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The planar approximation is reconsidered. It is shown that a saddle point method is ineffective,
due to the large number of degrees of freedom. The problem of eliminating angular variables is
illustrated on a simple model coupling two N X N matrices.

1. INTRODUCTION

The idea that a large-N expansion in the theory of
SU(NV) gauge fields is a means to generate an approximation
to the true system remains an attractive one. Since the work
of 't Hooft' on two-dimensional QCD, there have been var-
ious attempts at developing a systematic treatment. Recent
claims have been made that this limit enables one to under-
stand the connection with the string formulation of the dual
model” and that it provides a semiquantitative understand-
ing of various selection rules in the framework of quark
interactions.’

The zero-dimensional counting problem in the same ap-
proximation is related to the theory of random matrices and
might find applications in models of disordered media.* The
question has been considered by mathematicians® and physi-
cists® using combinatorial methods, or analytical ones.” In
Sec. 2 we shall present a short review of this subject. In [A]
the method was applied to quantum mechanics, where it was
shown to give accurate approximations.

The existence of a large parameter N, namely the order
of the invariance group, suggests at first that some form of
the saddle point method might apply to the path-integral
representing the transition amplitude. This seems further
confirmed by the observation that expectation values of pro-
ducts of invariant operators 4,B,--- factorize in the large N
limit:

(4B-) — (4) (B) --. (1.1)

Could there exist a classical fluctuationless configuration to
describe the situation?

Unfortunately, this turns out to be rather illusory, as
will be illustrated in the following. To be specific, we shall
study a simple model involving finitely many degrees of free-
dom, each one represented by a Hermitian N X N matrix M.
These finitely many degrees of freedom might be thought of
as a finite lattice approximation to a genuine d-dimensional
continuum. The integrals to be considered have the form:

Z =ff[dM,- exp[ — i V(M)

i=1

+ S B, trM,.A{j], (1.2)
hj=1
with V(M) a potential term, typically
V(M) =}tM? %trM“, (1.3)

inducing a quartic anharmonic term with strength g/N.
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Here B, is a short-range “kinetic”’ coupling among sites, for
instance, B, = B if i and j are nearest neighbors and zero
otherwise. Finally dM is a U(V )-invariant volume element.
By allowing a finite number of space~time points and letting
N— o, we interchange, of course, the infinite volume (ther-
modynamic) limit and the restriction to planar diagrams
(large-N limit). However, as long as this procedure is
thought of as a means of generating Feynman diagrams in a
series expansion in g corresponding to processes without in-
frared divergences, it seems without danger.

Rescaling M into N '/*M, we can look upon (1.2) as an
integral involving an action multiplied by the large number
N, which calls for the saddle-point method of evaluation.
This is obviously too naive since it omits two aspects of cru-
cial importance. The first is the contribution of the measure
itself and the second the large degeneracy due precisely to
the invariance group, here U(N ) with N ? parameters. The
search for a saddle point can only be undertaken once these
degenerate degrees of freedom have been eliminated. When
this is done, one deals with a basis of group invariants. A
sharp distinction appears here between the above planar
problem, and the one encountered in a seemingly analogous
situation involving vector instead of matrix variables, such
as the classical Heisenberg O(N) ferromagnet. In this case,
the variables attached to each of the p points of the lattice are
N-dimensional vectors §¢, a = 1,...,.N, i = 1,...,p. A basis of
invariants under the real orthogonal group O(V) is given in
terms of the p(p + 1)/2 scalar products S,-S;, /<. (Since
P<Nno quantity involving a determinant does occur.) In the
measure, the O(N) degrees of freedom can be factored out,
leaving as a result

H d(S;-S))|det(S;S )| N —#~ V"2,
i<

As a consequence,

ZVector f g‘ INS,' Cxp[ Z ( ,2) BUS‘..SI]
I a 46 +l§‘j
OfH ( i j)ldet(si'Sj),(N p—1/2
i</

xexp| — 3 V(SH+ 56,55,

with Z, a normalization constant independent of ¥ and the
last integral extending over the positivity domain of the ma-
trix (S;-S ;). This expression is suited to the application of the
saddle-point method, which will lead in this case to the usual
1/N expansion of the classical ferromagnet. This success

(1.4)
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may be attributed to the fact that we have found a choice of
p(p +1)/2 invariants much smaller in number than the
original Np variables, more specifically much smaller than
the large parameter N. As in thermodynamics, each degree
of freedom will contribute to a connected quantity a finite
amount. If the total number of degrees of freedom is vanish-
ingly small as compared to the large parameter, the saddle-
point method is useful and will be the starting point of a
systematic expansion.

The situation is not as good in the matrix case. Exceptin
the case of a single matrix where the space of invariants is N-
dimensional and hence much smaller than the original space
(of dimension N ?), it is sufficient to look at the set of invar-
iants for two matrices to see that its size is comparable to the
size of the original space. Consequently, fluctuations to all
orders will be essential in the evaluation of the integral and
no simple saddle-point method will work. Does this really
mean that the planar problem is totally untractable in gener-
al? We have no answer to this question, but the successful
applications of the planar approximation to quantum me-
chanics (see [A]) leaves some hope that an appropriate trick
works for each specific case.

It is therefore of interest to confront the type of difficul-
ty discussed above on the first nontrivial instance, namely
when the integral Z involves two matrices only. This is the
main part of the present investigation, to which we devote
the last two sections. The result of the integration over angu-
lar variables corresponding to the unitary group transforma-
tions is presented in Sec. 3, while in Sec. 4 we discuss two
expansions of the planar limit.

The outcome of this investigation seems a little disap-
pointing. We feel, nevertheless, that it is worth being report-
ed since it illustrates the nontrivial character of the planar
approximation. Moreover, some of the expressions derived
below might turn out to be useful in another context. Finally,
our incomplete solution might raise other people’s interest in
finding a more complete answer.

2. THE COUNTING PROBLEM REVISITED

We recall the results obtained elsewhere’ on the
counting of diagrams with a definite topology. We shall gen-
eralize the theory toinclude an arbitrary polynomial interac-
tion V' (M), which we assume even for simplicity:

V(M)—ltrM2+z ter"

p32
Let dM be the unitary invariant measure on Hermitian
N X N matrices

Q.1

dM = Hl aM. H 2d ReM,; d ImM, ;. 2.2)
P= i<j
We define
Z(g)= f dMe V&) 2.3)

which makes sense in some appropriate (complex) domain
for the coupling constants. In Eq. (2.1), the coefficients of
higher-order terms are weighted with inverse powers of NV in
such a way that the perturbative expansion of
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1 Z(8)
B(sd)= - Ln(Z), y
& N N \Z ©) 24
will produce contributions of the form
1 1
£ (s N)‘ S i Ean(e) @5

with E 5, defined in terms of diagrams drawn on a surface
with H handles (H = genus of the surface). E,;, corresponds
to the planar (or spherical) topology, E, to the torus, and so
on. In the sequel, we shall concentrate on the vacuum “‘ener-
gy” E and leave aside questions dealing with Green’s func-
tions. This generalization can be done along the lines of [A].
In the measure dM, the angular factors corresponding to the
unitary transformation U to a diagonal form:

A, 0

M=UAU', A= , (2.6)

0 A
can be factored out. When integrating over an invariant
function f(M), i.e., such that f(M)=f(UMU"), we have

NN —1)y2
fde(M) QL——J‘Hd/IA(/l)Zf(A)
2.7)

n

with 4 (1) the Vandermonde determinant

A@)=1[¢
1>

The numerical factor in (2.7) will follow from our subse-
quent arguments. The structure of this relation suggests a
connection between the calculation of Z and the theory of
orthogonal polynomials, as discussed by Bessis® and Parisi.’
This goes as follows. First defineg, = g,/N? ' and, for the
time being, let g, be considered as fixed, real, and such that
the measure

—A)=det(d/ ). (2.8)

du(A) =dle ¥, 2.9
is integrable. Here V' (1) stands for
2
Vid)= ’17 + Y gA* (2.10)
p>2

We call Z,( g) what was previously called Z ( g) in the case
n=N,ie.,

2,(9) = [ du)-du@ )4 Qud)F, 1D
and define the polynomial of degree n
P,(A)=(~1)"P,(— 1)
=2,7(9) | duli ) du )4 k)T
x [ @4 —4). 2.12)

s=1
The term of highest degree has a coefficient equal to 1. The
polynomials P, (4 ) are orthogonal with respect to the mea-
sure du(A ). Indeed,

z jdu(/lw WP, (e A
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= f "ﬁ d,u(/{k)A (/11,...,/1"_*_1 )A (/{] """{n)/ii;.m

1 n+1
- j [T ded)a G )

n 41 A
XS (=D " LA Ry 1 )
k=1

The sum inside the integrand is the expansion of the
determinant

1 A4 AT A
14 A0 A3
1 A"+1 e /1’:1} /{-:14—2

with respect to its last column. It vanishes for
s = 0,1,...,n —1, which proves the assertion. For s = n, we
find

znf du(A)P,(A)A" = Z, f duA)P2(A)
—Z, /i +1).

Hence

h, =Jdu(i)Pﬁ(A)=Z"+l /n+DZ,.  @13)

This relation shows that the knowledge of the orthogonal
polynomials yields a handle on Z. A statistical interpretation
can be given to Z as a partition of a one-dimensional repul-
sive Coulomb gas of particles interacting with a potential V.

The polynomials P, satisfy a three-term recursion
relation

/{Pn :Pn+-l +RnPn71 .

Since

h, ., =fd#(,z )P, ,, AP,

(2.14)

=fdu(i)(PM + R, PP, =R, .\ h,,

we have
h Z .\ Z
R, =1 = M Znetfnt 2.15)
hn —1 n + 1 Zfl
Consequently,
Z, =nh, \h, ,hh,=nR, R ,-R?'hI,
(2.16)
with
Z, =h, ———fd,u(/l). 2.17)

Incidentally, this provides a justification for the factor oc-
curring in Eq. (2.7). For choose there

S (M) = exp(— | trM ?). The left-hand side is equal to
(2m)™ /2. On the right-hand side, the integral is Z,, (0), corre-
sponding to Hermite polynomials with the measure

du(A) = e~ */%dA. In this case, hy = (2)"/2N! and hence
Zy=N'hy_, hy , -hy =TIY p27)¥ /2 The factor in the
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right-hand side of (2.7) is just fitted to match these two
results.

The preceding development follows from the standard
textbook treatment. We now use an argument due to Bessis
and Parisi to obtain a recursion formula on R, . From Egs.
(2.13) and (2.14), it follows that

nh, =fdze-V/1P;Pn
:fd,t.«z“VP;(Pn+l +R,P,_ )
:andA€~VP;P",1

:R,,fdie"’V’P,,P,,g,,

where an integration by parts has been used to obtain the last
equality. Now

Jd/l e~ "P,(V'P, )

=J.d/le‘VP,,[/i+ 3 2p+ 1)g,,+,,1217+']1)n,l

p>1
:h,,[l+ZZ(P+1)§p+, > Ra,'"RaF]‘ 2.19)
p>1 paths

In this expression the coefficient of 2(p + 1)g,, ; is a sum
over the (2p + DI/p}( p + 1)! paths along a “staircase” from
the stair at height 7 — 1tothe one at height n,in 2p + 1 steps
of one unit, p + 1 up, p down. A factor R, occurs when
descending from the stair @ down to stair @ —1. For in-
stance, we have
p=1 Z :Rn71+Rn+Rn+l’

paths

P=2 =Rn72Rn7|+R571+2Rnw-1Rn

paths

+R, R, ., +R.+2R,R,,,

+Ri+l+Rn+1Rn+2’ (220)
and so on. We can, of course, express this result in terms of
the (n,n —1) matrix element of the Jacobi matrix 4 in Eq.
(2.14) raised to the power (2p +1). Inserting this expression
into (2.19) yields:

n=R,(1+3 2p+DE 0 T Ro-R,) Q2D

p>1 paths
Since we are only interested here in the leading term of Z ( g),
we shall only use the dominant estimate of R, for n of order
N. From Eq. (2.21), R, is of order N, and we set

x=n/N, R, = Na*(x). 2.22)
This entails forg, . , =g, ,/N7*,
!
x=a®+ Y g, —'(2_1’)'__ (%), 2.23)

sz pp— 1!
The quantity of interest, namely the generating func-
tion for the number of planar diagrams, is E,,( ) given by
Eqgs. (2.4), (2.5). Dropping the index (0), we find

. 1 [rar Rn(g))
E = lim — — N—n)ln
(g)= lim NZ[ }l‘, ( ) (R"(O)
C. Itzykson and J.-B. Zuber 413
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hq 24
+ Nln(%(g)))] W(A, ) — EL d§(4i 2 __ §2)1/2vﬂ( é—)’
T — 24
(2.26)
= _f dx (1 — x) 1n<“ (x)) (2.24) Ay _ f 2 dé w( £)
A o (A2/4__§2)l/2 é— .
E (g) can be written as

To analyze these relations, we define the functions

2 - wd)

v(,{)z%+[;gp/12p’ E(g)_fd,iw(x)n_w(/l)]m( “ )

225 = —1lnd® + f ij— Q — ww ~ (g =0),2.27)

1 0
wd) =A%+ 22 ;T(%LDT A%, with a=a(1) defined through
p> i - H
402 212

They are related through , 1 =w(a) = J dé (————f-)— v"(£). (2.28)

These expressions coincide, of course, with those given in [A] for the quartic potential. One can note that the condition
w(a) = 1 follows from a variational principle. If a is left arbitrary in (2.27) without the subtraction term, then the relation
between a and g expresses the stationnarity of E with respect to a.

The preceding development avoids completely the use of the saddle-point method as presented in [A]. Nevertheless, it
contains implicitly the asymptotic distribution of eigenvalues of the matrix M. We recall that the original eigenvalues have

been scaled down by a factor V'V to obtain the reduced variables. The density of eigenvalues, i.e., the distribution of roots of
the polynomial P, (4 ), is readily related to the Jacobi matrix for A in a basis of orthonormal states

7 ()= ——P.Q). (2.29)

Vi,

From (2.14) and (2.15)
h, 172 h,_ 2
mnm=(—h*—‘) %+1+Rn( . ) 7,

n

=VR,,, 7,..,+VR, 2, _,. (2.30)
Consider now the quantity
hm Jd,u(/l) 2 P ANPP (A)={(A%). (2.31)
N -

In the reduced variables (1-—A /v/N), we look for a positive density u(4 ) such that

A%y = J dA u(AA Y = Ll dx a2ﬂ(x)q§;0 [(z )r (2.32)

where the last expression results in this limit N— co from Eq. (2.30), using notations introduced in (2.22). This relation takes
the form

J dA u(A)L?*

1 1 2
=j dx a*(x) Q_____(Zy )2 —
o 17 L=y

[ awar | e __w
~ 2a(1) a2 ™ (Aut—AH7
and yields an even measure concentrated on the interval ( —2a,2a), where a=a(1), equal to
PN
r iz T (AEF—A9Y
I N U dn v'(n) (2.33)
T 27 ) _2a(da> — PPy — A
This gives a distribution of the form (1/7)(4a> — A %)"/* times a polynomial in 4, equal for 4 ? < 44’ to the real part of an even
analytic function
B dn v'(n)
2 J (@@ — )iy —A ,
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vanishing faster than 1/4 as |4 |— o0, and with a discontinuity on the finite interval A 2 > 4a® equal to iv'(4 )(4a® —

A2, The

condition w(a) = 1, is equivalent to the statement **,, #(4 )}dA = 1. This reproduces, of course, the result for the quartic
interactions given in [A]. The extension of the previous analysis to include functions v(4 ) not necessarily even is, of course,
possible. One can also proceed® to the systematic study of the corrections in powers of 1/N, starting from the exact expression

(2.21).
3. INTEGRATION OVER THE UNITARY GROUP

We return to the investigation of integrals of the type
(1.2) over several N X N Hermitian matrices, in fact, to the
simplest one involving two matrices

Z= f dM, dM, exp{ — [V (M,) + V(M)

— B (M, M1} @.1)
As explained in the Introduction it is important to integrate
first over the angular variables. We are therefore led to study
the expression

104,M8) = [ aUexpl puM,UMUN], G2

where dU is the normalized Haar measure on the unitary
group U(V). We can, in fact, restrict the integration to
SU(N )since this is the only part which acts effectively on the
Hermitian matrices M in the adjoint representation. If A,
and A, stand for the diagonal matrices of eigenvalues of M,
and M, as in (2.6), 1 depends only on A, and A, and is, in
fact, a symmetric function of each set. Then Z reduces to the
form

2PV D N
= B | Matan,a%aaxay
7

Xexp{ — [V(A) + V(AJ T (A ,A)),

VM)

3.3)

due to the invariance of the measure dM ¢ ~ under uni-
tary transformations.

We will now show that
vvnn e, det(e )
I(AABY=LB ~¥YN-D2 l——— <. (349
- NP aray ¢
Let D be the unitary invariant Laplacian operator on Hermi-
tian matrices

J’ 3

Z'; [(3R )2 @ ImM, ;)

. (3.5)
Consider the propagator
S M M) = M\|e~ "% M,)

1
= ————exp| - —te(M, - M 2], 3.6
o | - 2t — b7, 36
a solution for ¢ positive of the heat equation
; )
—— —D LM M, = 37
(£~ 2p,) s M) = (3.7)

which reduces when —0 to a & function with respect to the
measure introduced above. If g(¢, M) is a solution of the
above equation for ¢> 0, which coincides for r = 0 with a
given function g(M ) invariant under unitary transforma-
tions, i.e., a symmetric function of the eigenvalues of M, then

gAY =C f U f dA, A5A)f (55 A, UALU Ng(A).
(3.8)
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r
The constant C corresponds to the value appearing on the
right-hand side of Eq. (2.7)

C=@m*2 ] p. (3.9)
1
Consequently,
4(A)8(AD = f A, K (5 AuA)L4 (ADgA)],
(3.10)

K(t: ApA) = CA(A)A (1) f dUF(t; A, UAU™,

which means that X is the evolution kernel for antisymme-
tric functions of the form

§(A)=4(A)gA). (3.11)
The function & satisfies the equation
N
%S £
at 2\4 ) &4, oA, 4(A)
1 d 1 d 1
= — *—*— —— —
2 z,: (6/{,- kz;‘,- A — Ay )(8/1, kz;e; A — A, )§
| « J% 1 1
= — - \ 3.12
223}»? kkTei Ay — Ay /l,-—/l,g .12)

The last sum vanishes owing to the identity
1 1
A=A, =) (A=A, —4)

1 J—
Ay —A)ds —4)
Therefore, £ fulfills
a& 1 & &
o T DA

and is required to be antisymmetric. The kernel X of the
corresponding evolution is then

K(A,,14))

1 o
WN'Z(”)

Xexp[ - 2 Ay — /{2,.%,)]

(2—77;)"’7 A}'V det[exp[ - —(/{1, —12,1)2”.
(3.13)

+

I

If we compare this with (3.10) and (3.6), we find
deexp[ _ % tr(A, — UAZU*)Z]

det[exp — (1/2t)A,, — 4, ,)*]
4(A)4AY)

)

N
— (N -122 Hp!

(3.14)

a formula equivalent to (3.4). The reader will recognize in
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this derivation the features that made the planar approxima-
tion to quantum mechanics very simple in terms of fermionic
wavefunctions (see [A]).

Let us now derive a series expansion for I (M ,,M,; ) in
terms of the characters of the linear (or unitary) group, using
adevice due to Weyl. We recall that the irreducible represen-
tations of the group U(V ) are characterized by a sequence of
nondecreasing integers n,<n,<-n, _, , Which for n,>0 can
be attached to a Young tableau.'® We will consider here only
polynomial representations, i.e., those such that the group
factor UV )/SU(N) is represented by (detU) ", ny>0. The
complete set of representations is obtained by relaxing the
positivity condition on n,. Let U—Z {"}(U) be the corre-
sponding representation with character y,,,,

det(5 7 )
det(8,)

where §; are the eigenvalues of U. Denote by d,,, the dimen-
sion of this representation:

diy =X im ). (3.16)
Let first restrict our attention to the SU(NV) group. This is,
anyhow, the only part that enters the integral (3.2). In this
case n, = 0. We have the orthogonality and completeness
relations

YO =3 2(U) = : (3.15)

L sininig &
d

aay a3, ajaz’
{n}

f dU 2" ()Pl (U) =
(3.17)
S d,, 232D UY=8UU).

{n},aa
Let U, and U, stand for two arbitrary elements in SU(V ). We
have

J dU exp( B ttU, UU,UY)
- j av | ausw,u,uu,ut

- f Ve S DU UDD L P).

{n},a.a

The integral over V being invariant under the adjoint action

Now
detrV)"x;';;(V)=5p.|n|”1~r’

where |n| = 27 "' n, and o, is the number of times the
n]

representation & !"'(U) occurs in the tensor product & U.

(3.18)

This can also be interpreted as the number of distinct ways of
constructing piece by piece the Young tableau for the repre-
sentation &' while respecting the rules for such tableaux.
(Therefore 0, | is nothing but the dimension of the represen-
tation of the permutation group on |n| objects pertaining to
the same tableau. For a proof see Ref. 10.) It follows that
[n]
D LB A IR (3.19)
{n} I n | ! d{ nl

This result has been derived for U,, U,eSU(N ), and the sum
on the right-hand side runs only over representations with
ny = 0. It can readily be extended to U, U,U(¥ ) provided
we reintroduce all representations with 7,>0. v, (U)isa
polynomial in the matrix elements of U and therefore can be
continued as a function of an arbitrary N X N matrix. By
analytic continuation, we therefore reach the conclusion
that

o MY (M),

n} | n I 'd {n}
(3.20)
A similar formula could in fact be directly obtained by ex-
panding the numerator of the right-hand side of Eq. (3.4) in
powers of the eigenvalues. Comparison with (3.20) yields

N1 N —1
o = |n|d, ] p!/ I &, +p)
[4] 4]
and we recall the Weyl formula

N-—1
dln] :A(nN—~l +N—l, nN*2 +N_25---9n0)/ H p"
[}

[(M,M; B) = ;—"— id

(3.21)

where 4 is the discriminant used througout our previous
discussion. Table I gives explicit formulas for the characters
up to || = 4 in terms of traces of powers of the matrix M.
We check, of course, that

di, =xm{d) and M Y = 2 Ty Xiny (M)

tni
[n|=p

VUVU", we can replace Z 2" (V) by (6, /d ) T (V). (3.22)
TABLE 1. Characters of the linear group up to |n| = 4.
Young
tableau Yim(4) d, Lre
@] trAd N 1
M Ay +trd?) JN(N+T) 1
B M(ted ) — trd 3] \N(N -1) 1
o L lrd) +2trd A ted B LN (N +1)N +2) 1
B] L{(rd) —tra ] LNV DN -1 2
g (A ) +2 14 ¥ —3ted trd ¥) LNV 1N -2 1
LAY +6 1A * +3(ted *) +6 ted *(trd )’ +8 trd  urd ) LNV DNV 42N +3) 1
% (A ) =2 trd* — (114 %) +2 ted X(trd ) IN (N A1V +DN —1) 3
B Lt —seea v 13aea) b NN 1) —1) 2
gj LI )Y +2 e — (ra P —2 A (A YY) NN DN N —2) 3
B 4 [CrA ) —6trd * £3(trd 2 —6 trd H(trd ) +8 14 tr4 ] LHNV 1N =2)N -3) 1
416 J. Math. Phys,, Vol. 21, No. 3, March 1980 C. Itzykson and J.-B. Zuber 416

Downloaded 22 Aug 2006 to 128.111.9.214. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



TABLE 1I. The coefficients X, (4,8).

k X.(4,B)
1 (4)(B)
2 SAA)(B)
3 SA(B) (A) ) (B)
4 SAAY(B) —4——
5 SA)(B) =5 [, (A V4 )fz(B)fs(B) @)
6 S(AY(B)—6 (A(A Vo) £(B)AB) + —3—2——]
2 UB (B
G f(A) [f,(B)fz(B)+2 fHB) 5 f; )]
_(A) [ fi®) . (B)n
3! 2 3!
7 SAA4)AB) *7[f ()AL S(BIAB) + f{(BY(B)] )
+ f(A ) (4)] [(B)(B) +2£(B)(B) +2 /x(B) —22—'—]
Z 2Z B
ﬁ(A)fZ( ) [Zﬁ(B)ﬁ(B)-12f3(B) i;—)”
8 Jo(4 )5(B) Z(B)
-8 [ﬁ,(A Va4 )[/;(B)fz(s) +/BYB) + =
B B
+ﬁ(A)A(A)[ﬂ(B)ﬁ(B)+2f§(B)£(B)+2 ( )+2 ( )fz(B)+2L(B) Sl )]
B fB }B B
i) [féwy(a)u;:(m&wm A ) w2 )fzw) w278 L8 6 D )]
2 19,1 B (B
f( )f(A)[ZfS(B)ﬁ(B)+4 AB ) 5 f( )fz(B)—IZf,,(B ( ) S )]
b B 2B B
+L(A)f( ) 2@y +2 ( Do L iy rasm ( )
2, 24B
+ hf) [ ﬂ;f?) a8 YK (B)f(B)+36O f1(B)
We have now two exact expressions for the kernel e4)=1, e,=0,
I (M ,M,; B)givenin Eqs. (3.4) and (3.20). For our purpose, e (4)={(d — (4P (3.25)
we are also interested in an expansion of In[I (M,,M,; B )] for i 1

large N assuming the eigenvalues of M, and M, to be of order
N 2. Without loss of generality we take M, and M, diagonal
and rescale them as M, = /N A and M, = /N B with 4
and B of order unity. We look for the dominant term

XA )= lim — L wmliVN 4VN B,8)]

= lim — 1nU dU P rAUBU >] (3.23)
N ooc
with
a, 0 b, 0
A= , B= R
0 a 0 b

The quantity X admits a series expansion in powers of
k

x5 =3 - x.uB) (3.24)
where X, (4,B) = X, (B,4)is a symmetric function of the g,
and b;, homogeneous of degree k. It is given in terms of the
quantities (4 #)=(1/N) tr4 *, (B *). By singling out (4 )
which can readily be factored in Z, it will be useful to use
rather the mean values e ,,(4 ), ¢e,(B):
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1 P
=—-trA——trA), >2,
N ( N ?

or even better the “connected” ones f, (4 ), f, (B ). The rela-
tion between these two basis, already discussed in [A] for
Green’s functions is most easily expressed through the gen-
erating functions

BUA) =1+ 3 j*e ),
Wz A)=1+ 3 2 1),

(3.26)
(s 4) =9 4] 4),
2[j; A1 =78 (J; 4),
or, more explicitly,
- k! LA™ LA™
e)= ,EM k+1—3 )~ o
Sk (3.27)
(k+2r, =2 [ —ed)]”
A - - - 2
7) {,gm k=1 ry!
Zgro=k
K Lmew”
7!
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We can start grinding the coefficients X, (4,B ) using the
expansion given in (3.20). The results up to order 8 are dis-
played in Table IL. To expose some properties of this expan-
sion, we shall write for X differential equations similar to
those discussed at the beginning of this section. Let X ¥’ be
equalto(1/N ) In{I (v/NA,V/ NB; B))},i.e., tothe same quan-
tity as X before going to the limit N—o0. We have

Y ' pt det(e™**)
(BNYYV-D2 A(A)A(B)

N2X)

(3.28)

The quantity
[4 )V * V] Z( )A(A)”’X‘“,

i=1
is obviously equal to N 3 7Z b, and we therefore derive the
identity

prBHy= L L (‘ 94N iL)A(A)
A(A) N N da; da,
Since NoX *¥/da, is of order unity, we may omit in the large-
N limit the action of derivatives on it, when expanding this
pth power. To leading order,

i p! 1

s (p—s) NP5+
NOX /3a,y
x5 ( ) ,
iEp AR, (@ — aj,)"‘(a.- —4q;, ‘)
where the term s = Ois absent since 4 "'2,974 =0forp < N.
For p = 1 this yields

1 ax
B(B)= WZNE’

B (B =

3.29)

which means
=[(4) (B),
(3.30)
X,
— SN
z da;

Thus, for k> 1, X, which is a homogeneous function of 4 of
degree k may be written in terms of the e, (4 ), s<k, which all
satisfy

=0, k>1.

de (4)
—S$N =0.
Z’ da;
Defining X through
X=X+B(4)(B), (3.31)
we find
- 2! 1
BroB) =3
NOX /da.y
x 3 ( a) . (332

Y e (S aj,)"'(ai —a )
This infinite set of equations determines the functions X,
recursively. The algebra becomes rapidly quite cumbersome,
and we did not succeed in finding a simple algorithm. We
shall, however, indicate some simple features. Let us first
focus on the first terms (s = 1) of the right-hand side of Eq.
(3.32). It reads
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8 N3X /3a;
APF=P_ /9, . (333)
N isjtwy, @ —a, )@ —a; )
One may show that
APe, (A)=k 2 e, e, k=23,
Ao tr,=k
(3.34)

where the right-hand side is zero for k < p. On the generating
function ¢ (j; 4 ) of Eq. (3.26)

AP (j;A)=j;%(jP¢P).

Let us now show that 4 (7 has a very simple action on the
connected f, (4 ). Since it is a derivative, we have

49 (jA)
=A4PYz[j;4]1;4)
= ZLADe i) + 4V 4) :
74

z=12{j;4]

(3.35)

but from (3.26)
APz[ ;4] =jAPP(j;A4)

and

) J 8 a

E(1- )~ S 2 =ity + v =2
dj Jz

Hence
Ay a) = (1-]
- (1 —ji‘ﬁ)jgjuw

_8_¢ (p) -
7 )A 6 (i)

oz

=z£z"=pz" , (3.36)
Jz
or equivalently
APf (4) = pdyy,- (3.37)

This now suggests to rewrite Eq. (3.32) as

gy o (f,BY)"

irl (p +1 -2 I‘q)! 732 rq!
Sqr,=p
1
AP -
A PX + S‘SZ ( ) p—s+l
“ (N3X /da,y
i, (@ —a; )@ —a; )

and so solve for X according to its increasing degree in the
f(B). To lowest order (linear terms) one has

A4Pxm =B *f,(B),

and hence

(3.38)

- p
x= E,Tfpu V(B + - p=230,

where the triple dots stand for terms independent of f,(4).
X ¢ is necessarily of the form
~ ﬂ P
Xn=% —p—fp(A Y, (B).

p=2

(3.39)
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32 can be extracted self-consistently from the above
equations.

An alternative method of evaluation reveals the con-
nection of our problem with matrix elements of the free evo-
lution operator between Slater determinants, i.e., wavefunc-
tions for large Fermi systems. To this end, we make the
following change of variables:

1 8»

=152 &= iy

4.9)
M\,z = (% + l/t)l/zM;,z-
In this way Z (g, B) takes the form

Z(g.B) =G+ 1/z)”’<2m)”’”f dM e~ OW (g ),
(4.10)

W(gt)=Qmt)" N’”U dMe~ VW)) B IJ dM, dM,
xXexp{ — [V (M, 8) + V(M g)]
— (172t) tr(M, — M,)*}. 4.11)

Henceforth we drop the prime on the coupling constants.
After integration over the unitary group we have

W(gt)=K——— | da,da, 44,4 @4,
(20 ()mf 44 (4

Xexpl — 1V (A,) — iV (A)]
Xdet[exp[ _ 1 (/1;,1 '_/{2,j)2]}

—K (2m)~/2 fdA dA, det[¢,(4,)]
Xdet[exp[ - Z_t(il'i ——/12,]-)2“
Xdet[#,,(4,,)], 4.12)

with constants K and X’ independent of # adjusted to insure
that W (g,0) = 1. We have introduced the orthonormal
functions of Sec. 2

A) =P, (A)e 1PV D), 4.13)

with ¥ as in (2.10), and the normalized polynomials &,
defined in (2.29). The determinants are N X N with the index
of the orthogonal functions running from 0 to ¥ — 1. Finally
we find

w(gt)= detf dA,dA, ¢¥.(4)

expl — (4, —A,)%/2t]
X 2 t),,zz (4,
=det({k |e =" |I)). 4.14)
Here 4 is the free Hamiltonian
h= — 1d d’ (4.15)
2 di?’ '

W ( g,t) has been written as the matrix element of the free
evolution operator in the ground state of N “fermions” occu-
pying the levels ¥, ¥,,...,¢y _; . In the large-N limit, we
define
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p(g1)= — lim N—l-ln[W(g,t)]

o _1 n—1
=30 oo (.16)
1
For t— 0, @ behaves as } In¢, while for g =0
@(0,) =1 In(l +t /4). 4.17)

Again, we are unable to obtain @( g,¢ ) except as a power
series in ¢. To see this, we introduce the projectors

P="Y Y84, Q=I-P,

in the Hilbert space .# (R ), which enable us to express W as
an infinite determinant

W = det(Q + Pe~"P). (4.19)

We then decompose 4 in a block form adapted to the ¢,
basis:

(4.18)

h = PAP + PBQ + OB'P + QCOQ. (4.20)
Thus''
—InW= —tr{ln[l — P(I — e ")P]]

2 3
—tted — ’2—'trBB*+ %'-trB(CB*—BTA)

4
— %tr{B [C(CBT—B'A)
—(CB'—B'A)4] —2BB'BB'] + . (421)

Except for the first, all terms in this series involve for large N
the matrix elements of 4 close to the “Fermi level” N. To
obtain @( g,t), we divide the above expression by N > and look
for the limiting behavior. With an implicit limit sign, the first
term reads

1 N —
pi(g = —trd= Z (k |k k)
N? ~
_ LNE if [ (e e— 172V gp @anl?
N o 2 dA -
- 3 [aowr @.22)
With the notations of (2.33), it follows that
2a
pi(8) =1} dA u(A)[W'@A)]1% (4.23)
—2a
where Nv(1 ) = V(N '?1). Explicitly for the quartic
interaction
1 2 dA
(8= —(4a>— 1?2
8 — 2a 27
X (1 4 8ga® + 4gA (A + 4gA )’
1 42 a2
= Q_a_)_(i__‘f_) . (4.24)

8 364’

The computation can be carried further. For instance, for
the same interaction to second order in ¢, we find after te-
dious calculations

1 l—az[ 1 1 —a?\3
= —11 1 ——4a (____)]}
A 8) 2 [ + i

(4.25)
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This program may be pursued order by order: The term X
of degree n in f(B ) satisfies a set of equations

APRD = FAE D, _FOD, £(4), £(B)),

which may be integrated owing to (3.37). In particular a
compact expression may be given to the terms quadratic in
both f(A) and f(B). To summarize

X(4,B; B)

=5 B+ 3 BTl LY@

n=2
_ [ fA4)
{r,>0f {501 Lp>2 rp!
Zpry=nZgs,=n
Tr,=2 Xs,=2
S,
S(B)

min(p —1,4 —1) ] + ] (3.40)

<11

FET I !
where min( p —1,q —1) runs over the indices p or g appear-
ing in the term at hand, and the three dots stand for terms at
least cubicinf(4 ) or £ (B ). Of course, this general expression
coincides with the first few terms listed in Table IL

As a last remark, we observe that the Cauchy
determinant

det( ! ) __AmAW

1 —x I, (1 —x, )

can be used to obtain a reproducing kernel for
I1(A,B; ) ~exp[N *X (4,B; 8)] in the form

N ( dz, .
I(A,B;B)=%§I1[( z )A(Z)A(Z‘)

2miz,,

(3.41)

Xexp[Nzi% (Z 4 S)]I(Z,B;/n’),

where Z is a diagonal matrix. The reader will recognize that
the integral runs over the equivalence classes of the unitary
group U(NV).

4. THE TWO-MATRIX PROBLEM

We now focus our attention on the quantity Z of Eqgs.
(3.1) or (3.3) using the closed form obtained in (3.4) for the
integral over the unitary group

Z= J dM, dM, expl — V(M) — V (M) + B trM M)

(277,),’\’(N — 1
NIV
xexpl — V(4,) — V{A)] det[exp(ﬁilyi/lz,j)], “4.1)
with

_ 1 2 8 2p
Viary= - 2/1 +’§2 Y 2/1 :
We can deal with this expression in two ways. The first one is
a small B expansion where we substitute in the exponent the
series in 3 discussed at the end of the previous section. The
alternative strong coupling expansion will be presented
afterwards.

Thus we write

g 0e[ A, dA, 4 (1A 4D

4.2)
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(21’_)N(N‘1)

a1y piy?
A, A,

xexp| — V() = V(4 + N (L 22 p)|

4.3)
For fixed A,, this is an integral over A, with an “effective
potential” of a generalized type involving only symmetric
functions. We can therefore use the techniques of Sec. 2,
which are equivalent to the saddle-point method of [A].
Symmetry under the interchange A ,«—-»A, implies that the
coefficients of this generalized potential which depends only
on A, can be determined self-consistently by requiring that
the symmetric functions of both matrices be equal at the
saddle point. We use the work “‘generalized potential” since
it contains arbitrary powers of the symmetric functions, in
contrast with the original one (4.2). We may speak in that
case of “nonlocality” in the index of eigenvalues. To illus-
trate this point, we shall compute

&(g,B)= —(/NHYI[Z(g,BYZ(g0)], (44

to fourth order in 8. Rescaling A into A v/N, we find that
# () is the saddle-point value of the functional:

& = [J: dx v[A (x)] —J: fol dx dyIn|A (x) — A (p)|

j dA,dA, 4%(A )4 *(A,)

+ [ Gy —pa(x)] — B A Y (o) — 5”3—12(1 Vi)

- %A(A viw - £

X [f AV () = f7 AN ()] — - (4.5)

The rescaled eigenvaues have been rearranged as increasing
functions of the reduced index x = i/N. A continuous limit
as N— o is understood.
The notations of Sec. 3 have been generalized to mean
(A°) = f5 dxA*(x), e,(1) = (A — (A ))"), and £(A ) is re-
lated to e, (A ) as in (3.26)-(3.27). If u(A ) denotes the density
of eigenvalues, we obtain the saddle-point equation
0= — vty +2 f B2 4 gy + B~ 4
+ B — (A ) — (@ — (A )]
+ B (A — (A — (A — AW))]
—B2fp) + AWILHA)A = (A)] — -
For definiteness, let us consider the ¢* theory with
v(A) =A%/2 4 gA* A consistent Ansatz assumes the odd
mean values to vanish, viz., (1 2+ ) = (u**') = 0. The
lowest order in 8 for €( g, B) is B?, and we readily find

_ B 4 Q) oo
#(0.0)= — Lo |1 -4 L [+owy
= - —/}8— [*(4 —a®)]* + -, .7
with E ( g) given by (2.27)
E(g)=%@—1)9—4d) —1Ind®,
(4.8)

12ga* +a* — 1=0.

This can be checked diagrammatically to the first few orders
in g. With more algebra, the coefficients of higher powers in
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Even though this direct method lacks some elegance, it s,
however, very effective.'?

The conclusions to be drawn from this large amount of
algebra were already presented in the Introduction. The
planar approximation seems a very nontrivial one, and even
in the simplest case discussed in this paper, no simple algo-
rithm was found. But it could well be that, for deeper geo-
metric reasons, the same approximation is more tractable in
the case of gauge fields.
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