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This paper discusses the application of renormalization-group techniques to the study of the near-mass-shell
behavior in gauge theories with fermions. We critically review past work for the Abelian theory of quantum
electrodynamics (QED), and also summarize what is known from perturbative analysis. We reformulate the
renormalization-group equation in a way which is acceptable to the infrared region and discuss the subsidiary
requirements necessary to obtain useful results from this equation. Our analysis is cast in a framework which
avoids any dependence on the simple group structure of QED and is thus suitable for generalization to the
non-Abelian case. A full discussion of that case is reserved for a later paper, but we present here some
discussion of the differences which arise and the modifications which they necessitate in our analysis.

I. INTRODUCTION

This paper is a study of the application of re-
normalization-group techniques to the understand-
ing of the near-mass-shell behavior of the fermion
propagator and the fermion-fermion-vector vertex
in theories with massless vector mesons. We be-
gin by critically reviewing what has been done in
the case of QED. There, powerful perturbative
methods can exactly sum all infrared-singular
contributions to obtain a factorizable exponential
term.*® Previous renormalization-group treat-
ments*® achieve the result only by making (im-
plicit) strong assumptions which can only be justi-
fied by the perturbative treatment.

Here we present a reformulation of the renor-
malization-group equation applicable to the in-
frared region and discuss the supplementary in-
formation necessary to obtain useful results from
this equation. There is a clear parallel with the
application of renormalization-group techniques
to massive-particle theories in the ultraviolet re-
gion. There, one had to argue that, for external
momenta p 2= p?>m 2, where p? is an arbitrary
renormalization point and m ? are the particle
masses, one can neglect the dependence of Green’s
functions on the variables m;2/p? and m,%/p 2
[that is, the errors made in so doing are correc-
tions of O(m?/p?, m?/p?)]. In the infrared case,
we argue that, at least for QED, if we renormalize
at p;2—-m%=-p?, then for

piz _mzs “2<<m12
one can neglect the dependence on the variable
Ww2/m?. This is a nontrivial statement. Rather

than use methods which are very much linked to
the simple group structure and form of the Ward
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identity of QED, we instead prove this property

by more general arguments. We do not obtain any
result for QED that is not already well known from
the exact perturbative analysis. Our intention in
this work is rather to present a method which could
be extended to the more complicated non-Abelian
theories, and in so doing to analyze as far as pos-
sible their infrared structure. We will see clearly
how differences arise and how these more general
methods could be extended to the non-Abelian case.
As extensive analysis of this case will be reported
in a future publication.

The remainder of this paper is organized as
follows. In Sec. II, we review briefly the pertur-
bative method of Grammer and Yennie! and its ap-
plication to the fermion-fermion-photon proper
vertex function® and the fermion propagator. We
summarize the relevant results obtained by this
method, and remark on the features that make it
peculiar to the QED (Abelian) case.

Section III A presents our renormalization-group
equation. The form of the equation is, of course,
a consequence of our particular choices of renor-
malization and differentiation prescription. We
argue that our choice is a convenient one for the
discussion of the on-shell infrared behavior, since
it allows us to isolate a single relevant dimension-
less ratio, (p%-m®)/u%. We discuss the necessary
characteristic behavior of the vertex function I,
and the renormalization-group functions 8 and ¥
that allow this property to hold. We then solve the
equation and find that the method provides a proof
of exponentiation and factorization-of infrared log-
arithms, but does not provide as complete a re-
sult as was obtained from the detailed perturba-
tive analysis. The discussion of previous work,**
which claims to obtain stronger results from the
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renormalization-group method alone, is given in
Appendix A, where we show that the results arise,
in fact, from assumptions which are not justified,
except by the full perturbative method. In Sec. III
B, we outline the arguments for the required prop-
erties of I',, B, and y. A detailed proof, which
makes extensive use of recent techniques devel-
oped by Cvitanovic and Kinoshita,” is presented in
Appendix B. From the analysis of Sec. III B and
Appendix B one can establish a criterion to deter-
mine the power of the infrared-logarithmic-diver-
gent contribution of any graph of I', in the near-on-
shell region. The details of this criterion are
given in Appendix C. Section OIC contains a brief
discussion of massless QED, where the elaborate
arguments of Sec. IIIB (and, of course, Sec. II)
are unnecessary as there is, a priori, only a sin-
gle mass scale. In Sec. IV we consider the appli-
cation of the method to non-Abelian gauge theo-
ries. We find that the successful procedure used
for QED should be modified if one hopes to reach
well-defined conclusions about the non-Abelian
case by this method. Section V is a brief sum-
mary statement of what we have done. Appendix

D contains various calculational examples that il-
lustrate the arguments of Secs. III, IV, and Appen-
dix B.

II. REVIEW OF THE PERTURBATIVE ANALYSIS

Grammer and Yennie! have presented a method
of isolating infrared-divergent terms in pertur-
bation theory for QED. Each photon propagator
which connects a fermion line which leaves a dia-
gram with momentum p’ to a fermion line which
leaves it with momentum p is divided into two
parts, according to the prescription

kR )\ 1
Duv(k) = <guv+ X“ﬁ)?

Cu®) Kn® (2.1)

FR<p2_m2 pl2_m q2
"
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with £ (1;1;1;£,)=1. B is a given in (2.3) with

mZ
[k +p)? —m?)[(k+p")* —m?] * (
2

b(pyp"k) = kz
.6)

The function f is infrared-finite for all p?, p’2,
and g2, Furthermore, as we will show in the next
section, as u?/m?-0,

where
Ku,(k)=kuk,,b(k,p,p’). (2.2)

By a clever choice of the function b, it can be ar-
ranged that only diagrams involving K -type pho-
tons are infrared-singular. This is possible since
photons connecting to fermions in internal loops
can never give infrared-singular contributions,

in particular, vacuum polarization contributions
are infrared-finite by one power of #2.°* The sum-
mation over all possible insertions of a single K
photon into any vertex diagram containing any
number of K- and G -type photons can readily be
seen to change the amplitude only by a simple
overall factor B(p,p’),

B(pp')= [ a®b(k,p,p")

. 1
f e (Crvy ey (v e &

The exponentiation of the infrared-singular pieces
is obtained from a simple combinatorics exercise.
This method has been applied to the case of the
proper vertex function by Korthals-Altes and de
Rafael. They obtain, when p% —m? ~p’2 _m2=g4?

for the vertex function

(2.3)

2 2
06,8 =v,0 o @ - =T (2 /)

+0(q,), , (2.4)

where X is the usual covariant gauge parameter
defined in Eq. (2.1) and f(1) is finite. As far as
we know, theirs is the first reliable derivation of
(2.4) that does not rely on the eikonal approxima-
tion® and therefore includes, exactly, all nonlead-
ing as well as leading infrared logarithms. For
later convenience, we restate this result using an
off-mass-shell subtraction: p? - m?=p'2 —m?=@Q?
= - pu?. The derivation is exactly parallel to that
given by Korthals-Altes and de Rafael.? The re-
sult is with I'¥=y,I'*+0(q,),

2 S Do ) =exp| e (2 - B, 57— Blm® - %, et = D] 02/ it g i)

(2.5)

g2 =4na+0(uz/m?). 2.7)

We should stress that there are several features
which are peculiar to QED and are essential for the
application of this method:

(1) As we have already mentioned, the contribu-
tions from photons with subtracted self-energy
insertions is infrared-finite [Eq. (2.7) is a con-
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sequence of this fact]. This follows from the fact
that all such insertions involve an overall massive
fermion loop, where the fermion mass scale is
larger than any momenta scale in the infrared
regime.®

(2) The simplicity of the sum over all possible
insertions of a K photon in a given diagram and of
the counting of diagrams with different numbers of
G and K photons is peculiar to the Abelian gauge
group; an immediate manifestation of this is the
simple Ward identity. In the non-Abelian theory,
changing the position of a given gluon line may,
and usually does, change the group-theoretic fac-
tor with which the diagram enters. The cancella-
tion between diagrams which is crucial to the
simplicity of the Grammer-Yennie method is lost.

[II. INFRARED STRUCTURE OF THE NEAR-MASS-SHELL
REGION

A. The renormalization-group equations
and the infrared asymptotic behavior

Near the mass shell, we can define the renor-
malized fermion-fermion photon proper vertex

; 2 y T2 2

<[)2 —m? prz mz.qz.mz. .g>_ <“ me
w? n T

and
2
r<1;1;1;%;xu;g“>=1.

2_m2 pIZ_
— r< — D
) pe e

Fy ﬁZyg

function
T (p,p") =7, T(p?/up"/ u2; m*/u?; g%/ u?)
Foee (3.1)

By the dots we include the magnetic moment terms
proportional to o ,,4", which in QED are infrared-
finite, and terms of the order of (p2 - m?). We
will choose the subtraction momentum such that

pz_mz =p,2 _m2=q2=_“’2) (3.2)

where m is the physical mass of the fermion.
Notice that the simple Ward-Takahashi identity
connects (3.1) with the fermion propagator S(p):

L (p,p) =525 (D). (3.3)

3p“
We will be interested in the region p? <m?; the
limit u%—0 is clearly on-mass-shell renormaliza-
tion and is subject to the usual infrared-singulari-
ty problems. For any finite u? the subtraction is
well defined, without having to introduce a photon
mass, and the renormalized T satisfies the equa-
tions

mZ

2 m2
“%;?;ln; g;) (3.4)

(3.5)

1/(1 + 1) is the usual gauge-fixing parameter. Equations (3.4) and (3.5) are simply the statement that T
is multiplicatively renormalizable. The coupling constant g, is here defined in the usual way by subtract-
ing the photon self-energy 1 ,,(¢%) = (g ,,9% -¢, ¢,)d(¢?) at ¢°> =p>,° so that

2 2 2
q . .m” . — m- o, _.
gu2d<F; Fr Aur gu> _gu2d<ﬁ2 3 A% gﬁ)

and

2
d(l;%; Ay gu> =1.

(3.6)

(3.7)

Equation (3.4) can now be converted into a differential renormalization-group equation. Differentiating

with respect to p? and setting p?= u?, we obtain

2 2 +13 . m?\ 8 5 m? b 0
33 3_;2- ) gu’ﬁz_ 3gu + gu.y _59 n ahu-l

where

and, as usual,

B(g,;m*/u?) =

w2 m?
a2 g-2d< ’ ;g):I )
"’[ SRV Ben

@ +x,)r /m?
G(gu;mz/uz;hu)h—Lg B(;z'; gu) ,
I

m2
v(g,;m?/u? ) =p? |:1 Z< -.—-g—-h—)] .
") , 3/.1. 2 “2 ’ [T B E:u

(3.9)

(3.10a)

(3.10b)

(3.10c)
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We emphasize that (3.8) is mevely a veformulation

of (3.4). As such, it contains no fuvthev informa-
tion than the statement that I' is multiplicatively
renormalizable. Furthermore, it is not a unique
differential form of that statement. Its form is

determined by our renormalization and differentia-

tion prescriptions, both of which are not unique.
We choose these prescriptions because, as we
shall show, they allow us to eliminate the depen-
dence on the variable p?/m? in the region p? <m?,
leaving only the interesting variables (p2? —m?)/
(=p?) and (p’? =m?)/(=p2) and thus allowing Eq.
(3.8) to give information about the behavior of the
theory near the mass shell. Previous attempts*5
to study this region via the renormalization-group
approach have used different prescriptions, which
do not explicitly have this feature. The results

T(p2/u;m?/ u? q®/m?;g,;1,)=T(p2/u?;0;¢2/m?; g 5 A

and, in particular, that for m? <<p?
8(m;2/u2; 8,5 0,) =08,(g,51,) +0(m,2/u?),
Bm2/u?8,)=Bo(g,)+0(m2/u?), (3.12)
Y2/, 8,) =Yg h,) +0m,2/u?),

where B, and v, are the corresponding functions
for the fully massless theory. The proof of (3.11)
and (3.12) is a nontrivial matter and rests, basic-
ally, on a power-counting analysis of perturba-
tion-theory diagrams.'®!! Furthermore, our
only knowledge of B, 7, is that obtained from per-
turbative calculations.

For QED, in the near-mass-shell region, with
our subtraction convention, we shall show that
the property analogous to (3.11), for the infrared
(IR) region

2 2,2 2
py-misut<ms,

2 2 2
q S’J. <<m{ ’

is
p2_m2 m2 2
1"(.{71_; Ly z_if;gu,xu

which they claim to obtain are consequences of
certain strong assumptions which are made without
explicit justification. We discuss this further in
Appendix A.

The need to eliminate one class of variables is
not peculiar to the study of the near-mass-shell
region. Let us remind the reader of the more
familiar case of the application of the renormaliza-
tion group to massive-particle Green’s functions
in the deep Euclidean region. There, all external
momenta, p?, satisty

2 2 2
pi 2“‘ >>7n{ y

where m,;? are the physical masses of the theory.
The renormalization-group equations yield new and
useful results only after one has shown that, for
m2 << uz’

OmiE/u*;m?/p 2, (3.11)

r

where, clearly,

r“‘< 'u b 8 “)

= 1 pf-m? m?
_uz/lr}zt:'}-or< m ’ u,Zygu’xu *
(3.14)

Similarly, in analogy with (3.12), we have, for
W <m?,

m s
B<u27g> mB <m gu), (3.15)

< LAY > (1+)\)‘ B(

Eﬁ"g>

= (%1—2> (3.16)
and

2
y(%; & M) =Yr(g,u M) +0(u?/m?),  (3.17)

where fim is, order by order in perturbation theo-
ry, at worst, logarithmically behaved as u2/m?

-~ 0. The proof of (3.13), (3.15), (3.16), and (3.17),
which will be discussed in Sec. III B and Appendix
B, is the new contribution of our paper. Let us
first investigate their consequences. Substituting
(3.13) through (3.17) in (3.8), one finds that I'jy
satisfies the equation

2 2 2
s 8us Au.) =O<57§; pimzmj >' (3.18)
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Furthermore, as ¢>—~0, where ¢ is the photon mo-
mentum, it is well known that there are no ¢ sing-
ularities so that

r pP—m? p?-m® ¢* -r pz—mz_p'z—mz_o
IR uz ’ 2 s 27T 1IR u2 ’ 2 ’

m N n
2
+O<7%>.

This last result is a consequence of the fact that
the photon does not couple directly to any massless
particle. Using the normalization condition (3.8),
Eq. (3.18) can be solved to give, with p=p’,

pz —m? ) “2 TR (& Ay
FIR(T;gw Ay =<m

N 2 2 2
x[1+o<“_2; p_‘:’_?ﬂ
m m

(3.20)

(3.19)

and, using (3.3),

s () ool 25|

(3.21)

This is as much as can be determined from using
the renormalization group alone. The value of the
coefficient y;z must be obtained by some other
method; the only one we know is perturbation
theory. A direct calculation yields'?
Y- 6

le(gu’}\u)__BNZ (2‘7“;)“‘0(&; )~ (3.22)
In fact, comparing (3.20) with the exact perturba-
tive result (2.5), we see that

Yin=-g,°2/81°@2=1x,)

is correct to all orders in perturbation theory.
Again, we stress that this result depends strongly
on the detailed perturbative analysis reviewed in
Sec. II, and that we are not aware of any valid de-
rivation based on renormalization-group argu-
ments alone.

The justification for comparing result (2.5) in
terms of @, the physical coupling constant, to
that of (3.20), in terms of g,, depends on a prop-
erty particular to massive QED, namely, the be-
havior of the invariant charge in the infrared
region. We would like to comment briefly on this
point here. When g% <<m?, the renormalization-
group equation regulating the behavior of the in-
variant charge g(g?), (3.10a), becomes

(3.23)

9 2 /2
q"’;q—zgz(qzhy% B(;%; g(q2)> , (3.24)

where we have used (3.15). In lowest order

= g%d%)
=507 - (3.25)
Equation (3.24) is solved to give
2
g (p? (3.26)

&%q%) = 1 —[gz(uz)/ﬁ()ﬂz](qz m? — 1 /m®)

The physical coupling constant is usually defined
to be

1
41T 137 *
Therefore

g2 (pH=dra(u?) =4ra+0(u?/m?). (3.27)

g(0) is effectively a fixed point.

B. Outline of the preof of infrared properties
(3.13), (3.15), and (3.17)

The properties claimed in Egs. (3.13)-(3.17) can
be summaried in the statement that theve is no
singular dependence on the variable pl/m?, u?
<m? when the theory is subtracted according to
our prescription. Equation (3.15), which describes
the behavior of the B8 function, is a consequence of
the Appelquist-Carazzone® argument that the con-
tribution of massive-particle loops in a diagram
involving massless external lines is suppressed
by at least one power of 22/m?, for k2 <<m?,
where %2 is a typical external momentum. Since
all vacuum polarization diagrams in QED involve
at least one overall fermion loop, the theorem ap-
plies. For the functions I';z and ¥z the argument
is somewhat more involved. One method of proof
would be to appeal to the full perturbative results
discussed in Sec. II, which clearly have the re-
quired properties. However, as we have previ-
ously stressed, these methods are very much
tied to QED and we wish to frame our arguments
in such a way that we can investigate, at least to
some extent, how the situation differs in non-
Abelian theories. Hence, we present here an ar-
gument based on the examination of the infrared
properties of Feynman diagrams.

Let us first define some useful terms. We
analyze the photon-fermion-fermion vertex func-
tion. We refer to the zero-loop vertex, v,, as
the bare vertex, and to a two-fermion-irreducible
fermion-fermion scattering amplitude as the
keyrnel K. We denote a kernel with no internal
vertex corrections or propagator corrections by
K, the bave kernel.

Our argument follows from two statements,
which we shall prove in detail in Appendix B.



15 RENORMALIZATION GROUP AND THE INFRARED BEHAVIOR... 1635

(1) Consider the unsubtracted vertex contribu-
tion from any graph of the type shown in Fig. 1,
consisting of a bare vertex and a bare kernel. We
show that this contribution (which we shall call
bare vertex graph) can be divided into two terms.
One term is ultraviolet-singular and infrared-
finite. The other is ultraviolet-finite but diverges
in the infrared region as both fermion momenta
go on the mass shell. Furthermore, the bare
vertex graph diverges as a single power of a log-
arithm. Specifically, we can parametrize the
contribution of this term, before subtractions, as'?

(Im? —p2| |m? —p'|]

e B

for p?* m?~p'%,q* <m®. F(1,1;0)=F, is a well-
defined constant. The logarithmically divergent
term arises from that part of the integration where
all internal photon momenta vanish simultaneously.
The single overall subtraction required to make
the diagrams ultraviolet-finite at p2 — m?=p'?
—-m?=q%= - u? <m? converts (3.28) into

, Im? —p2|  1m? —p"%|
r‘g""(pz/mzzp 2/m2)=F01nmax{ muzj) ;muzp }

+0(u2/m?; q*/m?) (3.29)
in the near-shell IR region
P =p?—mPp? _mPs ut <<m?, (3.30)

(2) Consider the effect of including, in all possi-
ble ways, properly subtracted vertex and propaga-
tor insertions in diagrams in the class of Fig. 1.
We shall call these diagrams dressed-vertex
graphs. Since the insertions do not modify the
overall divergence structure of the “bare” inte-
grals except by logarithms, we need only concern
ourselves with the region where these integrals
give the infrared-singular contributions, namely
where all internal photon momenta are vanishingly
small. The insertions are, as we shall argue,
of the form

2 2

I-I 1nnl<pi —2m >,

7 [
where p; is some internal fermion momentum.
We then show that insertions of this form, after
the required single overall subtraction, always
result in an amplitude, in the region (3.30),
which can be written as'®

(lmZ_pzl [ 2 _pr2|‘l n
I‘_;F"(lnmaxl LR s)

(3.31)

+0(u2/m?; q%/m?)

P2 P ini
OF(F, W)-&IR-fmlte terms

oF }{{E

FIG. 1. Bare vertex graphs. Kp is the bare two-
fermion irreducible kernel.

(3.28)

r

where the coefficients F, are finite numbers and
the maximum value that » can take can be deter-
mined for every graph contributing to I', as will
be discussed in Appendix C. The proof of (3.31)
is given in Appendix B.

Our argument for the behavior of the full vertex
function has then the following iterative-inductive
form:

(a) We assume that the renormalized I'(p,p’) and
Z(p), the irreducible fermion self-energy, have
the required form [i.e., only logarithms of (p?
-m?)/u2, (p? =m?)/u? but not of (u2/m?)], up to
L -loop order of perturbation theory (a vertex
graph with L loops gives a g2%** contribution).
From statement (1) above, or by direct computa-
tion, this clearly holds for the one-loop contribu-
tion to the vertex and by (3.3) for Z(p) in this
order.

(b) Then it is also true for L +1 loops. The
argument is as follows:

From the Schwinger-Dyson equation, Fig. 2,
any vertex contribution can be either written as a
diagram of the class discussed in (1) modified by
the insertion of properly subtracted vertex and
propagator corrections, or it is just one of the
bare vertex graphs shown in Fig. 1. Because of

o el

FIG. 2. Schwinger-Dyson equation for the dressed-
vertex diagrams. The blobs represent fermion self-
energy insertions.
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property (1) these latter diagrams contributing at
the (L +1)-loop level satisfy (3.31) with L =1. For
an (L +1)-loop diagram, any insertion cannot be
necessarily of more than L loopes. Since the most
sensitive infrared region is when all internal
photon momenta are small, the L-loop insertions

2

u . 9
')/<772_; gu; A'“, 1>=IJ'ZF

and thus as p2/m?=0, v=v(g,)+0(u*/m?).

C. Massless-fermion QED

We remark that the arguments of Sec. III B are
all unnecessary in the case of massless-fermion
QED.' The main problem in applying scaling
argument (i.e., the renormalization group) to the
massive case was due to the existence of two dis-
tinct mass scales, p® —m? and m2, In the mass-
less case, there is only one scale, that set by the
external momenta. There is, in fact, no a priovi
distinction between the infrared and the ultraviolet
regions in this case. Analyzing the region 2® << 2
where & and u are the external and renormalization
momentum, respectively, one finds, as with all
massless Abelian theories, that the origin g=0 is
an infrared-stable fixed point, and the invariant
charge behaves as

2(7,2 &% (u?)
£ = T, 2 /)
1
2 ;\"uz_oF0 In(p?/k%)"

The solution of (3.33) for the vertex and fermion
propagator is straightforward:

T~[In(p?/E3)] &0+ 2) .

(3.33)

IV. NON-ABELIAN THEORIES

We turn now to the more complicated non-Abe-
lian theories. If we try to analyze them using our
subtraction procedure we find two clear differ-
ences. The first has to do with the infrared be-
havior of B(m?/n?; g,). Because of gluon self-
interaction contributions, Eq. (3.15) does not hold
anymore. In fact, in perturbation theory,

lim  Bya(g,;m?/p?) =Byu(g,) +0(u?/m?),

12/ m2-0
(4.1)

where Byy(g,) is the B function corresponding to a

18w Ay ﬂ ,
p2=m2+u2,p 2=m2+p2, ¢2=p2

are in the near-shell IR region (3.30) and there-
fore of the form (3.31), by statement (a). Because
of property (2), the (L +1)-loop diagrams must
also be of the form (3.31).

To obtain (3.17), the infrared behavior of v,
recall that from (3.10c)

(3.32)

—

pure Yang-Mills theory.® Unlike massless QED,
the origin in coupling-constant space for a pure
Yang-Mills theory is not infrared-free, and thus
perturbative calculations do not provide a reliable
estimate of B(g,) as p —0, since g, may become
quite large in this limit.

The second difference has to do with the depen-
dence of the vertex function on the variable p2/m?.
We recall that in QED, Egs. (3.13) and (3.17),
there is no significant dependence on this variable.
This allows rescaling techniques to give useful
results. In the non-Abelian case, there are new
graphs containing three-gluon and four-gluon in-
teractions, which could conceivably have a differ-
ent IR behavior under our rescalings: In fact, as
demonstrated in Appendix D, the analysis of
graphs with gluon self-energy insertions demon-
strates the presence of arbitrary powers of
In(u2/m?), when use of our subtraction convention
is made. Specifically, the analysis suggests that
if we subtract the gluon propagator at g% = - M?,
large logarithms that only depend on the ratio
u*/m2M? are present together with logarithms of
(p? —m?)/u?. Thus choosing a renormalization
scheme with M2 =p*/m? would allow the vertex
functions to depend only on the single ratio (p?
-m?)/u?, as in QED, and consequently there would
exist a corresponding 7Ja(g,). We should remark
that for QED we have arbitrarily chosen M? =2
as the photon subtraction momentum. In fact, the
results stated in Sec. III will hold as long as we
choose any M? such that M?<<m?, because of Eq.
(3.26), which reflects the simple behavior of the
QED IR-invariant charge. The fact that there
exists a particular choice of IR renormalization
scheme for the non-Abelian case is again a reflec-
tion of the particular behavior of the long-distance
invariant charge of these theories.!®

Finally, the IR solution of Eq. (3.8) will now de-
pend crucially on the behavior of Y}a(g,) and
Bym(g,), in the region p?/m?~0. A full discussion
of this and of the renormalization scheme which
allows us to determine the existence of yja'(g,)
will be given in a subsequent paper.'®
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V. SUMMARY

The principal purpose of this paper was to pro-
vide a correct application of the renormalization-
group method to study the infrared behavior of
gauge theories. For QED we present what we be-
lieve to be the first correct formulation of the
problem. Even though this method does not teach
us anything new about QED, where the same prob-
lem can be analyzed more explicitly by powerful
perturbative methods, it can also be applied to the
investigation of the more complex non-Abelian
theories.
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APPENDIX A: CRITICAL ANALYSIS OF PREVIOUS WORK

Previous attempts3-® to discuss the near-shell
region using the renormalization group have been
based on the analysis of Bogoliubov and Shirkov
which we repeat in the following. Starting from
(3.4), differentiating with respect to p?, and set-
ting w2 =p?, one obtains

2
1nr<£2'9 7%’ gu.) 3 glnl"(é, ,gp)

Pd m

p*

¢=1

(A1)

Furthermore, renormalizing at p?=m? in order to
eliminate possible rapid variations of g, as com-

pared to g,2, when p? is near the mass shell, one

obtains the exact equation

2 d (pz.. >__ <.m2. )
b d—pflnl" ;n—g,l,gm —gaglnr £ F‘,gp -

(A2)

Equation (A2), like Eq. (3.8), contains no further

information than Eq. (3.4). As p®>—~m?, (A2)is ap-
proximated by

x5 Inc; 138,) =0(x,,) (A3)
where

a(x,gm)Eﬁ-—glnI‘(E, : gm> (A4)

and x =p%/m?, which approaches unity. In order
for (A3) to furnish some useful results about the
behavior of I'(x, 1,2,) as x—1, we must have
some additional information about the behavior of
o(x,g,), x—~1. Bogoliubov and Shirkov assume,
without giving any detailed justification, that

(g,,)

Lim o(x,g,)~—==24finite terms . (A5)

The form of Eq. (A5) excludes terms of the form
[1n?(1 =x)]/(1 =x). This assumption corresponds
to what is calculated in lowest-order perturbation
theory, where of course no In(l —x) terms can ap-
pear. However, it must be emphasized that, a
priori, nothing prevents the appearance of

Inf (1 - x) in the right-hand side of (A3). Indeed,
such logarithms do appear term by term in the
two-loop calculation, though they cancel in the
full result.’® It is this cancellation which must

be proved to all orders in order to justify (A5).
This can be done by the perturbative analyses of
Sec. I, where A(g,,) is explictly determined, or
by Sec. ITI, where A(g,,) is undetermined. In other
words, the result of Refs. 3—6 can only be ob-
tained by making an assumption which is tanta-
mount to assuming the desired result. There is
no information in (A3) about the limit x =~ 1 without
some such further assumption. Finally, it should
be remarked that Refs. 4 and 5 do not explicitly
state any limitations on their arguments which
would preclude their application to non-Abelian
theories. As discussed in Sec. IV, the form of
(A5) can be shown to be incorrect by an explicit
two-loop calculation in such theories.

APPENDIX B: PROOF OF THE REQUIRED INFRARED PROPERTIES

1. The bare-vertex graphs

Consider any diagram of the class of Fig. 1. We will first show that it is divergent in the near-shell IR
region by at most one power of In(p? —m?) using a heuristic argument based on naive power counting in
momentum space. An L-loop contribution can be written as a Feynman integral of the form

= [ 11 %4 11s<p ) T 5,0 N, 07, 1), (B1),

i=1 jamel
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where

S;‘(p,{km}>5(XL2 ik, +p)2 -m?, (B2)

i=1

and the 7%(=0, £1) reflect the flow of photon momenta through the fermion lines. The indicesj =1,2,...,
Mandj=M+1,..., L label the p and p’ fermion lines, respectively. Because the bare graph has only one
two-fermion cut,

L L
ST mki= w'ky, j={, M), j =M1, L)
i=1

i=1

only for the values of j and j’ corresponding to the p and p’ fermion lines attached to the incoming photon.
All other sums must be distinct. By naive power counting, only the terms containing no photon momenta

in the numerator are infrared-divergent, and these are ultraviolet-finite. The relevant infrared-singular
integral is proportional to N(p, p’, 0), the numerator evaluated at vanishing internal momenta. For small

{k } and p*=p’>=m?, it can be written

I® - constant Xf H‘ﬁk_i IMI 1 2L 1 (B3)
IR _ cons 17z M El(nfiki)'p JEMIH El(njiki).p, )

This integral is overall logarithmically divergent.
We want to show that there is no divergence in any
subintegration. Let us then consider any subset
of the integration variables, say k,, k,,..., k,,
for n<L. We consider the region where all other
(L =n) k;’s are hard compared to this subset and
construct a reduced diagram by contracting to a
point any line containing a “hard” photon momen-
tum. This of course includes any fermion line
for which n# 0 for any i>n. The superficial de-
gree of IR divergence for the reduced diagram is

D,=2n-f, (B4)

where f is the number of fermion lines in the re-
duced diagram. However, for bare vertex dia-
grams 2n>f for all possible #»’s smaller than L.
In fact, D, can be zero, 2n=f, only if the reduced
diagram is in itself a vertex diagram. But this
could only happen if the hard-photon lines were
all vertex and/or self-energy corrections, which,
by definition, are not included in bare diagrams.
Thus the infrared singularity comes only from the
final integration (z=L), giving a single logarithm
of (p? - m?)/m?= (p" —m?)/m*.

This result!” can be made rigorous in the con-
text of a parametric representation of (B1) using,
say, the techniques and arguments developed by
Cvitanovic and Kinoshita (CK).!®” We summarize
these here since they will be of use in proving the
iterative argument for the dressed-vertex dia-
grams. For convenience, let us consider the case
with ¢ =0. As we have already said, the infrared
behavior of the vertex is insensitive to the small-
g regime. Assign parametersy;, i=1,...,L,
for the photon lines and parameters x;, ¢
=1,...,2L, for the fermion lines. Then an inte-

r

gral of the type (B3) can be written as

2L L 1
Tr= f ITax deié(l-zxi-m)mvr-
i=1 i=1 ¢ i

(B5)
U is a polynomial in the x,’s and y,;’s, while
V= ix,(mz—pzh V(x,y)p® (B6)
and .
Vix,9) = 3 3, Byx,3), (87)

i
where the B;; are constructed according to the
formula B,.J,=Z>c U,, where the sum runs over all
possible loops containing both the lines 7 and j,
and U, is the corresponding U for a diagram ob-
tained by contracting one such loop to a point. As
p%—m?, the region of maximal IR divergence, as
we said, corresponds to all the 2;,’s—0. This is
equivalent, in parametric space, to a region
where all x,;’s approach zero and all y,’s are of
order unity. From the analysis of Cvitanovic and
Kinoshita (which our heuristic argument in mo-
mentum space closely parallels) one finds that, in
this region, for graphs of the class of Fig. 1,

(i) U(x,y) = U(y)=constant,

(ii) none of the U, vanishes,

(iii) I has only one overall log divergence in
p? —m?, and

(iv) V(x,9)=f(x).

By doing a standard scaling transformation

2L
z= Z X,
i=1
X;=2x,

(B8)



15 RENORMALIZATION GROUP AND

this divergence can be isolated by the z integra-
tion. Specifically integral (B5) becomes

2L 1
f g -p2) + 2% (x )p?]*
~ 102 7;2’” ) (B9)

2. Dressed-vertex graphs

We consider now the contributions obtained by
inserting in all possible ways venormalized ver-
tex and self-energy corrections into the bare ver-
tex diagrams. We remind the reader that the un-
subtracted insertions contain two pieces, one is
UV-divergent but IR-finite and the other is UV-
finite but IR-divergent. Clearly, by the nature of
our subtraction procedure, in the neav-shell re-
gion, the IR-finite piece is of O(u?/m?). The ef-
fects of these terms, when inserted, will then al-
ways be of, at least, O(u?/m?). In the region

—

I(a
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where all photon momenta are small and of the
same order, by our induction assumption, the
behavior of each subtracted insertion is given by

a polynomial in 1n[S;*(p; {#;})/pn2], where S;™ has
been defined in (B2). Then a typical (unsubtracted)
integral contributing to dressed-vertex diagrams
is of the form (for ¢ =0)

) f d4k 2L
2L k ‘2

=1

I(b,,b,, ... S(p k)

=1
X Inbi [S————L’- (pz;k )] .
m

(B10)
Define the generating function of the integral in
(B2) as
2L by
I(ahazL):ZI(bu ---,bzz,) I-Ib‘—[’ (B11)
(b‘} i=1 i

which, in parametric form, becomes

o) =F@) | de, [T (1 -2 - Ey)n(“‘;)“‘UTﬁ,r, (B12)

where x;,y; and U, V have been defined previously. By the CK arguments, only the region where all x;~0
contribute, and using the scaling (B8), Eq. (B12) becomes, in the near-mass-shell region,

oy P —m? m?
Ia,, ...,¢,)"~ Indx,ﬁdy, H( ) J' dzJd (z;x;9;)= F< ey Qs e >_F<a1, R 1’)
(B13)
L
where 1, are at most divergent as one power of

2L (y?)-e
(m? = p?) +2f(x 1,y Jp2}F~°

JL(ZU‘;;JH)E[ (B14)

and @ =2, @, Equation (B13) reflects the fact
that as p2—~m?, the IR singularities only come
{rom doing the z integration. By inverting (B13),
I(b,, ...,b,;) is clearly also of the form

2 _n? 2
(5#) 1)

where I(x) is a polynomial in Inx. The subtracted
contribution then has the desired form.

APPENDIX C: COUNTING LOGARITHMIC
INFRARED DIVERGENCES

The results of Sec. IIIB, as derived in Appen-
dix B, allow us to determine the maximum power
of logarithmic divergence that any given graph can
have in the near-mass-shell region. The crucial
result is the fact, expressed by property (1) in
Sec. III B, that bare vertex graphs, those of Fig.

In(p? - m?®). Therefore any graph formed by iter-
ating any bare kernel contribution N times can
have no more than a In¥(p? — m?) behavior. By the
Schwinger-Dyson equation, any vertex graph is
built by iterating the bare kernel and dressing all
fermion self-energy and internal photon-fermion
vertices in all possible ways. With this in mind,
and noticing that graphs with N kernel iterations
also have N two-fermion cuts, the following pro-
cedure can be used to determine the maximum de-
gree of log divergence of any graph:

(1) Count the fotal number of fermion self-energy
loops, S, and shrink to a point all the self-energy
insertions.

Then for the resulting reduced graph

(2) count the number of two-fermion cuts, F,

(3) isolate all vertex insertions arising from
internal photon lines.

(4) For each vertex correction repeat (2) and
(3) until all two-fermion cuts from all possible
subinsertions, Emh Fi, are counted. Then the
maximum number of In(p? — m?) of the graph is
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given by
Now=S+F+ Z Fi,

subinsertions
For example, the graph in Fig. 3 which contri-
butes at the 17-loop level has at most nine powers
of In(p? —m?). Clearly, for graphs at the n-loop
level, N can vary from n, for graphs made up ex-
clusively of self-energy insertions and single-pho-
ton ladder exchange vertex insertions, to 1 for the
bare vertex contributions.

APPENDIX D: CALCULATION OF THE INFRARED
BEHAVIOR OF VERTEX GRAPHS
WITH ONE INSERTION

In this appendix we will present an explicit cal-
culation of the infrared behavior of the vertex
function with vertex or self-energy insertions.
This will illustrate the arguments of Secs. III,

IV, and Appendix B. For simplicity we will con-
sider the vertex at ¢ =0, and graphs with a one-
photon-exchange bare kernel. The behavior of any
of the diagrams of Fig. 4 is determined by the sum
of integrals of the form

o d% "[(p+k)2—m2]
I,= (zﬂ)4m In e

1
WG kY -l oy

Consider the generating function

m2 d'k 1
T ) i [(p+RE =0

Equation (D2) is an example of the functions intro-
duced in (B11). By standard methods

_(1-a) m? 1 pery’
I(a) zz_—a) (Eg‘)—a J; ax [xmz —px( _x)]1-a (D3)

e {re{o i) -emlen |

(D4)

(D2)

]2-dk2 .

FIG. 3. A 17-loop vertex graph which diverges as
In®(p%—m?) in the near-mass-shell region.

=

FIG. 4. Typical dressed diagrams computed in Ap-
pendix D.

and therefore

_ s 2 =p%) ;PZ’]. (D5)

n+l 2 2
. ’Si}ms (=52, (06)
S=1
in agreement with (3.29).
A typical non-Abelian diagram is given in Fig.
5. Its infrared behavior is determined by sums
of integrals of the form

Jo(p?)= j (d% 2 10 /M%)

2m)* B[ (R +p)? - m*’ (D7)

where M? is the subtraction momenta of the pho-
ton propagator. Using the generating function

(D2) for J,
_ 2,
J(a) =Z —
n=0
m? d*k 1

=(M2)a @n)? (kz)l""[(k +P)2 _sz , (D8)

which, by Feynman parametrization, gives

N 1
J(a)=m2£ dxm

x Mty 09)
and therefore
In f dxm —p (1 x)
Xln"[mz _l])wzz(l —x)<l J_Cx>}’ (D10)

FIG. 5. Typical non-Abelian diagrams with gluon
self-energy corrections that can be computed as in Ap-
pendix D.
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which gives

m2 fmzluz dy "[y(y - (m? =p%)/u?)
J"=—2' — In ]
D” Jim2-g2rs 2 ¥

(m*/u® -y)
(D11)
as p?~m?, the subtracted integral gives
JS:r/q"Z/M2 dy ]. nl:y(y_(ﬂlz ‘pz)/Mz)J
n= —-in 2 2
(m2-2)/ 2 Y m®/M? - y)
j’"z’”zdy [y (y = u?/M?)
- —1n’ [ } D12
e 3 " Lo =5y (012)

by changing variables z = (M2/u?)y, we obtain

m2/ u2

g8 =

L (gt
[ ()] e

as p?/m*-0,

m2/ u? 4 2 2
Jf: d—zln"[ H <Z—m“;p >:l

z
(m2=p2y f u2 2 m3M?

m2/u.2dz “2
—In"* —— _
_fl ~ I |:m,‘,M2z(z 1)]

+IR-finite pieces. (D14)

Clearly, for M2 =p2 J5 will contain terms of the
form In"(m?/p?) In"2[(p? - m?)/p?], n, +n,=n+1.
Furthermore, if p*/m2M2=1, J5=F,((m?-p?)/u?)
only.
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