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Abstract. Working in the dense loop representation, we use the planar
Temperley—Lieb algebra to build integrable lattice models called logarithmic
minimal models LM (p,p’). Specifically, we construct Yang-Baxter integrable
Temperley—Lieb models on the strip acting on link states and consider their
associated Hamiltonian limits. These models and their associated representations
of the Temperley—Lieb algebra are inherently non-local and not (time-reversal)
symmetric. We argue that, in the continuum scaling limit, they yield logarithmic
conformal field theories with central charges ¢ = 1 — (6(p — p)?/pp’), where
p,p) = 1,2,... are coprime. The first few members of the principal series
LM (m,m + 1) are critical dense polymers (m = 1, ¢ = —2), critical percolation
(m = 2, ¢ = 0) and the logarithmic Ising model (m = 3, ¢ = 1/2). For
the principal series, we find an infinite family of integrable and conformal
boundary conditions organized in an extended Kac table with conformal weights
Ars = ((m+1Dr—ms)?2—1)/4m(m +1), r,s = 1,2,.... The associated
conformal partition functions are given in terms of Virasoro characters of highest-
weight representations. Individually, these characters decompose into a finite
number of characters of irreducible representations. We show with examples how
indecomposable representations arise from fusion.
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1. Introduction

There is much current interest [1]-[5] in logarithmic conformal field theories (LCFTs)
including LCFTs in the presence of boundaries [6]. The present paper aims at studying a
family of lattice integrable models, for which, it is believed, the associated conformal

field theories are logarithmic.
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Figure 1. A simple model of critical percolation on the square lattice. Each face
in a column j can be in one of two equally probable configurations which are
associated with the identity I or the Temperley-Lieb generator e;.

appearance of logarithmic branch cuts in correlation functions, and second and perhaps
more fundamentally, the appearance of indecomposable representations of the underlying
conformal algebra (Virasoro or one of its extensions) and their accompanying Jordan
cells. Throughout this paper, we reserve the term indecomposable representation for a
representation exhibiting a Jordan-cell structure. On the lattice, the transfer matrix or
the Hamiltonian on a strip are the precursors of the Virasoro generator L. To find
lattice realizations of an LCF'T, it is thus necessary to consider systems in which the
transfer matrix is not diagonalizable and admits Jordan cells. For simple lattice models,
such as the six-vertex model or RSOS models, the transfer matrices are (time-reversal)
symmetric. Since these transfer matrices are real, this implies that they are diagonalizable
so something different is needed.

Indecomposable representations and their associated Jordan matrices have been
shown to occur in a variety of algebras: Temperley—Lieb algebra and quantum groups at
roots of unity [7] and superalgebras [8]-[10]. This has led to supersymmetric and fermionic
models [11]-[15]. In the present paper, we make use of non-local degrees of freedom.

Usually in statistical mechanics, one works with local degrees of freedom, such as spins
or heights. In contrast, in other classes of physical problems [16,17] such as percolation
(see figure 1) and polymers, one needs to keep track of connectivities or some other
degrees of freedom which are inherently non-local. This shift in paradigm has a dramatic
effect on the physical properties of these models. Specifically, for the models considered
here, we confirm that the set of exponents extends beyond [16] the ‘minimal Kac table’
and that their associated conformal field theories are in fact logarithmic [12,18,19].
Indeed, it is demonstrated that the transfer matrices, although real, in some cases are
not diagonalizable and hence lead to Jordan cells.

There is some evidence [20, 2, 21], [23]-[25] to suggest that there is an LCFT associated
with each minimal model M (p,p). These LCFTs are in some sense the simplest LCFTs.

doi:10.1088,/1742-5468,/2006/11/P11017 3
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In this paper, we develop ideas involving non-local connectivities, the planar Temperley—
Lieb (TL) algebra [26,27] and its action on states of planar link diagrams, to build
integrable lattice models which we call logarithmic minimal models LM (p,p’). These
models might play a similar role for logarithmic theories as the Andrews-Baxter—Forrester
RSOS models [28] do for rational theories. The isotropic critical percolation model
LM (2,3) is illustrated in figure 1. The idea to use transfer matrices acting on connectivity
states dates back to the early 1980s [29]. The role of planar link diagrams as ideals of the
TL algebra was emphasized in [30]. The approach developed here has its roots in the loop
version of the O(n) model [31]. Presumably, an alternative approach could be developed
by using cluster transfer matrices [32].

We assert that the continuum scaling limit of the LM (p,p’) lattice models define
logarithmic CFTs which we also call logarithmic minimal models and also denote by
LM (p,p’). These theories offer a laboratory for studying LCFTs further by opening
up new approaches to this important class of problems. In particular, these theories are
amenable to study by the use of functional equations, Bethe ansatz, T-systems, Y -systems
and thermodynamic Bethe ansatz.

We believe the main originality of the present paper lies in the use of boundary
conditions in the loop model, that are consistent with integrability. It has been known for
a long time [33]-[35] that boundary conditions are suitable to expose the representation
content of a CF'T and to study the fusion of these representations. Here we borrow from
the work by Behrend and Pearce [36] the construction of boundary states that are solutions
of the Boundary Yang-Baxter equations (BYBEs). These boundary conditions in the
conformal continuum limit are expected to give rise to representations of the Virasoro
algebra. Specifically, the boundary conditions that we consider are labelled by a pair of
integers (r,s) with (1,1) playing the role of the vacuum boundary condition. Imposing
the boundary conditions (1,1) and (r,s) on the two sides of the strip gives rise to a
certain representation (7, s), to be defined below, of the Virasoro algebra and enables us
to write an explicit form of the corresponding Hamiltonian. Imposing (r,s) and (7', s)
boundary conditions gives access [35] to the fusion of representations (r,s) and (17, s’).
Our model thus provides a practical tool to study the fusion of representations and to see
the generation of indecomposable representations.

The layout of this paper is as follows. We start in section 2 by summarizing the
spectral conformal data obtained for our logarithmic minimal models. We recall the
various types of representations of the Virasoro algebra, namely, irreducible, reducible
and indecomposable representations. In the appendix, we show how the characters of the
reducible representations can be written as a sum of finitely many characters of irreducible
representations. In section 3, we use the planar TL algebra to define integrable lattice
realizations of the minimal LCFTs. We review the definition of the planar TL algebra [27].
We show that the lattice logarithmic minimal models are integrable in the sense that the
local face operators X (u), where u is the spectral parameter, satisfy the Yang-Baxter
equations (YBEs) and Boundary Yang-Baxter equations (BYBEs). We also use the
construction of Behrend and Pearce [36] to obtain an infinite hierarchy of solutions to
the BYBE labelled by extended Kac labels (r,s) with r,s = 1,2,.... In section 4,
we discuss the relation between the planar TL algebra and the more usual linear TL
algebra. We introduce link diagrams which are the non-local states that keep track of
connectivities. We also specialize the inversion, YBE and BYBEs to their appropriate

doi:10.1088/1742-5468/2006/11 /P11017 4
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forms in the linear TL algebra. In section 5, we set up commuting double-row transfer
matrices D(u) and argue that there exist integrable and conformal boundary conditions
labelled by the entries of the infinite Kac table (r,s) with r,s = 1,2,3,.... Next, we
obtain explicit expressions for the integrable Temperley—Lieb link Hamiltonians by taking
the logarithmic derivative of the commuting double-row transfer matrices D(u) at u = 0.
In section 6, we discuss the relation of the logarithmic minimal models to the six-vertex
model. We also present analytic expressions for the bulk and boundary free energies
including the forms applicable in the Hamiltonian limit. In section 7, we turn to the
conformal spectra on the strip obtained in the continuum scaling limit, first restricting
ourselves to the case where one boundary is the vacuum. In these cases, we find that
the transfer matrices are diagonalizable and the spectrum generating functions are given
by a single conformal character corresponding to a quasi-rational quotient module of the
Virasoro algebra. We present numerical evidence to support this assertion. In section 8, by
considering non-trivial boundaries on both sides of the strip, we show how indecomposable
representations are generated by fusion of the (r,s) representations. This observation is
crucial in the claim that our models are logarithmic. We leave a more detailed discussion
of the fusion algebras to a subsequent paper. Section 9 contains a brief discussion.

2. Logarithmic minimal CFT

2.1. Spectral data

The usual rational minimal models are constructed on a finite set of irreducible highest-
weight representations which arise as quotients of Verma modules of the Virasoro algebra.
The value of the central charge is specified by two coprime integers p, p’, with 1 < p < p’
and

6(p — 1)

o (2.1)

c=c(p,p):=1-

The conformal weights, which label the irreducible representations, are given by the Kac
formula

(P'r —ps)* — (p—p)?
Ar,s == Apfr,p/,s — 4pp/ 5 1 S T S p - 1, 1 S S S p/ - 1 (22)

In contrast, logarithmic CFTs are constructed on representations of the Virasoro
algebra which are not all irreducible highest-weight representations: some of the
representations are indecomposable. In the simple class of such theories considered here,
the central charges and conformal weights are as in the usual minimal models (up to
the bounds on the labels r,s), but the Virasoro generators act on some representations
through Jordan cells.

To be more precise, the CFTs that will appear in the continuum limit of our lattice
models have central charges and conformal weights

62 [r — (m — X)s]? — \?

-2 0<Ai<m A= ,
¢ (r—M\)’ SAST ’ dr(m — N)

r,s=1,23,...
(2.3)
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where A is the crossing parameter of the lattice model. Whenever A/7 is rational of the

form A = (p — p)w/p/, where p,p’ are two coprime integers with 0 < p < p/, this central

charge coincides with ¢(p, p’). The corresponding CFT is not rational nor unitary and will

be denoted by LM (p,p’). The conformal weights lie in an infinitely extended Kac table
A= Wr=ps) = (p—p)

r,s 4pp/

While s varies over an infinite range, it may be necessary to restrict the values of r

according to the model.

The most studied LCFTs so far are models with central charges ¢ = ¢(1,p') or
c = ¢(2,p) [20,2,21,22,25]. In the present paper, our primary focus is the series
LM (m, m + 1) with central charges

c:l—L, m=1,23,... (2.5)

m(m + 1)

called the principal series and we restrict r to the range 1 < r < m. The first few
members of the principal series are of particular significance since they include critical
dense polymers (m = 1, ¢ = —2) and critical percolation (m = 2, ¢ = 0). The
other members of the series are new lattice models. Borrowing nomenclature from the
usual rational models, we call them the logarithmic Ising model (m = 3, ¢ = 1/2), the
logarithmic tricritical Ising model (m = 4, ¢ = 7/10) and so on. The conformal weights
of these models are shown in table 1. Despite the nomenclature, the properties of these
models are actually very different from their rational cousins.

It is observed that all of the distinct conformal weights fall in the first m columns of
the extended Kac table of LM (m,m + 1). This follows from a simple combination of the
symmetries A, gy sty = Drs = Ay s With k& € Z. In the logarithmic theories, these
symmetries merely express the coincidence of conformal weights and do not indicate the
identification of representations.

Specifying the central charge and conformal weights may not uniquely determine a
LCFT. It is conceivable that two LCFTs could have the same spectral data but differ
in their Jordan cell structures. Thus, we do not claim any exhaustive classification of
LCFTs, nor do we claim that the logarithmic minimal models exhaust the LCFTs of any
given central charge. Instead, we pragmatically define minimal LCFTs as the continuum
scaling limits of our logarithmic minimal models, which are well-defined integrable lattice
models, and then study their conformal properties.

, r,s=1,23,.... (2.4)

2.2. Quasi-rational representations and characters

The concepts of rational CF'T, with its finite number of representations of the chiral
algebra, and of the fusion of these representations are quite familiar. The logarithmic
minimal models, on the other hand, possess a countably infinite number of representations.
We anticipate that the logarithmic minimal models are quasi-rational in the sense that the
fusion of any two representations produces only a finite number of such representations.
The representations of such a theory will be called quasi-rational, following Nahm [37],
who gave a criterion for quasi-rationality.

For any rational or irrational value of A\/m and for any positive integers r,s, the
module (representation) Vi, , of the Virasoro algebra of highest weight A, ; given by (2.4)
is reducible; it has a submodule Va, _ of highest weight A, _, = A, ;+rs. The character

doi:10.1088,/1742-5468,/2006/11/P11017 6
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Table 1. Lower left corner of the extended Kac table of conformal weights A, s
for m = 1,2,3,4 corresponding, respectively, to critical dense polymers (¢ = —2),
critical percolation (¢ = 0), the logarithmic Ising model (¢ = 1/2), and the
logarithmic tricritical Ising model (¢ = 7/10). All of the distinct conformal
weights occur in the first m columns.

m=1, c= -2 m=2 ¢c=0
63 35 15 3 1 3 65 21 1
8 8 8 8 8 8 12 8 5 8 1

28 143 10 35 1 1
6 3 1 O 0 1 3 24 3 24 3 24

35 15 3 1 3 15 33 5 1
T | % 5 | 75| s T 7 s 2 5 0 5
21 1 5

3 1 0 0 1 3 5 2L 1 1 0 g
15 3 | _1 | s 15 | 35 0 | 35 1 11 35
8 8 8 8 8 8 3 24 3 24 3 24
B 1 21

1 0 0 1 3 2 5 0 1 1 2
3 1 3 15 35 63 1 5 33
8 8 8 8 8 8 1 8 O 8 2 8
1 1 1 35 10 143

0 O 1 3 6 10 3 24 3 24 3 24
1 3 15 35 63 99 1 21 65
—5 | s T | % | s 5 0 5 1 T 5 s
0 1 3 6 10 15 0 o! 2 33 7 &
8 8 8

m=3, c=1/2 m=4, c=7/10

225 161 323 65 33 35 153 899 39 399 14 99
16 16 48 16 16 48 10 80 5 80 5 80
15 14 5 1 135 11 51 3 7

11 2 3 2 1 6 12 16 2 16 2 16
133 | 8 | 143 | 21 | 5 | _ 1 o1 | 483 | 18 | 143 | 3 3
16 16 48 16 16 48 10 80 5) 80 5 80
6 7 5 1 0 1 33 | 328 | 21 | e | 1 | 3
2 5] 2 6 5) 80 10 80 10 80

65 | 33 | 35 1 1| 35 9 39 1 3 0 T
16 16 48 16 16 48 2 16 16 16
5 1 1 0 1 5 1 | 9 3 | _1 | 3 | 9
2 6 2 3 5) 80 10 80 10 80
21 | 5 | _1 | 5 | 21 | 143 3 7 0 3 1 39
16 16 48 16 16 48 2 16 16 16
1 0 1 1 5 14 3 3 | 1 | e | 21 | 323
2 6 2 3 5 80 10 80 10 80
1 | 1 | 35 | 33 | e | 323 1| 3 3 | 143 | 18 | 483
16 16 48 16 16 48 10 80 5) 80 5 80
1 5) 7 55 7 3 51 11 135

0 2 3 3 6 3 0 16 3 % | = | 76

doi:10.1088,/1742-5468,/2006/11 /P11017 7
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of the quotient module Q. := Va,,/Va, _, is

ooalq) = gt e (L) (2.6)
" [ (t—qm) [ (T —qm)
Such quotients @, s are irreducible for (generic) irrational values of \/7, while they are not
necessarily irreducible if A\/m = (p’ — p)/p’ is rational. In our construction, the spectrum
depends on the free parameter A and we find it varies continuously with A. This supports
our assertion that the characters y, s(q) above are appropriate building blocks to describe
the conformal spectra of the logarithmic models LM (p, p’), even though A\/7 = (p' — p)/p’
is rational and the associated characters are not irreducible. In the appendix, we show how
the characters of the representations (), , decompose into a finite number of characters of
irreducible representations of the Virasoro algebra.
The characters x; s(¢) arise as the limit of finitized characters for a lattice strip of N
columns

Xrs(q) = lim x{7(q) (2.7)
where
N _ o —c/244+Ar s TS
Xg,s)(Q) =q ([(N—é\j-r)/2}q q |:(N—sj\ir)/2:|q>’ (2.8)

Here [ j\ﬂq is a ¢-binomial (Gaussian polynomial) and N = r — s mod 2. The dimension

of the vector space of states is given by dim)V = Xﬁfp(l). The characters x,s(¢) =

q ¢/# A N gF are the spectrum generating functions for the integer energies E of an
infinite system. A finitized character [38,39] is obtained by a consistent truncation of
the space of states of the infinite system. The energies of a finite system therefore do
not precisely coincide with integer energies of the finitized character but they converge to
them as N — oo.

The fusion of the representations (r,s) generates new representations that may be
indecomposable. For example, we will confirm in section 8 that for critical dense polymers
(m =1, ¢ = —2) the fusion of (1,2) with itself is

(1,2) @, (1,2) = (1,1) &; (1,3). (2.9)

As indicated by the subscript ¢, the right side is not a direct sum of representations
but rather an indecomposable combination exhibiting Jordan cells. Of course, since the
character of the indecomposable representation is insensitive to the off-diagonal terms, it
is simply x1,1(¢) + x1,3(q)-

By construction, the set of (irreducible, reducible or indecomposable) representations
generated by this fusion prescription is closed and constitutes a set of quasi-rational
representations.

3. Planar Temperley—Lieb algebra

From a simple perspective, a planar algebra [27] is a closed algebra of diagrams known
as planar tangles. The diagrams can be interpreted (by selecting in- and out-states) as
giving rise to multiplications in different directions corresponding to a consistent action

doi:10.1088,/1742-5468,/2006/11/P11017 8
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on a collection of vector spaces. Here we only consider the planar Temperley—Lieb (TL)
algebra.

Given a planar algebra admitting local face operators satisfying the Yang-Baxter
equation, one can build an integrable lattice model. To define integrable lattice models [40]
on the square lattice which realize the minimal LCFTs LM (p, p) in the continuum scaling
limit, we use solutions of the Yang-Baxter equation (YBE) built from the planar TL
algebra [27] 7 = 7 (\) with crossing parameter A € R which for LM (p,p’) is specialized
to

, —
A\ = M, p,p’ coprime. (3.1)
p
We introduce a complex spectral parameter u € C and set
sin(u + r\)
(u) = ———, €. 3.2
sr(1) sinA " (3:2)

The local face operators are defined as linear combinations of elementary 2-boxes
(monoids [42]) by

Xw) =| u |= 51(—u)-/ + so(uw) \ 3.3
| AN .

Consequently, we have the local crossing relation

XA—u) = x—u| = so(u) -//- + s1(—u) -\\ =] u (3.4)
The 2 in 2-box refers to the fact that there are 2 connectivities in and 2 connectivities
out. The lower-left corner of a lattice face is marked to fix which monoid gets the weight
s1(—u) and which gets the weight so(u). Internally, the nodes at the centres of the edges
of a face can be connected in pairs in one of two ways as specified by the two elementary
2-boxes.

The usual physical requirement is that these weights are positive but it is useful here
to relax this constraint. From the diagonal reflection symmetries and crossing symmetries,
we have

Xw) =] u |=| u |=|rAu|=]|Aru (3.5)

Y a

The face operator and elementary 2-boxes can be viewed as acting from any two adjacent
nodes (in-states) to the remaining two adjacent nodes (out-states). In this manner, these
operators can act in the four diagonal directions on distinct vector spaces spanned by link
diagrams enumerating the allowed planar connectivities of the relevant nodes.

The elementary 2-boxes satisfy the simple relations

and similar relations where the dashed lines indicate that the corners and associated
incident edges are identified. Viewed as acting horizontally, these are the standard
relations I I = I and e? = e, of the linear TL algebra as in section 4. In the planar

doi:10.1088,/1742-5468,/2006/11/P11017 9
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algebra, however, the relations (3.6) are valid for action in any direction, horizontally
or vertically. In physical terms, the planar TL algebra is interpreted as a loop gas with
fugacity

B=2cosA\=x+ax ", r=e? Be(-2,2) (3.7)

assigned to each closed loop.

3.1. Inversion and Yang—Baxter equations

Let us prove the inversion and Yang-Baxter relations in the planar TL algebra.
Diagrammatically, the inversion relation is

= s1(u)s1(—u) (3.8)

The cancellation of the three omitted terms follows from the trigonometric identity
between their weights

[s1(—u)so(—u) 4 so(u)s1(u) + B so(u)so(—u)] =0 . (3.9)

The Yang—Baxter equations express the equality of two planar tangles

« h ‘ o
Setting w = v — u and allowing for the five possible connections of the external nodes,
this reduces to the diagrammatic equations

s1(—u)s1(—v)s(—w) @ = s1(—u)s1(—v)si(—w) @ (3.11)
s1(—u)sp(v)s1(—w) @ = so(u)s1(—v)so(w) @ + so(u)s1(—v)s1(—w)

+ s1(—u)s1(—v)sp(w) + so(u)so(v)so(w) (3.12)

The first equation, which is a trivial identity, occurs three times under rotations through
120°. The second equation occurs twice under rotations through 180° and follows from
the trigonometric identity
s1(—u)so(v)si(—w) = B so(u)si(—v)so(w) + so(u)si(—v)sy (—w)

+ s1(—u)s1(—v)so(w) + so(u)so(v)se(w). (3.13)

doi:10.1088/1742-5468/2006/11 /P11017 10
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3.2. Boundary triangles and boundary YBE

To incorporate boundaries, we introduce 1-triangles. An elementary 1-triangle with no
internal degrees of freedom is defined by

K(u) = K(u,¢) = @ - <ﬂ (3.14)

where ¢ is a fixed boundary parameter which is often suppressed. The 1 in 1-triangle refers
to the fact that there is 1 connectivity in and 1 connectivity out. This boundary condition,
which we label by (r,s) = (1,1), will play the role of the vacuum boundary condition.
For given boundary 1-triangles, the Boundary Yang-Baxter equations (BYBEs) express
the equality of the two boundary tangles

(3.15)

For the elementary 1-triangle, for example, this follows from the following four identities
where w1 = s1(v — w)so(u + v), wy = so(u — V)so(u + v), wg = s1(v — u)s1(—u — v),
wy = So(u — v)s1(—u — v) and equality applies to connectivities as well as weights

(3.16)

Further solutions to the BYBEs are constructed in section 3.4.

3.3. Braids

The planar TL algebra extends to a planar braid—monoid (tangle) algebra by adding braid
2-boxes. The braid 2-boxes are defined by braid limits of the face operators

b—k lim ) _

uU——100 S1 (—u)

Cotektam 2 (3.17)

|-

doi:10.1088/1742-5468/2006/11 /P11017 11
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1/2

Although the constant k is arbitrary, the choice k = —ie=™/? = —jz~'/? is compatible

with crossing symmetry since then

b=—i(z"Y2X(0) — 22X (\)), bl = —i(z712X(\) — 22X (0)) (3.18)
and
—1/2 giug, 1/2 p—iup—1 —1/2 giup—1 1/2 ,—iup,
X(uy = L2 L X —wy =t e rroe D (3.19)
i(x — 1) i(x — oz~ 1)

There are many relations that hold in the planar TL braid-monoid algebra. The
braid relations

= (3.20)

for example, follow immediately by taking the limit u,v,v — u — £i00 in the YBE. The
inverse relation

= (3.21)

=w , w =x3/2, (3.22)

Another relation, which we will need later, is the rotated partner of (3.21) with a spectator
1-triangle

N
- ) (3.23)
g

3.4. Integrable and conformal boundary conditions

In this section, we start with the vacuum boundary condition and use the fusion
construction of Behrend and Pearce [36] to build an infinite family of solutions to the
BYBE labelled by Kac labels (r,s) with r,s = 1,2,.... The (r,s) integrable boundary
condition leads to the (r,s) conformal boundary condition in the continuum scaling
limit. The construction process is valid in the planar Temperley—Lieb algebra. Since
the arguments are formally the same as in [36], we just summarize the relevant results.
The (r, s) solution is built in a two-stage process as the fusion product (r,1)®;(1, s) of
integrable seams acting on the vacuum (1, 1) 1-triangle. It is represented by the 1-triangle
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(r,s) (r,1) (1,5)

- u—&ra|u—&-3 —u—&o

u, & = = - . +ioq

(3.24)

- u_gr—l U_£T—2 U—El

O . >

r — 1 columns

Here there are r — 1 double columns of faces, the column inhomogeneities are
=&+ kA (3.25)

The solid dots indicate that a projector P", defined below, is applied along the bottom
(or equivalently top and bottom) edges of the right-hand side. Any residual degrees of
freedom (connectivities) on these edges are regarded as internal to the boundary.

The projectors P", which act on the top and the bottom, are given by

These projectors are normalized to satisfy (P")*> = P" and act on r — 1 strings to kill any
diagram with closed half-arcs, that is, where any two of the » — 1 strings are connected.
For \/m irrational, there are an infinite number of projectors labelled by r = 1,2,3,....
However, for \/m rational, some projectors may diverge as is clear from (4.23). For
the principal series, we restrict to 1 < r < m ensuring the existence of the normalized
projectors.

For 1 < s < m, the (1, s) solution is given by the braid limit of the (s, 1) solution

(1,9) (s,1) Y

(3.27)

o—|——|—o
—|——|—o

Il

3

Il
—|——|—o

s — 1 columns
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(r',s") = (1,1) (r,s) = (1,3)

I
)

Figure 2. A typical configuration on the strip showing connectivities. The action
on the link state is explained in the next section. The boundary condition is of
type (r',s’) = (1,1) on the left and type (r,s) = (1,3) on the right, so there

are { = s —1 = 2 defects in the bulk. The strings propagating along the right
boundary are spectators connected to the defects.

)
)

g6
\\
A

e

)
)

J

A
\\\\/\\
ST
AN
RN /\I\\\

I

I

I

“

and a similar expression with underpasses replacing overpasses on the right side of the
equation for & — +io0o. The solid dots indicate that a projector P? is applied along the
row. The limits exist provided that the face operators are suitably normalized. Repeatedly
applying (3.23) to either braid limit gives

(Ls) o R .-
v // // A (3.28)

s — 1 columns

showing that the s — 1 rightmost strings pass straight through the boundary tangle. For
s > m, we define the (1,s) boundary condition by the right side of (3.28) with s — 1
columns with no projector but the action is restricted to the vector space of link states
V) as explained in the next section. For s < m, the two definitions are equivalent.
The effect of the (1,s) boundary condition is to close the { = s — 1 defects on the right
boundary as indicated in figure 2 and discussed in the following.

3.5. Boundary crossing

Since all closed half-arcs are projected out by the fusion projector, it follows that the
normalized (r, 1) boundary tangle is
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(r,1) .~ o o .

_ \\\\\\ ~_sr—1(0)s0(2u)

N so(§+u)sr(§—u)
J /J // A + ~ (3.29)

@ L 4 L 4

-—’_/
r — 1 columns r — 1 columns

This is a combination of equations (2.29) and (2.30) of [36]. The closed loop which
is implicitly present in the second term has been cancelled against a factor (8 in the
prefactor. Note that only the first term, which is an s-type boundary condition of type
(1,7), survives in the braid limit £ — +ioc.

The boundary crossing relation follows readily

(r,1)

(r,1)
1 [ s2(—2u) s—1(2u)
s0(2u) © a ( s0(2u) @ T s @)
.k « o -

L\ J
= e —wsaE+w) DY) K) = sea(0)sa(=20)
! J ’
Avavai N
r — 1 columns r — 1 columns
(r,1)
_ ¢ (3.30)
Here we used the identities
So(—2u) + Bs_1(2u) = so(2u) (3.31)
So(€+u)s. (& —u) — s,-1(0)s_1(2u) = $1(§ — u)s,—1(€ + u). (3.32)

4. Linear Temperley—Lieb algebra

The linear Temperley-Lieb algebra [26,41] 7 = 7 (n,\), with n € Z>o and A € R, is
obtained by fixing the in- and out-states (or direction of transfer) of the planar TL algebra.
The linear TL algebra thus acts on a fixed (distinguished) vector space and is generated
by the identity I and the operators ey, ..., e, 1 satisfying for 7,k =1,2,...,.n—1

e?zﬂej, b =2cos\
ejep€ej = €, l7—kl=1 (4.1)
ejep = epej, l7— k| > 1.
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Here we work in the dense loop representation of the TL algebra and represent the TL
generators e; graphically by monoids [42] acting on n strings

7 (4.2)
1 2 =1 5 J+1 542 n—1 n
NI v
2 _ _ — 4.
=) g T (4.3)
N jooje
JjoJt+1

/ U
€jcjt1ej = = =¢ (4.4)
=1 [

Joog+lg+2 Joog+lg+2

For 8 # 0, 57 'e; and I — ™ 'e; are orthogonal projectors.
The number C,, of independent words w € 7 (n, \) is given by the Catalan numbers

2 2 1 2
oR e Y (R ") =12514,;  n=1,2,34,. ... (4.5)
n n—1 n+1\n

The words of the linear TL algebra are divided into equivalence classes by the number
of strings or defects ¢ passing from the bottom to the top of the monoid diagrams. For
n = 4, for example, we have 7 = Sy U S, U Sy with

(=085 = {6163: €1€3€2, €2€1€3, 62616362}
0 =2: 8, ={e1, e, 3, €169, 261, €263, €362, €1€2€3, €3€2€1 } (4.6)

Under the action of the generators of the TL algebra, the defects can hop by two sites
(e1 — ege; for example) or adjacent defects can be annihilated in pairs (e3 +— ejes for
example). It follows that the action of the TL algebra is block triangular on the classes
Sy and that 7 = 7 (n, A) admits the subalgebras

¢<0,0—0'=0 mod 2

The linear TL algebra 7 (n,\) is semisimple for A\/7 irrational and not semisimple
for A\/m rational [41,43]. This means that Hamiltonians and transfer matrices constructed
from the generators of this algebra are necessarily diagonalizable for A/7 irrational. To
see indecomposable representations, we therefore need to consider the case where \/x
is rational. This general structure theorem tells us that indecomposable representations
exist but gives no hint as to how to construct them or relate them to boundary conditions
of a physical system.
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4.1. Link diagrams

The fixed vector space of states of the linear TL algebra is described by connectivities.
However, arbitrary connectivities cannot occur. Referring to the top edge of figure 1,
it is seen that connectivity in neighbouring pairs — — — ... is always allowed. This
distinguished connectivity state will play the role of vacuum for our theories. Other
allowed connectivities are generated by the action of the TL algebra on the vacuum
state and are described algebraically by right ideals and diagrammatically by planar link
diagrams.
Let us consider the action of the TL algebra on the vector space of right ideals

V=Vn,\)=wT :weT=T(n)N), wl={wt:tcT} (4.8)
where (- --) denotes the linear span. In the loop representation, each right ideal admits a

graphical representation as a (planar) link diagram. For n = 4, for example, there are six
right ideals organized by the number of defects ¢:

{=0: 6261€3T = {626163, 62616362} = m

1 2 3 4
{=0: eresT = {ejes,erezea} = M M
1 2 3 4
{=2: e1T = {ey,ereg,e1e0e3,€163,€1€3621 = (||
1 2 3 4 (4 9)
(=2 esT = {ea,e0e1, €003, e0¢163,€0¢163¢2} = | M |
1 23 4
{=2: 63T: {6376362,6163,6362617616362}: I M
1 2 3 4

(=4: IT=T=1 11|

1234

The TL generators act on these link diagrams from below. We denote by ), the vector
space of right ideals with exactly ¢ = s —1 defects. Defects occur with a fixed parity given
by n — ¢ =0 mod 2. Since defects can be annihilated in pairs but not created by the TL
generators, the action of the TL generators is upper block triangular on the vector spaces
V,. The dimension of the space V), is

dimV, = x\") (1) = (nnz) - (HZQ) (4.10)

2

2

It is often convenient to encode the right ideals by restricted solid-on-solid (RSOS
or Dyck) paths |a) = (ag,a1,...,a,) where ay = a, = 0 and a; is the number of half-
loops above the midpoint between strings j and j + 1 and |aj41 — aj| = 1 for each
7=0,1,...,n—1. For n = 6, we have

Vo =1((0,1,2,3,2,1,0),(0,1,2,1,2,1,0),
(0,1,0,1,2,1,0),(0,1,2,1,0,1,0), (0,1,0,1,0,1,0)). (4.11)

The action of a single TL generator e; maps one right ideal into a scalar multiple of
another right ideal. It is instructive to write down matrices representing the action of
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TL generators on the basis of right ideals. For n = 6, the action of e; and ey on V), for
example, is given by

00 0 0 0 00 0 0 O
00 0 0 0 1 g1 0 0
ee=10 1 5 0 0}, ee=10 0 0 0 O (4.12)
00 0 0 0 00 0 g 1
10 0 1 p 0 0 0 0 O

where the order of the basis is as given in (4.11). In general, these matrices are real but
not symmetric with eigenvalues 0 or § so that S~ 'e; are projectors for 3 # 0. We stress
that these matrices are non-local in the sense that the action on all link states must be
considered to write the matrix representative of a given e;. Despite the graphical depiction
of the TL generators, these matrices are not (time-reversal) symmetric. This results from
the action on link states which encode the history from time —oo and explicitly breaks
the time-reversal symmetry associated with local representations of TL.

Later it will be useful to restrict the action of the TL generators onto spin-
(s —1)/2 subspaces defined by

VO = (la) € Vo : {ag,a1,...,any ={...,s—1,5s—2,...,1,0}), s=1,2,3,...
(4.13)

where precisely the last s heights are fixed and s — 1 = £ is the number of defects.

4.2. Face operators and local relations

A solution of the YBE [40] is obtained by taking the local face operators of the planar
TL algebra and fixing the direction of transfer

(4.14)

J=1 5 Jj+1

These operators act from below on the fixed vector space V(n,A) between string j and
J + 1. It follows that the X;(u) satisfy the operator form of the YBE

X (1) Xya o -0) X (0) = X1 (0) X (w4 0) X oo (1) (4.15)

depicted graphically by

(4.16)

J=1 j 4142 J=1 j 4142
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The local face operators also satisfy the single-site commutation relation

Xj(u) X;(v) = s1(—u)si(—v)I + so(u+v)e; = X,;(v) X;(u) (4.17)
and hence the inversion relation
Xi(—u) Xj(u) = s1(—u) s1(u) 1. (4.18)

The triangle boundary weights on the right

(4.19)

must satisfy the Boundary Yang—Baxter equation (BYBE)

Xj(u—v)Kji1(u, §)X;(u + v)Kjia (v, €)
= K1 (0, ) X;(u +v) Ky (u, §)X;(u — v) (4.20)
depicted graphically by

(4.21)

A similar relation holds on the left boundary. Here £ € C is an arbitrary parameter.
Physically, ¢ is a thermodynamic variable governing the boundary interactions. More
specifically, it is a generalized boundary magnetic field. From the single-site commutation
relation (4.17), it follows immediately that a fundamental solution of the BYBE (4.20) is
given by

Kj(u) = 1. (4.22)

It is the vacuum solution which is labelled by (r,s) = (1, 1).
Explicitly, in the linear TL algebra, the first few normalized fusion projectors are

1
1_ p2 _ 3 _
‘Pj_Pj_Iv _Pj—f—mej,
wa(0) ) (4.23)
4 2
Br=1=20 (e +€41) + 520) (ejejn + €j11€5).
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It is noted that the denominators vanish for certain rational values of A/7. However, this
does not occur for the principal series with A = 7/(m 1) in the cases under consideration
where r = 1,2,...,m. Using the TL algebra and the fusion projectors, it is possible [36]

to systematically build further solutions K ](-T’S) of the BYBE labelled by arbitrary Kac
labels (r,s) with r,s =1,2,...

r—1
K](T—i—i ( 7£) = P]r+2pj§+r+1 HXj-l-k(u H jHl+r— 1 )
k=1
1 1
x [ Xirerralioo) T Xjenu+ & o) PliaPyiriy (4.24)
l=s—1 k=r—1

depicted graphically by

u+&r1

u+&r o

K (u,€) =

(4.25)

joog+l 2 .- jtr

where & = £ + k)X and the solid dots indicate the action of the fusion projectors. The
(1,s) boundary triangle K](_lﬁ (£ = io0) occurring on the right side of (4.25) has itself a
similar graphical depiction but with &, = 4700, r replaced by s and the boundary triangle
omitted or equivalently acting as the identity. As in section 3.4, for s > m, the fusion
projectors are omitted and the action is simply restricted to the vector space of link states
V),

After suitable normalization, it follows from (3.29) that the boundary weights are
given in terms of projectors by

$r—1(0)s0(2u)

(r,s) s - r r 5
B8 = Pl = St e ) Lnrlin b (4:26)
From the recursive definition of the projectors [36], it also follows that at u = ¢
K{9(€,€) = PPy, (4.27)
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5. Commuting transfer matrices and Hamiltonians

5.1. Double-row transfer matrices on a strip

The YBEs, supplemented by the additional local relations, are sufficient to imply
commuting transfer matrices and integrability. To work on a strip with fixed boundary
conditions on the right and left, we need to work with N column double-row transfer
matrices (DTMs) [44,45] represented schematically in the planar TL algebra by the N-
tangle

— A—u | A-u A—u
D(u) = Afup—> S u (5.1)
~ u u u
Y N N

As we will explain later, this schematic representation in the planar TL algebra needs to
be interpreted appropriately to write D(u) in terms of the generators of the linear TL
algebra and to write down its associated matrix.

Following the diagrammatic proof of [45], which is valid in the planar TL algebra, the
DTMs D(u) form a commuting family with [D(u), D(v)] = 0. Similarly, using boundary
crossing (3.30) and following the diagrammatic proof of [45] yields the crossing symmetry
D(u) = D(A—u). It also follows, at least for (r,s) = (1, s), that D(u) is invariant under
reflections about the vertical. Hence the eigenvectors of D(u) are either odd or even under
the action of the chiral operator C' that implements the left—right reflection on link states
and the eigenvalues of D(u) are labelled by the quantum number C' = +1.

In contrast to the situation for RSOS models, the DTMs D(u) here are not
transpose symmetric and are not normal, so there is no guarantee that they are
diagonalizable. Nevertheless, we conjecture that for the one-boundary cases (one non-
vacuum boundary) the DTMs D(u) are diagonalizable. This is supported by all of our
numerics. The situation is very different, however, for the two-boundary cases (two non-
vacuum boundaries) where in certain cases, as in section 8, the transfer matrices are not
diagonalizable and admit a Jordan cell structure.

5.2. Hamiltonian limits

One way to take the Hamiltonian limit is to write D(u) in terms of the linear TL algebra.
Given a solution K;(u) of the right BYBE and assuming 3 # 0, we define a DTM acting
on T(N +2,\) by

D =5"e (NH Xt ) Kov(o 10 X )57e-y 52)

j=N—-1

where the products are ordered and we have assumed the vacuum boundary condition
on the left. This is the appropriate interpretation of (5.1) with the projectors 3 'e_;
enforcing closure on the left. As is clear in the diagram (5.3), the (1,1) boundary triangle
on the left is replaced by a connection generated by the two TL generators e_;.
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-/
u
u
u
D) = N (5.3)
u
u
u
A
j= -1 0 1 -+ N—-1 N

The form in (5.2) and (5.3) is the form used in our numerics.
For X\ # 0, a suitably normalized Hamiltonian H is defined by

1. .0
H= —5sin A " log D(u) . (5.4)
so that
D(u) = D(0)e /5004 - [D(0), D(u)] = 0. (5.5)

Here we derive the Hamiltonian by expanding D(u) in (5.1) to first order in w. Initially
omitting the projectors, this can be carried out diagrammatically in the planar algebra:

e = CHRD | |- smtse oY
e (ODDDD |- weses OO | |
+ so(u)ss (—u)? 1 (Q::t}:):) R Q:):)::b )
+ so(u)ss (—u)? 1 (Q;j; ):):) R Q:):):j;) )
o G| |- GBI oo
(5.6)
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Collecting connectivities together gives

D(u) = ((1 —ucot \)2N 42571 “ ) ‘ ‘

sin A
 2u s—(0) \J
sin A so(&)sr(€) N
2 N N
+ = /\( ot )+O(u2)‘ (5.7)
AL (M
In summary, we find
Du)=1- 2 g O(u?) =1+ 2u (871 = NcosA\)I — H"™)) 4+ O(u?) (5.8)
sin \ sin \ '
where, reinstating the projectors,
N-1
—1(0)
H) = — e; + A Py enPy. . 5.9
Z J So(f)sr(ﬁ) N+19NL N1 ( )

j=1

This operator is understood to be acting on the vector space V). Each Hamiltonian in
the infinite hierarchy H™*) with » = 1,2,...,m and s = 1,2,... is integrable and can
be solved, for example, by Bethe ansatz. This statement is true for either sign of the
Hamiltonian and for arbitrary complex values of .

In the continuum scaling limit, the finite-size corrections to the Hamiltonian yield the
dilatation Virasoro generator Lg as in (7.4). For the principal series with fixed real £, we
find that the continuum limit depends on the range of £ but is otherwise independent of &.
For 0 < ¢ < 7 —rA, the Hamiltonian H"* converges to the representation of L labelled
by (r, s) whereas, for —rA < < 0, the Hamiltonian H (™) converges to the representation
of Ly labelled by (r — 1, s). In the sequel, and in particular in the numerics in section 7,
we assume that 0 < & < m —rA. By scaling the imaginary part of £ appropriately with
log N, it is also possible to induce a boundary renormalization group flow between these
two boundary conditions labelled by (7, s) and (r — 1, s).

It is noted that, for » = m + 1, the allowed range of ¢ for convergence to the
representation of Ly labelled by (7, s) vanishes. This is the reason, although the required
projector exists, our current construction fails beyond the first m columns in the Kac
table. It is also noted that, for r = m + 2, the projector does not exist thereby preventing
the construction of the (r,s) = (m + 1, s) representation of Ly by choosing £ < 0.

6. Relation to six-vertex model: Bethe ansatz and functional equations

6.1. Six-vertex model

In principle, it is possible to derive the Bethe ansatz and functional equations of
the logarithmic minimal models directly using non-local connectivities. However, it is
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more expedient to consider the related faithful representation [41,7,43,46] of the linear
Temperley—Lieb algebra given by the six-vertex model with vertex weights

/ Y. 0 Y
w > | = W | T = s1(—u), w <j< = W || = so(u)
\

L

\
w(el) = e w(Gg) = e
N N \(

In the usual six-vertex model, the last two vertex weights are both 1, the model is arrow
reversal symmetric and the central charge is ¢ = 1. In contrast, the assignment of weights
here preserves conservation of arrows at a vertex but breaks the arrow reversal symmetry
and moves the central charge away from the fixed value ¢ =1 to the value (2.3).

The elementary face weights acting on (C?)®" are given by

<

(6.1)

X;(u) = = si(—u) T+ so(u) e; (6.2)
where
00 0 0
e =lolo-olo|l’ ® Y Yere wrel (6.3)
i= 01 ' 0 '
00 0 0

with = €™ as above. The 4 x 4 matrix acts at positions j and j + 1. The elementary

boundary K matrices acting from C? to C? are given by

1) )

For arbitrary A, double-row transfer matrices T'(u) for the six-vertex model with
one non-trivial (r,s) boundary condition can be built using the TL algebra and fusion
projectors following the prescription given above. These matrices have similar properties
to the logarithmic minimal models—they form commuting families and are diagonalizable.
The number n of down arrows is related to the number of defects ¢ by |N —2n| = ¢. These
two models differ, however, in one crucial aspect. The number of down arrows is a good
quantum number for the six-vertex model but the number of defects is not conserved for
the logarithmic minimal models since defects can be annihilated in pairs. Consequently,
the six-vertex transfer matrices are block diagonal, whereas the logarithmic minimal model
transfer matrices are block triangular. It is precisely this block triangular structure that
allows for the appearance of Jordan cells.

Since the six-vertex model (6.1) gives a faithful representation of the linear TL
algebra, it follows [41,43,46] that all other representations, including the logarithmic
minimal models, satisfy the same Bethe ansatz and functional equations. Moreover, the
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eigenvalues are necessarily a subset of the six-vertex eigenvalues possibly with different
multiplicities. This has been confirmed by numerics on small systems. For the purposes
of calculating eigenvalue spectra, it therefore suffices to solve standard six-vertex Bethe
ansatz equations [47,48]. At present, only the Bethe ansatz for the largest eigenvalues in
the cases (1, s) with r = 1 have been worked out. The other cases are more complicated
since they necessarily involve complex conjugate pairs of roots. Of course any mapping
onto the six-vertex model will, of necessity, miss the indecomposable representations
discussed in section 8.

6.2. Bulk and boundary free energies

As discussed in the previous subsection, for a given value of the crossing parameter A, the
largest eigenvalues of the DTMs D(u) in the vacuum sector with (1,1)[(1,1) boundary
conditions agree exactly at each finite size with the largest eigenvalues of the six-vertex
model with open boundary conditions [48,7]. It immediately follows that these models
have the same bulk and boundary free energies. Through finite-size corrections, it also
follows that these models have the same central charge.

The bulk and boundary free energies can be obtained analytically by solving the
relevant inversion relations [49, 50]. The boundary free energies are derived in [51]. Here
we just present the forms needed for the principal series with A = 7/m with m = 3,4, .. ..
These forms need to be modified for A > w/3. The bulk free energy per face for
0<A<7/2and —\/2 < Re(u) < 3)\/2 is

> cosh(m — 2\)t sinh ut sinh(A — u)t
t sinh 7wt cosh A\t

Soute(u, A) = / dt. (6.5)

—00

For —A\/2 < Re(u) < 3A\/2 and A\/2 < Re(§) < 3\/2, the s-independent boundary free
energies are given by

Foay (1, € A) = £ (u, €, 0) = folu, \) + fo(u, €, N, (6.6)

Here

* sinh((m — 3A)t/2) sinh (At/2) sinh ut sinh(\ — )t
t sinh (7t/2) cosh At

0</\<% (6.7)

folu ) = —2 / dr,

— 00

[ cosh (7 — 2§ — rA)t coshr At sinh ut sinh(\ — u)t
Jrl, 6, 0) = /_Oo t sinh 7t cosh M\t dt,
264+rA<m (6.8)
and
filu, & X) = log[so(§ + u)s1(§ — u)]. (6.9)
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In the Hamiltonian limit, the relevant expressions are given by minus the derivatives
with respect to u at u = 0. The bulk free energy is

* cosh(m — 2\t tanh A\t
Jou(A) = —/ ( ) dt

sinh 7t

o0

> dt
= cot A —sin A\ ‘ 1
“ o /oo cosh 7t (cosh 2\t — cos \) (6.10)

For —A\/2 < Re(u) < 3A\/2 and \/2 < Re(¢) < 3A/2, the boundary free energies are given
by

Foay () = F () = folA) + £, V). (6.11)

Here
[ sinh ((7 — 3\)t/2) sinh (At/2) tanh At T
o) =2 /_ ) Sy a,  0<a<t (6.12)
£(6.0) = _2/°° cosh (m — 2¢ —S:ri\})l;(;osh rAt tanh At ar, 2% +rA < (6.13)
and
sin A
A& A) = ~sin Esin(A + &) (6.14)

These explicit integrals are needed for numerics.

7. Numerical strip partition functions

In this section, we report some numerical results for finite-size partition functions on the
strip. These results are preliminary in the sense that we only consider the principal series
and that the Bethe ansatz has not yet been implemented for (r,s) boundary conditions
with 7 > 1. As we have already seen, the logarithmic minimal models are Yang—Baxter
integrable so ultimately all of these results should be obtainable analytically.

For (r,s) = (1,s), finite-size sequences of numerical eigenvalues were obtained by
solving the Bethe ansatz equations. These were generated for system sizes out to N = 40
with N of a definite parity. The numerical eigenvalues and numerical locations of the zeros
of @ and T were checked against the values obtained by direct numerical diagonalization of
the logarithmic minimal transfer matrices for system sizes out to N = 16. For (r, s) with
r > 1, finite-size sequences of numerical eigenvalues were obtained by direct numerical
diagonalization of the logarithmic minimal transfer matrices and Hamiltonians for system
sizes out to N = 16. In these calculations, we fixed u = £ = \/2 for the transfer matrices
and £ = (m — rA)/2 for the Hamiltonians. The precise choice for £ is not relevant since,
in the appropriate interval, the limit is independent of £. In all cases, the numerical
sequences were extrapolated using van den Broeck—Schwartz approximants [52] to extract
the finite-size corrections.

We present numerical results for both the isotropic lattice and Hamiltonian limit and
show that these indeed agree. Typically, because there is no need to enforce closure
on the left with a TL projector, the Hamiltonian calculation gives an extra digit of
precision. In presenting numerical results, the numerical errors in the last digit (indicated
in parenthesis) are a subjective indication of errors.
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7.1. Finite-size corrections

The partition function for a P x N strip with one non-trivial boundary condition is

PN _rE,
24 iy = Tr D))" =" D(u)? =3 e PP, (7.1)

n

The general form of the finite-size corrections are by now standard [53, 54]. For double-row
transfer matrices, the finite-size corrections for the energies are

27 sin v
Ep = —10g D(u) = 2N fouc+ foay + = (=5 + A+ k) +---,

k=0,1,2,... (7.2)

where A = A, ;. ¥ = mu/\ is the anisotropy angle and k labels the level in the conformal
tower. Similarly, for the Hamiltonians H(>*), the finite-size corrections for the energies
are

o= Nfour+ foay + = (—5p +A+k) +0, k=012... (73)

where A = A, ; and v, = wsin A/ is the ‘velocity of sound’. For the full matrices

N

T

c

<H(T’S) — (N four + fbdy)f) — Lo — —. (7.4)

Since the free energies are independent of s, the same is true for a Hamiltonian, say
HLONL9) - with two non-trivial boundaries. In this case, however, the matrices may
exhibit a non-trivial Jordan canonical form as we demonstrate in section 8.

7.2. Critical dense polymers (m =1, ¢ = —2)

The first member LM (1, 2) of the principal series is very interesting since it is a logarithmic
CFT in the universality class of critical dense polymers [16, 11]. This model is exceptional
because A = /2 implies the loop fugacity vanishes (8 = 0) and e = 0 so that
loops are forbidden. Consequently, the two orthogonal projectors 5~'e; and I — 57 'e;
no longer exist and the general fusion construction of integrable boundary conditions
fails. Consequently, we only consider r = 1. Nevertheless, the model is still Yang—
Baxter integrable and there exists an infinite family of integrable and conformal boundary
conditions labelled by s = 1,2, 3, ... corresponding to acting on different vector spaces of
link states V®) (4.13). Remarkably, for this exceptional case, the limiting transfer matrices
satisfy simple inversion identities, similar to those of the rational Ising model [40,55],
which enable the eigenvalue spectra to be calculated exactly on a finite lattice. Specifically,
for (1, s) boundary conditions, we find in agreement with [11]

2 —5)2—1
C:—27 A182¢7

, ; s=1,2,3,... (7.5)

and obtain the complete set of associated finitized characters (2.8). We report these
analytic results elsewhere [56]. Since this case has been solved analytically, we omit any
discussion of the numerics.
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7.3. Critical percolation (m = 2, ¢ = 0)

The second member LM (2,3) of the principal series is also very interesting since it
corresponds to critical percolation [16,25]. In this case, the (suitably normalized) transfer
matrix D(u) is a stochastic matrix and its Hamiltonian limit H is an intensity matrix [30].
As an aside, we point out that the entries of the Perron—Frobenius eigenvectors of these
matrices are related [57,30] to the counting of fully packed loop configurations with
connections to alternating sign matrices.

Isotropic lattice:

(r,s) = (1,1): Zan(q) =0+ +¢*+2¢" +2¢° +---), = 0.0000000(1)
(r,s) = (1,2): Zua(q) = ¢ (1 +q+¢* +2¢°+3¢" +--), A =0.0000000(1)
(r,8) = (2,1): Zay(q) = ¢/ 21+ q+ @ +2¢5+--1), A =0.624(2).

(7.6)

Hamiltonian limit:

(r,s) = (1,1): Zany(@) = ¢ "1+ +¢*+2¢" +---), ¢=0.00000000(1)
(r,s) = (1,2): Zua(q) = ¢ ™1 +q+¢ +2¢° +3¢" +---), A =0.00000000(1)
(r,s) = (1,3): Zua(q) = ¢ /(1 +q+2¢*+2¢° +---), A =0.33333333(1)
(r,s) = (1,4): Zuw(q) = ¢ " 21 +q+2¢*+--), A =1.000000(3)
(r,s) = (2,1): Zay(q) = ¢ "1+ g+ +2¢5+-7), A=0.625(2).

(7.7)
7.4. Logarithmic Ising model (m =3, ¢ = %)
Isotropic lattice:
(r,s) = (1,1): Zany(Q) = ¢ A+ +¢*+2¢" +2¢° +---), ¢=0.49999999(3)
(r,s) = (1,2): Zuoy(q) = ¢ A+ g+ +2¢° +3¢" +--1), A =0.062499999(2)
(r,s) = (1,3): Zua(q) = ¢ 1 +q+2¢* +2¢° +--), A =0.49999999(7)
(r,s) = (1,4): Zaw(q) = ¢ /(1 +q+2¢4+--), A=13125(1)
(r,8) = (2,1): Zany(q) = ¢/ 21+ g+ +2¢3+--1), A =0.4999(2).

(7.8)

(r,s) = (1L,1): Zuny(Q) =/ A+ P+ +2¢" +--), ¢=0.499999999(2)

(r,8) = (1,2): Zuay(q) = ¢/ 1+ q+¢* +2¢° +3¢" +--), A =0.062499999(2)
(r,s) = (1,3): Zua(q) = ¢ (1 +q+2¢* +2¢° +---), A =0.5000000(1)

(r,s) = (1,4): Zuw(q) = ¢ 721 +--1), A=131249(2)

(r,s) = (2,1): Zay(q) = ¢/ (1 + g+ +2¢5+--), A =0.5001(2).

(7.9)
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7.5. Logarithmic tricritical Ising model (m = 4, ¢ = 7/10)

Isotropic lattice:

(r,s) = (1,1): Zany(Q) =0+ + ¢ +2¢" +2¢° +---), ¢=0.69999(2)
(r,s) = (1,2): Zua(q) = ¢ "1+ q+ ¢ +2¢° +3¢" +--), A =0.0999993(8)
(r.s) = (1,3): Zag(q) =q > (1 +--), A=0.60007(8)

(r,s) = (1,4): Zaa(g) =q 21 +--), A =15002(3)

(r,s) = (1,5): Zas(g) =q 21 +--1), A=28001(2)

(r,s) = (2,1): Zpny(Q) =q /* 2L +q+¢+2¢° +---), A=04374(1).

(7.10)

(r,s) = (L1): Zan(Q) =q¢ ™1 +¢+¢*+2¢" +---), ¢=0.70003(4)

(r,8) = (1,2): Zuay(q) = ¢ " 21+ q+ ¢ +2¢° +3¢" +--), A =0.099998(3)
(r,s) = (1,3): Zug(q) =q "> ™21 +--), A=0.59995(6)

(r,s) = (1,4): Zaw(q) = ¢/ (1 +--), A =1.50001(2)

(r,s) = (1,5): Zus(q) =q /™21 +--), A=280003(4)

(r,s) = (2,1): Zon(Q) = ¢ ™1 +qg+¢*+--), A=0437(1).

(7.11)

8. Examples of indecomposable representations

As already mentioned in section 5.1, if the double-row transfer matrix has a (1,s)
boundary on one side and the vacuum on the other, then the transfer matrix appears
to be diagonalizable. This is highly non-trivial because these transfer matrices are not
normal matrices, but this observation is supported by numerical calculations for small
sizes (N < 12). Typically, the eigenvalues are distinct but this is not always the case,
for example, in the Hamiltonian limit. We conjecture that in general these matrices are
diagonalizable including in the Hamiltonian limit © — 0 and assume this in the following
discussion.
In general, the s/(2) fusion rule

S1+s2—1
(1,81) ®f (1, 89) = G (1, s3) (8.1)
s3=|s1—s2|+1
s1+s2—s3=1 mod 2
applies to the principal series whenever A ) — Ap ) ¢ 7 for any pair sz, s;. If
Arss) — Apsy) € Z for some pair sz, s3, then there is the possibility to form an
indecomposable representation. Looking numerically at many cases for different values of
m, it seems that fusion yields an indecomposable representation in some but not all cases
where Aq ) — Aq,e) € Z. In this section, we present some typical examples to show
that the fusion implied by taking non-vacuum boundary conditions on either side of the
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strip in these circumstances does lead to indecomposable representations of the Virasoro
algebra. We hope to discuss the general fusion algebras in a future paper.

As a first example, consider the case of critical dense polymers (m = 1) with A = 7/2
and ¢ = —2 and consider the fusion

(1,2) ®; (1,2) = (1,1) @; (1,3) (8.2)

corresponding to having an (r,s) = (1,2) boundary on both sides of the transfer matrix.
These boundary conditions on the left and right each introduce a single defect for a total
of two defects. Since the defects can be annihilated in pairs by the action of the TL
algebra, the transfer matrix is upper block triangular with blocks labelled by the defect
number ¢ = 0, 2 corresponding to the (1,1) and (1, 3) respectively. The finitized partition
function reads

N —c (N) N N
Zi 0 (@) = ¢ Trg™ = X () + x(15) (@) (8.3)

but this is an indecomposable representation. To see what is going on, suppose N = 4
and consider the Hamiltonian

0100 0
201 0 1

H=—|0 0 0 1 0|+v2rI (8.4)
0010 1
000 1 0

acting on the five states

CA) o~ o~ e~ A (8.5)

12 3 4 123 4 123 4 123 4 12 3 4

A shift in the energy has been introduced to make the groundstate energy £ = 0. In
accord with the imposed boundary conditions in the left side of (8.2), it is useful to
interpret the left defect in these link states as being closed on the left (¢ = 1,s = 2) and
the right defect as being closed on the right (¢ = 1,s = 2). Similarly, on the right side
of (8.2), it is useful to interpret the two defects as closing on the right (¢ = 2,s = 3).
The ¢ = 0 and ¢ = 2 diagonal blocks are diagonalizable with eigenvalues {0,+/8} and
{0, V2, \/g} respectively. The Jordan canonical form for H has rank-2 Jordan cells

0O 0 1 0 0 01 0 0 0
0 v8 0 0 1 00 0 0 0
H~|l0 0 0 0 0 |~|00 v2 0 o0
0 0 0 +v2 0 00 0 8 1
0 0 0 0 +8 00 0 0 +8
01 000
00000
—~10 010 0f=°L". (8.6)
000 2 1
000 0 2
This corresponds to the finitized partition function
(4) 4) (4)
Z(1,2)\(1,2) (Q) = X(Ll)(Q) + X(l,g)(Q)
=¢"2[1+A) + A+ g+ )] =2+ q+2¢). (8.7)
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Of course, the actual eigenvalues of H only approach the integer energies indicated in
the finitized Virasoro generator L(()N) as N — oo. We see that every eigenvalue of the
(1,1) block has an exactly equal eigenvalue in the (1,3) block and that together they
form a rank-2 Jordan cell. This pattern continues for larger values of N and has been
checked numerically for N < 10. The fact that this is possible is consistent with the

identity [56]

(V) (V) 'K a2
X(1,3)(CI) - X(l,l)(Q) = ¢'/"? E </€ k2+ 1> (8.8)
k=0 ’ q

where for £ < n the generalized ¢-Narayana numbers

<k]t/‘; >q — g Mk(k+1)/24n(nt1)/2 ([z\ﬂq [1\;1:11}(1 _ [MI:AL {nlfl}q) (8.9)

are fermionic in the sense that they are polynomials with non-negative coefficients [56].
We conjecture the exact form in the limit N — oo is

([ Diag(0,2,3,4,4,...) J
Lo = ( 0 Diag(0,1,2,2,3,3,4,4,4,4, .. .)) ' (8.10)

This symbolic notation means that each energy E in the expansion y(q) = g/ S paf of
the characters occurs on the matrix diagonal and a rank-2 Jordan cell is formed between
as many coincident pairs as possible with an entry 1 in J. All other entries of J are
0.

This indecomposable representation for critical dense polymers (m = 1) is just the
first in a sequence of indecomposable representations for the principal series

(1,2) @ (1, m+1) = (1L,m)&; (1,m~+2), m=1,23,... (8.11)

In this sequence, it seems that rank-2 Jordan cells are formed between as many coincident
pairs as possible, that is, identical eigenvalues originating from distinct blocks. For small
sizes, we have checked this explicitly for m = 1 (N = 2,4,6,8), m = 2 (N = 3,5,7),
m=3(N=4,6,8),m=4(N=5,7) and m=25,6,7,8,9 (with N =m + 1).

For critical dense polymers (m = 1), we have also found the indecomposable
representation

(1,2) ®; (1,4) = (1,3) @; (1,5) (8.12)

for N = 4,6,8. In this case, a rank-2 Jordan cell is not always formed between coincident
pairs but the Jordan form of the truncated Virasoro generator L, agrees with that of
Gaberdiel and Kausch [4] to the level calculated in their paper. Lastly, again for m = 1
(N = 4,6), we have confirmed the appearance of indecomposable representations resulting
from fusion products involving indecomposable representations

(1,3) @y [(1,1) @ (1,3)] = [(1,1) @; (1,3)] © [(1,3) @i (1,5)] (8.13)
[(17 1) Di (17 3)] Qf [(17 1) Di (17 3)] = 2[(17 1) Di (17 3)] @ [(17 3) Di (17 5)] (814)
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We have not observed the appearance of higher rank Jordan cells in any of the cases
studied.

9. Discussion

We have argued that the essential new physics in our logarithmic minimal theories derives
from the non-local nature of the degrees of freedom in the form of connectivities. For these
models, we have exhibited an infinite family of Yang-Baxter integrable lattice models
on the strip which realize logarithmic CFTs in the continuum scaling limit. We have
described the spectra of these theories on the strip for an infinite family of boundary
conditions labelled by (r,s) in an infinitely extended Kac table. Most importantly, we
have shown how indecomposable representations arise in a consistent manner from within
our lattice approach.

The lattice approach to studying LCFTs opens up an alternative approach to this
important class of problems while exposing the algebraic structures associated with
integrability such as functional equations, Bethe ansatz, T-systems, Y-systems and
thermodynamic Bethe ansatz. We expect logarithmic lattice models to exist whenever
there exists a braid-monoid algebra that can be extended to a planar algebra. We therefore
expect that, from the lattice, it is possible to construct logarithmic dilute minimal models,
logarithmic Wess-Zumino-Witten models as well as logarithmic models corresponding to
higher fusions and higher rank.

Conventionally, to claim a consistent CF'T, one must consider the system in other
topologies, such as a cylinder or a torus [15,58]. This is particularly relevant to the
question of comparing the logarithmic CFTs obtained in the scaling limit from our
logarithmic minimal models with the logarithmic extensions of minimal models considered
by other authors [22,25,58]. At present, we can neither assert the equivalence nor
inequivalence of these logarithmic CFTs. This task is particularly difficult because the
precise equivalence of logarithmic CFTs may depend on the fine details of the fusion
algebras and structure of the indecomposable representations. Obviously, there remains
much work to be done.
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Appendix. Decomposition of Q.. into irreducible representations

In this appendix, we consider the quasi-rational quotient module @, = Va,./Va, _.,
where Vj is the Verma module of highest weight A. In the celebrated work [59], the
embedding pattern of submodules of Vj, , is described based on which one can build the
irreducible quotient module My, , associated to Vi, . It is thus, in principle, a simple
matter to determine how the character of the quasi-rational module @), s decomposes into
a finite number of characters of irreducible modules. This decomposition is worked out
explicitly in the following.
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There are two possible embedding patterns. The typical one is conventionally
described by a diagram such as

/
N

where an arrow from module A to module B indicates that B is a submodule of A. In
this case, the irreducible modules associated to Vj and V} are M; = V;/(Vj1 + V) and
M} =V} /(Vj41+ V], ), respectively, where we have used the unconventional + instead of
@ since we reserve the notation @ for direct sums. The decomposition of the character of
the quotient module V,,, /V;,,.+,,, for example, into characters of irreducible modules reads

—_

n—

XV / Vinan) = x(Mp) + X(Myyj) + X(M’r/n+j)] + X(MT/n+n)' (A.2)

.
I

Similar decompositions obviously apply to V,,/Vy, ... V. /Viin and V) V- and they
all follow straightforwardly from (A.1). The alternative embedding pattern is described
by the diagram

Vo = Vi—=Voa— o= Vj — - (A.3)

in which case the irreducible module associated to V; is M; = V;/V;;, while the
decomposition of the character of the quotient module V,,/V,,., into characters of
irreducible modules reads

—_

n—

XV /Vinin) = X(Mm-i-j)' (A4)

J

I
=)

In either embedding pattern, we say that V; and Vj’ appear with rank j.
Now, for any pair 7, s of positive integers eventually labelling @, s, let us write

r=7ry+ kpa § =50+ k/pla ka k/ > 0 (A5)
where rg, s are in the fundamental domain
1 <ryg<np, 1 <so<p. (A.6)

If o < p and 5o < p/, the embedding pattern associated to @, is of the type (A.1),
while it is of type (A.3) if at least one of the upper bounds is saturated (A.6), that is,
if 7o = p or 5o = p'. In general, the module V,, , may be considered a submodule of
Ve =Va,_ . (if[k—F[iseven)orof Vs = Va,__ (if [k — K[ is odd). It is
) P—70,P 50 T0,P 50 0,50
therefore a straightforward task to determine the decomposition of the character of @), g
into characters of irreducible modules: one merely has to identify the locations of Vj,
and Va, _, in the ambient embedding pattern. We will write the decompositions in terms
of the characters

XT,S = X(Qﬁs) = X(VAT‘,S) - X(VAT,75)7 XSTOI:) = X(MAp,d)' (A7)
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We first consider the situation where 1 < ry < p,1 < sy < p/, in which case the
embedding pattern headed by Va, , looks like

/ (T17 Sl) -
(r,s) X
N (rhs) &

(7"27 82) -
X
(T/275/2) -
Suppose, for example, that k£ > k', in which case (o, S2,) = (10 + (K — k' + 2n)p, s¢),
(795 85,) = (10, 50 + (K =K' +2n)p), (Ton+41, Son+1) = (ro+ (k=K' +2n+1)p,p’ — 50) and
(7415 Sops1) = (1o, ' — S0+ (k=K 4+2n+1)p'). In this chain, the submodule V, _ appears
with rank 2k’ +1 as it corresponds to (r, —s) ~ (ro+ (k+k’+ Dp,p—so) = (rgk/+1, Sok/11)-
The decomposition thus reads
2k 2k +1

= (A.5)

For general 1o < p,so < p’,0 < k, k/, we find

2 min(k,k")
(irr) (1rr)
Xrotkpso+h'p" = Xrothp,soth/p! + Z Xro(lk=k/|[+)p, (= 1) so+(1— (1)) )p' /2
(irr) (irr)
+ Xro,(fl)jSOJr(lf(fl)j)p//2+(|kfk’\+j)p/) + Xro,p’fsoJr(kJrk’Jrl)p/' (Ag)

The linear embedding patterns (A.3) corresponding to exactly one saturated upper
bound (A.6) may be analysed in a similar way. For general 1 < rq < p,1 < 59 < p/,0 <
k, k', we thus find the decompositions

min(2k,2k'+1)

. (irr)
Xro-t+hp,(K'+1)p" = Z X (= 1)iro+(1=(=1)9)p/2, (k+k/+1=j)p’
0 (A.10)
min(2k+1,2k")
o (irr)
X(+0psots = D Xk +1—ip(—1sot (1= (-2
=0

Finally, if both upper bounds are saturated, that is (r,s) = ((k + 1)p, (k' + 1)p’) where
k, k" >0, the embedding pattern is linear and the decomposition reads

min(k,k") min(k,k’)
— (irr) (irr)
X(k+1)p7(k/+1)p’ — Z X(k+k/+l 2j)p Z Xp (k+k'+1—25)p’ (Al].)
=0

It is observed that a quasi-rational quotient module @, = Va,,/Va, _, is irreducible
if and only if it corresponds to a linear embedding pattern in which the submodule Vj, _,
is the maximal proper submodule of Vj, . That is, the only irreducible quasi-rational

quotient modules are Qk11)p,sos @ro,(k+1)p's @kt 1)ppr AN Qp, (k141)y Where k, k" > 0.
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