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We discuss various aspects of the estimate of large orders of perturbation theory in quantum
electrodynamics. Gauge-invariant subclasses of diagrams corresponding to a fixed number of fermion loops
have a behavior dominated by solutions to the coupled Maxwell and Dirac equations for complex values of
the charge. We present numerical evidence for the existence of such solutions. The complete theory involving
an arbitrary number of fermion loops is expected to exhibit strong cancellations. We show the relation of
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this problem to the Thomas-Fermi approximation and raise some related mathematical questions.

I. INTRODUCTION

The nature of the perturbation series in quantum
electrodynamics (QED) is a long-standing problem.
Illuminating comments were made by Dyson in a
paper in 1952.) We discuss here some methods to
estimate the contributions of a very high order (de-
noted by &) to a given Green’s function. We do not
claim to have settled all the questions arising in
this investigation and will limit ourselves to a
first survey. We hope to clarify some of the is-
sues in a future publication.

In a series of works initiated by Langer? in sta-
tistical mechanics, by Bender and Wu® in quantum
mechanics, and by Lipatov* for scalar quantum
field theory, methods have been developed and
tested to obtain such estimates. Brézin, Le Guil-
lou, and Zinn-Justin® and Parisi® have reviewed
and extended these techniques. In particular, they
have shown numerical applications of this new in-
formation to the computation of critical exponents
in statistical mechanics.

In a previous letter we have extended these con-
siderations to scalar electrodynamics’ and one of
us has, furthermore, studied the introduction of
Fermi fields.® On the other hand, a number of ri-
gorous results have been derived on the Borel
summability of perturbation series in quantum me-
chanics,® in field theories involving Bose fields,'°
and, more recently, for a two-dimensional Yukawa

model,'! this being certainly a very incomplete list.

We shall assume the reader familiar with the
techniques presented in some of the above refer-
ences, especially Refs. 4-17.

Investigations in QED have also been carried
from a slightly different point of view in a series
of papers by Adler.!?

The dominant contribution to the main estimates

16

is obtained by studying solutions to the correspond-
ing classical equations from which a WKB vacuum
decay amplitude is obtained in a regime of complex
coupling. Renormalizability only enters at this
stage to dictate the solubility of these equations in
terms of well-behaved fields when massive para-
meters can be neglected. At a later stage of
course, when one computes higher terms of these
estimates (starting with the multiplicative, k-inde-
pendent, and constant terms) subtractions have to
be taken into account.

In simple cases such as four-dimensional ¢* the-
ory it was shown in Refs. 6 and 7 that the main
term of these estimates is connected with an in-
equality in nonlinear analysis due to Sobolev. The
same type of inequalities were applied by Glaser,
Grosse, Martin, and Thirring®® to study the spec-
trum of Schrédinger’s equation. As we shall show,
their methods are also useful for our purpose in
the presence of Fermi fields.

We present the general formalism using Euclid-
ean path integrals in Sec. II. Integration over fer-
mionic degrees of freedom introduces a Fredholm
determinant discussed in this context by Matthews
and Salam™ and Schwinger.'> For well-behaved
potentials it is an entire function of the coupling
constant, and it is elementary to prove for non-
vansihing fermion mass that it has no zeros for a
real coupling constant. We expand this determin-
ant according to the number of fermion loops and
consider the corresponding contributions to
Green’s functions. For large orders these are
dominated by nearby zeros of the determinant
leading to a classical extremal problem. It is phy-
sically clear that the limitation to a fixed number
of charged particle loops eliminates the restric-
tions implied by Fermi statistics. It is therefore
to be expected that apart from technical details the
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same type of estimates should apply to these sub-
sets of diagrams as in the Bose case.

In Sec. Il we study Dirac’s equation inan external
field. On a simple example we show explicitly that
it admits regular solutions for purely imaginary
values of the coupling constant.

Section IV extends these considerations to the
“coupled problem” which arises for the asymptotic
evaluation of Green’s functions with a fixed number
of fermionic loops. With a particular ansatz for
the angular dependence of the vector potential A,
and the corresponding spinor field, we obtain well-
behaved solutions (i.e., corresponding to a finite
action) corresponding to a purely imaginary value
of the coupling constant. This part is akin to the
treatment of scalar electrodynamics showing great
similarities in the numerical behavior of solutions.
We apply these results to some existing data. We
point out that the method is not limited to the study
of photon amplitudes, but applies as well to func-
tions involving external fermion lines. QOur numer-
ical applications are very preliminary. In order to
trust the results quantitatively, a careful investi-
gation of fluctuations around the classical solution
is necessary. This should also shed light on
whether we have picked the correct extremum of
the functional integral.

Inthefollowing section (V) we discuss the implica-
tion of taking the exclusion principle fully into
account. We present the problem first in the sim-
pler framework of a Yukawa theory. The physical
idea is again that for complex values of e the vacu
um becomes unstable. The technique of computa-

tion of the decay amplitude requires a generaliza-
tion of the WKB method to fermionic integrals.
This is achieved by using a Thomas-Fermi ap-
proximation borrowed from atomic physics. The
latter is reviewed in Sec. VI, where it is shown to
reproduce the asymptotic distribution of levels for
a Schrédinger-type problem and seems therefore
suited to study the behavior of the entire functions
arising as Fredholm determinants.

Inthefinal section (VII) we attempt touse this in-
sight for Yukawa interactionsaswellasQED. Inthe
first case, we find estimates which are in perfect
agreement with all expectations. Except perhaps
for subtle effects due to renormalization they im-
ply a much softer divergence of perturbation theo-
ry than simple diagram counting would naively
seem to indicate. The QED case is of a more dif-
ficult nature due to the effects of gauge invariance.
Simple-minded arguments would imply that the
Fredholm determinant is an entire function of or-
der two while Adler claims to have found cases
where it is of order four, as one would find ne-
glecting the effects of current conservation. We
were not yet able to settle this question and discuss
the alternative. This has, of course, a bearing on
the growth of the integrand in the functional inte-
gral and in turn affects the nature of the perturba-
tion series. We point out that the application of the
Thomas-Fermi approximation would favor order
two, which would imply a very slow increase of
higher orders as (Ink)*. In both cases, however,
we find a reduction with respect to simple com-
binatorial counting.

II. EUCLIDEAN FORMALISM

We study the dynamical system of a charged Fermi field coupled minimally to an electromagnetic poten-
tial. A Wick rotation to Euclidean space is performed so that for real Euclidean momenta Green’s func-
tions are smooth analytic functions, at least perturbatively (for a discussion, see Ref. 12), except perhaps
at zero momentum in a massless theory. These Green’s functions will be defined by the functional integrals

G "xn;yl.""’yﬁ;zl"";zp)

=f DA)DPD(PA (%) * + Ay (XY * + = Y3IW2,) * + * P(2,) expl (S +Sp)]. (2.1)

ul.....u,,(xu ..

The fermionic part of the integral uses anticommu- 0= _; 017\ _ it ®L
ting ¢ and ¥ variables. The photon and fermion T 7o =i Eh
contributions to the action read (2.4)
- [0 —iF o
SA=fd"x[i(a,,A,,-a,,Au)z+§A(8-A)2], y:—z(» . > ==1T,®0.
15

(2.2) For real eA a natural choice of ¥ leading to a real

Sr :f d*x{fiy-d-ey-A- M. Sg is $=¢*y5, with an Hermitian 5,
yS==Pyly?y?
" y7}==2060" (2.3) =<I 0)
0 -I
=7,®I, (2.5)

We choose anti-Hermitian ¥ matrices fulfilling

A convenient representation is given in terms of
Pauli matrices as
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FIG. 1. One-charged-particle loop diagrams corres-
ponding to the perturbative expansion of the Fredholm
determinant.

although in the functional integral ¢ and ¥ are to
be considered as independent variables.

The set of matrices I, 0 which generate a qua-
ternion algebra will play a special role in the se-
quel. We use the notations (this “slash” notation
for quaternions and their conjugate was adopted
for typographical reasons; it should not be con-
fused with the one generally used in the context
of ¥ matrices which appears in the text as y-n for
Yuty)

w, =(4, @), ¢, =, -i) =y, (2.6)
and for any four-vector
R=n'y, =n°+ii+ &, p=n'¢, =n"-ii-F. (2.7)

Relations between these matrices may be written
in terms of symbols introduced by ’t Hooft'®
\Qus’(u:auu +inuua0a, ¢u‘(u =6uv +iﬁuuaaas (2.8)
with 7, and 7, antisymmetric in (4, v) and a
running from 1 to 3. Explicitly
Myva = €yvay MKy, V= 1,2,3

Myoa =Opas (2.9)
ﬁuua =(-1)5u°+6‘/°77u va

If we first concentrate on the Green’s functions
without external fermion lines, the Fermi fields
may be integrated over and we obtain

Guyoee e il oy 50) = [ DA, (1)« Ay ()
Det(zy 8—ey-A-M) (- Sa)
Det(iy-8 = M) )
(2.10)
© _on
~Ina,(ed) =D (A) + 3 [ dx,« -+ dipu Ay (x) ¢+ ¢ e
s 2n . !
where

2W(A) = —fdxldsz (x)Auz(xz) tr( < | Ty alx2>

and the constant ¢ is adjusted to compensate for
the logarithmic infinity in the two-photon ampli-
tude. We shall show below that for a well-behaved
vector potential the series in (2.15) should con-
verge in a circle of finite radius in the complex e
plane.

An alternative computation of A(eA) is based on
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A simple generalization of this formula enables one
to express the Green’s functions with external fer-
mion lines as an integral over fields A,(x) (see
Sec. IV). The (infinite) normalization factor
Det(iy- 8 — M) subtracts the vacuum loops. Using the
previous notation, the Fredholm determinant
Det(iy* 8 — ey* A — M) can be written formally (i.e.,
before any subtractions)

A(eA) =Det< -M =i - eA))
-i(i§ — eA) -M
=Det[(if - eA)(i& - eA) +M?]
=Det[(:8 - eA) (i - ed) +M?]. (2.11)
Since
(18 = ed)" =(iff - exA¥), (2.12)

these expressions exhibit the positivity of A(eA)
for eA real together with the reality property

A(eA)* = A(e*A¥), (2.13)
The existence of a matrix C (=0,) such that
CoT’C1=-g, CAC'=AT (2.14)

implies that A(eA) is an even function of e (Furry’s
theorem), if one notices that the derivative opera-
tor is odd under transposition in the configuration-
space variables.

For most of the following we shall neglect the
fermion mass M and thus study Euclidean mass-
less QED. It is expected that the dominant contri-
butions to high orders are mass independent.

The determinant A(eA) requires subtractions
for a proper definition. These include not only the
vacuum loops explicited in (2.10) but also a cons-
tant in the vacuum polarization term, i.e., the
term quadratic in eA in InA(eA). Let A,(eA) be
the quantity thus defined. Its logarithm has a per-
turbation expansion (depicted in Fig. 1) as

1
Ay pr(Kon)tr (7“1<x ivea| >7’“2 ce 7u2"<xzn iy 0 X > ’
(2.15)
1
2[77- BI >) _o(aulauz - 5“1#2[:])5“51 _xz)]

the study of the eigenmodes of the Dirac equation
for fixed real A,. We shall assume that the poten-
tial is a smooth enough function. Clearly this is
not the case for most of the integration domains in
functional space. But this hypothesis is on the
same footing as the expression for the action (2.2)
when one defines the functional integral in the first
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place.
For vanishing M, chirality is a good quantum

number so that the Dirac equations
(iy-9—eyA)p=0, P—iy-d-ey-A)=0 (2.16)

decouple in the representation (2.4) for ¥ and §
written

zp=<u>, 7=(@, 7) (2.17)
v
We obtain the four equations
(8 -eA)u=0, @(-if—-eh)=0, (2.18a)
(if —eM)v=0, T —-id —e})=0. (2.18b)

In these equations the constant e is no more to be
interpreted as the perturbative parameter but
rather runs over the discrete set of values e,(A)
for which suitably regular solutions exist. While
in general the two equations of each set (2.18a) and
(2.18b) are independent, a transformation enables
one to obtain the solutions of one of the set in
terms of those of the other in termsof the same

e, (A). Taking into account that eigenvalues gener-
ally occur in quartets, e,, —-¢,, +e¥, -e¥, we can
write for A,(eA) a representation

S =)

(2.19)
where e,(A) runs over the eigenvalues with positive
imaginary parts, say. Since we have subtracted in
the infinite product the full second-order term of
its logarithm we have to reinstate the correctly
subtracted contribution exp[-e?w(A)] defined in
(2.15).

This formula is suggestive of Hadamard’s canoni-

cal form of entire functions provided that we could
prove that 33,[1/]e,(A4)|2*¢] converges for any posi-
tive €. This would make the infinite product well
defined and would produce an entire function of or-
der 2. As we shall see in Sec. VII this is indeed
the central problem when one studies the global
properties of the theory.

If we restrict ourselves to one-fermion loop dia-
grams, i.e., if we replace in (2.10) A,(eA) by its
logarithm, we expect its nearest singularities in
the coupling e, for fixed S,, to play a dominant
role. These singularities are the nearest eigen-
values. The same holds for contributions corre-
sponding to a fixed number of fermion loops and
not merely one loop. In both cases the location of
the nearest e,(A) is of importance.

This set {e,,(A)} is of course gauge independent.
Let us mention two general results on these eigen-
values:

(i) As already noticed above in the massive case,

en(A) cannot be real. The same seems to hold
when M =0, as already pointed by Adler.? We
shall verify this property below using a specific
structure of 4,.

(ii) For A real, given the value of [ dx}F? there
exists a zero-free neighborhood of the origin in the
complex e plane. This is seen using Sobolev’s in-
equality which states that for any real, smooth
function ¢, such that the integrals exist, one has
in four-dimensional space

fd4x¢4s323”2(fd4x(6¢)2>2.

From either Eq. (2.18a) or (2.18b) we deduce

(2.20)

f dix puf? = ]e(A)I"’f dx |AP |ul. (2.21)
Combining with (2.20) we obtain
2
lea)f [ axy 0,47 >0 (2.22)
o 3

Since
[ a2 @) = [ @t 3P+ - A7)
BV

we can minimize the left-hand side of (2.22) with
respect to the choice of gauge and obtain

2
e [ atxiF = == (2.23)

Consequently, if the infinite product in (2.19) con-
verges with finitely many subtractions [that is to
say, ifY),le,(4)|* converges for p large enough]
the series for InA,(eA) given by (2.15) will have a
finite radius of convergence for A real, as already
stated.

Our first goal is therefore to study the Dirac
equation in a given external field.

III. EUCLIDEAN DIRAC EQUATION
IN AN EXTERNAL FIELD. EXPLICIT SOLUTIONS

Let us investigate the zero modes of the Dirac
equation

(19 - e})u=0. (3.1)

We want to exhibit explicit solutions for a particu-
lar external field A,(x), which we take to be of the
form

Ay (%) =My, x,a(x?), (3.2)

with M a 4X 4 antisymmetric constant matrix with
square equal to —-1:

M=-M'=-M"1, (3.3)

The function a(x)? is supposed to be a regular well-
behaved function such that S, is finite.
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Such configurations were already used in our
previodus study of scalar electrodynamics. It was
shown that they lead to a simple closed algebra,
with A, fulfilling the Lorentz condition o - A =0, to-
gether with a transversity property x«A=0. The
action S, is therefore independent of the gauge
parameter A and reduces to

Sy= f d*x ;F?

—andx [ <d2

A matrix M satisfying (3.3) is either self-dual or
anti-self-dual. With the convention that the Levi-
Civita symbol is such that €;,, =1, we choose M
anti-self-dual, which means that My, = 3€,,p, M),
so that it can be parametrized as

2a()c2)>2] . (3.4)

Muuznuuana’ (3.5)

where fi is a unit three-dimensional vector [ 1 plays
the same role as the isospin Pauli matrices 7 in
the similar parametrization of the non-Abelian
SU(2) pseudoparticles®®].

There is a corresponding ansatz for the spinor
involving two scalar functions of x? as

u=[f(x? -ig(x*)¥Mx)U, (3.6)

with (Mx), =M,, x, orthogonal to x and U a constant
spinor. Note that —i M x = x, (M x), 7], ,,0° isanHer-
mitian traceless matrix. Other possible choices
for u such that [ f(x?) +7 - ig(x2)]U lead to singular
solutions. Given a(x?) there ought, of course, to
exist higher-angular-momenta spinor solutions
than those described by (3.6). Inserting these
structures into (3.1) we are led to

{x(2f’ - e(A)ax?g| - iMx2x°g" +6g - e(A)af]}U=0.
(3.7
Here the prime denotes differentiation with respect
to x2 and both terms in square brackets are func-
tions of this variable only. We shall find a solution

irrespective of U if we fulfill the two conditions
2f' - e(A)x%ag=0,
2x2g’ +6g~e(A)af =0.

(3.8)

We. are looking for solutions regular at the origin
and vanishing fast enough at infinity (typically we
want such integrals as [d*x [ouP, [d*x A%uf? to ex-
ist).

After a change of variable

t=Inx? (3.9)
and of functions

f(x®)=eo(t),

g(x?) =e™'y(1),

a(x?) =e~ o),

(3.10)
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the system (3.8) reads
$-¢=3e)ay,
y+y=ze(A)ao.

The overdot represents the derivative with respect
to £. It is easy to see that these equations have no
regular solution for e(A)a real. Indeed, from
(3.11) we learn that

(3.11)

L (=g ey (3.12)
Clearly, because of the linearity of the system,

(¢, ¥) can be chosen real if e(A)a is real, and
(3.12) would then imply that [~ d{(¢? +y2) 0. This
is, of course, in agreement with the general state-
ment of Sec. II. On the other hand, these equations
admit solutions for e(A) purely imaginary and real.
Choosing, for instance, ¢ real and y imaginary we
set

e(A)==2ix,

n,.=¢ +iy, (3.13)

N=¢p—1iy.
The real functions 7,, 7, must verify
=(1 +xa),,

(3.13)
M, =(1 = xa)7, .

If a(f) is an even function of ¢/ (which means that
the field A,(x) is invariant under inversion) 7, may
be chosen even and 77, may be chosen odd or vice
versa. The set of equations (3.13) is an Hamilton-
ian system, 7, and 7, playing the role of conjugate
variables.

A numerical investigation shows that for smooth
a(?) there do exist solutions vanishing at ||~ +e
for discrete values of A.

With the particular choice

1

o0) = cosh2t

(3.14)

we find explicitly in terms of Legendre polynomi-
als

A, =2n,
n, =coshf P,_,(tanh2{) - sinh¢ P,(tanh2f), (3.15)

n=+1,42, ...

1, =sinht P,_ (tanh2f) - cosht P,(tanh2¢).

The corresponding trajectories in the (7,, 7,) plane
are algebraic curves some of which are repre-
sented on Fig. 2. For n=1, for instance, one ob-
tains a branch of Bernouilli’s lemniscate.

Although they are not going to play a crucial role
in the following, we find it gratifying and instruc-
tive to obtain these explicit solutions. They may
serve as an example of the distribution of zeros of
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- Aa(t) =2

\ cosh2t

FIG. 2. The (7,7, curves corresponding to the ex-
plicit solutions of the Euclidean Dirac equation des-
cribed in Sec. III.

fermionic determinants. Also they confirm a con-
jecture made by Adler that there might be no solu-
tion of the Dirac equation for purely imaginary eA
(Adler’s conjecture was verified for a slightly dif-
ferent configuration of the external field). One
should clearly try to obtain the remaining modes
corresponding to (3.14).

IV. ONE-FERMION-LOOP DIAGRAMS

Our purpose in this section is to study the set of
one-fermion-loop diagrams for a given process at
large orders. The method can be extended to any
fixed number of such loops. The finite number of
subtractions needed to define A(eA) does not play
any role since we now integrate InA(eA). A typical
problem will be for instance to investigate the as-
ymptotic behavior of the vacuum polarization, the
kth order of which may be written as

R
<Au(x)Au(y)>{:‘°{,p=—% f D(A)A, (DA,()

XZ—en(%)z;e‘sA, (4.1)

Within the original real integration domain we ex-
pect the nearest zeros (the smallest |e,(4)]) to
dominate for large k2, with exponentially small cor-
rections arising from the successive terms in the
sum over n. This argument does not take into ac-
count renormalization effects. However, in the
case at hand we know'® that the set of diagrams of
order % has only a single logarithmic divergence,
which therefore will only occur in the integral over
dilatations at the final stage of the evaluation of
(4.1). Hence we feel safe on that side. For large
k we therefore estimate (4.1) as

(A, (DA ey

k
280 [ (a) A 0a.)
X exp(={Ss +kIn[-€%(A)]D, (4.2)

anticipating the fact that the effective €(4) will be
negative and for fixed A, €*(A) stands for the
smallest eigenvalue.

Since & is large we use the steepest-descent
method by looking for stationary points in the A
functional integral. These are given as solutions
of

13}

EA_,;(—;)_{SA +kln[—-82(A)]}=0

or equivalently

k__ 8e%A)
[-08,, +(1=21)3,8,]A,(x) + e*(A) 0A,(x) -0

(4.3)

This is Maxwell’s equation with an effective cur-
rent given in terms of €%(A) as [k/e?(A)]6e*(A)/
8A,(x). Inturn, e(A) is given by a solution to the
first or second set of Dirac equations (2.18). This
is what we call the “coupled problem.”

Even though we have no proof that we have found
the best possible answer we are able at least to
exhibit a numerical solution. It has the following
features.

(i) The potential A, is real with a structure given
by (3.2) and (3.5).

(ii) The eigenvalue e(A) is purely imaginary.

(iii) We can describe the solutions of (2.18) in
terms of a two-spinor « satisfying (3.1) with a
structure given by (3.6). The amplitudes f and g
are relatively imaginary as in Sec. III and depend
only on x2. This behavior of A, and u is the most
“symmetric” one. It is, of course, clear that A
and # can be conformally transformed to generate
equivalent solutions corresponding to the same
e(A).

Within these choices we can carry the same anal-
ysis leading to Eqs. (3.13). Assuming we have a
solution to the latter, we construct the spinors «,
u, v, U, taking into account

eXA)=-e(A), fg*+f*g=0. (4.4)

The following expressions hold with U, V, U, V arbi-
trary fixed spinors and f, g, e(A) given by (3.10),
(3.12), and (3.13):

u=(f—tganx)U, Ezv(f*—lg*MxX); (4.5)
v=Mx(f+igkMx)V, T=V(f*+ig* MxX)Mx.

We have now to compute the current, i.e., the
quantity [1/€%(A)]6€*(A)/6A ,(x). This is achieved
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by noting that the equations fulfilled by the spinors
follow from an extremal principle applied to the
action Sy(2.2) which reads

Sp=i [ d'x[ DR - A=W - ef)v),  (4.6)

interpreted now as a ¢ number. This action van=~
ishes together with its variation at fixed eA if we
insert the solutions to Dirac equations. After sum-
mation over all degenerate solutions of (4.6), i.e.,

over the spinors U, V, U, V, we therefore find that

1 84) _ ,  Divyu-ad,)
(A) bA,(x) d*x)i(DAu - uaAv)
N,
==2 771‘- (4.7)

In order for our ansatz to be a coherent one we
have to find that the current has the same structure
as A, i.e., is of the form M, x, times a function

of x2. Inserting (4.5) we find

Ny =) ivw, -ad,v)

= [EV(F*+ig*"Mx X)M x8, (f = igkMx)U
—iU(f* = ig*Yx )P Mx ([ +igkMx)V].

Since for real e from (4.6) the equations for « and
7 are adjoint equations, we can take iV = U not to
overcount the degrees of freedom. Similarly, =iU
= VT, so that the above expression is in fact a
trace. Any extra factor disappears in the ratio
(4.7). Hence using (4.4)

Ny =[ff*+(x*VPgrgltr(Mxq, +¢,Mx)
- if *gtr(Mix &, A x — ¢, McMx
+MIx XMxQ,, = Vix X9 M x) .

Since MxM x=x? and, from the orthogonality of x
and Mx

MxkMx==x%, MxxMx=-x¥,

the coefficient of —if*g is seen to vanish. Finally,
from (2.8)

Ny =4S +(x?)°gg* | My, .

Similarly,

D=fd4x}:z'(mu-zmv)
=fd“xAuNu

- f dix a(x2)x?[ ff * +(x?)gg*].

Finally,
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1 be*A)
€(A) 0A (x)

LA+ (2 gg* | My %,
Jdix a(x?)x®[ ff* +(x*)7gg*]
This structure is indeed of the type expected. We

insert this expression together with (3.2) into Max-
well’s equation, after observing that

[-006,, +(1=2)8,8,]A(x) = =M, ,%,(4x%a” +12a"),

==2 (4.8)

so that we obtain
4x%a” +12' + 2k *
[ d%x a(x®)x?[ ff* +(x%)2ge*]

+(x?)2gg*=0. (4.9)

We turn to the variable ¢ as in (3.9) and the asso~
ciated functions «, n,, 7, all assumed to be real.
The last equation reads

k 2 2y =
d-a+ o2 f_f:d[ 0!(7)12*'7)22)(,’1 +1,%)=0.

(4.10)

A final rescaling will produce fields of order unity
if we set

ie(A)

A(f) =xa(t) = 5

ad), (4.11)

with e(A) given by

—ea)=2

7z [t

T aawnin o] @12)
in such a way that the coupled system takes its
final form

A=A- (7712 +7722) ’

0, =(1+A)m,, (4.13)

iIz =(1-Am,.

These reduced equations also follow from an ex-
tremal principle applied to an effective action

o (A2 +AZ .
Setr :_/:: dat (T +0y00y = M0y +7,% = 1,

A2 +n22)> . (4.14)
The n-dependent part could have already been
written as we were studying Dirac’s equation with
our choice for A, while the term independent of 7
is the Maxwell action evaluated for this A, up to
rescalings implied by (4.11) and (4.12). One could
have therefore derived the coupled system right
away had it not been necessary to check the con-
sistency of the ansatz in vector form.

We set I equal to the integral appearing in (4.12)
in such a way that
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8m?

k
We look for solutions of (4.13) such that I < « and
our conventions are positive. Indeed, from (4.14)
we derive an “energy”-conservation theorem:

2 _ A2
é——z—é—— +0,2 =12 =A(n,2 +7,%) =const =0,

(4.16)

-e%(A) = I. (4.15)

where the value zero follows from the boundary
conditions at large |¢[. Therefore one has the fol-
lowing virial equalities:

+00
I= f dtAm? +1,%)
00 .
= f di(A? +A?)
+
=2 [ anaren?-n?)
e .
= f dt(iyn, = M1, +0,° = 1,%)

+0
=2f dt(A2+h17lg°7"lz771)~ (417)
We have studied numerically the system (4.13) un-
der the assumption that {=0 was the reflection
point, i.e., A(f) was an even function of f, and have
found a solution (corresponding to the smallest
possible value of I) depicted on Fig. 3. On this
figure we have only represented A and 7, but of
course 17, has also a regular behavior implying that
it vanishes at [¢[ ==. The curves were obtained by
varying A(0) with A(0) =n,(0) =0 and 7,(0) given by
(4.16). The equalities (4.17) were used to check
the accuracy of our solution. The value obtained
for I is

I\ [
e

FIG. 3. Plot in the (n;,A) plane of various trajec-
tories corresponding to the coupled problem of Sec. IV.
The desired one reaches the origin.

I=5.9201 (4.18)

corresponding to A(0) =1.4214.

One notes the similarity of our results to the
corresponding ones obtained in the case of scalar
electrodynamics.

The degeneracies of these solutions contribute
only to the k2-independent overall constants of the
asymptotic estimates. Let us now attempt to use
the above results for these estimates. Of course,
we should study the effects of fluctuations around
the saddle point to obtain the multiplicative con-
stants and make sure that at least locally we have
guessed the correct answer. Let us assume opti-
mistically that this is the case and proceed with-
out further apology. In any case we expect our re-
sults to be at least qualitatively correct.

Because of the scaling properties (4.11) and
(4.15) each field A,(x) corresponding to an external
photon line will contribute a factor Y2, The same
contribution will occur for each one-parameter set
of continuous transformations leaving €*(4) invari-
ant which will be used to separate a collective co-
ordinate before integrating over fluctuations.
These transformations are generated by ordinary
translations, dilatations (corresponding to shifts
in the origin of the variable ) to which one should
add rotations of the unit vector »n occurring in the
expression of M, used to construct A,. The total
factor corresponding to these effects will therefore
be

Ry /2 (4.19)
with 7, standing for the number of external photon
lines.

Parenthetically we remark that when we perform
the integration over dilatations we should recover
the dominant logarithm of the cutoff, where domin-
ant means the one with the largest coefficient in 4.

Let us turn now to the vacuum polarization to be
specific and extract the coefficient F of its unique
logarithmic divergence. We use our solution to
compute the integral at the saddle point, multiply
by the coefficient (4.19) for n, =2, and obtain, with
a standing now for the fine-structure constant
e*/4m,

F(a)=§__‘, Fya),

(4.20)

Fy(@)~ (-2—(:T>kk!k3f.

Of course the choice k!%® is arbitrary and could be
replaced by any value I'(k +a)k® provided a +b =4,
without affecting the main estimate.

This is to be compared with the first three known
terms of this series'®
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FIG. 4. The set of zero-electron-loop diagrams
corresponding to the vertex function in QED.

o33 () -3 (E)

We observe that the first two terms do not alter-
nate in sign but of course this alternance of sign
is only predicted as an asymptotic effect. If we
take (4.20) at face value without attempting to im-
prove it and apply it blindly we would predict for
the size of F,

(4.21)

o 4
Fi(a)~+0.4<ﬂ> , (4.22)
with an undetermined theoretical uncertainty.

As pointed out repeatedly, the above method can
be extended to Green’s functions involving external
fermion lines. To illustrate this, consider for in-
stance the electron-photon vertex in the approxi-
mation where one keeps only diagrams without in-
ternal electron loops (Fig. 4).

The truncated Green’s function will be given by

F(XI, Xoy y)’oluop
= [ DA) l 3 M)——————l————'y>7
—f A\ x| Cyed =My |7

x2> eSS4

1 .
< (o 5ramayazar @2 -

(4.23)

The behavior of the coefficients of its expansion in
powers of ¢ will again be dominated by the nearest
singularities of the propagators. If we assume
again that apart from providing a scale factor the
fermion mass is irrelevant in the large-% limit we
find similar estimates as before. The prefactor
(4.19) is now replaced by k2 with two extra pow-
ers of k£, with one coming from the absence of the
logarithm and the second from the double denomin-
ator in (4.23). We may attempt to apply this, for
instance, to the electron anomalous moment with

aéo) =é(ge_2)(o’)
=) a
‘/; 55 (4.24)

kR
o
a, > (— m) klk%l,
with the same I as above.

The known results for the zero-electron-loop
contributions can be extracted from the review?®®

2 2
PL :-231;_(?&—1) [3—41-- 3;:——--3;(3) +21r21n2]

o 3
+(*> 8x(0.915+0.015) ++ + «
2w

a\? a\?
—1.377<-2—1?> +(7.32i0.12)<‘2—7;> toee,

(4.25)

This shows an alternance in sign already. Using
(4.24) one would predict the size of a, to be

o 4
aqm—15.6(2—n> . (4.26)
The numbers quoted in (4.22) and (4.26) are only
indicative. More work has to be done along these
lines to give serious credit to these estimates. We
have not yet had to cope seriously with ultraviolet
nor infrared divergences. The latter should cer-
tainly show up to enhance the size of subclasses of
diagrams in specific kinematical regions.

V. ROLE OF FERMI STATISTICS

As we have seen in the previous sections, Fermi
statistics has no serious effect on the large-order
behavior of the perturbative expansion, if we re-
strict ourselves to the study of diagrams involving
only a finite number of fermionic loops. The sit-
uation changes drastically if we consider the com-
plete theory. Diagrams with different number of
fermionic loops oscillate in sign [there is a factor
(=1)%, N; being the number of these loops]. They
interfere destructively and the asymptotic behavior
of the sum is different from that of each particular
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term.

To understand what is going on, let us first con-
sider a Yukawa theory in (Euclidean) space-time
dimension D< 4, and for simplicity let us restrict
our attention to the sum of all vacuum-to-vacuum
diagrams:

2(g) =/ DWW
Y P Su = | W
x exp-}—fd x[zpzy- 5 (1 'KF)‘* + MY
+3(00)2 + ymPo? + ;\—1—5-0[]20 +AW0]} ,
b

(5.1)
g=X, Z(g) =Zh:Zhg“.

A;s and A, are ultraviolet cutoffs which will be re-
moved later on. The coupling constant g is propor-
tional to Z. If we were to neglect Fermi statistics
we would find

Z, ~RIR™*K°A . (5.2)

In the bosonic case this type of result is obtained
for instance by considering a particular direction
0, in functional space, performing an exact inte-
gration in this direction and retaining only quadra-
tic terms for the integration of the Lagrangian £
in the transverse directions:

0(x) = to,(x) +60(x)
. (5.3)
£(0)= L (o) + %f-(too)so + %"%(wo)soz,

Independently of the direction o,, one always finds
for Z, the asymptotic behavior (5.2) and the best
estimate is obtained by maximizing Z,. It can
easily be seen that 0, becomes k& independent in the
large-k limit and in this way one can recover all
the results of Refs. 4 and 5. (It happens, in fact,
that the explicit integration is done not in a single
direction, but on a finite-dimensional manifold.)
The integration over transverse directions (60) is
essential to compute the constants a and A. If,
however, we are interested only in finding the fac-
torial increase and the radius R, the integration
over small fluctuations may be neglected and one
has only to evaluate a one-dimensional integral.

If we try to apply the same method in the case of
the integral (5.1) we find a deceiving result. If we
approximate the functional integral over the fer-
mions by a finite N-dimensional integral, ¥
=D Je=1¥q we find Z, =0 for 22> N. The situation
is even worse. It has been proved by Caianiello®!
that one has then

Zy< AS. (5.4)

The limits £ =« and A~ do not seem to com-

mute (as they do in the bosonic case) and we must
first eliminate the fermion cutoff from the Lagran-
gian if we want to obtain a nontrivial result.

If we try blindly to extend the same techniques
used in the bosonic case to the fermionic one, we
are inevitably led to consider at once the integra-
tion over an infinite number of fermionic modes,
which does not seem to be a great simplification
as compared to the original problem. Itseems that
we have started in the wrong direction. We must
go back to the origins of the asymptotic estimates,
understand the implications of Fermi statistics,
and find the best formalism to implement them.

The estimates of large orders of the perturbation
expansion can be deduced from the analytic proper-
ties of the Green’s functions for complex values of
the coupling constant. We accept the standard hy-
pothesis of analyticity around the origin except for
a cut along the negative real axis. The nonconver-
gence of the expansion implies that the cut reaches
the origin and the problem can be transmuted in
an asymptotic estimate for the discontinuity A(g)
on the cut in the limit g—-0,

Z,~T(ak), A(g)=Im Z(g) ~exp<- “—lg?l/a > :

(5.5)

Physically the existence of an imaginary part of
the Green’s functions for negative values of the
coupling constant stems from the fact that the
Hamiltonian is unbounded from below under these
circumstances. Indeed, for negative g the forces
among the particles, in a Minkowskian picture, be-
come strongly attractive. If we put N particles in
a box with a size comparable to the range of the
forces, the potential energy will be proportional
to gN? while the kinetic energy will be proportion-
al to N for bosons and to N'*¢ for fermions, if
d=D~-1 is the number of spatial dimensions. The
difference among bosons and fermions is a com-
bined effect of the Pauli exclusion principle and of
the Heisenberg’s uncertainty relations. In both
cases the leading term is the potential one for
large N when d> 1 (N> 1/|g]| for bosons,

N> 1/|g]|¥? ! for fermions) so that we can con-
struct collapsed collective states of arbitrary neg-
ative energy. The particle density of these states
is very large when |g| - 0; it is proportional to a
negative power of |g|. In this situation the vacuum
is unstable against decay into these objects.

It becomes a metastable state with an exponentially
large mean life time and consequently its energy
acquires an exponentially small imaginary part.

It is remarkable to note that the techniques used
to estimate the large-order behavior of perturba-
tion theory are the same used by Langer? in his
study of metastability. At this stage the crude
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argument presented above shows a clear difference
among bosons and fermions. In the first case the
collapse is always possible, while in the second it
is forbidden if d< 1. The difference is even more
striking as we attempt to study the collapsed state.
In both instances we deal with a high-density sys-
tem. In the first one, a Bose-Einstein condensa-
tion is likely to occur, leading to a coherent state
which is well described by its wave function, i.e.,
a classical field. It seems, therefore, natural to
expect that the effects of these collapsed states can
be taken into account by considering the contribu-
tion of a classical field configuration to the func-
tional integral. This is unfortunately not true for
fermions which do not undergo such a condensation
and cannot be described in the high-density limit
by a coherent state and the associated classical
field. The correct description of such a system is
the one given by the Thomas-Fermi approximation.

This analysis suggests that in order to obtain the
correct estimates for large perturbative orders of
the complete fermionic theory, we must extend the
Thomas-Fermi approximation to Euclidean quan-
tum field theory. Before tackling this problem we
shall first review this approximation and the re-
lated WKB methods by casting them in such a for-
malism that the extension to our case will be rath-
er immediate.

A final remark is in order concerning QED. In
this case the long-range character of the Coulomb
forces together with the Fermi statistics could
have some bearing on the lower dimensionality for
which perturbation theory becomes marginally
divergent. While 1 +1 is the relevant dimension
of space-time of massive Yukawa couplings, as we
saw above, a similar argument yields 1+3 as the
corresponding dimension for QED. Indeed, the po-
tential term would be reduced from gN? (g is pro-
portional to €?) to gN?'"1/¥  Equating the expon-
ents of the kinetic and potential parts of the energy
gives d=D-1=3 as the lowest divergent dimen-
sion.

VI. THOMAS-FERMI APPROXIMATION

The nonrelativistic Thomas-Fermi approxima-
tion is used to study the behavior of a Fermi sys-
tem at high density in the presence of strong exter-
nal fields (e.g., the electrons around a high-Z nu-
cleus, or highly compressed nuclear matter in a
neutron star).

A typical problem which is solved by this ap-
proximation is the following: Let us, for simpli-
city, consider a system of spinless fermions inter-
acting with an external potential U(x) (U <0). As-
sume all negative-energy levels are filled and we
want to compute the total energy of the system and
the fermion density. The total energy E(U), i.e.,
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the sum of the binding energies can be written as
E(U)=fdxe(x|U), (6.1)

where the energy density €(x|U) is a nonlocal,
nonlinear functional of the external potential U.
Similarly, the fermion density p(x|U) will be a
complicated functional of U. We want to evaluate
these two functionals when the external field is
very strong, i.e., when the number of bound states
is very large. In this situation most of the bound
states have large quantum numbers and we can use
for that part of the spectrum the Bohr-Sommerfeld
quantization rules. If the problem is three-dimen-
sional, we can associate to each quantum state a
region in six-dimensional phase space of size
(271)*. The number N of bound states is the volume
in units of (27%)° of the region of phase space cor-
responding to negative one-particle energy. All
quantities with a classical limit may be obtained as
integrals over this allowed classical region. This
holds, for instance, for the energy or particle den-
sity.

Inthe case of a simple scalar potential withthe one-
particle energy given by (1/2m)p? + U(x), one finds

d3xd®p < L
ey '\~ 2m ‘U(")>

1
= Wfdsx[ —sz(X)]a/z,

E~ %;;3_1’ <%_ U(x)>e(,f; - U(x)>

(6.2)

)
= | d3x[-2mU(x) /2.
30n7n” ) ¢ A-2mU)]
We can use a slightly different language by saying
that around each point x we fill the Fermi sphere
up to a momentum

pp(x) =[-2mU(x) [/ (6.3)

and from (6.3) we recover the approximations
(6.2).

Equations (6.2) can be directly derived by ob-
serving that the functionals p(x|U) and €(x|U) are
nonlocal (by which we mean that they are not really
expressed as functions of U and a finite number of
its derivatives at x) because the true quantum
states are not localized in space. When we use
semiclassical methods we do in fact approximate
the states by localized ones, and p and € become
local functions of U. Therefore they can be com-
puted by making a comparison with a situation
with (locally) constant U. We use the notation
U(x) =u in the vicinity of x and set

p(x|) =p(u), e(x|U) = e(u) (6.4)

and we find that the Thomas-Fermi (TF) approxi-
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mation amounts to writing

NeplU] = [atxp(ueen, 5

E (U] = fd"xe(U(x)).

We can therefore regard the Thomas-Fermi ap-
proximation as a quasiconstant external field ap-
proximation. It has the remarkable property of
becoming exact in the limit of very strong po-
tentials. This, as we have seen, follows from the
fact that states with large quantum numbers be-
come dominant in such a way that WKB approxi-
mation can be used to estimate the individual lev-
els.

Inother words, the WKB approximation, the Thom-
as-Fermiapproximation, and the quasiconstantfield
are strongly related as they are based on the same
physical picture. We shall now present a unified
framework where all these ideas apply.

Our goal will first be to study a d-dimensional
Schrédinger operator with a positive confining
potential V(x), i.e., V (x) is unbounded at infinity.
We would like to give a proper definition to the
Fredholm determinant,

Det] -A +V(x) - E]
Det[ -A +V (x)]

=Det<1 —E(__Tl+ﬂ>

-H (1 -E£i>su(s). 6.6)

The infinite product in (6.6) runs over all (positive)
eigenvalues of the Schrodinger operator. Let us
assume for the moment that this infinite product
converges (we shall see later what to do if this
condition is not satisfied). In this case the func-
tion D(E) is well defined. It is an entire function
of E, i.e., analytic in the whole complex E plane.
Only Det[ 1 —E(-A +V)™1] is well defined, the first
two determinants are both infinite. Let us define
the quantities

V(g):Z 8(E - E,), N(E)=JEdE’V(E'). 6.7

V(E) is the density of levels counted with their
multiplicity, while N(E) is the number of levels
with energy less than E [ for the purists N(E) is
given by a Stieltjes integral and v(E) is its deriv-
ative].

An elementary computation shows that in the
complex-E-plane cut along the spectrum

L(E)=InD(E)

, __NE)
‘Ef E TTE-E)’ (6.8)

N(E)=—-1!T—ImL(E).
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The discontinuity equation is, in fact, independent
of the Cauchy representation as it can be directly
derived by computing the phase of (6.6). Our aim
is to obtain information on the asymptotic behavior
of N(E) for positive E from the asymptotic be-
havior of L(E) for negative E. Applying the iden-
tities

InDetA =Tr InA,

6.9)
Tr ln—% =Tr l _‘%{(e-ta_e-m)
to the case
A=-A+V(x)-E,
B=-A+V ()
we find
LE)=- fdetTr{exp[—t(—A +V(x)-E))
—exp[ -t(-Aa +V@E)]},
6.10)

where it is understood that the ¢ integration is to
be done at the end after explicit subtractions at
t=0. In the (WKB) limit #—~0, p and ¥ commute
so that the trace in (6.10) can be readily evaluated
in dimension D as

X fdvx{[V(x)_E)D/2 -Vx)P[1+0@m2),

1
@nR2P T (1 +D/2)

N(E)~

x[dbx 0(E - VEDE -V (x)]21+002).

6.11)

In dimension one for convex potentials there are
no oscillations in the density of eigenvalues and
the WKB quantization condition reads

NE,)=n+3. (6.12)

The added 3 guarantees that the function N(E) com-
puted from the levels given by (6.12) approximates
in the mean the function N(E) given by (6.11) [ the
true expression N(E) is of course integer-valued
while our approximation defines a continuous func-
tion].

Corrections to the WKB quantization condition
arise when we recall that p and x have a commu-
tator of order 7 and use the Baker-Hausdorff form-
ula for the exponential of noncommuting operators.
An expansion in powers of 722 for L(E) follows:
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LE)- o fa x{[(V x) = BV = V()] -

If the infinite product (6.5), and consequently
the dispersive integral (6.8), is not convergent,
the determinant of the operator is no longer de-
fined. However, we can still use the same argu-
ments if we generalize the classical Fredholm
theory, introducing the concept, familiar in quan-
tum field theory, of renormalized determinant of
an operator.

Given an operator A with only a discrete spec-
trum and eigenvalues of finite multiplicity, such
that their only accumulation point is at infinity,
a renormalized determinant D(z) =Detg(z -A) is
an entire function of z which has zeros at the lo-
cation of the eigenvalues of order equal to the
multiplicity of the corresponding eigenvalue. We
further require the minimal growth of | D(z)| at
infinity consistent with the actual distribution of
Zeros.

Let us briefly recall some classical results of
the theory of entire functions.'” An entire function
E(z) is of order p if

1n|1n|E(z)[ _
ol 2 =P,

which means that for any positive € | InE(2)| is
bounded by (| z| **€+ const). Givenapointset{A;}with
only one accumulation point at infinity, let p be

the smallest value such that

2Nl <.

One can construct all the entire functions of order

=p which have simple zeros at the points 2 =);
(the extension to multiple zeros is straightfor-
ward). They are given by

E(z)=exp[P po(z)]

-2 (),

(6.16)
where p, is the integer part of p andeo(z) is an
arbitrary polynomial of degree p, representing
the remaining normalization arbitrariness.

It is evident that in the Fredholm case the order
of the entire function is less than 1, so that it is
essentially unique and the renormalized determin-
ant is proportional to the standard Fredholm de-
terminant. The renormalized determinant is the
natural generalization of the Fredholm theory.
The Hadamard prescription for the infinite product
just corresponds to the minimal subtractions at

(6.14)

(6.15)

" I(3-D/2)
12 I(-D/2)

@EVE)PU(V(x) = E)P273 y(x)P/273] 4 o(ﬁ“)} )

(6.13)

E =0 in the dispersive integral (6.8) to insure con-
vergence. The origin of these extra subtractions
will be clearer in the next example where we use
the same line of arguments to recover the results
of the Thomas-Fermi approximation.

Let us consider the following determinant:

Det(-A+m*+gV)

D(g)= Det(-A +m?)

=Det] 1 +g(-a +m?)"Y2V (-A +m?)"V?],
(6.17)

where V is a smooth positive potential with fast
decrease at infinity. The self-adjointness of the
operator (—A +m?)"Y/2V(-A +m?)~¥/? implies that
the spectrum of —A + gV is concentrated on the nega-
tive grealaxis. The eigenvalues of finite multiplicity
correspond to those values 1/x; < 0 for whicha bound
state of energy —m?® appears in the potential A; V.

If we call 9(g) the number of bound states in the
potential gV having a binding energy larger than
m®, we have

®dg’ Mg
1 £ >
ot =ato)s [ 4 T
- ‘jt Tr(e“( -A+2V +m2)

(]
—t( ~A+m?
et( Am))

=21n<1-£>. (6.18)
7 Ag
If we neglect terms of order 7 we find
) — 1 © dt -t(m2+gV)
3(8)—" (41[)1)/2 J; t“_D/Z Tre £ (619)

and when D, the space dimension, is less than

two, the ¢ integral requires only one subtraction
corresponding to the normalization of the deter-
minant for zero coupling (g =0). Irrespective of
this subtraction the large-g behavior of (6.19) is

I'(-D/2
£(g)—~ - '2—4%4/—2) fd”x(gV)sz, (6.20)
which implies the Thomas-Fermi result
Ng)~1gl®? (2‘;‘;0 fd"x V(x)°r?, (6.21)

where V, =27%/2/DT'(D/2) is the volume of the unit
sphere in D-dimensional space.

In quantum field theory the same determinant
stands for the sum of all vacuum diagrams in the
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external potential gV(x), £(g) is the sum of all
connected vacuum diagrams. From the represen-
tation (6.18) we have the sum rules

Z(;—y =(-1)° fd”xl-NdeSA(x1 —x,)

X Alxg -, = Xs )A(xs - x,)

X V(%) Vixs), (6.22)

where the right-hand side is the expression for
the s-order Feynman diagram in the external po-
tential V (A is the free propagator). The diagram-
matic representation of Fig. 1 is valid here also.
The fact that diagrams of order S<iD are ultra-
violet divergent is deeply connected with the as-
ymptotic properties of the number of bound states
for large coupling in a smooth potential. More-
over, the subtraction procedure of quantum field
theory, which consists in subtracting the divergent
part of a diagram in order to define a renormalized
finite vacuum to vacuum amplitude, has a counter-
part the introduction of subtractions in the Hada-
mard infinite product representation, which are
needed to define a renormalized determinant.

This correspondence between field-theoretical
subtractions and representations of entire func-
tions is well known in constructive theory; see
for instance the Yukawa case, Ref. 11.

A slightly different approach leading to the same
results uses the identity

dg£(g)
dg
where G(x, y| gV) is the Green’s function of the
operator —A +m?+gV. In order to compute
G(x, x| gV) we expand V around its value at the
point x,
V(y)=V(x)+(y —x),0,V(x)

3%V (x)
v axuaxv

= dexG(x,xlgV)V(x), (6.23)

+3(y -x),(y-x) -+, (6.24)
and proceed following our preceding remarks by
taking a leading quasiconstant V approximation,
i.e., we keep V =V(x) as the zero-order approxi-
mation treating the remaining terms as perturba-
tions. This is equivalent to the reasoning leading
to Egs. (6.4) and (6.5). We can control the con-
sistency of this procedure. The higher-order cor-
rections will be negligible only if the propagator
G(x, | gV) is essentially concentrated in a sphere
| x —y|>< 0((gV)™!). When this condition is satisfied,
the zeroth-order propagator will be equal to the
free one with an effective mass m® +g2V? and it
will be exponentially damped for |x —y|?| gV (x)| > 1.
The reader who has gone through this unfamiliar
review of semiclassical methods is ready for

tackling the large-order behavior of the perturba-
tive expansion for fermionic interactions.

VIL. LARGE ORDERS OF FERMIONIC INTERACTIONS

Let us return to our original problem, the eval-
uation of the functional integral (5.1) or equivalent-
ly (2.1) in the QED case. The integration over
the anticommuting Fermi fields can be exactly
done as in Sec. II (the integral is Gaussian), yield-
ing a renormalized determinant:

Z(g)= f:D(o)DetR(iy- d+M+g)
xexp(— fd”x L (eo)? +m202]>

= f:D(O)eXP<- J‘d"x%[(aff)2 +m?0?] -£E(g°))’

(7.1)
Lx(go)=~InDetg(iy: 8 +M +g0) .

If 2<D <4 only one subtraction is needed, cor-
responding to the first diagram of Fig. 1, which
gives a divergent contribution to the boson self-
energy. Both cutoffs have been removed. The
Fermi fields have been eliminated and we can now
apply the standard techniques of Refs. 4-6 to the
functional integral (7.1).

As discussed in Sec. V we can reduce the func-
tional integral to a one-dimensional one along the
direction 0,, and only at the end will we take care
of the integration in the transverse direction. We
therefore find

Z(g)=~ f " daEage
- (1.2)
E(z) =Detg(iy:9+M +20,),

where the function o, has been normalized in such
a way that its contribution to the free action is
unity:

S(o,)= jd"x%[(aao)z +m?0 2] =1. (7.3)
The function E looks similar to the Borel trans-

form of Z(g). Indeed, the following relations
hold:

Z(g) =§; Z,g*%, E(z) =Z; E,2*

Zy~3T(k +%)E2h°

(7.4)

Assume for a moment that the spin-} particles
were bosons. Then instead of the determinant we
would have found its inverse in Eq. (7.1) and the
function E~'(z) in (7.2) and (7.4). Since the de-
terminant is an entire function with infinitely many
zeros its inverse is a meromorphic function with
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poles. Therefore one would have obtained

Ey '~ (=r)72F,  Z,~R1(—r)72, (7.5)

where 7 is the distance to the nearest zero of E(z)
(we suppose for simplicity that the zeros occur

by complex-conjugate pairs on the imaginary axis).
The correct estimates would have been again ob-
tained by minimizing », i.e., finding the regular
field o, such that (iy- 8 + M+ z0,)= O yields a min-
imal |z| for S(o,)=1. The same approach could
have been used in the standard ¢* theory, at the
price of introducing a field o conjugate to ¢*, and
would of course have produced the known results.
We have seen that it was essentially the strategy
which produces the one-loop estimates. It is, by
now, clear why the techniques used in the study

of asymptotic estimates in perturbation theory
have so much in common with those devised in the
search of optimal conditions for the existence of
bound states in potential theory. In the case of
fermions, i.e., if the entire function E(z) is used
in (7.2) and (7.4), this mechanism for producing

a factorial increase fades away. Indeed, if the
integral over a in (7.2) was on a bounded domain,
Z(g) would be analytic in g for small g. The only
possible origin of singularity at g =0 comes there-
fore from possible divergences of the integral at
infinity.

When we compute the kth order of the perturba-
tion expansion, the functional integral (7.1) will
be dominated by the integration region where
| go| >1. In this region the behavior of the de-
terminant is controlled by the asymptotic distri-
bution of its zeros [while in the bosonic case the
corresponding region is | go| ~0(1) and the location
of only one zero is crucial].

In this striking difference between fermions and
bosons, the reader will recognize the counterpart
in Euclidean quantum field theory of the phenomena
discussed in Sec. V. In the case of boson col-
lapse only one state is relevant and has macro-
scopic [ O(1/g)] occupation number (Bose-Ein-
stein condensation), while in the collapse of a
fermionic system a very large number of different
levels become important.

It is crucial to note that the behavior of the entire
function E(z) is connected to its order p. Roughly

1
L(k/p)

More precise estimates follow from the repre-
sentation

E,~ (7.6)

1 dz
Bx=gmg P B

and looking for a saddle point for large k using
the bounds on E(z) for |z| —«. In this way one
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finds
1 1 k
B T/ Re(moo)) ’

Z“F(k<1 - %))RQ(R(LO)Y‘Z ’

where the functional R(0,) can be obtained from
the asymptotic behavior of E(z). The same result
may be directly inferred by writing

1 _a
Zksz k“f da E(za)e

and applying the steepest-descent method to the
double (z, a) integral.

Up to now we have not used the particular struc-
ture of the integral (7.1). The discussion applies
to an arbitrary trilinear interaction among bosons
and fermions independently of the detailed form
of the Langrangian. We can summarize the steps
as follows:

(1.7)

(i) Integrate over the fermions.

(ii) Obtain a relation as (7.2) where E(z) is the
fermionic determinant.

(iii) Find the order p of the entire function E(z).

(iv) Compute R[o] and find the field ¢ which min-
imizes it (this leads to the stationarity condition
8R /80 =0).

(v) Consider the effects of quadratic transverse
fluctuations.

The dominant asymptotic behavior will then be
given by

z,~r(k<1 - g)) Re< :O)Yk. (1.8)

For the Yukawa interaction, we find that the func-
tion E*(z) is given in terms of a determinant D(z):

E*(2)=D(z)=detg[ =A+ (M +20)° —izy-a0]. (7.9

Using the method described in the previous section
we discover that the spin term (iny-80)isirrelevant
for large z and that

E(z)"‘exp(—(——l))b-fzz—) J'd Py [M +20(x) }"/2) ,

zreal. (7.10)

For large values of the field 0, and consequently
for large orders of the perturbation expansion
the effective interaction among bosons becomes
local and if we write it as in (7.1), it takes the
form

~ jd"xlgc(x)l‘J (7.11)
up to a coefficient. Similarly, R “!o,) is easily
computed and is proportional to the integral



16 ASYMPTOTIC ESTIMATES IN QUANTUM ELECTRODYNAMICS 1011

fd”xloo(x)l". (7.12)

We remember that we must minimize R[o,) at
fixed free action S(0,). Therefore using a standard
normalization, 0 satisfies the differential equation

(A +m?)g=0""". (7.13)

The evaluation of R(0) is now easy and the final
results read

Z,~C*, D<2
(7.14)

Zk~cos<%5>r’(p—:b£ k\)R(D)"‘, 2<D<4.

In less than two dimensions the perturbative ex-
pansion is convergent. In even dimensions ad-
ditional complications are present. Some dia-
grams are logarithmically divergent and additional
logarithms appear in the exponent of (7.10). In
dimensions 2 and 4 we find respectively

Z,~ (Ink)* <_I~2_:2—))k’ D=2

VA ~I‘<E>(1nk)" <--——1—y D=4
k 2 R4)/ "’ )

These estimates depend crucially on the ultra-
violet behavior of the theory, which in the renor-
malizable case may differ from that of the free
theory. The estimates (7.15) should therefore be
considered valid in four dimensions provided the
cutoff A, pertaining to the boson system is kept
finite. We are not going to elaborate here any
further on the subtle effects possibly induced by
renormalization on the asymptotic estimates
(7.15). This important point should clearly be
further carefully studied.

It may be interesting to observe what happens
when a cutoff is introduced in the kinetic energy
of the fermions. The order of the fermionic de-
terminant decreases from D/2 to D/4 and the the-
ory remains convergent up to D =4:

Z,~C*, D<4

(7.15)

(7.16)
-4

z,~r<l—’—2— k) , D>4.
The above results are in perfect agreement with
Caianiello’s theorem. When the Fermi propagator
is bounded in x space [ D <1 without cutoff, D<3
with the cutoff given by (7.1)] the perturbation
series is convergent. A necessary and sufficient
condition for a convergent expansion in the Yukawa
case is presumably

limtrG g(x = y) <, (7.17)

x>y

with the trace taken over spin and internal de-

grees of freedom, a condition which generalizes
the one used by Caianiello [lim,_, G z(x —y)<=].

The extension of the method to QED should ap-
pear without difficulty. This is, unfortunately,
not the case due to new difficulties related to
gauge invariance and current conservation. We
shall close this section by presenting these prob-
lems. For simplicity, let us restrict our atten-
tion to the vacuum-to-vacuum amplitude Z(e). In-
stead of (2.10) we therefore consider

Z(e)= J D(A) Det(iy- 8 —ey-Al-M)e™S4  (17.18)

and for the sake of the argument we drop the gauge
dependence parameter A so that S, =fdx $F2.

In the one-mode approximationA ,=aA‘? we
find

Z(e)= 'fw daC,y(eA)e™, (7.19)

where

C(2)(2)=H (3 (2),

Hg)(2) =Det[+(8 +izAOY M2+ —zzgau,,Fw] s
(7.20)
Idx%l'“)z:l .

We have explicitly generalized the determinant
H(z) to an arbitrary magnetic coupling g for rea-
sons which will appear clear below. According
to the previous arguments Eq. (7.8) will hold if p
is the order of H(,)(z). We are of course con-
sidering such fields A'® decreasing fast enough
at infinity to make the determinant in (7.18) well
defined. Relaxing this hypothesis might enable
one to understand the origin of infrared problems.
If the zeros A; of H (,)(z) are concentrated near
the imaginary axis (as it happens in the Yukawa
case), there is no difference between a condition
3 320X T¥<, which implies the finiteness of the
kth perturbative order of the determinant and the
condition ) T.,| A;| ™<= which implies that the
order p is smaller than or equal to k. From gauge
invariance the photon self-energy is logarithmic-
ally and not quadratically divergent and the scat-
tering of light by light convergent. If we were to
stick to the hypothesis on the location of the A;’s
close to the imaginary axis, we would find
that the order of the entire function H,,(2) is p=2
(its type would be infinite, meaning that ;| x;| %~¢
would converge for any positive € but not for € =0)
and we would conclude that

Z,~ (lnk) . (7.21)

In fact, we are able to derive this result without
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any hypothesis on the distribution of the zeros
only when g <2, while some doubt exists on its
validity when g =2. Let us briefly sketch the argu-
ment.

If we apply the semiclassical methods of Sec. VI
to the function H(z), we find at first that the spin
term looks negligible in the limit # —0. Further-
more, it is certainly insufficient to consider a
constant A, field which could be gauged away. One
must rather take F,, as locally constant. The
main term of the effective interaction

jde(,)(zF)=—% lnH(,)(z) (7.22)

is therefore given by the Euler-Heisenberg (EH)
Lagrangian

1 (T ds _u
SO=gp | T
coshi gsA, cosh} gsh,
X | M, — : ,
sinhs), sinhsa,

(7.23)

where two subtractions in the Laurent expansion
in s of the integrand are understood and A, , are
built out of the two invariants F*=F, F,, and
FF =%¢ wpoFuwF oot

NP =5 { FPe[(F?? - (FF )V} . (7.24)

In the quasiconstant field method of Sec. VI the
expression (7.23) though computed for constant

F is now used in the action (7.22) for the effective
Lagrangian

fdx L) (2F)~ fdx Ll2F(x) . (7.25)

This computation seems to confirm that H,,(z) is
of order 2 for g<2 by analyzing the large-field
behavior of (7.23). However, for g>2 the Euler-
Heisenberg Lagrangian diverges for strong enough
fields and the physical value g= 2 is marginal fora
consistent application of the quasiconstant field
method. In a sense it is gratifying to see that spin
and not only Fermi statistics comes into play
through magnetic effects, even though it makes
life a little harder.

As was explained in the previous section, the
validity of the method requires that the propagator
in the presence of strong external fields is damped
outside a sphere with vanishing radius as the field

tends to infinity. A simple computation shows that
this is the case for all g<2 but fails for g=2. This
appears clearly on (7.23) where the region s #0 is
exponentially suppressed when g <2 but not when
g=2. This fact can be traced to a well~-known
phenomenon: In the presence of a constant mag-
netic field the energy of a spinning particle in its
ground state behaves as

Ey><~|H|(g-2); (7.26)

it goes to infinity with H as g<2 but is independent
of the strength of the field if g =2.

To conclude, if we take correctly into account
Fermi statistics but if we neglect the effects of
spin the asymptotic estimate (7.21) holds (we as-
sume a cutoff photon propagator to avoid the ef-
fects of renormalization). In order to decide
whether (7.21) is still valid in the actual theory
(g =2) it is necessary to proceed to a more care-
ful, but mathematically well-defined analysis.

In the last article quoted in Ref. 12 Adler has
investigated the set of eigenvalues pertaining to
a specific A j(x). Using symmetry arguments he
was able to reduce Dirac’s equation to a simple
radial equation and to obtain WKB estimates for
the large eigenvalues. His result would support
an H(,)(z) of order 4. If this were the general
case the asymptotic estimates (7.21) would be re-
placed by

Zrl“<§—)- (7.27)

The zeros of H(,)(z) would then spread in the com-
plex plane, and the convergence of 2, ;A;™
would give no information on the series ;| ;| ™.
The problem of estimating the asymptotic be-
havior of the perturbation series in QED in terms
of the bare coupling constant is therefore left open.
However, its solution has been reduced to a clearly
stated mathematical problem: to find the order
of an entire function or, even more specifically,
to study the distribution of bound states in a strong
magnetic field.
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