convenience we keep the same notation for the half—planecﬁiﬁlc; (with (i, 7*) appearing in the CVO

product in the r.h.s. of (5.1)) as for its full-plane counterpaﬁ with the second label i, i) corresponding

to a representation of a second copy of the chiral algebra; in our convention the diagonal torus modular invariants
correspond to the fieldg ’f, iel.
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of [25]. (We denote here?,gijfl'”)(j) what was denotedﬂB(f;f?) in[3].) For j =1itis
expressed in terms of the graph eigenvector matrices

W JREY
_a .
Vi di
From the operator representations (4.2) and (5.1), which involve the two sets of

constantstY) F andR (or, C), one recovers all correlators of the fiellsand® 7 ; they are
expressed as linear combinations of standard CVO correlators. E.g., the 2-point function

RU(1) = (5.3)

projected on the state?,), is
(C v (2@ (2.2),
= Sabdac \/—ZRS;[+')(J )(0I6}. (229, (DL, (D)]0). (5.4)

In (5.4) we have adopted an ordering corresponding to real parts increasing from right
to left, i.e., R&zo — z) > 0. The inverse order would give a function which differs by
a phase (due to the nontrivial braiding of products of CVOs), even if the difference of
scaling dimensions, the spin = A; — A, is (half)integer, as required from the physical
spectrum. The phase vanishes if we furthermore restrict the argumefthe generalised
CVO to the real axis boundary @f,. and thus the bulk and the boundary fields commute.
Let us now briefly review the derivation of the equations resulting from the sewing con-
straints of Cardy—Lewellen [25,36] in the BCFT. The operator representations introduced
here both for the boundary and the bulk fields make these derivations straightforward (in
fact also slightly more general) and reduce them to the use of the fusing and braiding
relations for the conventional CVO. First requiring locality (commutativity) of a bulk and
boundaryoperator@H(z z)“llf”(xz) “wb(xz)ch(z 7), has furtherimplications, lead-
ing to an equation for the unknown constéhﬂn the operator representation (5.1). It reads,
omitting for simplicity the multiplicity indices

nkl (1) J 8 / i j7,
;C(l‘,f)a,b’,a Fpr |:a b/i| By |: k gi| =)
_N"cle op j K B joi e
- Z bbb b g oy | PREL (-). (5.5)
k/

Projecting the product of two fields o), or on (0|, i.e., settingg =1, ork =1 in
(5.5), one recovers the (first) bulk-boundary Cardy—Lewellen equation [25,36]; (5.5) is
a slightly more general version of it, corresponding to a 5-point chiral block. This equation
provides a closed expression for the scalar reflection coefficléhfs’)(j) in terms of the
3j-symbols® F and the modular matrif(j) of 1-point torus correlators

@i,i%) , .x .
P, R, U™ I/Ib ) |:k j] .
NN =38 Fak Skix (J)- (5.6)
i wTw e

In the diagonal case the |.h.s. reprodusgs;)/ S [5,3].
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With (5.1) at hand one alsterives the OPE of two bulk field®# @ first expressing
their product as a product of four standard CVO, exchanging then the second and third
fields and fusing each of the two pairs labelledbyl) and(k*, I*) (this can be depicted by
a 6-point chiral block diagram slightly more general than Fig. 10 of [3]). In the process one
finds an expression for the OPE coefficients, to be dembté{d,. It reads symbolically,
ordering the constants in the I.h.s. in the sequence they appear in the above steps,

FFB(—)CC =dC, (5.7)
or
m,n,g’ g'.n,i
C(k,E)a,b,a (,Da,b,a
I k* k1 k* I ;
_ J , * * m.g,1
_ZdKLng [n ﬁ](+)Fn] [m g}Fﬁj*[g l'i|C(j,j)a,b,a' (5.8)
]7.]’g

Settingi = 1 and substituting the constarswith the reflection coefficient® as in (5.2),
this can be also rewritten, introducing a new constdntis

RS (p) RIS (p2)

a,o a,an

_ (J.j.uz; p3.03)ia (] Jiug)
B Z M(k,lz.,ul:plyal)(l-,l_»uzzPz-,otz) aas  (P3) (5:9)

JoJ.p3.uz.es
withuy =1,... NP, a1 =1,...,np,,% etc. This is the second of the two basic bulk-
boundary Lewellen equations [36]. In the diagonal c&se (k, k) the OPE coefficients
d = d"™ coincide with their full-plane counterpar#”’ and in the unitary gauge used
here are simplyl")7"" = 5, for Ny,7 #0.

Eqg. (5.9), taken ap; = p2 = 1, allows to derive and generalise to higher rank cases
(see [37,3]) the empirical (2) result of [17] on the coincidence of the relative scalar OPE
coefficients and the structure constants of the Pasquier algebra [16]. The latter algebra
has 1-dimensional representations (characters) givenrlpyl = e~ Ja R (1),
cf. (5.3). A generalisation of this result will be discussed in Section 7.

The reflection coefficients satisfy

(RED ()" = RED (94 = RI ()™ (5.10)
and furthermore (5.8) implies, choosing (the positive) consiérg,tk =1.

Bt (T yx g + 2dk
> REEO DR D) G
a,o J

= 81k O7 Suuu Sfpex - (5.11)

The identity (5.11) reduces fof = 1 to the orthonormality property of, (expressing

the completeness of the set of boundary states) and in the diagonal cases to the unitarity
relation for the modular matriceX ;). In generall ) andd ") differ by phases depending

on the spinsg = Ay — Ap,

dIJ(L zefi%(sx+stsJ)d;{PL)J’ (5.12)
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reproducing in particular the spin-dependent full-plane 2-point function normalisation,
d}f,%l = (—1)%¢, proved to be consistent with the locality and reflection positivity

requirements [38].

6. Relation tointegrable lattice models

Some of the identities in Sections 3 and 4, most notably the YB equation, coincide
with the basic identities of the related IRF integrable lattice models. The lattice Boltzmann
weights, however, depend on a spectral parametarhich does not appear in the CFT,
and to compare the two discussions, a proper limit of this parameter has to be taken. This
correspondence has been established in the diagonal cases, [39], and in this section we
show how it generalises to all models built on graphs relate?j(mh_,, CFT.

The data required to define the generaliségh)-IRF models that we consider are
a graphG — we postulate that one of the graphs met in the CFT discussion is
appropriate — and a pair of representatignand j» for si(r). Then to each vertex of the
square lattice is assigned a vertesf the graph. The Boltzmann weighitg;, j, (; Z)(u) are
functions of the four vertices, b, ¢, d around a square face and of a spectral parameter
is conventional to tilt the lattice by 45 degrees and to represent the Boltzmann weights as in
Fig. 8. Representatiof is assigned to the SW—NE bonds, giado the SE-NW ones [40].
Intuitively, one goes from vertex to vertexd through the action ofi», and fromb to ¢
through1, and accordingly, the weights depend also in general on bond labgls. .,
which specify which path fromz to b, from b to ¢ etc. is chosenw = 1,...,n;,°,
y=1...,np", etc.

The Boltzmann weights are solutions of the spectral parameter dependent YB and
inversion (unitarity) equations. Knowing them for the fundamental representation(s)
enables one to construct the other weights by a fusion procedure [41-43].

In the simplest case where implicitly all the bonds carry the fundamental representation
o of sl(n), the Boltzmann weights have the general form

¢ d\*" (T . cde’y
W( a) (u):sm(E—u>8bd+SIn(u)[2]qU[ ]bw, (6.1)

b ay a

where[2], = 2cogr/h) for ¢ = ¢=27i"5 (h the Coxeter number of the gragh), and
[2],U are Hecke algebra generators satisfyiifg= U etc. Choosing the labels=k =t

d

Fig. 8. (a) The Boltzmann weigh for j1 = j» =0; (b) U as a product of two cells.
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in the bilinear representation (4.14) for the braiding maBixwe can cast it into a form
similar to (6.1)

Bpa (&) = 8paq”® — ¢** CUpa, (6.2)
with (cf. Fig. 8)

g1

o Bl .
[ ]d ¥ _Z(l)FbB[ 2} <1)Fd5[2 ﬂ . (6.3)
ay

bay o'y’

The constants:, b, C are determined from (4.10) and (4.13); from (4.10) we get
C =q"+ ¢4, and from (4.13) we gat = —h(ASY— $ASY), 2b —a = —h(ASV -
%Aé‘“), henceC = [2],. Here AS! are Sugawara conformal dimensions, while in (4.13)
enter the dimensiong; = Af” — (A, p) of the minimal W, model of central charge
c=@n-D[1+2n(n+1) —n@+ DL + )]; this shift of the dimensions is ac-
counted for by the sign in front of the second term in (6.2). One obtaiagn — 1)/2n,
b=-1/2n.

When (6.2) is inserted in the YB equation (4.12), the latter reduces to the Hecke algebra
relation for the operatoni2], U in (6.3), which can be identified with the operators in the
r.h.s. of (6.1). Thus the Hecke generators are expressed in terms of-tharbols® F,
recovering a formula in [2]. Furthermore comparing (6.1) and (6.2) we obtain

~ [o ol v 1 . c d oy
Bpa |: ] (€)=2ig 2 lim e"imeuy ( ) (u). (6.4)
c da ay U—>—1€00 b a ay
In other words, we can look at the correlators of the generalised CVO with all
representation labels fixed to the fundamental ones as realising a representation of the
corresponding Hecke algebra — in parallel to the path representations of the lattice theory.
In thesl(2) case (6.2), (6.3) reproduce, inserting (3.11), the Boltzmann weight af the
Pasquier models [44]

~ Py Py
q**Bpa [Z: {] = Y84 — Sac . (6.5)

a

There is no general information dR F in the higher rank cases, however the particular
(fundamental) matrix elements in (6.3) are recovered from g¢ha) examples of
Boltzmann weights found in the literature, [45-47,14,48]. Recently exhaustive results were
obtained 2 for alls/(3) graphs but one. A general existence theorem$oF and W
for a subclass of graphs corresponding to conformal embeddings appears in [49]. On the
other hand, as the counter-example of [2] shows, some solutions of (1.1) do not support
a representation of the Hecke algebra, i.e., a systenj-sygbolsd F.

In the s/(2) ands/(3) cases one can formulate [2] a quartic relation directly for the
cells @ F which in turn implies the Hecke algebra (or YB) relations; in our notation it
reads
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(1)F* [D D:IJ/l (1)F [D D:IOZS (1)F* [D []:IO‘S (1)F [D []:|J/4
; bB acduyan CB b d 737 CB b d o4y3 b/B ac o104
1,09,

azay

vs 1
s o[ e 5]
" Py b Tl de

agyby o302
a3,04

B* o vl o oral
D * @
e |: d C’:| Fie [a c’]

o]0

azog
1 /J/P.-P.
= [2]2< PC : 8addy1y20ysya +566’5V1V46V2)/3>~ (6.6)
a

The first delta-term here is present only for it€8) case wherg™ = and the two 3-point
couplings corresponding to tidefunction are identical; fon = 2, where by conventioh

refers to the identity representation, the first term is zero; accordingly we recover the TLJ
algebra relation.

The fused Boltzmann weights are similarly expected to be related to more general
braiding matrix elements. The recursive construction of the gerﬁaaiéments using the
fusing—braiding relation (4.17) is analogous to the fusion procedure of the lattice models
yielding the fused Boltzmann weights. The “inversion equation” for the Boltzmann weights
in the lattice models turns into the unitarity identity (4.10). The relation (4.17) taken for
p =1 leads to the (crossing) identity

~ itk ~ ik Py P, _
;Bcb’ |:b d_ (€)Bpa |:a b/] (e) Py Py = dac, (67)
while (4.13) withi = 1 reads
Zgbd |:2 (e Pi=+Pp e_znieAj, (6.8)
d

a property analogous to one satisfied by the fultlependent) Boltzmann weights.

We now turn to the relation (4.16), which has the form of the intertwining relation for the
square Ocneanu cells, studied in [26,14,27,28]. To make contact with the notation in [14],
D F,;[7; ] is identified withy [ ¢ ;] with b fixed andi, j, c, a restricted byz;,®, n ;¢ # 0.

The data found in those papers provide thus a partial information onjtsgrbols (i.e.,

on the boundary field OPE coefficients), namely determine those matrix elements in which
one of the representation labels is fixed to the fundamental weightb fixed to 1. On

the other hand, knowledge of the cetsF, ;[ zl;] for arbitrarya, b, ¢ andi, j is sufficient

to determine all the cells using the pentagon equation, in a way similar to the discussion
at the end of Section 4. A general solution f8rF for the s7(2) D-series has been found

in [6].

We conclude with the remark that it would be interesting to extend the correspondences
discussed in this section to the boundary lattice theories, see [50,51], and in particular to
clarify the role of the reflection equations [52] in the present setting.

*

Q =
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7. Ocneanu graphsand the associated algebras

In the following we shall motivate on physical grounds and by analogy with a situation
already encountered in BCFT the construction of new sets of (honnegative integer valued)
matrices and their associated graphs. On a mathematical level, this construction has been
justified in the subfactor approach [1,2,10,11], but the field theoretical approach provides
new insight.

In BCFT we know that three sets of matrices play an interlaced role, generalising the
fusion matricesV;. The firstis the set ofY’| x |V| matrices:; defined in (1.1), which form
a representation of the fusion algebra and define the gtaphs recalled in Section 2,
their diagonalisation introduces a set of orthonormal eigenvegipra € V, j € Exp.

The second set of matrices, also of si x V|, denotedN, = {N,,} in [3], forms
the regular representation of an associative algebra,

N\aﬁbzﬁabcﬁc (7-1)
(the Ocneanu algebra) [26,53]. It is attached to the graph in the sense that

niNg = Zniabﬁb, (7.2)
b

i.e., if the matrixN,, is assigned to vertex of the graphG, the action ofz; on Na gives
a sum over the neighbouring matrica% (neighbouring in the sense of the adjacency
matrixn;,”).

In general, these matricéé, have entries that are integers, but in general of indefinite
sign.> At this point, we recall that RCFT and the associated grapleeme in two types.
Those for which the modular invariant partition function is block-diagonal and expressible
in terms of the: matrices as

Zij = Znilanjla (7.3)
acT
for a certain subser’ of vertices are called of type I. They are interpreted as diagonal
theories in the sense of some extended chiral alg@i§th The setT is in one-to-one
correspondence with the set of ordinary representations of that aR&8@nd the integer
ni1% is the multiplicity mult, (i) of representationV; of 2 in the representation cfi®
labelled bya. Then all matricesV,, a € V have nonnegative integer entries and the subset
{ﬁa}aeT forms a subalgebra isomorphic to the fusion algebr% [15]. 6
An interpretation of the whole set é?abc as fusion coefficients of a class of “twisted”

representations gi®*! broader than considered in Section 2 has been proposed in [3,55],
see also [56]. In contrast, a theory of type Il cannot be written as in (7.3) and is obtained

5 A case where this integrality property of thé,,¢ seemed invalid was pointed out in [18], but later it was
shown by Xu that integrality could be restored at the expense of commutativity [49], see Section 7.2.

6 These statements are for us empirical facts, of which we know no general proof. They seem to have been
established for a variety of cases in the subfactor approach or are taken as assumptions. Note that our definition of
type | in (7.3) above is slightly more restrictive than the one used previously [3,18]. It rules out one of the graphs
(5&12) in the Table of [3]). See also [54] for cases which go beyond this simple classification.
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from some type | one — its “parent theory” — through an automorphism of its fusion rules
acting on its right sector with respect to the left one [21,57]. We thus expect many of their
properties to be more simply expressed in terms of data pertaining to the parent theory. For
example, their torus partition function reads

Z,'j = Znilanj]_((a), (7.4)

aeT

where then's are those of the parent type | theory.

We can then define the dual (in the sense of [58]) ofﬁhalgebra by the algebra of
linear mapsf\7 — C. This algebra, also called the Pasquier algebra, is realised by matrices
M. «) labelled by the elements of Exp and as mentioned in Section 5 relates to the scalar
OPE coefficients.

As a side remark, we recall that in thé(2) case it is thisM algebra which also
appears as the perturbed chiral ringMf= 2 superconformal CFTs perturbed by their
least relevant operator (or of their topological counterparts) [59], hence as a specialisation
of the Frobenius algebra [60]. We shall return to these algebras and their CFT interpretation
in the next sections.

In the following, we are going to introduce four sets of matrices, which generalise the
previous three, define again graph(s) and satisfy analogous relations. The matrices
gives rise to two sets, denotétand, while the dual pair(ﬁ, M) generalises to a pair
(N, M).

7.1. The V matrices and Ocneanu graphs

We first consider the integral, nonnegative matrix solutions of a system of equations for
commuting matriced/;;...> with i,i’ € Z. It generalises (1.1), with the Verlinde fusion
multiplicities N;;* replaced by the produet;;* Ny ;¥

/A

-~ e
> Vijix Viryy® = D Nur Njjr Vi (7.5)
y "

The labelsy, y, ..., of these matrices take their values in a finite set dendtedhose
cardinality equal$1~/| = Zj;(zjjv)z in terms of the modular invariant matrix.

This property, and more generally the physical interpretation of (7.5), follow from the
discussion of torus partition functions in the presence of twist operators (physically defect
lines) denoted ., see [8] for details. The discussion is parallel to the way Eq. (1.1) appears
in the study of cylinder partition functions and involves the consistency between two
alternative pictures. In one picture, two twist operatm’:sandx y, attached to homology
cycles of typea of the torus, act in the Hilbert space of the ordinary bulk the®fy-
®Z;V; ® V;, and are assumed to commute with the generators of the two copies of
the chiral algebr&(. This forces them to be linear combinations of operafa%’;?w/)
intertwining the different copies of equivalent representatiori% af2(
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X,= ¥ Mpui;a,a') 7.6)
' ii \4 S1i Sll_' ’ .
a.o/=1,...<z”—,
with
pliiiad) p(jjiB.p) — SijS,"]Sa’ﬂP(ij;a’ﬂ,)- (7.7)

The other picture makes use of a Hilbert spa&e, associated with the homology cycles of
typeb; the nonnegative integé?ij*;xy describes the multiplicity of representativh® Vj

in Hy|y. The equality of the twisted partition functions computed in these two alternative
ways leads to a consistency condition of the form

Vo V= —SUS” lI/x(]] aa)lp(]] aa)* iiel, (7.8)
SljSl

i

wherewy(-/’j;“’“/)* is the complex conjugate @fy(j’-";“’“/). Thenw = {(¥\**P)} is assumed
to be a square, unitary matrix, labelled by the V and by the pairg = (j, j) of labels
supplemented by their multiplicities in the spectrang =1,..., Z
Z W(./ o, ﬁ)[l/(/ o ﬁ )E 8]]/3]]/30[0/355/,

xeb

Z wiaPg (el — 5 (7.9)

a.ﬂ=1,...<ZjJ:
Following a standard argument, in (7.8) tlé”/:%#) appear as the eigenvectors and the
ratioss;; S;;/51; 5,7 as the eigenvalue~s of tHé: matrices. As the latter satisfy the double
fusion algebra (7.5), so do the matricés

In fact the integer number\s] +” may be regarded not only as the entr|e$ldfx |V|
matrlcesVl],z j €Z, as we just did, but also as those|f x |Z| matricesV,”, x, y € V.

By convention, the label 1 refers to the trivial (neutral) twist, and it is thus natural to
impose the further constraint that foe= z = 1, V reduces to the modular invariant matrix,
up to a conjugation

V-

ii*;

This is consistent with (7.8) if

i) = /817817 8aa = W1 8- (7.11)

In particular,? = 511 and denotingl, = ¥ /w", this implies, using the unitarity of
¥ and of the modular matrif, the “completeness” relation

Z * (511)2 Z @t (7.12)

xXe

r=z (7.10)
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(see also [10]). It also follows from (7.8) th&l;..” = Vi«;+,* and conversely, this latter
property, together with (7.5), suffices to guarantee the diagonalisability oV tive an
orthonormal basis, as in (7.8).

Then, if we define the matricé’gﬁj = N,-j*;lx, thusT! = Z, taking thex = z = 1 matrix
element of (7.5) yields
ZTl] f/* /*—ZN” N]]] Zl//J//, (713)

/A

Ly
which is the way the matriceB* appeared originally in the work of Ocneanu, under the
name of “modular splitting method”.

The set of matriceSZj may be regarded as the adjacency matrices of a set of graphs
with a common set of vertices. In any RCFT, the fusion ring is generated by a finite
number of representationsof Z called fundamental, and because of (7.5), it is sufficient
to give the graphs of ;1 and of V1 s for these representations to generate the whole set by
fusion. (For example, for the(2) theories,V»1 and V15 suffice.) Following Ocneanu [1],
it is convenient to represent these graphs simultaneously on the same chart, with edges of
different colours. We shall refer to this multiple graph as the Ocneanu graassociated
with the graphG of the original theory. Examples are given in Fig. 10 of Appendix B for
51(2) theories, and additional ones may be found in [2,11]. If one attaches the matiox
vertexx, the two kinds of edges of the graph describe the action of the fusion matrices on
the left and right indices of th&*. For example, the edges of the first colour (red full lines
on Fig. 10) encode th&y1,, in

N Tt = Viry T (7.14)
S

orin short,(Ny ® NT* = Z}, Vfl;yZTy, and likewise, those of the second colour (blue,
broken) describel ® Ny)T =3 T Va7

7.2. The N algebra

In turn, this Ocneanu grariﬁ may be used to define a new algebra in the same way as
N was attached to the grapgh. To each vertex of the graph we attach a matri¥, =
{Ny.%} of size|V| x [V|. For the special vertex 1, = I. The matricesV are assumed
to satisfy the algebra (1. 5y,j =D, VU X N (compare with (7.2).) Using the spectral
decomposition (7.8) of th&, one may construct an explicit solution for these matriges

Iy
l[/ .
Nyt =) wiheh lp;’*""”*. (7.15)
Jia By

Taking into account the orthonormality of thle, one finds thatVi,© = Ny1© = 8., and
that N, form a matrix representation of an algebra

EcEy=) Nu*E.. (7.16)
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with an identity and a finite basis. The algebra is associative, but in general non-
commutative if someZ;; > 1. Indeed, if allZ;; = 1, the summation over, 8, y in (7.15)

is trivial, and this equation is, once again, nothing else than the spectral decomposition of
the matricesV in terms of the one-dimensional representatigng®; of the algebra. If,
however, someZ;; > 1, the matricesV are not simultaneously diagonalisable, but rather

block-diagonalisable with blocks y,”*#" = w{"*#") /@ (") forming a Z, :-dimensional
representation of the algebra
; JiB, N Jia,
Z y;l,a.ﬂ)y}(' B.v) — Z NX}'ZVZ( o V). (717)
B Z

(See also [10] (Lemma 5.2) for a similar although somewhat less explicit variant of (7.15),
with ﬁ;v = (B;, Bx o By, ) being the “sector product matrices”.) By inspection, one checks,

at least in allADE cases (see below and Appendix B), that thésematrices have
nonnegative integer entries. They may indeed be viewed as multiplicities (of dual triangles
with three white vertices), and accordingly the algebra (7.16) appears as the algebra of the
center of A, with the product in the l.h.s. of (7.16) given by the vertical product of [1],
compare with (3.23) and see Appendix A. These matrices are recovered also directly from
(7.6), (7.7),

Nyx® = Tr(X, X, X)) (7.18)

using that TiP(/:) := 8,551, S, ; (this definition of the trace may be justified in unitary
CFT's in exactly the same way as the norm of the Ishibashi states, via theco
asymptotics of the charactexs (), see [3,61] and (4.2) of [8]). Equivalently, we have

X, Xy =Ny X, (7.19)

thus justifying the name of twist fusion algebra that we give to zhalgebra. In this
latter context, the noncommutativity of thi§ algebra may be viewed as coming from
the inpenetrability and the resulting lack of commutativity of the defect lines to which the
twists X, and X, are attached.

If a conjugation in the sé¥ is defined through

w(ieh) _ (gipa)* (7.20)
(note the reversal of the indicesandg!), it follows that
Nyxl=84yr, (7.21)

and the noncommutativity oV modifies the analogue of the symmetry relations (2.4)
according to

~ ~ * ~

Nyx? = Nysys ¥ = Noy?. (7.22)
JEq. (7.15) n(wjayﬁl?e (rjewrl;cten as a sum Ejj_';oz 1= ij Z;5 (matrix) idempotents
o _ o o,y )*
€ig, = ”np v,

JiaaJ; a J;a ~
(e e xz B,y Z x} ﬁ Y ) V B =€ zap Z ZJJ =Ni, (7.23)
J.o,B
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Ne=Y "3z e = ZZ,,)/X Ze’ « (7.24)

Ja By

where, suppressing the matrix indices, the sum runs over the physical spégtrm=
(J,a,a). These are the labels of the representations ofAthalgebra, which arez ;-
dimensional and given according to (7.17) by the matrigési.e.,

AJiap: Ny — Al'aﬂ(N) ijaﬁ
AJiay (N:Ny) ZA,M A8y (N Z yAsay (N:). (7.25)

The formula (7.24) is then interpreted as a decomposition of the regular representation
of the N-algebra into a sum of representatiang each appearing with multiplicit;ij—.
so the dimension |§: P25 d|m(Aj) ij ij-j =Y. In [11] a formula analogous to

(7.25), or (7.17) appears d|rectly for the elemeftsin A spanning (with respect to the
vertical product) the algebra (1.4), see Appendix A.

We now return to the graph algebrd of the chiral graphG mentioned in the
introduction to this section. In fact, we shall restrict our attention to type | cases, which are
the only ones for which all the matrix elements of fieare nonnegative integers. Because
in this case, Eq. (7.3) applies, each exponent apgea$)? times for each representation
a of the extended algebra, identified with a vertex 7. It is advantageous to denote
the corresponding eigenvectors of thenatrices agyV-4#), with o, g = 1,...,n;1%.

In [18], various formulae have been established for the compoﬂéﬁfé""ﬂ), beT.ltis
easy to extend them to

wij’alavﬂ) — Saﬂw:{jsa)’ wlf a) /S Si;(t’ for n.c;]_ 7& O’

ext

o NS
v P = supyt . fora.be. (7.26)
la

using the modular invariance identity

D o Syna’ =S, beT. (7.27)
ieZ aeT

The similarity with the case of th&/ algebra (of which theV algebra turns out to be
a subalgebra in these type | cases) suggests a formula which encompasses and generalises
all known cases

S o
Ncbd _ 2 : (] aa,p)¥b w0 lﬂ(] Aoy E (7.28)
aeT,jel lﬂ
a,By=1,..., njq

It is an easy matter to check that the relations (7.1) and (7.2) are indeed satisfied. We have
checked in the simplest case= 2 of s/(2n)2, C §0(4n? — 1)1, for which multiplicities
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n;1* > 1 are known to occur, and we conjecture in general, that this formula always yields
nonnegative integers, and gives an explicit realisation of the considerations of [49,62].

7.3. Then matrices

We then introduce a new set of matriégs= {fi..”}, a, b € V, which form a nonnegative
integer valued representation (nimrep) of ths algebra, see (1.3), in clear analogy
with (1.1).8 Like the N, these matrices are non-commuting in general, if same> 1,
and they admit a block decomposition like (7.15)

, ll/(/ JiaB)
~ b _ =~ a
Nax = E E 1/[ (] ) 1/’ " = i (7.29)

J oop=l..Zj;

One also checks, using the orthonormality and conjugation properties ¢famely, that

-~ /~ !
Z naxa nb/x*b = Zniabni*b’a . (730)

xeV i€l

These matrices are again interpreted as multiplicities: naigfydescribes the dimension

of the spaceV?. of dual triangles with fixed markings,a, b (one black, two white
vertices). Varyinga, b, they form a basis of the dual vector spa?;e Then (1.3) serves

as a consistency condition needed to give sense to the dual (vertical) p@d@gt?y,

in which V, appears with multiplicitﬂxyz, the latter replacing the Verlinde multiplicities

in a formula analogous to (3.3). On the other hand (7.30) is interpreted as the equality
between the dimensions of the space of double triangles and that of dual double triangles
with a, a’, b, b’ fixed and justifies a change of basis considered in Appendix A (see Fig. 9)
Recalling that in Section 3g; =", ) 14" stands for the dimension of the spakf}é

of triangles (or CVOs), we now denofe, = Za pey xa b the dimension of the spade(

The equality of the dimensions of the double triangle algebend of its duald amounts

to the identity

> omi=> ", (7.31)
JjeT xeVy

which results indeed from the summation owes’, b, b’ in (7.30). On the other hand a less
trivial equality holds, checked case by case ins&R) cases,

domj= Y i, (7.32)

jeT Cx,xev

where the sum in the r.h.s. runs over the “classes’in V (or classes in th&v algebra),
determined by ~ y, iff VJ, tr(A;(Ny)) = Za o ij = =1tr(As(Ny)), i.e., the characters

7 Itis understood that in cases where exponents come with a nontrivial multiplicity, the remaining arbitrariness
in the choice of the) is used to make they nonnegative integers, and this seems always possible in type | cases.
8n the subfactor approach, given an inclusion of subfacirs M, the equality (1.3) is interpreted as an
associativity condition for tha/—M, M—N sectors, similarly as the analogous identity (1.1) foraheV, N—M
sectors [11].
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of the representations of the algebra are constant on the cl@ss For cases with trivial
muItipIicitiesZ/./v =0, 1the summationinther.h.s. runs overthelsand (7.32) expresses

the equality of dimensions of the regular representationd ahd A. In the s/(2) Deven
cases there are two nontrivial clasges each containing the fork vertices in the chiral
subgraphs o, see Appendix B.

The physical interpretation of the matrices (7.29) is obtained by looking at the effect
of a twist in the presence of boundaries. One consider the RCFT on a finite cylinder with
boundary staten) and (b| at the ends and a twist operatkiﬂ in between. Repeating
the calculations of partition functions carried out in [3,8], one finds that the “open string
channel” is described by a Hilbert space with representatiaccurring with multiplicity
(nifiy)e?", i.e., the matrix element of a (commuting) product of the matrigeand, .
Thus(ii,).+"" is the multiplicity of the identity character in this “twisted” cylinder partition
function.

7.4. The M matrices
The last set of matrices that we may associate with the Ocneanu graph generalises the

Pasquier algebra. We can define a dual (in the sense of [58]) of tigebra by the algebra
of linear maps

~ _ l’[,(J:/S,/S’) ~ l’[,(J:/S,/S’)
Aj:ﬁ,ﬁ’ Ny — Aj:ﬁ,ﬁ’(Nx) = lTxlAl:ﬁ,ﬁ’(Nx) = XT)}’
(A5 p) () = A1 o (F) 4T ()
= Y Muawyupp 77 4%, (W) (7.33)
K:y,y'
with structure constants
" , l’[/(I;oz,ot’) , ) ,
Maanippn ™77 =3 xl,[/x]- — g PR g, (7.34)
X

This algebra is abelian and its 1-dimensional representations, or characters, are given
by (7.33). An involution(x) in the set{(/; «, ')} is defined by the complex conjugation
ploee)” = gD 50 thatMj.q 41 =M (1.q.0- The subset of the numbers formed

by the M(1.q.0)(s:5.5) <77, i.e., diagonal in the multiplicity indices, does not form

a subalgebra but does play a physical role. Their explicit computation (again e

cases) shows that (i) they are nonnegative algebraic numbers; (ii) they give the modulus
squares of the relative structure constants of the OPA of the corresponding CFT

K;y)|2

\d (100025 = M1:a0) 035,877 (7.35)

We recalled in Section 5 that the Pasquier algebra gives access to the relative structure
constants of spinless fields. The OPA structure constants of non-left—right symmetric fields,
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however, were escaping in general this determination in terms of graph-relateti Haga.
empirical result in [17] only states that in the cases of conformal embeddingBs, Es

the l.h.s. of (7.35) factorises into a product of scalar constants (and hence is expressed
by the Pasquier algebra structure constants) and that fapdhg series this factorisation

holds in a somewhat weaker sense; this factorisation is confirmed (see Appendix B) by
what is computed for the r.h.s.

In fact (7.35) can be derived extending the consideration of [8] to 4-point functions
of physical fields in the presence of twists; it is sufficient to look at the functions on
the plane, which can be interpreted as theT — oo limit of the torus correlators,

lim 700 Tre=2LH . .), when we map it to the plane through— z ==27"*/T et us
sketch the argument which is a generalisation of the derivation of the locality equations; we
shall use the convention of notation in [18]. We consider a 4-point function with insertion
of two twist operators (7.6) (omitting the labélB) on the fields and the OPE coefficients)

(01D g+, p+) (21, 2D P (17,07 (22, 22) Xx P(1;0) (23, 23) P (s p) (24, Z4)XI|0)
k& y.y") D
=3 4 PO W (Kiyy) P
- J* B3 B) “(I*:a*) (K y, 7)) (k,k) (I;2")(J:B") l]l(l)
k,l;,y,y’ lpl 1

x (014 (209, (2209 (23)¢!1(<4)10) x (right chiral block, (7.36)

taking into account thai((jfg,/))(l) = 1. This correlator is alternatively written as

(01 (1:0) (22, 22) X D (1201 (23, 28) P 1) (2. 24) X @234 (21, 20)|0)
(1) d(p;,;’a/) lpx(lvj;ﬁ.ﬂ)

Z ((1) )(;a)

a I*;0%) (1 i (L;a)(P;8,8) " (J; 8)(J*; %) ;T

l,(l,l) 'l’(]"])
p,p,8,8" 1 1

l’[/x(i,l_';oz,ot)

X (019} (22)9}, (2319} (24)}+1 (21)10) x (right chiral block. (7.37)

Next we use the braiding relations for the chiral blocks to identify the two products of
chiral correlators, i.e., movg* ar]df* to the very right — this brings about the product of

fusing matrices,, [fl* {]F,;ﬁ [jl-.* {] . We equate the coefficients and, furthermore, take the
valuep =1 in the resulting identity — it impliee = o’ andg = g’ and also trivialises the
fusion matrices to the ones in the diagonal counterpart of (3.11), i.e., we get ratios of square
roots of g-dimensions, which precisely match the factiar$7.26) coming from the twists,

and we finally obtain taking also into account the symmetries of the OPE coefficients (this

produces the same siga-1)*/ "7 in both sides), see [18],

K:y.y) lp)gl;“'“) lp)gf;ﬁ,ﬁ)

(
Ky (2%
d;; 0 = , (7.38)
Z | L) (J;B) llfx(l) l[/)gl) l’[,x(l)

kky.y

9 Eq. (5.7) represents the constadtm terms of the 3- and 6/-symbols and the general nonscalar reflection
coefficients.



480 V.B. Petkova, J.-B. Zuber / Nuclear Physics B 603 [PM] (2001) 449-496

from which (7.35) follows. In deriving (7.38) we have assumed that the decomposition of
the physical fields involves several copies of each product of left and right chiral blocks,
i.e.,

Pra D= D A (B @EE@)IT -
JoJokk BBy v
These copies are labelled by the paiis, ), (v, y’) and they correspond to the
multiplicity of states in the projector8®%77" in (7.6); explicit construction is provided
by the Coulomb gas realisation of the corresponding correlators. In the previous discussion
we have suppressed for simplicity the multiplicity indices= 1, 2,...,Nl-j" and7 =

12,..., N;/—.", appearing in the higher rank cases; when restored the modulus square in

the L.h.s. of (7.38) and (7.35) is replaced@ﬂd((,’f;’)’;’;;;;) 2, Note that in the presence
of a twist operator the identity 1-point function appears normalise(Dps1) X ,|0) =
Py =4,

An intriguing issue is the fact that from a mathematical point of view, the indiqaay
a role dual to that of representation labéls Z (dual in the algebraic sense, going from
a linear space to the space of its linear functionals, see Appendix A and also Eq. (7.12)),
while from a physical point of view, they play a role dual to that of the labels of bulk fields:
this is apparent in Eq. (7.15) where there is a (Fourier-like) duality between tirecfet
and the seEYp of pairs(J) counted with a multiplicit)(Zij)z, that is between the vertices
and the “exponents” of the graygh.

We conclude this subsection with the remark that some correlators including twist
operators may be interpreted as generalised order—disorder field correlators, compare
with [38], where such functions matching the operator content ofZAhwwisted torus
partition functions of [63,64] were constructed and their OPE coefficients computed. We
recall [8] that the partition functions of [63,64] provide the simplest examples of solutions
of (7.13).

7.5. Constructing the G graphs

Let us see now how the matricég* and ¥, from which the graphG and all the
other matrices, N, 77 and M may be constructed, can be determined in a given CFT,
i.e., starting from a given modular invariadtand the associated gragh (See [65] for
a detailed discussion of the particulgg case ofsl(2) following a different approach.)

First, in the case of a diagonal theog,; = &;;, it is natural to identify the se¥ with
the setZ of representations, since their cardinality agrees, and to take

understood as a matrix product, i.€;,” = ", .7 Nix*Nji?, in particularV;;.1* = N;;*.
The corresponding')fj’-i) are just the modular matrix elemersts and the Ocneanu graph
G = A, which is generated by the “fundamentdfy; and Vi, both equal toNy, is
identical to the ordinary graps = A.
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As a second case, consider a nondiagonal theory with a mayix= 6;,(;, where
¢ is the conjugation of representations or some other automorphism of the fusion rules
(like the Zo automorphism in theDy,y1 cases ofsi(2) theories). Theny = Z, and

Vij = V(39 = N; Ny(j). The graph is generated B, = N and ¥, = N;(f), each one

giving a subgraph isomorphic t (see Fig. 10 for the case dfyqq)- ThelI/ = Sxj0 ¢ Gy
and one finds that thN matrices reduce to those of the diagonal case,Nig,Z = N,,?,
x,y,z€Z,whilen nax =HNyq andM(l,((l))(J,;(]))( £0) = N; k.

General expressions may be obtained for type | theories (7.3). The algebra (7.1) en-
ables one to define a partition of the S@tinto equivalence classeg,: a ~ a’ if
3beT: Nyp' # 0 [14,58]. The number of such classes equals the number of represen-
tations of 2l coupled to the identity in the modular invariant, i.e., io€ Z such that
Z1; # 0.19 Since (7.3) applies to the matrik! = Z, it suggests to look for similar ex-
pressions for the othélr*. We find that in all known type | cases, in particular f6c2)
theories, the labels may be taken of the forru, b, k), a, b € V, k a class label, and

T = Vi @9 = P = micnjic? (7.40)
ceTy
with ¢ running over a certain subsgt of vertices, or equivalently
Vi P =3 " micn . (7.41)
ceTy

One checks that indeef! = Z, the modular invariant matrix as glven in (7.3). As the
matricesn; form a representation of the fusion algebnay ; = N,., ng, one finds that
upon left multiplication by any,

Ny.PY = Zn ra* P (7.42)

and likewise, upon right multiplicatiorPs Ny« = 3, P%)n 14" by repeated use of
n? = nf* .

In theories likeZ, orbifolds of§7(n) theories, there is a partition of the set of vertices
into classed}, such that

Va,a' €Ty, VbeTg #T, Np” =0, (7.43)

because thé/ algebrarespects tt#, grading of the vertices. Then let us prove that (7.13)
follows from the ansatz (7.41) with= (a, 1, k)

LML IR DI DURC TRV IEY

c~c' i"e

o
= Z Nll an”l Ndc/ n]l n]’l
c,c

= deT

10This may be established in cases Wherefﬁﬂelgebra is commutative, and where the structure constants of
both N and its dualM are nonnegative, following the work of [58]. It seems to extend to noncommutative cases
as well, as we checked on the aforementioned casé(df;, where some entries a¥/ are negative or even
imaginary.
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= Z N” ij Z,’//j// (7.44)
where we have repeatedly used (7.2) and (1.1) and on the second line, we have used (7.43)
to restrict the summation over to the setT'; the constraint ~ ¢’ is then automatically
enforced, which enables us to sum over independentc’.

For the case of a conformal embeddi&,gc g1, we checked in aIIQ(Z) cases and
conjecture in general that the labelmay be dropped, and represented by a pair of
vertices(a, b), a € V, andb running over a subset of vertices. Then we make use of
formula (7.26) to express the eigenvecttﬁlgéd;“’ﬁ, c € T, in terms of the modulag®*
matrix of the extended algebra (i.e., of the current algebra). In that way we find,
multiplying (7.41) with.S;- ; Sie

i 1ﬂ(j.,d;ouoz)w(f,d;éz,ét)*
§ Vs E a
lpx ry = S:?Zi(l: ’ X = (aa b)s (7'45)

14 d,o,a

where the sum in the Lh.s. runs accordingyte=1,...,Z;; = ZdeTl’ljldl’l]‘»ld, and
that in the rh.s. runs om = 1,...,n;1%, @ = 1,...,n;%. If there is only oned € T
in the sum we can identify = («, @), if there are more, firsyy has to be split into
a multiple index and then each identified with a p@ira) depending oni. Fora € T
w5y 8y l,V(”Se’“/Sext is consistent with (7.45) and implies thﬁgb = &N, ¢
for a,b,c € T using Y- 7eq ;751815 = (S§H?, and hence, thaN,, a € T, form
a subalgebra isomorphic to the extended fusion algebra.

In particular in the cases with commutatiealgebra one computes

Viojitapby) @ =Y " (niNay) 2 (n = Niy ) 12,

ceT
A7 N ING N NN b
N(a1,b1)(a2,b2)(a3' 3 = Z(NalNaz)caa(Nblez)c %
ceT
N(a,b) = NaNp, (7.46)

which ensures that these matrices are integral, nonnegative valued. In particular

az, 1) a b
(a2 )—”ia12

Vi, 1)(@12) , V(1 H(Lb ) b —p b1

The description off* as a bilinear form in the matrices does not seem to restrict to
type | theories like in (7.41). Indeed, this is what happens iMfe and E7 cases ofl(2)
theories. Knowledge of th&* matrices (and in general cW‘ (L16) for anyx) determines
the whole structure. It is easy to invert the (block- )d|agonallsat|on formula of thend
to get, using also (7.11),

w“ T2 817873 TE, Sk S (7.47)

iiel

This determines’, completely for cases witﬁj; =1, while higher multiplicitieszjj >1
require a little more work and care, see Appendix B for an illustration orDthecase of
s1(2). OnceY is known, it is a simple matter to obtain all N, V andM matrices.
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8. Conclusionsand per spectives

The reader who has followed us that far should by now be convinced of the relevance
and utility of Ocneanu’s DTAA in the detailed study of rational CFT. In our view, two
new concepts developed in this paper in connection with this quantum algebra have proved
particularly useful:

— the generalised CVO, which are covariant under the actiof, ainify the treatment

of bulk and boundary fields and permit a more direct discussion of their operator
algebras;

— the twist operators, whose role manifests itself in several ways, give a physical
interpretation to the abstract labelsf the dual algebral and to the coefficients,

and also, through their interplay with bulk fields, provide a new way to determine the
general OPA structure constants in the bulk.

Several points deserve further investigation. First, as already pointed out in the
Introduction, many of our statements which rely on the explicit examination of particular
cases, mainly based a(2) ands!(3), and which are presented as conjectures in general,
should be extended in a systematic way to all RCFT. The case of orbifold theories, in which
the relevant graphs would lz#fine Dynkin diagrams and their generalisations, should be
quite instructive. Other directions of generalisations include irrational CFTs (generic
CFTs orN = 2 superconformal CFTs) or noncompact theories like Liouville [66].

Secondly, among the five types of 3-chafisattached to the tetrahedra of Fig. 1, only
two, namelyF and @ F have received a physical interpretation, as they underlie both
the CFT and the related integrable critical lattice models. Understanding the meaning of
the others, which all involve one or several twist labelgresumably requires a deeper
discussion of the interplay of twist operators with bulk and/or boundary fields.

In fact the general properties of twists and their relations with “twisted” representations
of the underlying chiral algebrd await a good discussion. We regard as quite significant
thatall partition functions either on a torus or on a cylinder with or without defect lines
(twists) are expressible as linear or bilinear forms with nonnegative integer coefficients of
the|V| linear combinations of characters

Ra =Y _ni1“xi = Zap- (8.1)

This follows from Egs. (7.3), (7.4) and from our ansatz (7.41) that in type | the matrices
T~ are bilinear in the:'s. (In type |l theories, we recall that thes that appear here are
those of the parent type | theory.) TRg thus appear as the building blocks of all partition
functions. Their natural interpretation, as alluded above, is that they are the characters
of a class of more general representations of the extended aRj&8r&among them, the
subset: € T represents the ordinary, untwisted, representations. The other have been called
twisted [3], or solitonic [55]. The induction/restriction method [49,62] of constructing
these “twisted sectors” essentially amounts to the recursive solution of the system of
Egs. (1.1), (7.2), (7.1). On the other hand, the direct definition of (some) of these twisted
representations, closer in spirit to the concept of twist as developed in Section 7, has been
achieved only in a limited number of cases, see, e.g., [56].
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Appendix A. Ocneanu DTA — dual structure

This appendix contains some more details on the Ocneanu DTA [1,11] and its WHA
interpretation [4].
The coproduct (3.18) does not preserve the identity, i.e.,

AL)=Y" > PP @ (=1,0) @ L) # L ® L, (A1)

b ij.a.c,ay

while A(1) = 1® 1 is one of the axioms of a Hopf algebra.
Foru, w € A anduw — the matrix (vertical) product, one has

ewwy= 37 e(uefyy ) e(efy) W) (= e(eluw)e(Lpw)),  (A2)
i,j,a,b,c,a,y
e.g. foru =3, ,Capei”, w=3,,C, ,ei*" — one getse(uw) = tr(CC), and
cewe(w) = Za,b Cab D ur iy C;,b, # ¢(uw) in general, while the counit of a Hopf algebra
is an algebra homomorphism.
The antipode is a linear anti-homomorphisiixw) = S(w)S(u), defined according to

(3.21), and so that~1(u) = (S(u*))*. Itis also an anti-cohomomorphism, i.e., inverts the
coproduct, in the sense that

AoS=(S®S)o AP, (A.3)

HereA (u) = u@) ®u) for A(u) = u)Qu(). Furthermore, instead of the Hopf algebra
postulateS(u1))u2) = 1ye(u) the antipode of a WHA satisfies

S(uw)ue @u@ = (L ®u) AL) (=L ®uly). (A4)

The relations (A.3), (A.4) are checked using both unitarity relations (3.5), as well as (3.13),
(3.14); the choice of the coefficientin (3.21) is essential.

One turnsA into a quasitriangular WHA by defining anR-matrix, i.e., an element
R e A?(1,)A® AA(L,), which intertwines the two coproducts,

AP (W)R =RA@), (A.5)
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subject to the constraints,

(A® Id)R =R13R23, (Id ® A)R =R13R12. (A.6)
Namely,
. 9Bt
R= Z DFyp |:Cl/ ;/] / /wgggfac,;ﬂ’ﬂ,
ij.p ay

a,a’ b,c,c . d
ad .y v BBt

. .ABt
QOp* [J T (ba')(cd) (¢'b)(da)
X Fd”|:c “i| € g Oy, - (A.7)
ay
Here w;'ja’,’,’c BB is a unitary matrix and to make contact with the CFT under
consideration we choose
., .’ o AP.
w;,]a/l;’c,c/;ﬁ,ﬁ’26/3/3’640’660’6 MR (A.8)

so that the coefficientin (A.7) reproduces the braiding maiix) in (4.14). Similarly one
definesR* € A(1,)A ® AA°P(1,), corresponding tc§(—); the inversion relation (4.10)

is equivalent toR*R = A(1,), RR* = A°P(1,). The relations (A.6) are equivalent to the
fusing—braiding relation (4.17) and its counterpart discussed in Section 4. Denotihg by
the permutation operator i’ ® V/, the definition (A.7) with the choice (A.8) implies

1yl

1 . i / e i J ay 1 i i
PR il @nel =SB )] o gmelit el (A9)
d, @y
ay

The horizontal product it depicted on Fig. 6 reads more explicitly

. Bt
()b o @dayda) _ s & pib.b' (1) i
o Onej, " =0ida Z 8ij Fpp |:C g

B0 7

/

. apt
1) -* L (ca)(c'a’)
X Fb,p|:c/ a/:| ,y/ep’ﬁ’ﬁ, . (A.10)

The dual algebrafl of A is the space of linear functionals of It is a matrix algebra
A= @D, Mats, with matrix unit basis{EfC“/“‘")(d/d;“, x € V}, depicted by double
triangles, or blocks, with an intermediate indexsee Figs. 2, 9. The indicdg, a’; ),
a,a €eV,n=12,.. .,ﬁaxa/, label the states in a linear vector spaE;eof dimension
dim(Vy) = Y-, o fiax® = siiy. They are depicted in Fig. 1 as triangles with two white and

a’ d! a; d;
—— .

' _ ey ) [/ ﬂ X

J R da’l @ ¥
a d a d

Fig. 9. Relating the two bases.
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1 black vertices. The vertical and horizontal products are exchanged in the dual algebra,
i.e., the horizontal product is the matrix producvirand the vertical product for the basis
elementskE, is given by a dual analogue of (A.10), with the convention that the second
element appears above the first. In this product the role of the multiplicitjeand» ;

is taken over b)l\le andrn,, with the relation (1.3) serving now as a consistency relation
replacing (1.1). The dual3 and 6j-symbols F and F, the last two of the tetrahedra

in Fig. 1, satisfy unitarity relations analogous to (3.5) and two more pentagon relations
parallel to (3.9) and (3.7), respectively. The matfixdual to the fusing matri¥ has all
indices of typex, while (1)sz[ﬁ z] is a matrix with 3+ 3 indices of typez, b, c € V and

X,y,Z € V. All the steps of Section 2 can be repeated, in particular we can choose a gauge
fixing for ® F analogous to (3.11), using thétP, = 3~ fiax” Ps.

The finite dimensional algebrasand.A can be identified, looking atej""‘/} and{E’*}
as providing different bases, see Fig. 9. This introduces a new “fusing” Matfixgiven,
up to a constant, by the numerical value of the linear functigiai (e‘]’.‘"",) eC.@Fis
the third tetrahedron on Fig. 1, supported by two black and two white vertices, and two
types of triangles of multiplicities ; andzn,. More explicitly we have

E)?ZC (e(]J_ta/) _ E(a’a)(d’d)(e(cb)(c/b/))

xn.8 Jrao!

L . b/ rlal
= SacSpadareSpyarci &4 P F e [] } (A.11)

' C X ol

with
s dedj [ S11\?
chelgbe = SX8T (2 (A.12)
/ Py Py lﬂ%

The equality (7.30) ensures that the number of elements on both sides of Fig. 9 for fixed
a,d’,d,d" and varyingj andx is the same, so the linear transformati®i¥ is invertible,
the inverse denotéd F*, in the sense of the relations

. B ./ ;B
Z bc' =bc' (2 b o [0 _
¢ & © Fye |:C x ] @ F c X = 3jj'Saa'dpp',

eyt al o't
o . ng P nB
Z C?c & @p,, [J /] @ Fx, J = 8xx/ 88y - (A.13)
: c X c X ’
jap ag ag

We shall require tha® F and @ F are trivial forx = 1 andj = 1, analogously to (3.4).
This is consistent with the inverse relations (A.13), inserting (A.12) and using that

_ 5 wl 2
> iatdy = (—Slll P.Py= njd;. (A.14)
x J

We recall that the ratio of constartt?d appears in the normalisation of the horizontal

product (A.10), and similarly a ratio of the constar&f§’ determines the constant in
the vertical product of the dual basis elements. Inserting the relation in Fig. 9 in both



VB. Petkova, J.-B. Zuber / Nuclear Physics B 603 [PM] (2001) 449-496 487

sides of the horizontal product (A.10) and using furthermore that the horizontal product
acts trivially on the dual basis by a formula analogous to (3.22), one gets the pentagon
relation [1]

. LBt . sy’ . e
i j i b j c
> DFy, |:a/ c/] @ Fpa [a x ] P [b x}
/a/

byt 14 an’

: Bt B
l C
= Z(l)F”P [a i] QF . [Z N ] ) (A.15)
B ya B’
In terms of the functional values (A.11) the identity (A.15) reads [1]
D EF()VET (") = EY (] @n ) ). (A.16)
¢

Similarly starting from the vertical product analogue of (A.10) for the dual basis we obtain
the dual analogue of (A.15), with F and® F replaced by F and® F. The relation in

Fig. 9 allows to define a sesquilinear form in the algebra determined by the pairing (A.11)
onA®A, st (Ex, Exr) = 8;Cx. Assuming furthermore thak;, e;) = §;;.c; leads to

the identificatiorf? F = @ F. Then the above two dual pentagon identities are equivalent
to the identities relating, via the pairing, the coproduct in each of the two algebras to the
product in its dual [4],

(ExEys ep) = <Ex & E_Va A(ep))s
(E;.eiej) =(A(E;). e ®¢j), (A.17)
where the products in the L.h.s. stand for the algebra multiplicationsamd A (i.e., the

horizontal and vertical products, respectively)The coproduct and the horizontal product
are related via the scalar productindefined above

(ei ®nej.ep)=(ei ®ej, Alep)). (A.18)

We shall furthermore assume the analogues of the symmetry relations (3.13), (3.14)
(compatible with the form of? F and with the relatiofi,, > = fipxe?)

v [PoPe e -
@p | Vo [Pl 1Tl _ap, 17 ¢ A.19
be |:c X Py P, b x Ly x| (A-19)

Inserting the first equality of (A.19) in the relation obtained from (A.15) foe 1, one
obtains using (3.11)

. ¢y’ . e
* a’ a
5 (Z)Fab,[i x} <2>Fc,,,[2 x] = BucBuy Sy (A.20)
b,y yn al’

11The above identificatiot® F = @ F appears in [4] (up to different notation) as a solution in the diagonal
cases, where the r.h.s. of (A.12) simplifies to a ratio of g-dimensions. In general the matrix defining the pairing
on A® A and its inverse are left unrelated and the equalities (A.17) lead to dual (with respect jedhmBols)
pentagons in both of which only the inverse matrix enters. We are indebted to Gabriella Bohm and Kornél
Szlachanyi for a clarifying e-mail correspondence on this point.
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Using (A.19) one also checks that the conjugation operati@momputed directly from
(A.11) coincides withE T (e) = E(S~1(e)*). To make contact with the basis for the dual
triangles exploited in [4] one has to introduce

(- % Ee08) _ g(EODEO
so that(¢pt, e) = (¢, S(e)T).

The identity (A.15) and its dual complete the set of pentagon type relations called “the
Big Pentagon” in [4]. In the diagonal cagg.]v = 5”-. where all multiplicitiesN;, n;, ﬁx
andii, coincide with the Verlinde one, one can ident®F = F = @F = O F = F since
all pentagon relations involved coincide with (3.9) and the unitarity relations (3.5) and their
dual counterparts, as well as (A.13), reduce to the unitarit§ .oThe next simple cases
are the permutation modular invariarit;j-. = Zj';g), where¢ is an automorphism of the
fusion rules. For any of these cadéss identified withZ, N = N, /i = n, and accordingly
F=F, WF =®F. We notice that in these cases the pentagon identity (A.16) looks like
the fusing—braiding identity (4.16) and this suggests that ¢i¥en and hence by (4.14),
given B, the latter matrix may provide, up to some constant, a solution?@t. In the
simplest example of thBoqq s/(2) series the matricéd F were computed in [6].

Defining the dual counterparts of (3.22)

E;=)" E—icE(Cb)(Cb), (A.21)

x,n,n

c,by X

and using the analogues of (A.10) and (3.5) withr replaced by F one obtains the
algebra (7.16) with the multiplication identified with the vertical product

E;® Ey=) Ny °E.. (A.22)
Z

The identity inA is given byl, = Y, ., , Exr " and (A.11), (A.13) ensure tha,
coincides with the couni%le.12 The dual algebraéi cannot be turned in general into
a quasitriangular WHA.

The relations (A.22), (7.5), (1.5), imply that the “chiral generators”

P;r = Z Vijin1" Ex, p; = Z Vo1 Ex, (A.23)
X X
satisfy the Verlinde algebra

P ®pi =Y Nij* pp, (A.24)
k

12The factor ¥ P, P. in (A.12), dictated by the requirement of consistency of the full set of pentagon and
inversion equations, can be assigned entirely to one of the constants’. Then one of the formulae (3.22)
or (A.21) gives elements in the center of the corresponding algebra, the so called “minimal central projections”.
However there seems to exist no consistent renormalisation of the two products and of the relation on Fig. 9
making central the basis elements of both algebras (3.23) and (A.22).
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while

P ®@upy =Y T E.. (A.25)
z

Sinceﬁé(fi}) =41, applyingﬁé to (A.25) reproduces in the r.h.s. the modular invariant

matrix Z;; = Tilj [1]; in [11] the analogous relation readsl*, a;)=Zij.

Appendix B. Thesl(2) theories

In this appendix, we illustrate the construction of Ocneanu graphs and of the associated
matrix algebras on thd (2) theories and modular invariants 4 E type.

The cases ofA,, and Dy;11 have been covered by the discussion in Section 7.5: the
A cases are diagonal theories and fhg 1 case is obtained from the diagonal calsg_1
with the same Coxeter numbke 4¢ by theZ, automorphisng (j) = k& — j of the fusion
rules. TheDyy, Eg and Eg cases have also been implicitly covered there. But we shall
collect here additional data on them and presentihease which does not follow from
the previous formulae. Throughout this appendix, we follow the notations of [3] on the
vertices and on the eigenvectors of ordinary Dynkin diagrams.

For the Dy, theories, in which condition (7.43) is satisfied, formula (7.41) applies with
b =1 and«x = 0, 1. Diagonalising the matrice%lx as explained in Section 7.5, and with
a little extra insight to find the appropriate combinations of eigenvegtonsth exponent
()= (j, j) = (2¢ — 1, 2¢ — 1) of multiplicity (ij—.)2 =4, we find that

{lI/x(j;a’ﬂ)}
vi o ¥l i’ v’
(% % o e @e-14) (2010 0 0 51
={ 7, f i 0 0 @14 @2e-1,) (B.1)
V2 2 2 2
j=13...2¢-3

which should be understood as follows: the exponeiit of the first four columns run over
j=13,...,2¢—3 (h=4¢ — 2 is the Coxeter number), and for eatthe corresponding
value of the paiJ) = (j, j) is successivelyj, j), (j,h — j), (h — j, j), (h — j, h — j).
In the last four columns, the exponent &f is (%, %; a, B) with successively(«, 8) =
1,1),2,2,(,2),(2,1). The row indexx is of the formx = (a, ), as in Section 7.5,
and the first line of (B.1) refers to= 0, the second te = 1.

It is then easy to compute the various sets of matrices discussed in Section 7. One finds

that
(”"”-/ 0 ) it j is odd,
~ 0 nin;
Vij= 0 - (B.2)
( i ) , if jiseven,

nin;j 0
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(%‘ ﬁo) if k=0,
Ny = be (B.3)

O Na) =1

Naf O ’ —

and
3 N,, ifxe=0

. ’ B.4
" {NaC, if =1, B4

where the index in (B.3) denotes the&Z, involution of vertices of the (ordinarypy,
diagram which exchanges the two vertices of the fork and leaves the other invariant,
and C,p = 84pc. Using these data, one checks (7.31) and (7.32). Finally the matvices
restricted to the “physical” subset, i.e., those that do not invpkeej = 2¢ — 1 with labels

« # B, are all nonnegative. Fgi, j1,...#£h/2=20—1:

M;j, ;,”3, ifthereis 0 or 2 pairs ofj, h — j)

~

M oo 7 = among(j1, j1), (jz, j2), (ja, ja),
0, otherwise
~ 1
_ . (2-1,20-Lo) (20— 1oz)
M i ﬁM i1z

) —

M(Zﬁfl,Zﬁfl,a,a),(2671,2671,5,/3) Moe—1,0)20— 1/3) ,

(2¢-1,2¢-1,y,y) __ (26—1,)/)

M¢-1,20-1,0,),(20—1,2¢-1,8,8) \/_M(zz La)(2—1,8)

in terms of the “ordinary” Pasquier algebra structure constaf)tg,’s for which explicit
expressions can be found in Appendix A of [1'7.These expressions ol are in
agreement with their connection with the relative structure constants (7.35).

We now turn to the three exceptional cases.

The case of Eg

In that case, it suffices to take= (a,b),a=1,...,6,b= 1,2, and theV;* equal to
the matricesP,;, := Pﬁ). According to what was stated above in Eq. (7.42), the two sets
{P,1} and{P,2} are separately closed upon the left actiomaf Moreover, because of
symmetriesP13 = Pg2, P14 = Ps2, P16 = Ps1, P15 = P51, P32 = P23, P42 = P24 the two
sets may also be regarded{&s,} and{P2,},a =1, ..., 6, and are separately closed upon
right action of N2. See Fig. 10 on which each vertexof the graphE‘é is assigned its
matrix V*.

Using (7.45), it is easy to compute the various sets of matrices discussed in Section 7.
One finds, in accordance with (7.46), that

(J\(])a 5) if x=(a, 1),
N, = < (B.5)

(9 A“A), if x = (a,2),
N, N.Ne

13with unfortunately a misprint which we correct here: in the last line of (A.2), f#i#should read Av/2.

4
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Py,

Fig. 10. The Ocneanu graphs 8D E type: each vertex is assigned its matriif'f, written as aP

or P matrix as in (7.41) or in (B.8). Edges oh1, respecvtiverVlz are shown in red full lines,
respectively blue broken ones, and the vertices of the different “cosets” for the action afre
depicted in different colours.

ands, is given by the last equation (7.46). One also computes= 6, 10, 14, 18, 20, 20,

20,18,14,10,6 for j =1,...,11; m, = 6,10, 14,10, 6,8 and 1020, 28, 20, 10, 14 for
x = (a,b=1) and(a, 2), respectivelya = 1, ..., 6. Hence one checks (7.3@% m; =

156= )", sfi,, and (7.31))";m? = 3", i? = 2512. Finally the matricesf factorise into
a product of ordinary Pasquier matrices

M([)(j)(K) =M,'jle‘-]‘»k. (B.6)

Thecaseof Eg
In that case there are88/2 = 32 matrices that may be taken either as the four sets

{P,1}, {Ps2}, {Ps3} and{P,s},a =1,2,...,8, or using once again their symmetries, as
{P1a}, {Pou}, {P3.} and{Pg,},a=1,2,...,8. See Fig. 10.
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One then computes

N, 0 0 O
~ 0O N, 0 O .
N, = 0 0 ]Va o |’ if x=1(a,1),
0 0 0 N,
0O N, O 0
~ |N. 0O N, 0 L
Ny = 0 A, o~ | if x=1(a,2),
0 0 N7N,
0 0 N, 0
~ 0 N\a 0 ﬁYﬁa ;
Ne=| o I fx=(,3
TN 0 W+NpN, 0 | Itx =3,
0 N7N, 0 N7N,
0 0 0 N,
~ 0 0O NN, O .
_ A PR fx— B.7
Nx o NN, o NN | T¥=@¥, ®.7)
Ny 0 N7N, 0

and7, as in (7.46). Alsom; = m3o-; = 8,14, 20, 26, 32, 38, 44, 48,52, 56, 60, 62, 64,
64,64 for j = 1,...,15; m, = (8,14,20,26, 3222 12 16), (14, 28,40,52, 64, 44,
22,32), (20,40, 60, 78, 96, 64, 32, 48) and (16, 32, 48, 64, 78, 52, 26, 40) for x = (a, b =
1), (a, 2), (a, 3) and(a, 8), respectivelya = 1, ..., 8. Hence one checl@j m; =1240=
Do, D mf =2 =63136. Finally the matrice® factorise again into a product
of ordinary Pasquier matrices, like in (B.6).

The case of E7

This case is known to be related to thgg case. TheP;;) matrices ofD1g were defined
in (7.41) by
(Pcfl:l-))ij = Z niacnjbc,
ceT={1,3,5,7,9,10}
with n the solutions of (1.1) pertaining t1o. Using the same matrices, let us now define
the P matrices (twisted version of the’s) by
(ﬁab)ij = Z niacnﬂ,‘“(c), (BS)
c€{1,3,5,7,9,10}
with ¢ the usual involution acting on the verticesof
{1,3,5,7,9,10} — {1,9,5,7, 3,10}

As in Section 7 (Eq. (7.42)), we have the property that upon left (respectively right) mul-
tiplication by N2, N2.Pyy, =), n2.% (Pyp,), (respectively,P,;.No = Zb,(Pab/)an/b).
Recall that here:, is the adjacency matrix oD1g. This relation explains thé;g pat-
tern of the two chiral parts of the Ocneanu graphon Fig. 10: the red full (respectively
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blue broken) thick line represents left (respectively right) fusiomMayand connects the
matricesP,1 (respectivelyPi,), a =1, ..., 10.
These matrices have to be supplemented by others to produce the full set of niatrices
and the second part (the “coset” [1]) of the graph Using the symmetrie&P,;)” = Py,
etc., of the matrice®, we find that starting with matrix1,, left multiplication by N>
produces the chain of matrices forming the coset
P
T

Pip— Pyp— Pyp= Pig— Pap= Pag— Pra— X := Pyg— Py,

where the splitting ofPs; into the sumPy4 + Pig has formed the triple point of the7
diagram. The matriX itself may be expressed as a bilinear form in the matridgslative
to D10)

X = Z (]V7 - ﬁg)abnilanjlb (B.9)
a,b=2,4,6,8
in such a way that the pairg, b) that are summed over are
(a,b)€{(4,4),(6,6),(8,8),(2,6),(6,2),(4,8),(8,4), (6,8), (8,6))}.

One finds, following downward first thB1o subgraph, and then the; coset

o~

~ ﬁx 0 ~ Nog 0
Ny = =18; Ng = ;
( 0 n/(rE7)) , X » O, 9 < 0 ngEﬂ _ n(3E7) P

~ ﬁlO 0 ~ 0 ﬁxflo
Nio= N, = =11,...,17 B.10
10 ( 0 n(357)>, e <ﬁr_10 0 ) x R A | )

X
wherenE? denote the:-matrices ofE;, and N are relative taD1o; 7ip, b=1,...,7, are
seven 10« 7 rectangular matrices intertwining tiig o and E7 adjacency matrices (see [3],
Section 3.3, for a formula),

i =n§E7)’ x=18; ng—né 7)’ 10_néE7) (E7);

~ E E E E E E

nll:n(2 7); ’112_”( 7)+n( 7)’ n13=né 7); n14—n( 7)+n( 7)’
(E E ~ E E

nls_né 7)’ iy 6_n3 7)+n( 7)’ n17=n(7 7)_n:(% 7)‘

One also computes; =mi1g; =7,12,17,22, 27,30, 33,34,35for 1<i <9, andm, =
7,12,17, 22, 27, 30, 33, 34,17,18; 12 24,34,44,30,16,22, so thatd ,m; = Y m, =
399, m =) .m%=10905. Finally, thell matrices may also be computed, and yield
nonnegatwe numbers .1, f 31,4/2,2), which match what was computed on the

relative structure constandg.
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