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Given a square grid of side n, fully packed loops (FPL) are sets of paths which visit
once and only once each of the n2 sites of the grid and exit through every second of the
4n external edges. FPL of a given size fall into connectivity classes, or link patterns,
of configurations with a definite set of connectivities between their external edges. The
problem of enumerating FPL of a given link pattern is a challenging problem for the
combinatorialist, related to alternating sign matrices and other problems of current
interest (see [1, 2] for reviews). It is also of relevance in statistical mechanics, as it is
related by the Razumov–Stroganov conjecture [3] to the O(1)-loop model of percolation;
see [4] for references.

This paper, which is a continuation of [5], is devoted to a study of FPL configurations
with four sets of nested arches. We shall assume the reader to have some familiarity with
the ideas and techniques developed in [5] for the case of three sets of nested arches—in
particular, with the notion that the boundary conditions force a certain number of edges
to be occupied or empty (‘fixed edges’); see also [2] for a precursor of this idea and [6] for
a recent application to other types of FPL configurations.

Our aim is not only to get formulae as explicit as possible for the numbers of these FPL
configurations, but also—and mainly—to see to what extent this problem is equivalent to
the counting of tilings of certain domains of the triangular lattice, or in a dual picture, to
that of dimer configurations on a certain graph.

We shall consider FPL configurations with four sets of a, b, c and d nested arches and
denote by An(a, b, c, d) their number, n = a + b + c + d being the total number of arches;
see figure 1. We recall Wieland’s theorem [7], which asserts that An(a, b, c, d) depends
only on the orbit of the FPL link pattern under the action of the dihedral group D2n.
Unlike in the simple case of three sets of arches [5], but like in the more complicated case
treated in [6], we use this theorem to pick a particularly suitable representative of the
orbit.
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Figure 1. The link pattern of FPL configurations with four sets of nested arches.
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Figure 2. The generic situation where a > c, b > d (here a = 13, b = 10, c = 8
and d = 1). (i) The fixed occupied edges are in red or blue, the unfixed ones are
shown as dotted lines; (ii) the octagonal domino grid O.

1. From FPL to dimers to non-intersecting lines

1.1. The octagonal domain of unfixed edges

Using the reflective and cyclic symmetries of the problem, An(a, b, c, d) = An(a, d, c, b) =
An(b, c, d, a), we may always assume that a ≥ c and b ≥ d. Let A, B, C, D denote the
centres of the sets of nested arches; we assume that they are in anticlockwise order.
Because 2(a + b) ≥ n, A and B belong to different sides of the square. Then one uses
the same procedure as in [2, 5] to fix edges in 45o cones of vertices A, B, C, D: outside
these cones the occupied edges either form staircases (red edges in figure 2(i)), or every
second (blue) edge parallel to the external ones is occupied: we refer the reader to [5] for a
discussion of the procedure. The unfixed edges then live either on the sides of rectangular
2×1 tiles, also called dominos, the inner sides of which are occupied, or inside a connected
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Figure 3. Limiting cases where a − c and/or b − d equals 0 or 1.

domain made of adjacent elementary squares. Because the latter squares appear as defects
(‘disclinations’ in the language of crystallography) in the tiling reinterpretation of the
FPL, we try to make this domain as small as possible. The choice of a Wieland rotation
which makes the diagonal lines emanating from A and C and those from B and D almost
collinear, see figure 2(ii), reduces this defect zone to a single elementary square (indicated
by a star in figure 2(i) and drawn in red in figure 2(ii)). Thus:

Proposition 1 If one chooses Wieland’s rotation such that the centres of arches are as
depicted in figure 2, every site of the lattice belongs to at least one fixed edge, and
the unfixed edges form an octagonal pattern O made of dominos surrounding a single
elementary square.

The locations of the points A, B, C, D and of the small square are determined by the
data given in figure 2. We refer to this pattern of unfixed edges as the domino grid O,
to the sites which belong to a single fixed edge as active and to the elementary square as
the central square.

The figure depicts the generic situation when both differences a − c and b − d are
greater than 0. This includes the cases where one or/and the other equals 1, and where
the octagon loses some side(s) and acquires right angles.

In the case a− c = 0, b− d > 0 (or vice versa), the side of length a− c− 1 shrinks to
naught, while the adjacent sides are reduced by one unit and hence have lengths 2(c+d)−1
and 2(c + d). One is left with a hexagonal domain with two right angles; see figure 3. If
both a = c and b = d, one gets a rectangle.

Given this set of fixed edges, an FPL configuration is determined by an appropriate
choice of dimers, i.e., of pairings, between the active sites, realizing the desired connectivity
pattern. In particular, there are two special configurations, that we call the ‘empty’
and the ‘full’ ones. These configurations are obtained by dividing the domain O into
subdomains and choosing the dimers as indicated in figure 4.

Thus to any FPL configuration corresponds a dimer configuration. This
correspondence between the set of FPL configurations of type (a, b, c, d) and the set of
dimer configurations on O cannot, however, be one-to-one. Indeed it is clear from our
discussion that the domino grid is common to all FPL types (a + p, b − p, c + p, d − p)
for all p, −c ≤ p ≤ d. This is obvious in figure 2 where the effect of (a, b, c, d) →
(a±1, b∓1, c±1, d∓1) is just to shift the boundaries between the different sets of nested
arches (the broken black lines in figure 2(i)), while preserving the points A, B, C, D, the
shape of the octagon, the domino grid and the location of the central square.
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Figure 4. The dimers of the empty and the full configurations, for (a, b, c, d) =
(9, 14, 4, 5). The broken black lines show how to define the limits of the various
domains, while the pink ones give the limits of the sets of nested arches. The
light blue dots will be explained in (3) of section 1.4.

To distinguish dimer configurations pertaining to different ps, we now introduce a
new feature, made of non-intersecting lines.

1.2. Tilings and de Bruijn lines

At this stage we find it useful to introduce the dual picture, where one constructs a triangle
around each active site. The central square is also triangulated by four triangles. One gets
an octagonal picture O′ which is depicted in figure 5, in (i) for the simple FPL (2, 1, 1, 1)
and in (ii) for a more generic one.

A final transformation consists in cutting this octagon along a line L starting from
the central square, deforming the grid into a domain D of the regular triangular lattice
and identifying the two sides L± of the cut. Figure 5(iii) shows one particular way to do
this. For future use, we also draw a segment L′ which joins the centre of the central square
to the ‘east-north-east’ corner of the octagon. (Note that the segments L and L′ do not
coincide with the lines used in the construction of figure 2, although they are parallel and
close to them. Below, we shall slightly modify them, in a way depending on the tiling at
hand, so as to prevent them from intersecting the tiles.)

Any FPL configuration yields a pairing between triangles sharing an edge and hence
a tiling of the octagon by means of the tiles depicted in figure 6. Just as in the previous
section, the tilings of the domain D comprise all cases (a + p, b − p, c + p, d − p), for p
running from −c to d.

For a particular (a, b, c, d), we have to find a refined characterization of the tiling
configurations. We do this by means of an alternative representation by systems of non-
intersecting lines, also known as de Bruijn curves [8, 9].

J. Stat. Mech.: Theor. Exp. (2004) P06005 (stacks.iop.org/JSTAT/2004/P06005) 5

http://stacks.iop.org/JSTAT/2004/P06005


JS
TAT

(2004)
P

06005

On FPL configurations with four sets of nested arches

c+d

c+d

c+d

b+c

a+d
b-d+1

a+d-1

+

(iii)(ii)(i)

-

V

L’

V

L

L’

L

L

a-c
b-d

c+d

c+d

b-d

c+d

c+d

a-c

Figure 5. Triangulating the octagonal grid. Here (i) a = 2, b = c = d = 1 and
((ii), (iii)) a = 9, b = 14, c = 4, d = 5.

(i) (ii)

Figure 6. The different types of tiles: (i) on the octagonal grid, (ii) after its
deformation to equilateral triangles.

Recall that in the simple case of the tiling of a hexagon of size a×b×c, or equivalently
of the plane partitions in a box of that size, there is a one-to-one correspondence between
(i) configurations of dimers on a domain of the honeycomb lattice, (ii) configurations of
tiles (in the tiling problem of the hexagon) or of elementary cubes (in the plane partition
picture) and (iii) any of the three families of non-intersecting lines joining a pair of opposite
sides of the hexagon; see figure 7. Each family describes a collection of strips of tiles, which
pairwise share edges parallel to a given direction.

1.3. The c and d lines: definition and properties

Given the tiling associated with a certain FPL configuration of type (a, b, c, d), consider the
c+d de Bruijn lines which start from the vertical left side V of the domain O′ of figure 5(ii)
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(i) (ii) (iii)

Figure 7. The alternative descriptions of a plane partition, (i) as a set of dimers
on the honeycomb lattice, (ii) as a tiling or stack of cubes and (iii) as a system
of non-intersecting lines of either of three colours.

or D of figure 5(iii). As noticed above, the tiling is made of strips of tiles, pairwise sharing
edges parallel to a given direction, and the de Bruijn lines join the middles of these edges:
see for example the tilings and these lines for the empty and full configurations in figures 8
and 9. These lines are non-intersecting, and we name as c lines the first c starting from
the bottom of the left vertical interval V, and as d lines those (in number d) which start
from the upper part of that interval. We continue these lines across the domain until they
reach the line L or exit through the boundary of O′, whichever occurs first. In fact, we
claim (and will prove below) that they all reach the line L first and, more precisely, that
the c lines will reach it from below, while the d ones will do it from above. On the domain
D, the c lines reach the lower cut L− while the d lines reach the upper one L+. We now
state the main result of this paper:

Theorem 1 There is a bijection between FPL configurations of type (a, b, c, d) and families
of c and d non-intersecting lines on D, where the c lines go from V to L− and the d lines
go from V to L+. The sets of points where the c lines and the d lines reach L are disjoint.

This theorem has been stated for the lines on D but can of course be rephrased on
O′. Because the end-points on L of the d lines are disjoint from those of the c, we allow
a slight (configuration-dependent) redefinition of the lines L± on the domain D so as to
make them lie along tile edges; see figure 8.

To prove this theorem, we establish a certain number of properties of the c and d
lines, going back and forth between the two pictures, on the octagonal grid O on the one
hand, on the cut domain D one on the other. The properties of the lines are indeed easier
to establish in the tiling version, but to discuss their interplay with the FPL paths, it is
essential to return to O.

The first step is thus to translate the construction of the c and d lines back to the
octagonal grid O. By a slight abuse of notation, we still denote them by c, d on O. Note
that the (active) sites of O are bicolourable. By convention, we assign the colour • to
point C and to all sites distant from it by an even number of lattice steps, and ◦ to the
others. (For the sake of clarity, only a few sites have been coloured in figure 10.) When
drawn on O, the two segments L and L′ start from the upper right corner of the central
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Figure 8. Tiling of the empty and full configurations.
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Figure 9. The de Bruijn lines of the empty and full configurations. The segment
L′ appears in red, slightly deformed so as to follow tile edges.

square and pass via the external end-points of the two empty edges entering the FPL grid
at the points C and D, respectively1. These lines divide the octagonal domain O into two
regions I and II; see figure 10. Note that, by the construction of the section 1.1, region II
contains all the horizontal fixed edges of the right part of O and segments L and L′ pass
through their leftmost end-points. Now, for a given FPL configuration of type (a, b, c, d),
associated with a certain choice of dimers on the domino grid O, we call the as yet unused
edges of O vacant. The c and d lines start from the c + d vacant horizontal external

1 This last assertion has to be slightly amended in the case where a = c, b = d and the four points A, B, C, D lie
at the corners of the octagon, which has degenerated into a square (see figure 3).
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Figure 10. The c (blue) and d (green) lines of a FPL configuration of type
(9, 14, 4, 5). In the right figure, they have been continued across the cut as broken
lines.

edges bordering the left vertical side of the domino grid and are oriented inwards the grid.
They visit alternatingly a vacant edge and a dimer of the FPL configuration, with the
rule that the chosen vacant edges (called phantom) are all horizontal (and oriented from
left to right) in region I and vertical (and oriented from top to bottom) in region II. This
rule is just the transcription of the definition of the c and d lines on D, namely it reflects
the pairing of adjacent tiles which share a vertical edge.

In the same way as on D, the first c lines from the bottom are called c lines, the next d
are called d lines, and we interrupt them as soon as they touch either the segment L or one
of the boundaries of the grid. Note that the fact that the lines may be constructed without
encountering any obstruction or that they are non-intersecting, which is not obvious from
the standpoint of O, follows from their construction on the domain D as conventional de
Bruijn lines. This is summarized in:

Lemma 1 On O, the c and d lines are non-intersecting; each of them is described by an
alternating sequence of dimers and ‘phantom’ edges.

In region I the dimers visited by the c and d lines are of the three types

while in region II, they are .

Another property of c and d lines which is clear from their definition on D is the fact
that between two of them, or below the lowest one, or above the highest one, the tiling
is frozen and uses only horizontal rhombi. This is easily established, starting from the
leftmost corner of any domain of the triangular lattice lying between two successive lines,
or between the upper or lower one and the boundary, and proceeding iteratively. This
also means that the data for c and d lines are sufficient to characterize the tiling entirely.
When restated on O, this property means that c and d lines are separated in region I by
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L

Figure 11. The immediate neighbourhood of L. Dimers are represented in red,
and fixed edges in light blue. Only two situations may occur for FPL paths:
either they cross L via a dimer on the left and a fixed horizontal edge on the
right, or they simply touch L without crossing via a fixed edge followed by a
dimer on the right side.

only horizontal dimers and in region II by only vertical ones. Moreover, these separating
dimers connect ◦ sites to • ones from left to right in region I and from top to bottom in
region II. We thus have:

Lemma 2 All vertical dimers of the region I and all horizontal dimers of region II are
visited by c or d lines. Also, all horizontal dimers connecting • to ◦ sites from left to
right in region I and from top to bottom in region II are visited by c or d lines.

Lemma 3 All c and d lines must go to L.

This is obvious on D: the c and d lines enter D through vertical edges along V; they
must necessarily exit through vertical edges again, and the only possibility for doing so
is through L±; see figure 10. From the standpoint of O, this is less obvious: by parity
arguments, all sites of O on L are ◦ sites. By lemma 2, it follows that any c or d line
reaching L must do so via a dimer. On figure 2 we observe that no fixed edge may touch
L from the left side; hence the only way a FPL path may touch L from the left is via a
dimer, which, as it ends up on a ◦ site, must by lemma 2 be also part of a c or d line. So
any FPL path that touches L from the left and therefore crosses it, as it is elongated via
a fixed horizontal edge on the right of L, corresponds to the end of a c or d line coming
from the left. Analogously, any FPL path touching L from the right but not crossing it
corresponds to the end of a c or d line coming from above. By fully packedness, only these
two situations (crossing, or touching from the right without crossing) may occur, in view
of the disposition of fixed edges; see figure 11 for illustration. On the total of c + d sites
of L, some of them, say i, correspond to crossings of FPL paths and the other c + d− i to
touching without crossing. These add up to the c + d c and d lines introduced above.

Lemma 4 i = c, hence all c lines reach L from the left and all d lines reach it from above.
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L’

L
i<c

j<d

i+j=c+d

Figure 12. Each of the i c or d lines terminating on L from the left corresponds
to an FPL arch centred on C; hence i ≤ c. The same holds for the j c or d lines
touching L′ from the left: each of them corresponds to a FPL arch centred on D;
hence j ≤ d. But as i + j = c + d, we must have i = c and j = d.

As noted above, the external end-point of L is the centre of the set of c FPL nested
arches. It is clear that these arches must cross either L or its prolongation across the central
square. Let us show that they cross L and that they are in one-to-one correspondence
with the c or d lines ending up on L from the left. Let us elongate the lines crossing L into
FPL paths by letting them alternate between fixed edges and dimers. The fixed edges on
the right of L being all horizontal, let us orient them from left to right. The FPL paths
visit them in this direction. In particular, such a path can never cross L again and can
only bounce off it. This means that all FPL paths crossing L must exit O along its right
border. The same reasoning in the region to the left of L shows that these FPL paths
must enter the grid from the lower border. The c FPL paths are the only ones which
connect the bottom to the right, and therefore i ≤ c; see figure 12. The same reasoning
applied to the line L′, with c replaced by d shows that there are j ≤ d c or d lines crossing
L′. But the only way for a c or d line to reach L from above is by first crossing L′; hence
there are at most j ≤ d c or d lines reaching L from above. As the total of c and d lines
reaching L is c + d = i + j, we must have i = c and j = d.

Lemma 5 From the non-intersecting c and d lines, one reconstructs a unique FPL
configuration of type (a, b, c, d).

We start from a configuration of non-intersecting c and d lines going from the left
vertical border V of O to the line L, with the rule that every second edge is horizontal
and travelled from left to right in region I and vertical and travelled from top to bottom
in region II, while the arrival sites on L form two disjoint sets of respectively c and d sites.
We then construct dimers by keeping every second edge (those going from a • to a ◦) on
the c and d lines, and adjoining them the horizontal edges connecting ◦ to • sites from
left to right in region I, and from top to bottom in region II, in all regions between the
c and/or d lines: this gives a complete dimer covering. Upon addition of the fixed edges
as specified in section 1.1, one gets a FPL configuration. By the same argument as in
lemma 4, there are c FPL paths crossing L and d crossing L′. This exhausts all external
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Figure 13. An artist’s view of the a,b, c,d lines on O′.

edges on the right vertical side of the grid, and therefore the sets of c and d nested arches
are next to one another.

The same discussion must now be repeated for the pairs (d, a) and (b, c). One
introduces the two new sets of lines a and b, which start from the segments of the
boundary of O′ marked in figure 13, and which are de Bruijn lines describing chains
of tiles sharing edges parallel to a certain direction. One also continues the previous lines
c and d across the segment L up to the boundary. The segments L′′ and L′′′, which are
the continuations of L and L′, respectively, across the centre of the central square, have
lengths a+d and b+c. One may then apply the analysis of lemmas 1–5 to the pairs (a,d)
and (b, c). In particular, there are a FPL paths centred on A which cross the segment L′′

on sites disjoint from those of the d lines; and likewise for the b lines centred on B and
the c lines, across the segment L′′′. One concludes that the FPL configuration contains at
least four sets of a, b, c and d nested arches. As a+b+c+d = n, this exhausts the number
of FPL paths (and possibly also the patience of the reader!), establishes the lemma and
completes the proof the theorem.

1.4. Remarks

(1) From the discussion above, in particular from lemma 5, it follows that:

Corollary. Any dimer configuration on the octagonal grid O or any tiling of O′ yields a
FPL of type (a + p, b − p, c + p, d − p), for some p, −c ≤ p ≤ d.

Indeed, start from the domino grid pertaining to any (a, b, c, d) FPL configuration.
For any dimer configuration on O or the associated tiling of O′, draw the corresponding
non-intersecting lines on D. Let c′ be the number of those which reach L−, d′ that of
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Figure 14. A typical configuration of non-intersecting c and d lines for c = 3,
contributing to fm1,m2,m3(a, b, 3, d). The lines must enter through the light blue
points (on the left) and exit through the upper part of the cut except at the points
m1,m2,m3 or through its lower part, at the points m1,m2,m3. The elementary
steps for the c and d lines, in directions i and j, are shown in the medallion.

those reaching L+, with c + d = c′ + d′. By lemma 5, one reconstructs a unique FPL
configuration of type (a′, b′, c′, d′) with a′ − a = c′ − c = b − b′ = d′ − d =: p.

This corollary implies a sum rule on numbers of FPL configurations in terms of that
of dimers:

inf(b,d)∑
p=− inf(a,c)

An(a + p, b − p, c + p, d − p) = #dimers on O, (1.1)

for which we shall present examples in section 2.3.

(2) It is legitimate to ask whether the elementary moves or on dimers

are ergodic, i.e. suffice to span all the FPL configurations of a given type (a, b, c, d).
Equivalently, are the moves acting on tilings ergodic? Contrary to the case for
three sets of nested arches [5], we cannot rely on the picture of cube stacking, because of the
conic singularity in the tiling caused by the cut. The third picture that we used, namely
the non-intersecting lines, provides the answer. It is easy to prove by contradiction that
all configurations of non-intersecting lines c and d on the domain D are generated from
one of them by repeated applications away from the branch point of the elementary move
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(and their rotated forms). This establishes the ergodicity property for the above
moves of dimers or of tiles2. Note on the other hand that the move acting on the
central square connects FPL configurations of types (a, b, c, d) and (a±1, b∓1, c±1, d∓1).

(3) In view of this ergodicity, we may now reconsider the two special configurations,
‘empty’ and ‘full’, depicted in figures 4 and 8. What makes them extremal is the fact
that only two elementary moves can act upon them. (This should be compared with the
unique move in the ordinary case of cube stacking, when one considers the empty or the
full box.) The locations of these moves are what is represented by the blue dots in figure 4.

(4) Note that the tiling problem that we have to deal with is reminiscent of but not
identical to the problem treated in [9], namely that of a centrosymmetric octagon by six
species of tiles.

2. Counting configurations

In this section, we use the bijection of theorem 1 to actually count the numbers of FPL
configurations of type (a, b, c, d).

2.1. The setting

It is simplest to use the c and d lines on the domain D. The fact that they stop on segments
L± reduces the counting of configurations to the standard problem of enumerating all non-
intersecting paths from one set of points to another. As the tiles crossed by c and d lines
only have two orientations (and all have two vertical edges), the corresponding paths may
only go in two directions, say i, j at each point, as shown in the medallion of figure 14.

Moreover, we know that the c lines end on the lower part of the cut L− at c distinct
points, marked in yellow in figure 14, and that the d lines reach the upper part of
the cut L+ on d distinct points, forming the complement of the c. Let us denote by
m1, m2, . . . , mc the positions of these c points counted from bottom to top on L−, with
1 ≤ m1 < m2 < · · · < mc ≤ c + d, while their positions must be counted from top to
bottom on L+.

We now have the well-posed problem of computing the number of configurations of
non-intersecting c and d lines with elementary steps i or j going on D from its left side
(light blue points in figure 14) to its right (yellow points in figure 14), and such that the
lower c lines exit through points m1, m2, . . . , mc of the lower part of the cut, while the
upper d ones exit through their d complements on the upper part of the cut. We denote
by fm1,m2,...,mc(a, b, c, d) the number of such configurations.

2.2. A fermionic formula for path counting

In this section we recall the so-called Lindström–Gessel–Viennot [11] formula for counting
the number N(A1, A2, . . . , AN |E1, E2, . . . , EN) of non-intersecting paths from a set of
points A1, A2, . . . , AN to a set of points E1, E2, . . . , EN of the square lattice, such that
only elementary steps to the right and to the top are allowed. Let P (Ai, Ej) denote the

2 This result is stronger than the classical result stating that the moves are ergodic on tilings of simply

connected domains of the triangular lattice [10].
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number of paths from the point Ai to the point Ej with these only allowed elementary
steps; then we have (see [11] and further references in [12])

N(A1, A2, . . . , AN |E1, E2, . . . , EN) = det(P (Ai, Ej))1≤i,j≤N . (2.1)

(For physicists, recall that this is just the expression for the 2N -point function
〈ψA1 , . . . , ψAN

ψ∗
E1

, . . . , ψ∗
EN

〉 of free fermions, expressed as the Slater determinant of their
two-point function P (Ai, Ej) = 〈ψAi

ψ∗
Ej
〉, when their action is

∑
α→β ψ∗

αψβ, summed over

all edges α → β of the square lattice, oriented from left to right and from bottom to top.)

2.3. Computation of An(a, b, c, d)

To apply formula (2.1) to the computation of fm1,...,mc(a, b, c, d), we just have to record
the relative positions of the entry and exit points of the c and d lines. The solution goes
as follows. We first construct the matrix M of size (c + d) × (c + d) whose Mi,j entry is
the binomial coefficient

Mi,j =

(
a + b + c + d − j

a + d − i

)
. (2.2)

The matrix element Mi,j counts generically the number of paths between the ith entry
point counted from bottom to top (in light blue in figure 14) and the jth exit, counted
from top to bottom on the upper part of the cut (in yellow in figure 14). To take into
account the missing images of the points on the lower part of the cut (filled black dots
in figure 14), we must erase the columns j = m1, m2, . . . , mc of this matrix, and append
instead c new columns vk, k = 1, 2, . . . , c:

(vk)i =

(
a + b

a + c + 2d + 1 − i − mk

)
, (2.3)

which count the total number of paths from the ith entry point to the exit point mk on the
lower part of the cut. Then the determinant of the resulting matrix M(m1, m2, . . . , mc)
gives fm1,...,mc(a, b, c, d):

fm1,...,mc(a, b, c, d) = det(M(m1, m2, . . . , mc)) (2.4)

and finally

An(a, b, c, d) =
∑

1≤m1<m2<···<mc≤c+d

fm1,m2,...,mc(a, b, c, d) (2.5)

This formula is very explicit if not too easy to manipulate. We have been able to
drastically simplify it in a few cases. For instance, when c = 1, one may expand detM(m)
with respect to its added column, and use an explicit expression for the inverse matrix of
M to prove that

fm(a, b, 1, d) =

(
b

d+1−m

)(
d

m−1

)
(

a+2d+1−m
a

)(
2d+1−m

m−1

)(
b+d+1
m−1

) ∏d
i=0

(
a+b+i

a

)
∏d−1

i=0

(
a+i
a

)
×

m−1∑
j=0

(
2d+2−m
m−1−j

)(
2d+2+j−2m

j

)(
a+m−2−j

m−1−j

)(
b+d+2+j−m

j

)
(

m−1
j

) . (2.6)
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Figure 15. Dimer counting: the case (1,1,1,1).

For c = 2 we have

fm1,m2(a, b, 2, d) =

(
b

d+1−m1

)(
b+1

d+2−m2

)(
d+1

m1−1

)(
d

m2−2

)
(

a+2d+2−m1

a

)(
a+2d+2−m2

a

)(
b+d+3
m1−1

)(
b+d+2
m2−2

) ∏d+1
i=0

(
a+b+i

a

)
∏d−1

i=0

(
a+i
a

)
×

m1−1∑
j1=0

min(m2−2,m2−m1+j1)∑
j2=0

(
1 −

(
j2

m2−m1

)
(

j1+m2−m1

m2−m1

)
)

× (m2 − m1)(m2 − m1 − (j2 − j1))

(m2 − 1 − j2)(d + 2 − m1)

× [(2d + 4 − m1)(2d + 3 − m1)(2d + 4 − m2)(2d + 3 − m2)]

× [(2d + 5 + j1 − 2m1)(2d + 5 + j2 − 2m2)

× (2d + 5 + j1 − m1 − m2)(2d + 5 + j2 − m1 − m2)]
−1

×
(

a − 3 + m1 − j1

a − 2

)(
a − 3 + m2 − j2

a − 1

)

×
(

b + d + 4 + j1 − m1

j1

)(
b + d + 4 + j2 − m2

j2

)
. (2.7)

This follows from a double expansion of detM(m1, m2) with respect to the two added
columns.

Both expressions yield fairly explicit formulae for N(a, b, 1, d) and N(a, b, 2, d).

2.4. FPL and dimer countings

According to the third remark of section 1.4 and equation (1.1), it may be interesting to
compute also the total number of dimers on the octagonal grid O.

We shall illustrate this by an example. In the cases of an (m, 1, m, 1) FPL, the
domino grid O is made of a unit square surrounded by rectangular dominos. According
to Kasteleyn [13], one computes the number of dimers on this graph by orienting its edges
in such a way that along every elementary closed circuit the number of edges of either
orientation is odd. The number of dimers is then the pfaffian of the resulting signed
adjacency matrix. The case m = 1 is depicted in figure 15.

Since these graphs are two-coloured, their (antisymmetric) signed adjacency matrix
is made of two off-diagonal blocks:(

0 Gm

−GT
m 0

)
and the pfaffian is just (up to a sign) the determinant of one of these blocks. (It is 9 for
the case (1, 1, 1, 1).)
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m+1G       =

2

2

Gm

Figure 16. Constructing Gm+1 from Gm (in black) by adding one layer of (blue)
dominos.

In general, one constructs the graphs and their adjacency matrix by a recursive
procedure of adding layers of dominos, as depicted in figure 16.

One finds that the determinants Dm, and thus the numbers of dimers, are
alternatingly perfect squares or doubles of perfect squares. This is a consequence of
the fourfold symmetry of the grid, as discussed in [14] (in the terminology of that paper,
the graphs Gm are 4-odd-symmetric, and their Z4 quotient has (m + 1)2 vertices):

dm :=
√

D2m−1 = 3, 70, 13 167, 20 048 886, 247 358 122 583, 24 736 951 705 389 664,

20 054 892 679 528 741 176 540, 131 821 539 275 853 806 053 297 420 440, . . .

for m = 1, 2, . . . , 8,

while

δm :=
√

D2m/2 = 8, 526, 280 772, 1215 446 794, 42 663 813 089 328,

12 142 696 908 022 734 304, 28 022 410 984 084 414 473 869 168,

524 367 885 668 519 092 847 372 976 461 256, . . . also for m = 1, 2, . . . , 8.

Curiously, one observes3 that these numbers are given by the determinant D̂(L, θ) :=

e−iθL/2 det1≤i.,j≤L

((
i+j−2
i−1

)
+ eiθδij

)
for θ = π/2, namely that

√
Dm = D̂(m + 1, π/2). This

may be proved by writing D̂(m + 1, π/2)D̂(m + 1,−π/2) = det(I + T 2), where T is the
matrix with entries Tij =

(
i+j−2
i−1

)
, i, j = 1, 2, . . . , m + 1, and expanding the determinant

in terms of multiple minors of T 2. More precisely, introducing ∆m(λ) = det(λI + T 2), we

3 We are very grateful to Saibal Mitra for this observation.
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have the expansion

∆m(λ) =

m+1∑
k=0

λm+1−k
∑

1≤p1<···<pk≤m+1

det
1≤i,j≤k

((T 2)pi,pj
). (2.8)

The coefficient of λm+1−k in this polynomial is then identified with the sum of
determinants (2.5), with a = m + 1 − k, b = k, c = m + 1 − k, d = k, by expanding the
latter with respect to some of their columns as follows. Upon the redefinition of columns
j → m + 2− j, we note that the matrix Mij → M′

ij =
(

m+j
m+1−i

)
, while the added columns

are borrowed from the matrix V ′
ij =

(
m+1

m+1+j−i

)
, which is lower triangular with 1s on the

diagonal. The matrix M(m′
1 = m+2−m1, . . . , m

′
m+1−k = m+2−mm+1−k) is now made

of the matrix M′ with columns m′
1, m

′
2, . . . , m

′
m+1−k erased and those of V ′ appended.

Denoting by p1, p2, . . . , pk the ordered complement of the m′
i in {1, 2, . . . , m + 1}, we may

also view this matrix as made of V ′, with the columns p1, . . . , pk erased and those of M′

appended. Expanding the corresponding determinant with respect to these columns, we
arrive at

det(M(m′
1, . . . , m

′
m+1−k)) =

∑
1≤i1,...,ik≤m+1

(−1)
∑

m+1+irM′
i1,p1

. . .M′
ik,pk

|V ′|i1,...,ik;p1,...,pk
,

(2.9)

where the latter denotes the multiple minor of V ′ in which lines i1, . . . , ik and columns
p1, . . . , pk are erased and the determinant is taken. The latter is also equal to the
determinant of single minors det(|V ′|ir,ps)1≤r,s≤k, by a property satisfied by all lower
triangular matrices with 1 s on the diagonal. Using the multilinearity of the determinant,
we write

det(M(m′
1, . . . , m

′
m+1−k)) = det

1≤r,s≤k

(
m+1∑
i=1

(−1)m+1+iM′
i,pr

|V ′|i,ps

)
(2.10)

and we finally note that
m+1∑
i=1

(−1)m+1+iM′
i,r|V ′|i,s = T 2

rs (2.11)

as a consequence of a simple binomial identity, as |V ′|i,s =
(

m+s−i−1
m

)
. This completes the

proof, as the sum over the m′
i amounts to that over the pi.

So we get all the A2m+2(a, b, c, d) with a + b = b + c = c + d = m + 1 as coefficients
of the polynomial ∆m(λ):

∆m(λ) = det(λI + T 2) =

m+1∑
k=0

λm+1−kA2m+2(k, m + 1 − k, k, m + 1 − k) (2.12)

with the convention that An(a, 0, a, 0) = 1 = An(0, a, 0, a), as it counts the number of
FPL configurations with a single set of nested arches. Moreover, according to corollary 1,
the numbers Dm are nothing but

Dm =

m+1∑
k=0

A2m+2(k, m + 1 − k, k, m + 1 − k) = ∆m(1). (2.13)
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One may illustrate (2.12) and (2.13) on the first values of m:

m = 1 : T 2 =

(
2 3
3 5

)
, ∆1(λ) = 1 + 7λ + λ2,

D1 = 9 = 1 + A4(1, 1, 1, 1) + 1 = 1 + 7 + 1,

m = 2 : T 2 =


 3 6 10

6 14 25
10 25 46


 , ∆2(λ) = 1 + 63λ + 63λ2 + λ3,

D2 = 128 = 1 + A6(2, 1, 2, 1) + A6(1, 2, 1, 2) + 1 = 1 + 63 + 63 + 1,

m = 3 : T 2 =




4 10 20 35
10 30 65 119
20 65 146 273
35 119 273 517


 ,

∆3(λ) = 1 + 697λ + 3504λ2 + 697λ3 + λ4,

D3 = 4900 = 1 + A8(3, 1, 3, 1) + A8(2, 2, 2, 2) + A8(1, 3, 1, 3) + 1

= 1 + 697 + 3504 + 697 + 1 etc.

Note that the above proof relies crucially on the fact that V ′ is lower triangular with 1
s on the diagonal, a property still true in general when b = d, while a and c are arbitrary(
in which case we have V ′

ij =
(

a + b
a + b + j − i

))
. This leads straightforwardly to the

generating function:

∆a+b,b+c(λ) = det
1≤i,j≤b+c

(λI + U(a + b)) =

min(a+b,b+c)∑
i=0

λb+c−iAn(a + b − i, i, b + c − i, i),

(2.14)

where the matrix U(m) is the m-truncated version of T 2, namely

U(m)ij =
m∑

r=1

(
i + r − 2

i − 1

)(
j + r − 2

j − 1

)
. (2.15)

This gives access to all FPL numbers of the form An(a, b, c, b) in a very compact manner.
For illustration, we have for a + b = 4 and b + c = 6 the following generating function:

∆4,6(λ) = det




λ + 4 10 20 35 56 84
10 λ + 30 65 119 196 300
20 65 λ + 146 273 456 705
35 119 273 λ + 517 871 1355
56 196 456 871 λ + 1476 2306
84 300 705 1355 2306 λ + 3614




= λ6 + 5787λ5 + 129 627λ4 + 97 874λ3 + 1764λ2

= λ6 + A10(3, 1, 5, 1)λ5 + A10(2, 2, 4, 2)λ4 + A10(1, 3, 3, 3)λ3 + A10(0, 4, 2, 4)λ2

(2.16)

and the corresponding number of dimer configurations is ∆4,6(1) = 235053.
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The determinants D̂(L, θ) have occurred in different contexts [15]–[17]. In the latter
of these references, the following large L asymptotic behaviour is proposed:

D̂(L, θ) ≈ AHT(L)2 ≈
(

33

24

)L2/4

.
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