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We discuss some features of Ising and gauge systems in the complex temperature plane. The 
distribution of zeros of the partition function enables one to study critical properties in a way 
complementary to the methods using real values. Data on small lattices confirm this picture. 
Nearby complex singularities seem to exhibit a universal behavior which might have some relation 
with a model of random surfaces. 

1. Introduction 

The part i t ion funct ion of  a simple statistical system on a finite lattice can often be 

expressed as a polynomial  in a finite number  of  variables. One way to visualize the 
properties of  this polynomial  is to study the location of  its zeros. This is a subject 

with a long history, a l andmark  of  which is the Lee-Yang [1] circle theorem in the 
activity plane ( e - 2 h  h magnetic  field) for an Ising ferromagnetic system, but it has 

also been extensively studied in other variables like the temperature by Fisher and 
others [2]. 

With  the advent  of  large comput ing  facilities a number  of difficult analytical 

problems can now be tackled by numerical  methods [3]. We suggest that the location 
of  these complex zeros and their behavior in the thermodynamic  limit is an 

interesting subject, enabling one to confi rm the scaling picture, to give independent  
measurements  of critical indices and universal ratios of  amplitudes and possibly to 
discover new phenomena.  

In  sect. 2 we present such an analysis of the scaling behavior  of  zeros and define 
two critical angles ¢p and ~p. The former describes the slope of  the line of  zeros with 
the real axis in the temperature complex plane in the vicinity of  the critical point  in 
the absence of  magnetic  field. The second is the angle at which these zeros depart  in 
a real magnetic  field. If  a is the specific heat critical exponent,  A _ / . 4  + the ratio of 
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specific heat amplitudes below and above the critical temperature, then we find that 

tan [(2 - a)  qo ] = cos(~ra) - A _ / A  + 
sin rra ' ( 1 ) 

with cp predicted to be ¼~r in a mean field approximation. Similarly the angle + is 
related to the critical exponents/3 (of the spontaneous magnetization) and 3 of the 
relation between field and magnetization at critical temperature (h - rn 8) as 

7?" 
= ( 2 )  

Of course these angles are conformal invariant and therefore independent of a 
regular parametrization of the vicinity of the critical point. These considerations are 
complementary to those pertaining to the divergence of the moduli of the various 
quantities in the scaling region. 

The occurrence of complex zeros that eventually stabilize along lines (or regions in 
more complicated cases which are not studied in this paper) does not in general 
indicate singularities in the thermodynamic quantities. They are rather to be 
interpreted as Stokes lines which separate different asymptotic behaviors of the 
partition function in the thermodynamic limit. In general along these lines the real 
part of the analytic continuation of the free energy will be continuous while the 
discontinuity of the imaginary part is proportional to the density of zeros. The 
singularities of the free energy will in fact be located at the ends of these lines of 
zeros. We do not present mathematical proofs of the existence of these analytic 
continuations but we show numerical evidence from small lattices supporting these 

claims. 
The same data suggest a global structure of these lines for the three-dimensional 

Ising model taken as a typical example which may be partly analysed in terms of 
simple approximations such as the Bethe approximation [4] which we study in sect. 
3. One interpretation among others of this approach is to consider that it approxi- 
mates the geometry, i.e. the lattice, rather than the physics. Its precise form is lattice 
dependent which is also the case of the global distribution of zeros. The Bethe 
approximation enables one therefore to understand some gross features of the latter 
and in particular the occurrence of nearby complex singularities which may control 
the low-temperature series. Although the pattern of these complex singularities is 
geometry dependent, they exhibit some critical behavior which seems to have a 
certain degree of universality as already noticed in the late sixties [5]. We have 
analysed the longest available low-temperature series on various lattices. Although 
not very precise, the values for the exponents of these singularities are incompatible 
in three dimensions with their mean field value. In particular the free energy is 
predicted by mean field to have a ( u -  uc)  3/2 singularity while the corresponding 
measured critical exponent ranges around 0.9 instead of 1.5. A possible relation 
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between these singularities and the Lee-Yang edge singularity remains problematic. 
We argue that similar complex singularities are also expected for lattice gauge 
theories, irrespective of the gauge group, in their high-temperature expansions. This 
follows from duality in three dimensions for an abelian symmetry group and extends 
in any dimension for an arbitrary group in some appropriate temperature like 
parameter. The analog of the Bethe approximation can be identified for infinite 
dimension with the one studied by Drouffe, Parisi and Sourlas [6]. Such approxima- 
tions lead to similar complex singularities. Analysis of the much shorter Wilson 
series available in four dimensions shows that the type of singularity is much closer 
to the mean field prediction. 

These facts suggest a connection with a model of random surfaces, but we are 
unable to substantiate this claim quantitatively. 

Our investigations are only preliminary. Further numerical and analytical work 
would clearly be necessary to clarify some of the points raised in this paper. 

2. Analytic structure near the critical point 

In this section we concentrate on the properties of the Ising model near to the 
critical point while in sect. 3 we consider the global structure. In order to correctly 
reproduce the non-trivial scaling behaviour near the critical point we must incorpo- 
rate the renormalization group properties of the model into our description. 

To set the notation define the partition function by 

ZL = ~ exp{ fl ~, (oio j -  1)+h~_,(o i -  1) ) ,  (2.1) 
( a ) =  ± 1 ( /J)  i 

where we take for simplicity interactions between nearest-neighbor spins on a 
regular lattice of linear dimension L which may be taken infinite in the end. The set 
of all configurations can be divided into classes with a fixed total number of spins 
with o i = - 1  and a fixed total number of pairs of spins with oioj = - 1 .  If the 
number of configurations in such a class is denoted by Cm,, then 

M N 

ZL= E E Cm.,Y rot", (2.2) 
m = 0  n = 0  

where 

y = e -2h, (2.3) 

t = e -2~, ( =  tanh(f l*)) ,  (2.4) 

and M and N are the total numbers of sites and bonds respectively in the lattice. The 
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important point is that Z L is a polynomial in two variables, and so we may 
parametrize its analytic structure entirely in terms of its zeros. There are two 
complementary viewpoints which are most natural. If  we fix r ,  or equivalently t, 
then Z is a polynomial of degree M in y. The zeros in y are often called Lee-Yang 

zeros because of the analysis of critical behaviour in terms of them given by these 
authors and for the remarkable theorem stating that for real positive r ,  or for t 
between 0 and 1 on the real axis, all of the zeros of Z as a function of y occur on the 
unit circle [1]. On the other hand if we fix h, o ry ,  then Z is a polynomial of degree N 
in t. In two dimensions all of these zeros occur on a pair of circles when there is no 
magnetic field, but in the general case there is no simple result for the locus of zeros. 
Fisher emphasized the study of these zeros [2] quite some time ago, (so we might call 
them Fisher zeros). 

In spite of the absence of a simple expression for the locus of zeros in the general 
case, there are empirically some observed regularities. In particular the zeros seem to 
fall naturally on smooth arcs (see fig. 1) which we are tempted to identify with cuts 
in the thermodynamic limit. This sort of behaviour can be easily understood. 
Because of the very large number  of terms in the polynomials which make up the 
partition function the behaviour in different regions of the complex plane tends to 
become dominated by some set of the coefficients and is essentially independent of 
others. This becomes exact in the thermodynamic limit. Thus we have different 
analytic functions (or types of qualitative behaviour) in different regions of the 
complex plane. These functions have oscillating phases, but smoothly varying 
amplitudes. In the general case one type of behaviour will dominate, but there will 
be boundary regions where two types of behaviour have comparable magnitude. In 
these regions there can be cancellations and thus zeros. These boundary regions are 
called Stokes boundaries [7] and in the thermodynamic limit they become cuts. It is 
clear from this discussion that the natural boundary condition across these cuts is 
that the real part  of the free energy is continuous. 

If  L is reasonably large, but not infinite, then in the space of parameters we may 
identify three regions. (i) There are points well away from the critical point where 
the finite lattice is indistinguishable from the infinite-volume system. That is to say 
L >> ~ = 1 where ~ is the correlation length and the lattice spacing is taken as a unit. 
(ii) There are points in the critical or scaling region for which L >> ~ >> 1 so that the 
finite lattice exhibits the same scaling behaviour as the infinite system. And (iii) 
there are points for which L = ~ >> 1 for which one observes significant finite lattice 
or rounding effects. The renormalization group may be used to characterize the 
behaviour of both regions (ii) and (iii) which are properly called the scaling region. 
The result of this full analysis is called finite size scaling following Barber and Fisher 
[8]. Since for L finite Z is described in terms of its zeros there must be a scaling 
theory for their location. 

If we assume that we know the identity of the scaling fields and operators we can 
express the R G  transformation properties of the hamiltonian under a change of 
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U = e -t ' l t  

= th2~l  
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Fig. 1. The zeros of the partition function in the complex u = t 2 plane for a 4 × 4 × 4 cubic lattice (see 
ref. [3]). 

l eng th  scale b as: 

H L = H ~  + K 1 0 L  -}- K 2 0 L  "{- " ' "  

~ H ~ / b + K , b Y ' O ( / b + K z b Y 2 0 ? / b +  " "  q- I~0(K1, K 2 . . . ) ,  (2.5)  

where  Oi L is a local  ope ra to r  s u m m e d  over  a la t t ice  of size L a n d  e 0 is a new  c o n s t a n t  

t e rm  which  is a regular  s m o o t h  f u n c t i o n  of  Kt ,  K 2 . . . .  Expressed  in  te rms  of  the 

to ta l  free ene rgy  this gives the fami l i a r  scal ing e q u a t i o n  

FL ( K 1 . . . .  ) = F L / h  ( K I b Y ' ,  . . .  ) + eo(  K I . . . .  ) .  (2.6)  

F o r  the p a r t i t i o n  f u n c t i o n  we have  s imply  

Z L  ( K , . . . .  ) = Z L / b (  K , b Y ' ,  . . .  ) e  ~°. (2.7)  

If  we choose  to scale b y  a f ixed f rac t ion ,  say X, of L a n d  if we not ice  tha t  s ince e 0 is 

b o u n d e d ,  e ~0 c a n n o t  vanish ,  t hen  the zeros of  Z L are the same  as the zeros of  

Z , / x (  K I L  Y'XY',  . . .  ) = Q (  x , ,  x 2 . . . .  ) ,  (2.8) 

where  we have  i n t r o d u c e d  scal ing var iables  

X i = K i  L v '  , (2.9)  
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and the scaling function Q is an analytic function of its arguments when they are 
small. The first two operators are the leading thermal and magnetic operators with 

Yt = l / v ,  (2.10) 

Yh = f l ~ / ~ '  = ( f l  q- Y ) / ~ "  (2 .11)  

For large enough L it is reasonable to neglect the effect of other operators which will 
give rise to corrections to scaling. In this approximation we have a very simple 
scaling result for the zeros of the partition function 

Q (  x t ,  Xh) = Q (  K L  1/~, h L  a~/v)  = 0, (2.12) 

where 

K =  ( u -  uc),  u = t 2. (2.13) 

Because the partition function is even in h, Q can only be a function of h 2 which is 
smooth by our hypothesis, so we may formally solve the equation (2.12) to give 

h 2L2t38/" = f i  ( K L I / ' ) ,  (2.14) 

where i labels the ith root. By hypothesis f~(x) is an analytic function in x and we 
can invert this relation to give 

K L ' / ~  = f i - ' (  h2LZ/38/") • (2.15) 

If we take K = 0 or u = u c and L large we have the closest Lee-Yang zeros behaving 
as 

h2i = L - 2 1 3 8 / % ( 0 )  < O, (2.16) 

where the sign of f/(O) is determined by the Lee-Yang theorem. If h = 0 then 

K i = L - l / , f / - ' ( 0 ) ,  (2.17) 

where f~-1(0) is a complex number in general. If we hold K fixed and take L to 
infinity then, for any finite i, h tends to the position of the Lee-Yang singularity 
which is L independent so that 

f i ( x t )  ~ - C x  2~8, (2.18) 
Xt--'* O0 

or  

h 2 --, - C K  2~8, (2.19) 

which is the well known scaling result for the gap in the Lee-Yang singularity [9]. 
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The inverse of this relationship implies, (for a non-zero field and large L or fixed L 
and for a strong field, while still in the scaling region) that 

(2.20) 

This predicts that the trajectories of the zeros close to the critical point in a magnetic 
field will have an angle 

~k =- ~r/2f18 = 58 ° , (2.21) 

and this is observed, see fig. 2. For very strong fields one expects a breakdown of 
scaling and a crossover to a trivial limiting behaviour. The large-h limit is described 
by mean field exponents and gives an angle of exactly 60 ° which is unfortunately 
quite close to the scaling prediction. 

The Lee-Yang theorem implies the fairly strong result that f~(x t )  is real and 
negative for arbitrary real x t = K L  1/,. This state of affairs might appear as in fig. 3a. 

The behaviour for large positive x t has already been argued (eq. (2.18)). For large 
negative xt ,  which corresponds to the low-temperature limit, there is no longer any 
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Fig. 2. Mot ion  of the zeros in a magnet ic  field: h varies by 0.1 f rom 0 to 1.5. 
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gap and scaling breaks down to a situation where there is a uniform distribution of 
zeros  in h. Th i s  imp l i e s  t ha t  f~(x t )  --* 0 for  xt  --* - oo for  all  i. O n  fig. 3b we d i s p l a y  

the  ac tua l  t r a j e c t o r y  of  the  f i rs t  n ine  zeros  on  the  43 la t t ice ,  for  r ea l /3  0.16 ~ / 3  ~< 0.29 

(/3c = 0.2217). Th i s  agrees  wi th  the  qua l i t a t i ve  b e h a v i o u r  of  fig. 3a in  i ts  cen t r a l  

reg ion .  

A t  x t = 0 the  d i s t r i b u t i o n  m u s t  r e p r o d u c e  the  b e h a v i o u r  of  the  m a g n e t i z a t i o n  

M -  h l/~ , (2 .22)  

fo r  l a rge  L .  T h e  d e n s i t y  of  zeros  shou ld  t he r e fo re  be  p r o p o r t i o n a l  to  x~/~ w h i c h  

i mp l i e s  

f ,  ( 0 )  - - Ci  2~/~ +'  (2 .23)  

× 
, _ .~_ .°°°°  

f , ~  """-- -Cx2~ 
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Fig. 3. (a) Expected shapes of the functions f , ( x ) .  (b) The phases ¢p of the first nine Lee-Yang zeros 
y e - 2 h  = e i~  f o r  3 the 4 lattice of ref. [3] at real/3 (/3 c = 0.222). (c) Scaling behaviour of these zeros for fl 

varying from 0.16 to 0.29 by 0.01. 
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Fig. 3 (continued). 

01 

This behaviour  is observed on fig. 3b where the measured value of 6 / 8  + 1 is 0.9 to 
be  compa red  with 0.83 f rom series expansions.  There could be a further scaling in 
the number  of  the root  i such that  for large i 

h2L2#8/"  = f i (  x t )  = i2aAs+ ' )F(  x t i  ,/l~(a+ , ) ) .  (2.24) 

This  compact ly  describes the pat tern  of Lee-Yang zeros for real x t. When we set 
h = 0 we obta in  a s tronger  version of eq. (2.17) 

K i = L -  ] /~ i l /d~F  - 1 ( 0 ) .  (2.25) 

This  introduces a new scaling variable depending on the fract ion of the total numbe r  
of  zeros 

= i / L  a. (2.26) 

The  assumed scaling relation (2.24) can then be writ ten as 

h ~ = ~2/~n/a~F( K ~ -  ,/a~ ) .  (2.27) 
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In fig. 3c we show this universal  behav iour  which is indeed  a l r eady  surpr is ingly  

observed on da ta  f rom a rather  small  latt ice.  The  Lee-Yang  edge s ingular i ty  is to be  

re la ted to the first correct ion to the leading  behav iour  of  F for  large a rgument .  

Indeed if  

F ( w )  ~ - C w Z ¢ 8 [ l  + B w  -~ + ' ' '  ] .  (2.28) 
W ---~ OQ 

Then  the edge s ingular i ty  in the magne t iza t ion  wr i t ten  as 

2 o 
Msi,g = cst( h 2 - h c ) , (2.29) 

is re la ted to e by  

1 + a dp  (2.30) 

N o t e  that  e is close to 2 

d =  2 u =  1 o = - 0 . 1 5 5  e = 2.37 

d = 3 ~ = 0.63 o = 0.086 e = 1.74 

d = 6  ~ = 0 . 5  0 = 0 . 5  e = 2 .  

The  da ta  for o are f rom ref. [9]*. 

The  express ion (2.27) also gives correct ly  the dens i ty  of  zeros needed  to p roduce  

the specific heat  s ingulari ty,  i.e. 2 - et = dp,  and  predic ts  that  all of  the zeros in the 

complex  u p lane  near  u c should  be lying on a single s t ra ight  l ine with the phase  of  

F -  1(0). This  agrees with the observed pa t t e rn  of  zeros in fig. 1. 

This  phase  is in fact universal.  F r o m  the represen ta t ion  of the specific heat  in 

terms of  a Cauchy  integral  der ived f rom the dens i ty  of zeros of the pa r t i t i on  

funct ion,  one  easily finds a re la t ionship  be tween the specific heat  index a, the 

ampl i tude  ra t io  for the specific heat  A + / A  _ and  the phase  of  F -  1(0) = 7r - ~.  This is 

t an [ (2  - a)~0] = c o s ( r r a ) - A / A +  
sin(Tra) 

(2.31) 

The  known rat io  A + / A _ - - -  0.48 - 0.51 [10] predic ts  tha t  ¢p = 57 ° in excel lent  agree- 

ment  with the observed pa t t e rn  of  zeros. M e a n  field predic ts  in this case a = 0, 

A + / A  _ = 0 and therefore  an angle ~ = 45 o. 

* For a renormalisation group calculation of o, see also ref. [17]. 
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3. Complex singularities 

425 

3.1. BETHE APPROXIMATION 

Fig. 1 exhibits an accumulation of zeros along the real negative axis for a s.c. 
lattice suggesting the presence of another singular point. This fits nicely with the 
evidence from low-temperature expansions of 3d Ising models on various lattices, 
that the nearest singularity occurs in many cases at a complex value of 13 (see figs. 
4,5). 

These unphysical nearby singular points have received some attention a dozen of 
years ago, because they may spoil the analysis of the physical critical behavior. In 
particular it was noticed [5] that the Bethe approximation gives a qualitative account 
of them. We recall that this approximation results from truncating to second order 
t he  irreducible cluster expansion. Alternatively, it solves the Ising model on a 
Cayley-tree lattice, and gives a good approximation of the actual model at low 
temperature. In table 1, we display the series expansion of the full model together 
with the Bethe series; they disagree to order eight in u = t 2 = e -4/~. The approxima- 
tion relies on the observation that a given spin interacts with the magnetic field h 
and with its q neighbours (q = coordination number), whose interaction with the rest 
of the lattice may be described by an effective field h 1- The self-consistency equation 
for p = e 2h, reads 

l +tptq-I Y=P\-t--~OJ ' ( 3 .1 )  

and the free energy per site is 

In Z 
F ( t ) =  V = ( q - 1 ) l n ( l + p t ) + ( 1 - ½ q ) l n ( l + 2 p t + p 2 ) "  (3.2) 

)~, xO 

xo 

a) b) c) 

Fig. 4. Nearby complex singularities in the complex u plane for: (a) simple cubic lattice; (b) body 
centered cubic lattice; (c) face centered cubic lattice. Crosses indicate the singularities obtained from 

series expansions, open circles result from the Bethe approximation. 
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@ 

Fig. 5. Zeros  of a body-centered  cubic  lat t ice (3 X 3 x 3 lattice). 

If  one introduces 

it satisfies 

t + p (3.3) 
P= l + t p '  

p - t - y ( 1 - p t ) p  q 1 = 0 .  (3.4) 

Singularities of  F arise f rom singularities of  p(t, y). If  f (p ,  t, y) denotes the 
left-hand side of  (3.4), they are obtained through elimination of  p between f =  0, 

8f/Op = 0, and satisfy 

q - 4 / 2  
1 qO 2) 3 1-I ( t z - t 2 )  2- (3.5) y + -- - 2 = - ( t  2 - t c 
Y ( q -  1)q-It q-2 i=1 

In  a zero magnetic field, the critical point  is at t c = (q - 2 ) /q ,  and there are ½(q - 4) 
additional complex singularities, the location of  which approximates well the pat- 

terns of  fig. 4. 
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TABLE 1 

Series expans ion  for the Ising th ree-d imens iona l  model  on  a cubic  lat t ice for l tF ' ( t )  

427 

Order  n in  u = t 2 Exac t  Bethe Improved  Bethe 

3 1 
4 0 

5 5 
6 - -7  
7 35 
8 - 88 

9 313 
10 935 
11 3113 
12 - 9847 
13 32435 
14 - 1 0 5 1 6 1  
15 346 966 
16 - 1 140024 
17 3 7 7 8 2 5 0  

18 12 520405 
19 41694493  

20 - 139015755 

1 1 
0 0 

5 5 
- 7  - 7  
35 35 

- 96 - 88 
349 313 

- 935 
3047 

2 t c 0.6418 ~ = 0.6667 0.6570 

t i ± i  0.5345 + i  0.5 + i  0.5158 

C o l u m n  1 exact  results  [I 1], co lumn  2 Bethe approx imat ion ,  co lumn  3 improved  Bethe approx imat ion .  
The la t ter  incorpora tes  also clusters  of over turned  spins on squares,  and  is def ined by: 

with: 

F =  31n(1 + 4pt 2 + p2(4t2  + 2 t  4) + 403t 2 + p 4 )  _ 21n( l  + 2p't + p,2) _ 71n(1 + p ' t ) ,  

12( P ' + t  ~7 , t + p ,  p, l l  =o t ~ f  and p ~ = o  t 2 + p ( 2 t  2 + t 4) + 302t 2 + p 3 

t2p 3 + p2(2 t2  + t 4) + 3ot 2 + 1 

In the presence of a magnetic field, the Bethe approximation satisfies the Lee-Yang 
theorem [12]. For real t > t c, the r.h.s, of (3.5) is negative, and the Lee-Yang 
singularity lies on the unit circle: 

1 
y + - - 2 < 0 ~ l Y l = l .  

Y 

Moreover, the approximation suggests that these Lee-Yang edge singularities, the 
critical point and the unphysical singularities all lie on a single manifold. It is not 
known whether such a property is shared by the actual model. 
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As h departs  f rom zero, y + 1 / y -  2 - - 4 h  2 and the critical and 
singularities split in a different way: 

unphysical  

t f f (h )  - + Ah2/3exp[ i l~r(1  + 2 k ) ] ,  ( k =  0 , 1 , 2 ) ,  

tZi ( h ) - t2i (O) +_ Bh .  (3.6) 

The  phases and exponents  in h reflect the (classical) critical exponents  which are 
different at the critical and unphysical  points.  In the Bethe approximat ion ,  the 
specific heat, magnet ic  susceptibility and correlat ion length diverge at t 2 with 
exponents  a '  = l ,  ~,, = ½, v' = ¼, whereas at tc 2 the ordinary  mean-f ie ld  exponents  are 
found ( a  = 0, 3' = 1, v = ½). At  t 2, the spontaneous  magnet iza t ion  does not  vanish: 

M -  Mreg + C ( t  2 -  t 2 ) ' / 2  

Finally, within the Bethe approx imat ion  it is easy to draw the line to be identified 
with the curve of zeros, using its character izat ion of sect. 2. This is done  on fig. 6 for 
the simple cubic lattice. I t  is made  of two branches.  One  originates f rom the real 

2 negative singularity and corresponds  to a cut o f p ( t ) .  The  other  one starts f rom t c , at  
the (classical) angle of ¼~r. 

As ment ioned above, the Bethe approx imat ion  m a y  be seen as a m e m b e r  of  a 
sequence of successive approximat ions .  Any  f ini te-order approx imat ion  leads to 
similar algebraic equations,  and thus fails to reproduce  the details of  the actual  
critical behavior  that  we describe now. In  table 1 we show some data  for such an 

improved  approximat ion .  

t 2 

Fig. 6. The lines of discontinuity of Im F, in the Bethe approximation. 
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3.2. SERIES ANALYSIS 

Rather  long low-temperature series exist [ 11 ] for the specific heat, the spontaneous 
magnetizat ion and the susceptibility on the three lattices of  interest (s.c., b.c.c., 
f.c.c.), and a shorter one for the s.c. correlation length [13]. It is possible to analyse 
these series and to try to determine the critical exponents at the complex singulari- 
ties. We have used various methods,  ratio methods,  D-log Pad6 approximants  and a 
generalized Padr-approximat ion  [14]. The results are summarized in table 2 where 

we also recall the classical exponents.  In  spite of the rather large dispersion of  the 

estimates, there is some evidence for a universal critical behaviour which is neither 

classical (exponents disagree with Bethe's lattice predictions), nor  identical to the 

ordinary critical behaviour. Especially striking is the case of the f.c.c, lattice where 
the two doublets of  conjugate singularities exhibit approximately the same be- 
haviour. This universal behaviour at the complex singularities had not  been em- 
phasized before, to the best of  our knowledge. Using ratio methods,  Thompson,  

G u t t m a n n  and N inham [5] had given the s.c. exponents 

a ' =  1.07, f l ' =  - 0 . 0 8 ,  " / ' =  1 . 1 2 -  1.20. 

Not ice  that the previous estimate of  a ' >  1 points to a weak divergence of  the 
internal energy U - ( t  2 -  t2) 1-~'. Also the estimates for a ' ,  fl ' , 7 '  and u' are 

consistent with hyperscaling relations: 

a '  + 2~8' + 7 '  = 2 ,  2 - a '  --- v ' d (  = 3v ' ) .  

I f  this singular universal behavior  is non-classical, what  is the con t inuum field 
theory describing it? A possible candidate could be a q~3 theory with an imaginary 

coupling: this would indeed be the cont inuous theory at a critical point  where the 
original order parameter  does not  vanish. In  particular it is the critical theory of 

TABLE 2 
Exponents at the complex singularities, determined from series analysis 

s.c. b.c.c, f.c.c. Bethe 

a' 1.25 + 0.15 1.30 + 0.1 1,35 + 0.15 
1.55 ± 0.15 2 

~' -0.05 - 005 - -0.05 
"/' 1.1 + 0.1 1.05 + 0.1 1.05 + 0.1 
v' 0.4_+0.1 4 t 

For the f.c.c, lattice, the two figures refer to the two doublets of conjugate singularities. The estimates 
for 3,' seem much more stable than those for a'. 
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the Lee-Yang edge singularity [9]. Then, the upper critical dimension d c where the 
exponents become classical would be 6, as attested by ½ = a ' =  2 -  v ' d  c = 2 6 4" 
However the 3d critical behaviour of the free energy at the Lee-Yang edge singular- 
ity as a function of the relevant parameter, namely h, has been determined by 
Kurtze and Fisher from the dimer series [9] 

F - ( h - h c )  °+l  , ( 3 . 7 )  

1 - a = 0.91 should be compared with ct' in table 2. The lack of agreement may be 
due to a loose estimate of a '  (the series are badly behaved) or may signal that we 
have not properly identified the critical theory. Another possibifity is a relation with 
similar singularities in lattice gauge theories to which we turn now. In this case we 
are dealing with expansions in terms of surfaces and these singularities might signal 
the existence of some well defined model for random surfaces. 

3.3. H I G H E R  DIMENSIONS 

The 3d Ising model at low temperature is equivalent to a Z 2 gauge theory at high 
temperature by Kramers-Wannier duality. This suggests to look at the possible 
complex singularities of the latter (or of other lattice gauge theories) in higher 
dimensions. On a four-dimensional hypercubic lattice Wilson [15] has derived a 
series for the free energy to 1 l th order in u = t2; t being the first character expansion 
parameter: 

t =  tanh fl, I i ( f l ) / I o ( f l ) ,  12 ( f l ) / I i ( f l  ) , 

for Z2,U(I) ,SU(2 ) respectively. The coefficients of these series have alternating 
signs, which points to a closest singularity on the real n e g a t i v e  axis in u. There is a 
real positive singularity, which depending on the case, signals the deconfining 
transition of U(1), the end of the metastable phase of Z 2, or might split into a pair 
of nearby complex singularities [16] (see fig. 7). 

The Bethe approximation may be generalized to a d-dimensional gauge theory. 
One replaces the lattice by a Cayley tree of cubes. Such a lattice is defined 

x 
-.18 

lStorder 
.172 

.19 
x 

-.17 .19 -.15 

? 

.23 -.25 

a) b) c) 

Fig. 7. Nearby complex singularities of 4D lattice gauge theories (a) Z2; (b) U(I);  (c): SU(2). 
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01 

~ ~ n ~ r a t i o n  I ÷1 

A 

g~n~ration I C C2 

~ g e n e m b o n  I 2 g~n~ration t-1 " " " * 

Fig. 8. Constructing a Cayley tree of cubes: each face like ABDE has 2(d - 2) adjacent cubes (only two 
are represented here); cubes built on the faces of C1 and C 2 will never meet. 

recursively (fig. 8). Given a cube of generation l, we add (2d - 5) cubes of generation 
l + 1 on each of its five free faces. On the resulting lattice, 2 ( d - 2 )  cubes are 
incident on each face, and there is no cluster nor cycle of cubes. Accordingly, the 
Bethe approximation resums strong coupling diagrams of the original model which 
may be considered as trees of cubes, but misses or miscounts diagrams as those 
depicted on fig. 9. 

On the other hand, as every link is shared by an infinite number of plaquettes, 
there is no weak-coupling expansion. To solve the model in its strong-coupling phase 
for the simplest case of a Z 2 gauge group, consider a cube C of generation l, and the 
plaquette p separating it from its ancestor (fig. 8). We call x l the sum of closed 
diagrams made of C and its descendants not containing p, tyz the sum of such 
diagrams containing p. 

(a) 

(b} 

Fig. 9. Examples of diagrams omitted (a), or overcounted (b) in the Bethe approximation. 
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The following recursion relations hold in dimension d 

[(x,+, + tyl÷,> ] 

y t = [ ( t x l + l + y t + , ) " 2 d - 5 " ' ]  5 , (3.8) 

where quotation marks mean that in the binomial expansion we set t 2 k -  1, 
t 2k+1 - t. Assuming that p ~ = y l / x l  goes to a limit p as l ~  oo, we get the self-con- 
sistent equation 

(, + 
P =  (l  + (3.9) 

When d---3, we recover eq. (3.1), in zero field, while for d = 4 ,  the following 
parametrization of the free energy follows: 

F -  (61ncoshfl + 41n2) = 201n(1 + 3 p t +  302 + p3t) 

- 14In(1 + 4pt  + 6p 2 + 4p3t + p4), 

3 + plO 
p = p S ,  p = t + ( l _ p t ) P S l  + 3plO " (3.10) 

This has two singular points at t 2 = -0 .151 and t 2 = 0.190. Moreover the transition 
from strong-coupling to the trivial weak-coupling phase p - 1 is discontinuous (first 
order) as in the ordinary mean field picture. Comparing F 2 given above to Fweak = 6fl 
+ In 2 leads to a first-order transition at t = 0.178. All these numbers agree roughly 
with those given on fig. 7. 

As d goes to infinity we have to rescale t so as to make dt 4 finite to have a sensible 
limit. The previous equation for p reduces to 

p = t + 2dp 5 , 

which has two singular points at 

16 1 
t 2=  + 2 5  ~/]-0-d " 

This is the limit considered by Drouffe, Parisi and Sourlas [6]. 
Finally, information about the critical behaviour at the complex singularity in four 

dimensions is rather scarce. Pad6 analysis of the Z2, U(1) and SU(2) short series 
gives an exponent q' r/tnging between 0.45 and 0.6, hence consistent with its classical 
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va lue  ½. I t  is ce r t a in ly  p r e l i m i n a r y  to c o n c l u d e  tha t  the  u p p e r  c r i t ica l  d i m e n s i o n  is 

four .  Clear ly ,  these  n e a r b y  c o m p l e x  s ingular i t i es  dese rve  m o r e  a t t en t ion .  

W e  thank  R.  Bal ian,  P. Moussa ,  G.  Paris i ,  a n d  N .  Sour la s  for  usefu l  d iscuss ions .  
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