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Conformal theories associated with the coset construction SU(2)k × SU(2)JSU(2)k+t are 
described by a generalized Coulomb-gas formalism. An integrable lattice model obtained by k 
fusions of the 6-vertex model has a continuous critical line containing the level-k Wess-Zumino- 
Witten model. Its continuum limit is described by tensor products of the parafermionic and free 
bosonic sectors. Modification of its boundary conditions by the introduction of floating charges, 
yields the coset models. The discussion extends to non-unitary models. Special attention is paid to 
the case k = 2, corresponding to N = 1 supersymmetry. 

I. Introduction 

The  recent  period has seen an intense activity in the construct ion of  conformal ly  
invariant  theories (for a review, see ref. [1]) and their classification. Modular  

invar iance on the torus has proved to be an effective constraint  for this purpose.  

On  the other  hand, according to ideas [2] prior to modern  developments in 

conformal  invariance, most  two-dimensional critical models are expected to derive 

f rom free bosonic  theories. Steps have been taken to establish links between these 

two approaches  [3-5]. In ref. [5] we have shown that all minimal part i t ion functions 

classified in refs. [6, 7] are linear combinat ions  of  Gaussian part i t ion functions 

[8-10].  A derivation of  these expressions f rom the underlying lattice models was 

p roposed  in refs. [5,11]. 

The  purpose  of  this paper  is to extend these considerations to theories based on 

the coset construct ion on the affine SU(2) algebra [12-14]. This includes, in 
particular,  N = 1 supersymmetric theories. 

In  all cases, the underlying microscopic model  is a spin S = ½k vertex model  [15]. 
The  latter presents a critical line with central charge c = 3 k / ( k  + 2). As discussed in 

this paper,  its self-dual point  turns out to be described by the SU(2) level-k 
W e s s - Z u m i n o - W i t t e n  (WZW) model  [16,17]. Along the critical line, the part i t ion 

funct ion on  the torus can be reexpressed in terms of  a free bosonic field and a Z k 
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parafermionic theory [18,19] coupled through boundary conditions. For k = 1, 
parafermions are absent and it is known [5,11] that the c < 1 partition functions are 
obtained, starting from the S = ½, 6-vertex model, by introducing "floating electric 
charges" related to the exponents of the classifying simply laced algebra. Likewise, 
for k > 1 a similar modification of the bosonic contribution leads to the other 
discrete series based on the SU(2) coset construction. The interpretation of these 
theories, in terms of tensor products of parafermion and of (modified) free boson 
sectors, looks quite natural, in view of the previous observations of ref. [14]. What is 
less obvious is the way these sectors are coupled through boundary conditions, as 
discussed below. 

In sect. 2, we review the case of c < 1 minimal models, their filiation with the 
6-vertex model and the corresponding c = 1 continuous theories. Floating charges 
proportional to the exponents of some simply laced Lie algebra reduce the central 
charge from c = 1 to c < 1 and generate all the minimal models: this is summarized 
in a compact way in eq. (2.25), which was originally proposed by Kostov [20], the 
microscopic interpretation [5,11] of which is recalled. All these considerations are 
equally valid for non-unitary minimal models, as exemplified by the c = - 2~ theory 
describing the Lee-Yang edge singularity [21]. 

Sect. 3 extends these ideas to the next non-trivial case, k = 2, which through the 
coset construction leads to the N = 1 superconformal minimal theories. Here the 
basic model is a spin-l, 19-vertex model. It has a critical line, with c = {, originating 
from the k = 2 WZW model, as tested by a numerical calculation of the transfer 
matrix spectrum. Inclusion of floating charges, as before, enables one to recover all 
the c < { superminimal models classified by Cappelli [22] but the exceptional series 
(D, Er) , for which a special construction remains to be found. 

Generalization to arbitrary k is then straightforward; the relevant formulae are 
collected in sect. 4. 

Sect. 5 shows that similar considerations apply to the N = 2 superconformal 
models [23]. We recall that the corresponding representation may be obtained by the 
coset construction applied to SU(2) × U(1)/U(1)diag .. 

Our final comments are presented in sect. 6, while three appendices contain some 
technical details and proofs. 

2. Minimal eonformal theories 

2.1. We first discuss the case of minimal models, i.e. conformally invariant models 
for which the operator algebra closes with only a finite number of primary fields. As 
shown in ref. [24] this occurs for central charges 

6(p  _p,)2 
c (p ,  p')  = 1 < 1, (2.1) pp' 
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where p, p '  are two coprime positive integers. In this case the allowed values of h, 

are given by the Kac formula [25] 

( rp - sp')2 - ( p - p ' )  2 
h,~ = , (2.2) 

4pp '  

with the constraint that the integers r, s satisfy the bounds 

l <<.r<<.p'- l ,  

l < ~ s < ~ p - 1 .  (2.3) 

Unitary theories [26] correspond to IP - P ' I  = 1. Using the requirement of modular 
invariance [27], all possible partition functions of minimal models on a torus 

Z = ~., N h ~ X h ( q ) x ~ ( ~ t ) ,  (2.4) 
h,,~ 

have been classified [6,7]. In eq. (2.4), q = exp2i~r~, T = ~2 / /0~1  = I"R__-~-i~ I is the 
modular ratio, Nh~ is the number of primary fields of dimensions (h, h), Xh is the 
character of the Virasoro algebra in the irreducible representation of highest 
weight h. 

2.2. As suggested by various approaches [5,11, 28], the underlying model in all the 
theories (2.1) is the 6-vertex model. It is obtained by putting arrows on each bond of 
the square lattice, in such a way that the current is conserved at each node, thus 
giving rise to 6 possible vertex configurations (fig. 1). (More generally, we will be led 
to consider models with 2S + 1 states per bond in the following; this simple case 
appears thus as a spin S = 1 vertex model). Imposing invariance under reversal of 
all arrows [29], one is left with three free parameters, the Boltzmann weights a, b, c 
(fig. 1). If k denotes 

a 2 + b 2 _ c 2 

A -- 2ab  ' (2.5) 

one may show that transfer matrices, on a strip of width L with the same value of 
A, commute. In the very anisotropic limit, the model is equivalent to a spin- ½ XXZ 

+ + + + + + + +  
a b c d 

Fig. 1. Vertices of the 8-vertex model. 
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antiferromagnetic quantum chain with hamiltonian [29] 

L 

H ~ E sixsx+l "-[- sysy+I  - ASiZST+l. 
i = 1  

(2.6) 

The critical region corresponds to IAI ~ 1. In this case, setting 

A =  - c o s  ~r~, 0~<2t~<l, (2.7) 

a convenient parametrization of the weights is (up to a global normalization) 

! = sin ½•(rr - a ) ,  

= sin ½~,(~r + a ) ,  

sin Mr, 

(2.8) 

where a is a spectral parameter I~1 ~ ~r. The continuum limit of the model can then 
be derived in various ways [30,31]. For instance, one can reformulate it as a 
solid-on-solid (SOS) interface model [32]; height variables ~o are introduced on the 
dual lattice in such a way that neighbouring ep differ by +~r depending on the 
orientation of the arrow which separates them. It is then argued [31] that renormal- 
ization group trajectories flow to the Gaussian fixed point, which we shall describe 
by the action 

d=aTg flv,pl2 d2x. (2.9) 

The value of the renormalized coupling constant is then easily obtained using 
Baxter's solution of the 8-vertex model [29]. Indeed, introduction of vertices with a 
non-conserved current (fig. 1), which correspond to vortices of charge m = 
(21r)-~X7¢p dl = 2, gives rise to a singularity of the free energy 

f~ - [dl 2/y , y = 2X. (2.10) 

On the other hand the scaling dimension of a vortex operator in eq. (2.9) is easily 
calculated [33] to be x = ½gm 2. We have thus 

g =  1 - h ,  0 ~< g~< 1; (2.11) 

g = 0 corresponds to A = 1, c = 0. If A > 1 the model is completely frozen with 
ferroelectric order. The other limit, g = 1, gives rational weights in eq. (2.8). In this 
case A = - - 1 ,  c =  a + b, and the model is isotropic and self-dual, due to the 
symmetry property of the partition function (in the plane) [29] 

Z ( a , b , c )  = Z ( ½ ( a - b + c ) , ½ ( - a + b + c ) , ½ ( a + b + c ) ) .  (2.12) 
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The phase A < - 1 is antiferroelectric, while an infinite-order phase transition takes 
place at A = - 1 .  We note, finally, that the 6-vertex model can be mapped on a 
Thirring model [30], the bosonization of which yields eq. (2.9). If A = 0 (g = 2~ = ½) 
the four-fermion coupling vanishes and one gets a free (Dirac) fermion theory. 

The partition function of the critical 6-vertex model on a torus can now be 
calculated. We recall, first, the regularized expression [34] of the partition function 
of the Gaussian theory (2.9) 

Z0 = f~ doubly[ Drp ] e _ ~ =  V ~ I  1 
I~ (q ) l  2 '  

periodic 

(2.13) 

where ~ is Dedekind's function, i.e. 

oo 

*l( q) = ql/24 I-I (1 - qn).  (2.14) 
n = l  

In the mapping onto eq. (2.9), special care must be paid to boundary conditions. 
The correspondence between arrows and heights being only local, the latter cannot 
be defined consistently on the toms. Following a closed path along wl, w2, there can 
be [9] shifts of the variable ~: 8t~ = 2qrM, 82¢ p = 2rrM'. In such a "sector", the 
continuum limit of the partition function reads 

ZM M,(g) = f81~_2~M[ Dcp]e-~= Zoexp(-~rglM'- Mz12 ) _ " q  (2.15) 
82~ = 2 r r M '  

It enjoys the modular covariance properties expected from its definition 

ZMM,(r)=ZcM,+dM, aM,.bM( a?+b 1 (2.16) 

If the model is considered on a lattice L × L' with L, L'  even, M and M'  are 
integers. In this case, summing over M, M'  gives the Coulombic (or Gaussian) 
partition function 

Zc(g)= E 
M, M ' ~ Z  

1 E q(E/vrg+Mv:ff)2/4q (E/vI~-M¢~)2/4 , 
In121 E, M~Z 

1 
E q~EM~TaEM " (2.17) 

Inl 2 e , M ~ Z  
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The second equality, obtained after a Poisson transformation (2.17), displays the 
q ~ 0 behaviour, Z c - (qO) -C/24 with c = 1. The conformal weights are given by 

AEM + ~EM = XEM = E2/2g  + gM2/2,  

AEM -- ~EM = SEM = EM, (2.18) 

they correspond to electromagnetic operators OEM, i.e. combinations of spin-wave 
(vertex operators exp(iEcp)) and vortex operators [33]. Eq. (2.17) appears also in 
string theory as the partition function of a free field compactified on a circle [8, 35] 
of radius R = ~-g .  It satisfies the symmetry 

Z c ( g  ) = Z c ( 1 / g ) ,  (2.19) 

the fixed point of which is the self-dual point, g = 1, mentioned above. It is 
noteworthy that Z c ( g =  1) is precisely equal to the SU(2), level k = 1 WZW 
partition function (see appendix A). We shall comment on this point later. 

If the model is studied on a lattice with L or L'  odd, the corresponding 
frustrations can be half an odd integer. A new modular invariant can then be 
constructed by considering 

E + E + E ) ( ) .  (2.20) ZMM, g 
M ~ Z + ~ , M ' ~ Z  M ~ Z , M ' ~ Z + ½  M , M ' ~ Z +  Xz / 

Adding eqs. (2.17) and (2.20) gives 2 Z c ( g / 4  ). In the following we shall restrict 
ourselves to even x even lattices. 

2.3. It has been observed [5] that all minimal partition functions [6,7] can be 
reexpressed as linear combinations of Coulombic partition functions with various 
couplings (see formulae (A.5)-(A.9) in ref. [5]). We want to give here an a posteriori 
justification of this result. First, we recall that to get a central charge c < 1 starting 
from a free field with c = 1, it is necessary to add (in the plane) at infinity a charge e 
such that [3] 

c = 1 - 6e2/g. (2.21) 

Eq. (2.1) can then be realized with, e.g. 

g = p / p ' ,  e = ( p " - p ) / p ' .  (2.22) 

Now, the dimensions hEM of electromagnetic operators in this decorated free field 
read 

hEM = AEM -- e2/4g. (2.23) 
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This enables us to rewrite the Kac formula (2.2) as 

hrs = 
( rp - - ( p - 

4pp'  

A 2 e 2 

4pp'  4g  " 
(2.24) 

As shown in ref. [5], minimal partition functions are classified by a pair of simply 
laced Lie algebras (A, G) (where G can be of A, D or E type) and A and G have 
respective Coxeter numbers p and p'. Moreover, the spinless (h = h) operators have 
conformal dimensions given by eq. (2.24) with r (respectively, s) taking its value 
among the Coxeter exponents of G (respectively, A). As p and p'  are coprimes, the 
residual class of A = rp - sp' modulo p'  is itself one of the N exponents, n, of G. 
This suggests that one should supplement the free field by a set of (N - 1) fractional 
electric charges e n = n /p ' .  

Let us now return to the toms. As shown in ref. [5], a way of adding an electric 
floating charge to eq. (2.17), respecting modular invariance, is to include an 
interaction term between the shifts cos(2~reM A M') where /x denotes the greatest 
common divisor. This suggests finally that the (A, G) partition functions may be 
reproduced by the expression 

) Z = ½ ~ Z~t M, ~ c o s  2~r--;m A m '  , 
M , M ' ~ Z  n ~ P 

(2.25) 

where n runs over the exponents of G. Performing the sum over n and decomposing 
onto various congruence classes of M and M', indeed reproduces formulae of ref. 
[5]. The expression (2.25) was first proposed by Kostov [20]. 

2.4. It seems rather remarkable from a conceptual point of view that the minimal 
partition functions can be reexpressed in terms of a decorated free field, thus 
justifying ideas which originated in works of Kadanoff [2]. Of course, this can be 
inferred from the presence of an underlying 6-vertex model. The precise correspon- 
dence has been studied [11] for unitary models, realized as restricted solid-on-solid 
models, and attached to the Dynkin diagram of the associated G algebra [36]. Fig. 2 
shows the assignments of heights to each node of a Dynkin diagram. We restrict 
ourselves here to the case of A N (N = p ' -  1 = p  - 2) models [28] (N >t 2). 

As shown originally by Baxter [37], the 8-vertex model can be reformulated as a 
solid-on-solid model on the dual lattice, neighbouring heights differing by _+ 1, with 
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D i a g r a m  Coxe te r  E x p o n e n t  
number 

1 2 3 4 N 
A N : : :. : • N * 1 1,2 . . . .  N 

0 1 ~  2 3 N - 2  
D N :. : = 2 ( N - 1 )  1,3,  2 N - 3 , N - 1  ~ ,,,,, , /- ... 

1 2 3 4 5 
I= 6 = -" ~ '= : 12 1 , 4 , 5 , 7 , 8 , 1 1  

1 6 

1 2 3 4 5 6 
E 7 : : : ~ - " 18 1 ,5 ,7 ,9 ,11 ,13 ,17  

I 7 

1 2 3 4 5 6 7 
E e : ,; = = ~ = -- 30 

1 8 

1 , 7 , 1 1 , 1 3 , 1 7 , 1 9 , 2 3 , 2 9  

Fig. 2. The Dynkin diagrams (with a possible assignment of height variables to their nodes), Coxeter 
numbers and exponents of the simply laced Lie algebras. 

in teract ion round  face ( IRF)  type Bol tzmann weights (fig. 3) 

w(l, l+ l l l -  1, l) = w ( l , l -  11l+  1, l )  = a , ,  

w( l+  1,/ l l ,  l -  1) = w ( l -  1, lll, l+ 1) = /3 , ,  

w( l+  1, l[l, l+ 1) = 7t, 

w ( l -  1,Ill,  l -  1) = 8,, 

(2.26) 

where,  up to a normal izat ion factor 

{ ,~,= h(~X(~ +,~)), 

~ , = h ( ½ ) ~ ( ~ r - a ) ) [ h ( w / _ l ) h ( w t + l ) l l / 2 / h ( w l ) ,  

71= h ( ~ r h ) h ( w t +  ½}~(a - Ir))/h(wl), 
8t = h ( q r h ) h ( w , +  ½~(~r - a ) ) / h ( w t )  , 

(2.27) 
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m m' 
W (m.m'/I . t ' )  

Fig. 3. Height configurations of the SOS model associated with the 8-vertex model. 

401 

w t = ~r(w + )~l), h ( x )  = 01(x/~r)O4(x/~r  ), and 01, 04 are the usual Jacobi theta 
functions of (real) nome q- The general relation between ~, a, 4 and the original 
8-vertex model parameters is given in ref. [28]. When w = 0 and )~ takes the value 

1 / N  + 1, the heights l, due to h(wo)  = h(WN+l)  = 0, can be consistently restricted 
[28] to the set l = 1 , . . . ,  N and thus considered as attached to the Dynkin diagram 
of the A N algebra (fig. 2) of Coxeter number H = N + 1. 

The model (2.27) is critical when 4 is equal to zero; two cases are then possible. 
We consider here the transition from the so-called regime III to regime IV, 
characterized by [a[~< ~r. In this case, the corresponding vertex model becomes, 
precisely, the 6-vertex model with weights (2.8). (Note, however, that the SOS 
reformulation of the latter we used in eq. (2.9) is not directly related to the RSOS 
model (2.27)). It renormalizes onto the Gaussian model (2.9) with coupling constant 
g = 1 - ~ = ( H  - 1 ) / H  and comparison with eq. (2.25) gives p = H - 1, p '  = H. As 
noticed in refs. [11, 38], one could also consider a dilute RSOS model which in turn 
corresponds to a dilute vertex model. It renormalizes onto eq. (2.9), with g given by 
another branch g = 1 + ~ = ( H  + 1 ) /H;  in this case p = H + 1, p '  = H. 

The correspondence between the vertex and the RSOS model becomes more 
complicated on a toms; it requires the introduction of a boundary operator [39], 
which should translate in the continuum limit into the cosine interaction of eq. 
(2.25). Partition functions can nevertheless be calculated using a rather indirect 
procedure. 

One performs, for this purpose, a graphical expansion drawing clusters which 
connect sites of the same height [40]. These clusters can, in turn, be represented 
using a polygon decomposition of the lattice [41]. The weight for contractible 
polygons is given by the largest eigenvalue of the incidence matrix G of the diagram 
i.e. 2 cos(~r/H);  it is the same as for the Potts model with Q = 4 c o s E ( ~ / H ) .  
Non-contractible loops in number ./ff must be given a weight T rG  X [11]. This 
model, after arbitrary orientation of the loops, can be reinterpreted as a new SOS 
model, loops being considered as steps _+ 7r between regions of constant height [42]. 
Its action maps onto (2.9) with g = ( H - 1 ) / H  (or ( H + I ) / H  on the dilute 
branch). On the other hand Tr G ~ decomposes as 

Y'. (2 cos( n ~ r / H  )) "*', (2.28) 
n 
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which, in the continuum limit, translates precisely into the sum of cosines of eq. 
(2.25) [5]. In summary, the diagram on which heights are living determines p '  = H 
in eq. (2.25). Then, depending on the branch, p = H + 1 and one finds two unitary 
modular invariants as expected. In fact, this derivation generalizes to the cases of D 
and E algebras as well [11]. 

2.5. It appears in ref. [28] that heights in the model (2.26) can also be restricted to 
the same set l = 1 . . . . .  N, choosing X = R / ( N  + 1) with R and N + 1 = H coprimes. 
If R > 1, however, Boltzmann weights are no longer positive so this should corre- 
spond to the case of non-unitary models [36]. Indeed, the derivation of the partition 
function is the same, the weight of contractible loops becoming 2 cos (~R/H) ,  while 
the one of non-contractible loops is unchanged. In the continuum limit one gets eq. 
(2.25) with p '  = H and, depending on the branch, p = H + R. This generalizes also 
to D and E algebras. Note, however, that by construction IP - P ' I  < P', while this 
restriction does not appear in the classification of refs. [6, 7]. This construction thus 
excludes modular invariants which should be obtained by considering other de- 
terminations of g. 

The simplest example of a non-unitary model is the Lee-Yang singularity [43] 
which occurs generally for magnetic models in an imaginary field. It has not yet 
been directly mapped onto a free field (2.9), although the continuum partition 
function is known to be given by eq. (2.25), with p '  = 5, p = 2. The latter can, in 
fact, be derived using a slightly different formulation. Indeed, as shown by various 
graph expansions [44], the Lee-Yang singularity is expected to be the generic 
singularity of hard objects with a negative fugacity. Now, consider model (2.26) with 

= 2. Define two square sublattices X and Y [28], and occupation variables related 
1 

to the height variables I by o i = ½(3 - li) on X and o i = ~(li - 2) on Y. Then, with 
the above height restrictions, one has o i=  0 or 1, and o~oj = 0 if i , j  are nearest 
neighbors. Thus, this translates eq. (2.26) into a hard square model with diagonal 
interaction [45], the Boltzmann weights of which read, for o variables on a given 
face, as 

w x = Wu(O0100 ) 

)~o2 = WH(10100) 

[ ,o3 = w (oa Ioo) 
,o 4 = Wu(10101 ) 

~5 = WH(01 I10) 

= h(rrX)h (½X(57r - a ) ) / h ( 2 ~ r X ) ,  

r h ( = x )  ]1/2, 
= wu(O0101) = h ( l X (  ~r - a ) )  / J h-6VZ) 
= WH(00110 ) = h (½~,(~r + a ) ) ,  

= h(qrX)h (½h(3~r + a ) ) / h ( 2 ~ r X ) ,  

= h(½X(3~r- a ) ) .  

(2.29) 

The model is critical for 4 ~ O, when h becomes a sine function. Then, as shown by 
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\ ®  \ 
\ %  

® G \ \ \  

Fig. 4. Hard hexagons in the hard square model. 
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Baxter, critical properties depend only on 

~ - -  ~ 4 ~ 5  
a , (2.30) 

~2~3 

which reads here as 

a = 2 ( 2 c o s ~ h ) l / 2 - ( 2 c o s ~ X )  3/2 - (2cos~h)  -1/2 (2.31) 

If t~ 5 = 0, this describes, as well, a free hard hexagon model [45] (fig. 4) of fugacity 
z = A-E, and weights 

¢.01 = 1 

002 ~ 0.) 3 ~ Z 1 / 4 ,  

~4 = Z1/2 ; 

(2.32) 

a given hexagon being shared by four squares. The standard choice k = } gives z 
= ½(11 + 5~-).  On the other hand, h = ] gives 

z = ½(11 - 5~/~) < O. (2.33) 

This singularity which appears as non-physical [46] in the hard hexagon point of 
view is expected to be in the universality class of the Lee-Yang problem. On the 
other hand, the above arguments establish that it corresponds to eq. (2.25) with 
p '  = 5, p = 2 [211. 

2.6. Finally, we return briefly to the c = 1 case. In addition to eq. (2.17), another 
line of models parametrized by g is obtained by adding the contribution of sectors 
where the field tp is antiperiodic along one or both periods of the toms, giving the 
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Zz-orbifold partition functions [10, 47]. The partition functions 

zrs= f [Dtp]e -~ ,  
U~(z+ l)~e'~ep(z) 

have been calculated in ref. [34] as 

r , s = 0 , 1 ,  (2.34) 

(here 
different sectors, one gets 

4 "l~ 

Zorb(g) =  Zc(g) + 922 ' 

which describes [48] the critical Ashkin-Teller model [29]. 
decouples into two independent Ising models and thus 

Znrb(g = ½ ) 2 Z i s i n g ,  

where 

Z10=104+0, 
z01 =l 0~-~0) ' 

Z l l  = 

0, denote the Jacobi theta functions of argument ~'). Summing over the 

(2.36) 

If g = ½  the latter 

(2.37) 

le~(o)l 
Z~sing= ~ 2171 = ~ Z ~ ,  (2.38) 

v 

and Z, are the partition 
boundary conditions [34]. One has, in particular, 

functions of a free (Majorana) fermion with various 

Zc (g  = ½) = 2 E Zff, (2.39) 
p 

while crossed terms in eq. (2.37) reproduce eq. (2.35) due to 

27/3 = 020304 (0). (2.40) 

Models at c = 1 can also be obtained by repeating construction (2.25) with extended 
Lie algebras, since then there is an exponent n = 0. For A, E) one simply gets special 
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points on lines (2.17), (2.36). For E one gets new, isolated points [11, 49]. The above 

models have been conjectured [50] to exhaust all possible c = 1 theories. Let us 

point  out, however, that combinations of the form 

½ [ Z c ( g  ) + Z c ( g ' ) ]  (2.41) 

are also modular  invariant and, due to the symmetry E, M ~ - E , - M  in eq. 
(2.17), expand on powers of q, ~ with positive integer coefficients. All the explicit 

lattice realizations of this remark known so far, however, are nonunitary and have a 

true central charge less than one. 

3. Minimal superconformal theories 

3.1. We consider now models which combine conformal invariance with N = 1 
supersymmetry  (SUSY); they can be minimal with respect to the N = 1 supercon- 

formal  algebra. This occurs for central charges [51] 

c = -32 - 3 ( p  _ p , ) 2 / p p , <  32, (3.1) 

where either p ,  p '  ~ 2 N -  1 and p A p '  = 1, or p, p '  ~ 2N, ~ (p  - p ' )  ~ 2 N -  1 and 
½p A ½ p ' =  1. In this case the allowed values of h, h are given by the formula [25] 

( rp - sp ' )2  - ( p - p ' )  2 t ( 2 -  t )  
+ - -  (3.2a) 

8 p p '  16 ' 
h rs 

with the constraints 

l ~ < r ~ < p ' - l ,  

l ~ s ~ p - 1 ,  

t = I r - s I mod 2, (3.2b) 

t equals 0 (respectively, 1) in the Neveu-Schwarz (Ramond) sector. Unitary theories 
correspond to [p - P'I = 2, the simplest example describes the tricritical Ising model 
[52]. Using modular  invariance, all possible partition functions of superconformal 
minimal models on a toms 

_ [lvh~ Xh X~ --r lvh~ Xh X~ -1- N ~ X h X ~  , 
h,h 

(3.3) 

have been classified [22]*. In eq. (3.3), NS, NS and R denote various boundary 

* Actually, only unitary superconformal minimal theories have been classified in [22] but it is easy to 
see that it extends to non-unitary ones with no additional cases. Incidentally, the case p' = 5, p = 9 
leads to c = ~ ; hence it realizes a non-unitary, non-minimal theory with c < 1. 
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Fig. 5. Vertices of the 19-vertex model. 

conditions on the fermion, and the X'S are the associated superconformal characters 
[53]. We have omitted in eq. (3.3) the R sector (doubly periodic) which decouples in 
modular transformations; its contribution is a pure number. 

3.2. Recently Date, Jimbo, Kuniba, Miwa and Okado [54] have proposed gener- 
alized RSOS models obtained by a fusion procedure [15], the central charges of 
which are given by the unitary subset of eq. (3.1). This suggests that the underlying 
model in all the N = 1 SUSY theories is a spin S = 1 vertex model; the latter can be 
obtained by putting either an arrow or a dot (0-current) on each bond of the square 
lattice. Conservation of the current at a node gives then rise to 19 possible vertices 
(fig. 5). Commuting transfer matrices can be obtained for special sets of values of 
the weights. 

Imposing C P T  invariance [55] one is left with 

a = sin h(~r - a)sin h(cr + a ) ,  

b = sin bas in  h(21r - a ) ,  

c = sin h~r sin 2h~r, 

d = sin ha sin h ( ~r - a ) ,  

e = sin 2hrr sin h(Ir  - a ) ,  

f =  sin 2h~r sin ha ,  

g = sin h~r sin 2h~r - sin bas in  h(Ir  - a ) ,  

(3.4) 

where h can be real or purely imaginary and a is a spectral parameter. In a very 



P. Di Francesco et aL / Critical models 

anisotropic limit one gets a spin-1 antiferromagnetic XXZ 
hamiltonian 

407 

quantum chain with 

L 

Y" s,. s , + l -  (s,. S,+l) 2 
i=1  

- 2( cos( ¢r)~ ) - 1 ) [ ( Si*ST+ 1 )( Si~S;+, + SYS[+I ) + ( SxSX+I -{" SiYSiY+l )( SZSiZ+l ) ] 

+ 2 sin2~rX [ STST+ 1 - ($7S7+ 1) 2 + 2( $7)2]. (3.5) 

To our knowledge, critical properties of eq. (3.4) have not been fully investigated. 
To derive them, we remark that the case X = 0 (for which weights become rational 
functions) is expected, through non-abelian bosonization arguments [56], to describe 
the SU(2) level k = 2 WZW model. It is then instructive to notice that the 
corresponding partition function, obtained by using modular invariance, can be 
written as 

Z2-wzw = E L~2(r,s) E ZMM' (g=I ) ,  (3.6) 
r , s = 0 , 1  M=r[2] 

M' =s[2] 

(see appendix A) where .~2(r, s) denotes the partition function of an Ising (Z2) 
model with twisted boundary conditions ei'~r(e i'~s) on the spin variable. Here, and in 
the following, [k] stands for "modulo k". This result can be explained in the 
following way. First, one can associate to the 19-vertex model a SOS model with 
height variables q9 on the dual lattice, with neighbouring rp differing by 0, +2~r 
depending on the current carried by the bond which separates them. This appears 
quite similar to the argument in sect. 2, except that, now, two neighbouring rp can 
be equal. On the other hand, if one considers a configuration of the 19-vertex model 
and puts heavy bonds on each 0-current bond, forgetting the remaining arrows, one 
gets loops which are precisely graphs in a low-temperature expansion of the 
Ising-model partition function (fig. 6). Eq. (3.6) suggests that in the continuum limit 
and for X = 0, these two aspects decouple, the SOS model renormalizing onto the 
Gaussian free field (2.9) as for the 6-vertex case, the new degrees of freedom due to 
the possibility of a 0-step contributing a supplementary Ising factor. The only 
coupling in eq. (3.6) is due to boundary conditions and is also explained with these 
arguments. Indeed, if we consider the system on a lattice L × L' with L, L' even, 
the algebraic number of arrows crossed along the periods, which gives (M, M'), and 
the number of loops of heavy bonds crossed, which determines the spin flips (r, s), 
are of the same parity (fig. 6). 

These arguments suggest, thus, that on an even × even torus, the 19-vertex model 
with weight (3.4) and ~, real has the continuum-limit partition function 

Zsc(g)  = £ *~2(r, S) E ZMM'(g), (3.7) 
r , s=O,1  M=r[2] 

M' =s[21 
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Fig. 6. A configuration of the 19overtex model on the toms. Lines passing through bonds with a 
0-current draw low-temperature graphs in the Ising model. 

which satisfies the symmetry 

Z 1 (3.8) 

the fixed point of  which is g = 1, associated with ~ = 0 as in eq. (3.6). Also, if 
= I,  some weights vanish as for h = 1 in eq. (2.8). This suggests that one should 

generalize eq. (2.11) to 

g = ½ - ; ~ ,  0~<k~< I .  (3.9) 

The point X = ½ should correspond, then, to a first-order transition towards 
ferroelectric (frozen) order, and h = 0 an infinite-order transition towards antiferro- 
electric order. 

If the model  is studied on a lattice with L or L' odd, frustrations and flips can be 
of  opposite parities. A new modular invariant is then obtained by considering 

E  z2(r,s)( E + E + E )ZMM,(g)- 
r , s = 0 , 1  M = r + l [ 2 ]  M = r [ 2 ]  M = r +  112] 

M ' = s [ 2 ]  M ' = s +  112] M ' = s +  112] 

(3.10) 

Adding eqs. (3.7) and (3.10) gives, due to the self-duality of the Ising model  
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(appendix A) 

-~'z=-~e:(0, 0) = ½ Z .~:(r ,s) ,  
r , s=0 ,1  

a completely decoupled object 

(3.11) 

2~sc = ~2 X Z c ( g ) .  (3.12) 

3.3. The above arguments leading to eq. (3.7), although plausible, are not very 
rigorous. A first natural check is that Zsc decomposes into powers of q and g/with 
positive integer coefficients. This is indeed the case, since one can rewrite it after 
Poisson transformation as 

Zsc(g) = ~ Ixol 2+ Ixl/212) E +(XoXf/z+X~xl/2) E 
E, Meven E, Modd 

+ Ix1/1612 E-~M odd ]q(e/V'~+Mv/-~)2/8?I(e/c~-Mvrg)2/8,  (3.13) 

where the X'S are characters of the Ising model. To verify our identifications more 
properly we have studied the 19-vertex model by numerical means, calculating the 
transfer matrix spectrum on strips of width L ~< 10, in the case a = ½~r. This 
spectrum splits into sectors labelled by the value of the conserved total current in 
the w 2 direction (fig. 6), which is expected to determine M. A first interesting 
quantity is the free energy per unit length on strips with L even ( M  = 0), which is 
expected to scale as [57] 

fL = f +  ~rc/6L2 , C = 3. (3.14) 

Estimates of c obtained by comparing two successive widths for some values of 
X ~ [0, ½] are given in table 1. They are in good agreement with c = 3. On strips with 
L odd, the ground state is shifted as in eq. (3.10) and this occurs either with M = 1, 
r = 0 or M = 0, r = 1. Comparing numerical values deduced from eq. (3.9), one 
finds that the dimension x = ~ of the Ising spin always gives the leading term, and 
thus 

fL = f +  ~rc/6L2 , ~ = c - 12x = 0. (3.15) 

Numerical estimates of ? are also in good agreement with this value. We now 
restrict ourselves to L even. The scaling of gaps obtained by considering the ground 
state in the M sector (compared to the ground state in M = 0) depends on the 
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TABLE 1 
Estimates of c obtained by comparing the ground states of the transfer matrix 

spectrum for two successive widths. 

L X = 0 X = ~ / 5  X = 3~ /10  

4 1.297 1.287 1.247 
6 1.441 1.429 1.399 
8 1.481 1.469 1.447 

10 1.490 1.481 1.465 

parity of M from eq. (3.13). For M odd they should behave like 

while 

Z 1 
m~ M)= ~-~(~ + ½gM2), 

L 
m(LM) = l gM2 ) 

(3.16) 

(3.17) 

for M even. In particular, the case M = 1 gives access to the coupling constant g. 
Estimates of the latter, obtained using m(~ ) and eq. (3.16) are given in fig. 7a. They 
agree nicely with the conjecture (3.9). The general structure of eqs. (3.16) and (3.17) 
can also be checked. An interesting property emerging from eq. (3.13) is also the 
existence of an operator with dimension x = 1 (originating from Ixl/212) constant 
along the critical line; it should be observed in the first gap of the M = 0 sector. 
Measurements of this gap give the estimates of fig. 7b, which agree reasonably well 

112 

I 
9 L 

o 6  
A 8 

• 10 

(a) 
I 

1 /2  

Fig. 7a. Numerical estimates of g (3.17). The solid line is the conjecture (3.9). 
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So eq. (3.7) can be rewritten as 

M, M ' ~ 2 Z  M ~ 2 Z  M E 2 Z +  1 M, M 2 Z + l  
M ' , E 2 Z +  1 M ' ~ 2 Z  

M, M ' ~ 2 Z  M ~ 2 Z  M ~ 2 Z + I  M, M Z + I  
M ' ~ 2 Z + I  M ' ~ 2 Z  

+z,( E + E - E + E 
\ M, M ~ 2 Z  M ~ 2 Z  M ~ 2 Z + I  M, M ' ~ 2 Z + I  / 

M ' ~ 2 Z + I  M ' ~ 2 Z  

(3.20) 

Zsc(g) = V' g" [ d[~] f~ [dq~]e -~sc E .:. MM' I . 
r , s = 0 , 1  M , M ' ~ Z  %k(z+l)=e"%k(z) (z+l)=op(z)+2~rM 

~(Z +r) =ei~rS~(z) qo(z + r) = cp(z) + 2~rM' 

same for 

(3.21) 

where 

eMM," = 1 --  2 3~, M mod 23s, M' rood 2 " 

The precise coupling between ~b and % induced by boundary conditions through eq. 
(3.7), is rather intriguing. One can check explicitly that eq. (3.13) can be expanded 
on c = 3 characters (appendix B). Finally, we note that there is another formulation 
of eq. (3.18) using the N = 3 Gross-Neveu model which plays here the role of the 
Thirring model in sect. 2 [60]. 

3.4. Using the "super Coulombic" partition functions (3.7), one expects to repro- 
duce the superminimal partition functions of ref. [22] by the same modification as in 
sect. 2 for the ordinary minimal ones. 

Starting from a free superfield and adding a charge at infinity [51b, 61] decreases 
C t o  

c = 3 _ 6 e 2 / g ,  (3.22) 

suggesting (for instance) 

g=p/2p', e = (p'-p)/2p'. (3.23) 

Now, dimensions of operators read 

hEM = A E M  --  e 2 / 4 g  + 3 ,  (3.24) 
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the last term 8, which is equal to 0 or ~6, being the contribution of the Ising spin 
operator. This has to be compared with the Kac formula 

A 2 (p ,  _ p ) Z  t(2 - t) 
hrs = + - -  (3.25) 

8pp' 8pp' 16 

As shown in ref. [22], minimal superconformal partition functions are still 
classified by a pair of simply laced algebras (G, G') of Coxeter numbers p and p'. 
In the case where G = A, one checks that modular invariants involve dimensions 
(3.25) with A = 2n, n running over the N exponents of G'. 

This suggests to introduce the same ( N -  1) additional electric charges as in sect. 
2, e,, = n /p ' ,  and to build partition functions, with the SUSY generalization of eq. 
(2.25), as 

() n ) 
Z P ~cos (2~r - - ;MA M'  . (3.26) Z =  E L~e2(r, s) Y'- MM' ~ , \ P 

r ,s=0,1 M~r[2] 
M'=s[2] 

Using similar techniques as used for minimal models, we show in appendix B that 
this indeed reproduces the results of ref. [22]. Performing the summation over n and 
decomposing into various congruence classes of M and M', eq. (3.26) can be 
reexpressed as a linear combination of Zsc, 2~sc for various couplings. 

In the classification of ref. [22] there appears, also, invariants labelled by the pair 
(Dp/2+l, E6) ( p ' =  12). They can be reexpressed as 

Z = 2~sc (½pp') + 2~sc ( p / 2  p') - 2~sc (3~PP') - 2~sc (8p /p ' )  

+ Z s c ( 2 p / p '  ) + Zsc(3~pp'  ) - Z s c ( l p p  ') - Z s c ( p / 2 p ' ) ,  (3.27) 

Zsc and 2~sc being defined respectively in (3.7), (3.12). But we have not been able to 
find for them a formula similar to eq. (3.26). 

3.5. Now, eqs. (3.23) and (3.24) can be related to the construction of fused RSOS 
models in ref. [54]. We notice, first, that the weights (3.4), although this was not 
observed in their derivation [55], can be obtained by a fusion of the 6-vertex model 
(2.8). Similarly, fusion of the eight-vertex model defines a 21-vertex model [62] 
which can, in turn, be reformulated as a solid-on-solid model on the dual lattice, 
neighbouring heights differing by 0, _+ 2, with IRF type Boltzmann weights. Their 
expression is similar to eq. (2.27) and cumbersome. We do not use it in the following 
and refer the reader to ref. [54]. These weights involve parameters X, a, w and a 
(real) nome q- When w = 0 and X = 1 / ( N +  1), heights can be consistently re- 
stricted to the set 1 = 1 . . . . .  N and thus considered as being attached to the Dynkin 
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diagram of the A N algebra of Coxeter number H = N + 1. Note that because the 
steps are 0, + 2, heights may be restricted to be even or odd, giving rise to two 

distinct models. 
Criticality occurs when 4 = 0. In the regime II I  to regime IV transition, the 

21-vertex model reduces then precisely to the 19-vertex model with weights (3.4). It  
1 renormalizes onto the super Gaussian model (3.18) with coupling constant g = ~ - 

h = ( H  - 2 ) / 2 H  and comparison with eq. (3.23) gives p = H - 2, p '  = H. One can 
also define a dilute model renormalizing onto another branch g =  ½ + A = 
( H  + 2 ) / 2 H ;  in this case p = H + 2, p '  = H. 

Correspondence between the vertex and RSOS model becomes more complicated 
on the torus, and we leave to a further study the precise microscopic justification of 
topological terms in eq. (3.24). The procedure should, as well, generalize to D or E 
algebras, and to nonunitary cases choosing ~ = R / ( N  + 1). In particular, we believe 
that the fusion of E 6 involves some subtleties [63], which could explain the 
appearance of the new type of invariant (3.27). 

In this formalism, the tricritical Ising model occurs for p = 3, p ' =  5, c = _7 10" 

Indeed, in this case the only modular invariant is associated to the algebra A 4. Steps 
take the values 0, + 2, and the two distinct models corresponding to even or odd 

heights are identical. In each case, height variables take two possible values and can 
be expressed as Ising spins with four spin interactions. Supersymmetry appears, 

thus, as very natural once it is traced back to the underlying 19-vertex model. 

3.6. Finally, we return to the c = 3 case. Various critical lines can then be con- 

structed in a way similar to the c = 1 case. In addition to Zsc(g  ), Z s c ( g ) = ~ 2  × 
Zc(g),  ~2  × Zorb(g), one has, in particular, a generalized orbifold 

Zs  orb ( g ) = l Zsc  ( g ) + E ~2(r ,s)Z, ,  +15 , (3.28) 
r , s = 0 , 1  

(r, s)~(0.0) 

where Z,s has been defined in eq. (2.34). If g = ½ 

Z s c ( g  = ½)=  4 ) - ] Z  3 , ( 3 .29 )  
v 

which agrees with the construction of SU(2) k = 2 WZW model as a theory with 
three free Majorana fermions [64]. Combining eqs. (3.29) and (3.19) 

ZSorb(g ½)=  3 (3 .30 )  = Z l s i n g ,  

so eq. (3.28) should describe the SUSY Ashkin-Teller  model [60]. Of course, 
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construction (3.26) can also be applied to extended Lie algebras, giving additional 
c = 3 models. The complete classification of c = 3 theories remains an open 
question (see, however, refs. [65, 66]). 

4. General SU(2) ® SU(2)/SU(2) theories 

4.1. It is known that all the previous models (in the unitary case) can be obtained 
through the Goddard-Kent-Olive  "coset" construction [12] 

SU(2),  ® SU(2),._2 

SU(2) k+,,,-2 
(4.1) 

The case k = 1 corresponds to the series (2.1) and k - 2 to the SUSY series (2.2). 
Recently, theories for a general value of k have been studied [14] with central 
charges deduced from eq. (4.1) to be 

3k 6k 
c = m >1 2. (4.2) 

k + 2  m ( m + k )  ' 

These are likely to be minimal with respect to some extended conformal algebra 
[14b], the primary fields of which have the conformal weights 

[ r ( m + k ) - s m ] 2 - k  2 t ( k - t )  

hrs= 4 k m ( m + k )  + 2 k ( k +  2) ' (4.3) 

where 

l < ~ r < ~ m - 1 ,  

l ~< s <~ rn + k - 1 ,  

t =  I r - s m o d 2 k l ,  O~<t <~k. (4.4) 

4.2. Associated lattice models have been proposed in ref. [54]. These are basically 
generalized RSOS models obtained by k fusions of the fundamental k = 1 ones. 
Also, results (4.2) and (4.3) have been discussed using a Feigin-Fuchs construction 
involving a bosonic field and a parafermion of statistics Z k [14]. This suggests 
immediately, generalizing the results of sects. 2 and 3, that the underlying model in 
all theories (4.2) is a spin S = ½k vertex model, obtained by assigning one of the 
2S + 1 states on each bond of the square lattice. Conservation of the current at each 
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node then gives rise to / 'k  possible vertices where 

1 1)4 
Fk= (2k)! ~ x  x -  1 x=o' 

(4.5) 

F 1 = 6, /'2 = 19, /'3 = 44 . . . . .  As discussed in refs. [15,54b] commuting transfer 
matrices can be obtained for a special set of weights which are precisely those 
derived from the fusion of the 6-vertex model (2.8). These weights involve a 
constant 2, and a spectral parameter a. In the very anisotropic limit one gets a 
spin-½k XXZ quantum chain [67]. 

The point )~ = 0 (for which weights become rational functions) is expected 
through non-abelian bosonization arguments to describe the SU(2) level - k  WZW 
model [56]. A distinction appears here depending on the parity of k; we first discuss 
the case of k odd. There is then only one possible modular invariant [6, 7] which can 
be written as 

Zk_wz w = Y'~ ~-~k(r, s )  Y'~ Z u u , ( g =  1 / k ) ,  (4.6) 
r ,s=O ... .  , k - 1  M=r[k] 

M'=s[k] 

where ~L~k(r, s) denotes the partition function of the " Z  k Ising model" [18,19] with 
twisted boundary conditions e 2i'r/k (e 2t~s/k) on the spin variable (see appendix A 
for more details). Eq. (4.6) suggests a formula similar to (3.7) describing the critical 
line of the Fk-vertex model 

Zk-c(g) = E .~Z'k(r,s ) ~_, ZMM,(g ). (4.7) 
r , s = 0  . . . . .  k 1 M=r[k] 

M'=s[k] 

For k = 1, 2 this reduces of course to Zc, Zsc. 
One can check that eq. (4.7) decomposes into powers of q, ~/ with integer 

coefficients. The associated central charge is 

c = 3 k / ( k  + 2). (4.8) 

Expression (4.7) has the duality symmetry 

zk_c(g) (4.9) 

the fixed point of which is eq. (4.6), associated with )~ = 0. On the other hand 
)~ = 1 / k  corresponds [54] to the vanishing of some weights as in eqs. (2.8) and (3.4); 
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this suggests the relation 

4 1 7  

g = 1 / k  - X,  0 <~ X <~ 1 / k .  (4.10) 

The appearance of parafermions in eq. (4.7) can be traced back to the vertex 
configurations, as given in sect. 3. Indeed, one can introduce, first, a SOS model on 
the dual lattice, where neighbouring heights ¢p differ by amounts depending on the 
state of the bond which separates them. Also, the 2S - 1 = k - 1 bonds with current 
J < S can be associated with twists exp2iTr(2J/k) ,  hence, giving graphs in the 
low-temperature expansion of a Z k model. This makes sense since the total current 
is conserved at each node, so E 2 J  = 0[k]. Eq. (4.7) suggests that these two aspects 
decouple in the continuum limit and the model renormalizes onto a Gaussian free 
field (2.9), while the additional degrees of freedom are described by a parafermionic 
Z k theory. 

4 . 3 .  The construction of ref. [14] suggests to add a charge at infinity to decrease c to 

Hence (for instance) 

c = 3 k / ( k  + 2) - 6 ( e 2 / g ) .  (4.11) 

g =  m / k ( m  + k ) ,  e = 1 / ( m  + k ) .  (4.12) 

Dimensions of operators now read 

h E M  = A E M  - -  e 2 / 4 g  + ~t (4.13) 

the last term being the dimension of the spin operator o t in the Z k model 
Be= t ( k - t ) / 2 k ( k +  2) depending on the sector. On the other hand, the Kac 
formula (4.3) reads 

A 2 k t ( k  - t )  

h r s -  4 k m ( m  + k )  4 m ( m  + k )  + 2 k ( k  + 2)" (nAn) 

Modular invariants have been obtained in ref. [14a]. They are still classified by a 
pair of Lie algebras (A, G) and associated A's read A = nk where n runs over the 
exponents of G. 

This suggests that one should introduce 

z = E & ( r ,  s) E Z,,,,,,,, E cos P' U A U '  . 
r ,  s = 0 . . . . .  k - 1 M = r [ k ] n ~ e x p o n e n t s  

M '  = s [ k ]  o f  G 

(4.15) 
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We show in appendix C that eq. (4.15) with G =  A and p = m, p ' =  m + k or 
p = rn + k, p ' =  m indeed reproduces the invariants of ref. [14b]. It may be 
generalized to non-unitary cases by taking p and ( p -  p ' ) /k  as coprimes. In this 
case, the central charge reads 

3k 6 ( p  _p,)2 
c = - -  (4.16) 

k + 2 kpp' 

Finally, eqs. (4.13) and (4.14) can be interpreted in physical terms. The F k vertex 
model with X = 1 / ( N +  1) is equivalent to the fused SOS models of ref. [54] at 
criticality, heights of which are attached to Dynkin diagram of A s (note that since 
k is odd all heights are coupled). Using eq. (4.10) one finds the coupling constant 
g = 1 /k  - X = ( H -  k ) / k H  and comparison with eq. (4.13) gives p = m = H - k, 
p '  = m + k. The dilute branch gives, similarly, g = 1/k  + ~ = (H + k) /kH,  hence 
p = m + k = H + k, p '  = m. On the toms, boundary conditions imply the introduc- 
tion of the additional topological terms in eq. (4.15). 

4.4. The case of k being even is more delicate. There exists, then, several modular 
invariants for the SU(2) WZW model, labelled by a Lie algebra G with Coxeter 
number k + 2 (eq. (4.6) corresponds to G = A). With each of them is associated a 
twisted Z k partition function ~(c ) .  One checks that 

Z(°)  E *~k(G)(r, s)  E ZMM'(g l / k ) .  (4.17) k - W Z W  = = 

r ,s=O . . . . .  k - 1  M=r[k] 
M' =s[k] 

Moreover, for G = D one has 

.~ek(D)(r, S) = l [ ~ k ( r ,  s ) + (--)r.~rk(r,s+ l k )  + (--)s£rk(r + ½k, s) 

+( - - ) r+ ' :Zk( , '+  1 ik ,  s + l k ) ] ,  (4.18) 

where .o~ k = .~k (A). This suggests that there are several choices of boundary condi- 
tions (or weights) for the vertex model, leading to different critical partition 
functions 

Z~_)c (g )=  ~] .~k°)(r,s)  ~, ZMM,(g ). (4.19) 
r , s = O  . . . . .  k - 1  M=r[k]  

M'=s[k] 
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Eq. (4.19) satisfies the symmetry of eq. (4.9), and can be expanded into powers of q 
and ~ with positive integral coefficients. We expect eq. (4.10) to remain valid. 

Modular invariants have been written [14a]. They are generally classified by a 
triplet of algebras (G, G')c,,. If G is of the A type, we expect partition functions to 
be given by the natural generalization of eqs. (2.25), (3.26) and (4.13), i.e. 

Z =  E ~L~G")(r, s) E ZMM' p E cos21r ( M A M ' )  
r, s = 0 . . . . .  k - 1 M = r[k] n ~ exponents ; ' 

M ' = s [ k ]  of G' 

(4.20) 

where p(p ' )  are the Coxeter numbers of A(G'). 
The symmetry between G and G" noticed in ref. [14a] is not obvious on this 

formula. 

5. N = 2 superconformal minimal theories 

5.1. In this section, we consider conformal invariant theories which are N - - 2  
supersymmetric, i.e. contain two spin-~ superpartners of the energy-momentum 
tensor and a U(1) current. 

They have been proved to be unitary and minimal for a discrete set of central 
charges c < 3 

c = 3 k / ( k  + 2) = 3 - 6 / ( k  + 2), (5.1) 

where k is a positive integer. 
Representations of the N = 2 superconformal algebra fall into three sectors (P), 

(A), (T) according to the moding of the four generators T(z), J(z), G(z), G(z) of 
respective conformal spins 2,1, 3 3 These sectors correspond to: periodicity around ~,~. 
the origin in the plane for all generators (P); antiperiodicity for G, G, (A), and 
finally twists, i.e. antiperiodicity for G and J (T). 

Modular invariants in the (A, P) sector have been constructed in ref. [23], and 
turn out to be classified by a simply laced algebra G. Using the same techniques as 
in the previous sections, the partition functions can be written in a way similar to 
eq. (4.7). One finds, for k even, that 

z o, 1 ( ) k;N=2--i  E ~ G ) ( r ,  s) E ZMM' g =  k + 2  
r , s ~ Z  k M = r [ k ]  2]£ 

M ' ~ s [ k ]  

4- 
k + 2 )  

y '  .~k(~)(2r,2s) y '  ZMM, g -  
r , s ~ Z k / 2  M = 2 r [ k ]  2k ' 

M ' = 2 s [ k ]  

(5.2) 
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and for k odd 
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~ : u = 2 - i  ~ L~'~°)( r, g = - -  
r , s ~ - Z  k M = r [ k l  2k 

M'=s[k]  

2(k + 2) ) 
+1  E L ~ ) ( 2 r ,  2s) E ZMM' g (5.3) 

r,s~-Z k M=r[k] k " 
M'=s[k]  

Let us give the expressions for Zk(;~)u= 2 in the first cases k = 1, 2, 3 

z ( A )  = ½ [ Z c ( g = 6  ) + Z c ( g  ~)1 k ~ l , N ~ 2  "~" • (5.4) 

By Euler's identity, one can easily check that 

z~A)I, U=2 = Zc(6 ) - 1 = Zc(~)  + 1, 

and g = 6 and g = 3 are N = 2 supersymmetric [47, 68, 69] points of the Gaussian 
line 

z(A)k-2, N - 2  = l ( Z s c ( g  = 11 + 2~sc(g = 4)) , (5.5) 

=1  Z z(A) ~( 3_c(g~_ " 5) + Z 3 _ c ( g  = ~ ) )  k=3, N~2 (5.6) 

These expressions are other realizations of the form (2.41). For the closure of the 
operator algebra, however, one must project the P-sector on states of even or odd 
fermion number. Expressions of the same nature can be obtained for the twisted 
sector [23b] as well. 

6. Conclusion 

In this paper, we have shown that conformal theories associated with the coset 
construction SU(2) k X SU(2) m- 2//SU(2) k + m - 2 may be realized by a common proce- 
dure. An integrable lattice model, obtained by k fusions of the 6-vertex model has a 
critical regime described by a continuous line of central charge c = 3 k / ( k  + 2) 
containing the WZW model of level k. Modification of its boundary conditions, 
through the introduction of floating charges related to the exponents of a simply 
laced Lie algebra of Coxeter number m or k + m, yields the desired models. As the 
original vertex model can be described in terms of tensor products of parafermionic 
and bosonic sectors, so do the modified ones, with an appropriate alteration due to 
the floating charges. 
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This procedure is an alternative to the direct construction of lattice realizations of 
the coset models by the Kyoto group [54], by fusions of the (k = 1) minimal models. 

As in previous works [5, 6], unitarity plays a minor role in the discussion. We 
think that generalizing the coset construction to non-unitary representations of the 
Virasoro or of Neveu-Schwarz-Ramond algebras would be a useful task. This 
presumably involves considering fractional level representations of the SU(2) 
Kac-Moody algebra. 

Our method fails to reproduce some models involving exceptional Lie algebras; 
we believe that additional possibilities in the fusion and restriction of these models 
exist and remain to be discovered. 

As mentioned at the end of sect. 4, the coset construction shows the symmetric 
roles played by the levels k and m - 2. This symmetry, however, is not explicit in 
eq. (4.20). More generally, one might expect some permutation symmetry within the 
triplet of algebras (G, G', G") classifying the models. This may be made explicit for 
the ordinary minimal models, for which a formula equivalent to eq. (2.25) reads as 

Z(ap_x,op,-0 = ! ~ ZMM, ~ COS M A M' 
4 M, M ' ~ Z  n~exponen t s  P 

of A v_ 1 

× 
( 2~rn' ) 

Y'~ cos - - 7 - M  A M' . 
n' ~ exponents 

of Gv,_ 1 

For the other series of models, however, no such symmetric formula is known to us. 
Our construction does not shed any light on the intriguing question of the 

"extended chiral algebras", discussed in refs. [14c, 70], for which the models under 
study are supposed to be minimal. 

It is most likely that the same kind of considerations applies to models based on 
the coset construction with higher rank algebras [71]. Integrable vertex models have 
been identified [72], as well as generalized parafermions [73]. In the Coulomb 
interpretation, the free field lives on a higher dimensional torus [74]. 

Finally, as the parafermionic sectors seem to be an essential building block in our 
construction, it might be worth looking more closely at their properties. In particu- 
lar, one may wonder if they cannot, in turn, be bosonized. It is likely that this may 
be achieved using a (k - 1)-component free field. This was already apparent in ref. 
[75] where a vertex operator construction of the parafermion field itself was given. 
Also, it has been noticed that the parafermionic central charge c~ = 2(k - 1) / (k  + 2) 
coincides with that of the models obtained by the SU(k)I x SU(k)I/SU(k)2 coset 
construction. The latter may be bosonized [74] but it remains to identify the two 
theories. An alternative bosonization of these parafermionic theories, more eco- 
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nomical and natural in view of their central charge c k < 2, would appeal to only two 
boson fields. 

It is a pleasure to thank I. Kostov and V. Pasquier for discussions. H.S. 
acknowledges early discussions with P. Ginsparg and D. Kastor and hospitality 
extended to him by the Enrico Fermi Institute at Chicago and by SLAC. 

Appendix A 

A.1. We first recall the expression of the affine SU(2) characters for representations 
of level k and isospin ½l, and hence central charge c = 3k/(k + 2) 

1 o0 

x t ( q ) -  ~3(q) • [2(k+2)t+l+l]q [2(k+z)t+t+112/'(k+2), (A.1) 
t = - - o 0  

where l is integer and satisfies 0 ~< l ~< k. 
Corresponding partition functions of the SU(2) WZW model are classified by a 

single simply laced Lie algebra G with Coxeter number k + 2 

k 

Z(~)k-wzw = E NtlG)xt(q)x~(7t) . (A.2) 
l,i=0 

On the other hand the latter theories may be obtained, following Zamolodchikov 
and Fateev [18], by combining a free boson with a non-local (parafermionic) current 
algebra with Z k × Zk symmetry. This decomposition is manifest in the following 
character formula 

where 

k Om(q ) (A.3) 
x , (q)  = E ~(q)C~(q) ~(q) , 

m =  - k + l  

Ore(q)= E q k(n+m/2k)z" (A.4) 

0,,/~/ represents the bosonic contribution and Cm l are the level-k SU(2) string 
functions [76]; ~C~ appears in eq. (A.3) as a branching coefficient of the coset 
construction for SU(2)/U(1). This leads to the parafermionic theories with central 
charges ¢ = 2(k - 1)/(k + 2) and partition functions 

k k 

~11 E E qlC~(O) (A.51 " "ll ~ m \  
m = - k + l  1 , ] = 0  
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One can also consider twisted boundary conditions e2~"~/k(e2~'~/k) for the Zk-ISing 
spin, with the corresponding partition functions [19] 

k k 

~11 E E ~ "'11 ~'mktl.l~'m--2r\~l]" 
m = - k + l  / , l = 0  

(A.6) 

They enjoy modular covariance properties expected from theft definition 

s: a ' i ° ) ( r ,O=a '~°)(-~,~) ,  

T: :Z~(°)(,',~) =.~,(°)(r,r+~), (A.7) 

and satisfy sum rules 

1 
~lo)(r ,s)  = ~ Eo:'"("-~r')/*of(°)r- ~ ,  , . ,  r ) ,  

TP$ t 
(A.8) 

reflecting self-duality; this identity may be interpreted as expressing the partition 
functions where the twist affects the spin variable in terms of those where it affects 
the dual disorder variable. 

Other modular invariants may be obtained by summing (A.6) over the different 
orbits of the modular group. Also in the case of k even, it is interesting to notice 
that 

~(Dk/2+: ) ( r , s )  = ½ [ ~ f ( A * + O ( r , s ) + (  -~r~f(a*+l)(r, k ~ , S +  ½k) 

+ (-)~:Z,(^*+')(r + ~k,s)  + (-)r+s~Z,("*+')(r + ½k, s + 1~) .  

(A.9) 

This has the simple consequence that ,~y(D) is in fact obtained from ~°f(A) by 
summing eq. (A.6) over even r, s. 

A.2. We now introduce a bosonic partition function similar to eq. (A.6) 

1 k 
Z ( r ,  s )  = - - e  2ictrs/k E a-2i~rms/k 0 a *  (A.IO) 

klT/I 2 m =  -k+l  ~" mVm-2r '  
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and consider 
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1 
£.W~G)(r, s)2~(r, s) = 2---k 
r,S 

£ N(G)e2 i~r (m-m)s / kc lo~_c  j* t l .  
fl m ~"-'m-- 2 r ~ - -  2r 

m , ~ , l ,  "l 
r ,s  

=~' Z Nt i(G)(C~O.,C~, t* .O_,_.. + ClmO.,+kC~*O*+k) . (A.11) 
m , ~ , l ,  -I 

Using symmetry properties [76] of string functions and of N#: Ck-lk-m = fret = C l_m, 

N# = Nk_l, k-b one checks that eq. (A.11) reproduces eq. (A.2). By decomposing the 
0-functions, 2~(r, s) reads 

1 k 

Z( r ,  s) = kl~/i------ ~ E ~ eZi~(~-m)'/kqk("+m/2k)2q k(n+(m-2~)/2k)2. (A.12) 
m = - k + i  n , ~ E Z  

To reexpress it in terms of Coulombic partition functions (2.17), one has to solve 

~-k- J" 
(A.13) 

Setting g = 1/k  one gets 

E = n + ~ + ( m - r ) / k ,  

M =  k ( n -  ~ + r / k ) ,  (A.14) 

and then 

1 
Z . ( r , s ) -  k]~/12 ~ ~ e:i"(r--")S/kqa"+'m-rW ' ..... ~ap+~., r~/.'.k,,+r. 

p-q 
even 

(A.15) 

A Poisson transformation over fi where (p,  q) = (2fi, 2~) or (2fi + 1, 2~ + 1), yields 

1 y'. y" e2i~(s/k)(r - m)e2*~(m- r)/2k. ?1" 

X [ Z 2 k ~ + r , ~ , / 2 ( g  = 1/k) + ( -1 )  ~' Zk(2~l+l)+r,(~,/2)(g-- l/k)]. (A.16) 
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Summing over m mod 2k constrains ~' = 2s [2k] in both terms, and 

425 

Z ( r , s )  = EZk~l+r, kZf+s(g = 1 ) =  E ZM, M ' ( g = I / k )  • (A.17) 
~'  M=r[k] 

M'=s[k] 

Together with eq. (A.10) we finally obtain 

Z(°) E £r(k°)(r, s) • ZMM,(g= 1/k) (A.18) k- WZW = 
r,s=O ..... k -1  M=r[k] 

M' =s[k] 

which is the result announced in eqs. (3.6), (4.6) and (4.17). 

Appendix B 

B.1. N = 1 superconformal characters for theories (3.1) read in the different sectors 

where 

,~(~) 
x~S= [g~(~) - / ~ (~ ) ]  

~l(r/2)~l(2r) 

x~.~= n(¢/2) ~ (-----T [/q( ~ + 1 ) - / q ( ~  + 1)], 

XRx = V~- ~(2r) [ 
~(,) /q(~)--  KX(~)], (B.1) 

1 ~ q(nN+)Q2/4 N 
K x ( ¢ ) -  ~ ( r ) , = _ ,  (B.2) 

and N = 2pp', )~ = p r -  p's, ~ = pr + p's. We are interested also in the limiting case 
c = 3. Then, the highest weight NS (respectively R) representations are reducible iff 
h = ~(r - s) 2 + 3, 3 = 0 (respectively 1 )  and the corresponding characters read [25] 

X~ s=  ~/('r) [q(r_s) : /8q(r_s+2)g /8  ] 
n(r/2) rt(2r) 

Xr~"~ = ~l(r/2) [ q(r-s)2/8 _ q(r-s+2)2/s] n(~)2 

~(2r )  1/16 q(r-s+212/8]. X~ = ~ - - - ~ ) 2  q [q <r-')2/8- (B.3) 
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Otherwise 
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x~s = qh 
~(~ /2 ) , (2~)  ' 

X-- ~ _  ~ ( ~ - / 2 )  qh, 

n ( , )  2 

xR = ~/2 ---~)2 q • (B.4) 

B.2. It is straightforward, though tedious, to reexpress all partition functions of ref. 
[22] in terms of "superCoulombic" partition functions eq. (3.7) and (3.12). We only 
sketch here the procedure followed: recognize first, the square moduli of prefactors 
in eq. (B.1) as fermionic partition functions Z~ = 10~(01z)/27/(~)1 p = 2, 3,4 (cf. eq. 
(2.38)). The second step consists in matching electric and magnetic charges E and 
M and coupling constant g to reproduce each term in I K x -  KXI 2 as 
(1/i,/[2) qaE, M~I-XE ' M. We give the results, labelled by two simply laced algebras, of 
Coxeter numbers p, p': 
p and p' odd; 

_, , (~ Zsc(~-Tp,)),P ZAp lAp ~= ½,Zsc(½PP')-- (B.5) 

p and p' even; 

~ Z P (B.6) 

p '  = 2 [4]; 

_, Z P ZA~ ~ D,,/~+~ = ½(Z'Sc(½PP') + Z s c ( ~ , ) - Z s c ( ~ P P ' )  - sC(~p , ) ) ,  (B.7) 

p' = 0 [4]; 

~ . 2 p  Z P 
ZAv_I,Dv,/2+t = ½ ( Z s c ( ½ P P ' ) + Z s c ( - ~ ) - Z s c ( ~ P P ' ) -  sc(~-Tp,)), (B.8) 
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z 
Dp/z+~. % 

p’ = 18; 

- &A~PP’) + Z&PP’) 

pf = 30; 

Z 1 
A,_,,E,= 2 .&.( *ppq + .& 2 

[ i I P’ 
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1 
3 (B.lO) 

. (B.12) 

where Z,, pc are defined in eqs. (3.7)-(3.12). Except for eq. (B.lO), all these 
expressions are reproduced by eq. (3.26). 

Appendix C 

CL Characters of theories given in eqs. (4.1) and (4.2) are obtained by the 
factorization formula [12,14] 

(k) (m-2) = XI xp-1 CX,p9Xk”_:k-2)Y (C.1) 

9 

where the branching coefficients xIPq are expressed in terms of level-k string 
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functions C~ 

k ( ) 
Xlpq = E C~m E q%.(t) _ E q3p,q(t) , ( C . 2 )  

~ =  - k + l  t E Z  t E Z  
mp,q(t)=~ nap, _q( t )=~  

where 

mp, q ( t )  = p  -- q + 2 m t ( m o d 2 k ) ,  

(2m(m + k )t + (m + k ) p -  mq) 2 -  k 2 

~p,q(t)  = ~p, _ q ( t )  ~-" 4 k m ( m  + k)  

(C.3) 

(C.4) 

The most general invariant has been conjectured [14a] to be labelled by three simply 
laced algebras corresponding to the three SU(2) spaces of the coset construction 

Z(G,6,)o ---- ~ N (6) N (G') N (9'') . . . .  * , (C.5) p + l , ~ + l  q + l , ~ + l  1,1 A-IpqAl.~l 
p,q,l  
~, zT, -I 

where NA(~ ) denotes the At11) solution for algebra G, and G, G', G" have respective 
Coxeter numbers m, m + k, k + 2. In eq. (C.5) l must have the same parity as 
P - q; Xtpq is zero otherwise. 

C.2. Our purpose is now to show in a simple case that eq. (C.5) may indeed be 
reexpressed into eq. (4.20). 

First, notice that expression (C.2) may be written as 

k 

Xlpq ~ E p,q C~mt 0m, , (C .6 / 
~ =  - k + l  

where 

ON,p,q = E q,,,,(tl __ E q%._~(t). (C.7) 
t~Z t~Z 

mp,q(t)='m rap, _q(t)=m 

Introduce, now, a twisted bosonic partition function similar to eq. (A.IO) 

zP 'q 'P 'q (r , s )  
I e 2i~rrs/k k 

o - 2 i . ~ s / k ~  ~*  (C.8)  w U~,p,qU~_2r,~,~. 
k 17/I 2 ~= -k+ l  
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Then, it is straightforward to see, following eqs. (A.10)-(A.14), that 

Y'. .~°")( r, s ) Z.*'qPq( r, s) = ~' v(a"),, , , .  L- '~ ' I , I  A l p q A l f f ~ "  
r, s fl 
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Defining 

one finds that 

(C.9) 

LP(°'°')(r, s) = E ;v(G) ;v(G') zPqPq[r s) (C.10) * ' p + l , f f + l * ' q + l , g l + l  k , 

P , q , P , ? I  

Z(o,o,)o., = E.W~a")(r,  s)2~(G'°')(r, s ) .  
r ~ s  

(C.11) 

C.3. The last step would consist in reexpressing 2(o'o ')(r ,  s) in terms of Zk_ c. We 
here restrict ourselves to the case (G ,G ' )= (Am_I ,  Am+k_I) and m = l m o d k  
which enables one to invert eq. (C.3) as 

t - m p q  - -  p + 2 q mod k.  (C.12) 

Then eq. (C.10) reads for r = 0, s = 1 as 

2 ( ~ ) ( 0 , 1 )  = E E 
p , q  n= - k + l  

(1 + ( -  1)re+P-q) e - 2 i ~ r ~ / k  ~_~ q%q(kt+(~-p+q)/2) 

2klnl 2 t~z 

2 
- -  E q % _ q ( k t + ( ~ n - p + q ) / 2 )  . (C.13) 

t ~ Z  

Decomposing the square modulus gives rise to two types of terms, which we 
match against appropriate electromagnetic charges and coupling constant g 
direct terms: g = km(m + k) and 

E =  (m + k ) p -  rnq+ m(m + k ) [ k ( t  + t) + ~ - p q ]  = ~ m o d k ,  

M = (i  - t ) ,  (C.14) 

cross terms: g = km/ (m + k) and 

E = p  + m[k ( t  + t) + ~ - p ]  = ~ m o d k ,  

q - ( m + k ) q  
M =  (m + k ) [ ( i -  t)] + (C.15) 

k 
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After a Poisson transformation over E and some algebra, one is left with 

[tm m+ ll Ira)] 2~ (A' A)(0,1) = ½ E Z ~ ,  - Z ~ ,  (C.16) 
~=otk] k k ( m + k )  ' 
M'= l[k] 

which extends to any r, s first by considering the (0, s) case, then by using modular 
transformations, so that: 

1 ~~ o,/, (G") / S) 
Z(AA)G,, = 2 /..~*~k ~r, 

r ~ s  

[Im m+k' I Imt] ~_, ZMM' - -  ZMM, 
M=,[k] k k ( m + k )  ' 
M' =s[k] 

(C.17) 

in agreement with eq. (4.15) and (4.20) for G'  = A. 

References 

[1] C. Itzykson, H. Saleur and J.-B. Zuber, Conformal Invariance and Applications to Statistical 
Mechanics (World Scientific, Singapore, to appear) 

[2] L.P. Kadanoff, J. Phys., A l l  (1978) 1399 
[3] V1.S. Dotsenko and V.A. Fateev, Nucl. Phys. B240 [FS12] (1984) 312; B251 [FS13] (1985) 691 
[4] J.-L. Gervais and A. Neveu, Commun. Math. Phys. 100 (1985) 15; Nucl. Phys. B257 [FS14] (1985) 

59; B264 (1986) 557 
[5] P. Di Francesco, H. Saleur and J.-B. Zuber, J. Stat. Phys. 49 (1987) 57 
[6] A. Cappelli, C. Itzykson and J.-B. Zuber, Nucl. Phys. B280 [FS18] (1987) 445 
[7] A. Cappelli, C. Itzykson and J.-B. Zuber, Commun. Math. Phys. 113 (1987) 1; 

A. Kato, Mod. Phys. Lett. A2 (1987) 585 
[8] D.J. Gross, J.A. Harvey, E. Martinec and R. Robin, Nud. Phys. B256 (1985) 253; B267 (1986) 75 
[9] P. Di Francesco, H. Saleur and J.-B. Zuber, Nucl. Phys. B285 [FS19] (1987) 454 

[10] S.K. Yang, Nucl. Phys. B285 [FS19] (1987) 183 
[11] V. Pasquier, J. Phys. A20 (1987) L1229 
[12] P. Goddard, A. Kent and D. Olive, Commun. Math. Phys. 103 (1986) 105 
[13] P. Bowcock and P. Goddard, Nucl. Phys. B285 [FS19] (1987) 651; 

P. Bouwknegt, Nucl. Phys. B290 [FS20] (1988) 507 
[14] (a) F. Ravanini, Mod. Phys. Lett. A3 (1988) 271, 397; 

(b) D. Kastor, E. Martinec and Z. Qiu, Phys. Lett. B200 (1988) 434; 
(c) J. Bagger, D. Nemeschansky and S. Yankielowicz, Phys. Rev. Lett. 60 (1988) 389 

[15] P.P. Kullish, N. Yu. Reshetikhin and E.K. Sklyanin, Lett. Math. Phys. 5 (1981) 393 
[16] V.G. Knizhnik and A.B. Zamolodchikov, Nucl. Phys. B247 (1984) 83 
[17] D. Gepner and E. Witten, Nucl. Phys. B278 (1986) 493 
[18] A.B. Zamolodchikov and V.A. Fateev, Sov. Phys. JETP 62 (1985) 215 [Zh. E.T.F. 89 (1985) 380] 
[19] D. Gepner and Z. Qiu, Nucl. Phys. B285 [FS19] (1987) 423 
[20] I. Kostov, private communication 
[21] J.L. Cardy, Phys. Rev. Lett. 54 (1985) 1354 
[22] A. Cappelli, Phys. Lett. 185B (1987) 82 



P. Di Francesco et al. / Critical models 431 

[23] (a) F. Ravanini and S.K. Yang, Phys. Lett. B195 (1987) 202 
(b) Z. Qiu, Phys. Lett. 198B (1987) 497; Nucl. Phys. B295 [FS21] (1988) 171; 
(c) D. Gepner, Nucl. Phys. B296 (1987) 757; 
(d) V.K. Dobrev and A. Ch. Ganchev, Mod. Phys. Lett. A3 (1988) 127 

[24] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B241 (1984) 333 
[25] V.G. Kac, in Lecture notes in physics 94 (1979) p. 441 (Springer, Berlin) 
[26] D. Friedan, Z. Qiu and S. Shenker, Phys. Rev. Lett. 52 (1984) 1575; Commun. Math. Phys. 107 

(1986) 535 
[27] J.L. Cardy, Nucl. Phys. B270 (1986) 186 
[28] G.E. Andrews, R.J. Baxter and P.J. Forrester, J. Stat. Phys. 35 (1984) 193 
[29] R.J. Baxter, Exactly Solved Models in Statistical Mechanics, (Academic Press, New York, 1982) 
[30] M.P.M. den Nijs, Phys. Rev. B23 (1981) 6111; 

A. Luther and I. Peschel, Phys. Rev. B12 (1975) 3908 
[31] H.J.F. Knops, Ann. Phys. 128 (1980) 448 
[32] H. van Beijeren, Phys. Rev. Lett. 38 (1977) 993 
[33] J.V. Jos~, L.P. Kadanoff, S. Kirkpatrick and D.R. Nelson, Phys. Rev. B16 (1977) 1217 
[34] C. Itzykson and J.-B. Zuber, Nucl. Phys. B275 [FS17] (1986) 580 
[35] P. Ginsparg and C. Vafa, Nucl. Phys. B289 (1987) 414 
[36] V. Pasquier, Nucl. Phys. B285 (1987) 162 
[37] R.J. Baxter, Ann. Phys. 76 (1973) 1, 25, 48 
[38] B. Nienhuis, J. Phys. A15 (1982) 199 
[39] V.V. Bazhakov and N. Yu. Reshetikhin, Serpukhov preprint 87-102 
[40] V. Pasquier, J. Phys. A20 (1987) 5707 
[41] R.J. Baxter, S.B. Kelland and F.Y. Wu, J. Phys. A9 (1976) 397 
[42] M.P.M. den Nijs, Phys. Rev. B27 (1983) 1674 
[43] M.E. Fisher, Phys. Rev. Lett. 40 (1978) 1610 
[44] D.A. Kurze and M.E. Fisher, Phys. Rev. B20 (1979) 2785 
[45] R.J. Baxter, J. Phys. A13 (1980) L61 
[46] D.S. Gaunt, J. Chem. Phys. 46 (1967) 3237 
[47] D. Friedan and S. Shenker, unpublished, to appear in ref. [1]. 
[48] H. Saleur, J. Phys. A20 (1987) Ll127 
[49] P. Ginsparg, Nucl. Phys. B295 [FS21] (1988) 153 
[50] R. Dijkgraaf, E. Verlinde and H. Verlinde, Proc. 1987 Carg~se Summer School, Commun. Math. 

Phys. 115 (1988) 649 
[51] (a) H. Eichenherr, Phys. Lett. B151 (1985) 26; 

(b) M.A. Bershadsky, V.G. Knizhnik and M.G. Teitelman, Phys. Lett. B151 (1985) 31 
[52] D. Friedan, Z. Qiu and S. Shenker, Phys. Lett. B151 (1985) 37 
[53] A. Meurman and A. Rocha-Caridi, Commun. Math. Phys. 107 (1986) 263; 

A. Rocha-Caridi, Infinite lie algebras and conformal invariance in condensed matter and particle 
physics, ed. K. Dietz and V. Rittenberg (World Scientific, Singapore) 

[54] (a) E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Nucl. Phys. B290 [FS20] (1987) 231 
(b) E. Date, M. Jimbo, T. Miwa and M. Okado, Lett. Math. Phys. 12 (1986) 209 

[55] (a) A.B. Zamolodchikov and V.A. Fateev, Sov. J. Nucl. Phys. 32 (1980) 298 
(b) T. Sogo, Y. Akutsu and T. Abe, Prog. Theor. Phys. 70 (1983) 730, 739 

[56] I. Affleck, Nucl. Phys. B265 [FS15] (1985) 409; 
I. Affleck and F.D.M. Haldane, Phys. Rev. B36 (1987) 5291 

[57] (a) H.W.J. BlOte, J. Cardy and M.P. Nightingale, Phys. Rev. Lett. 56 (1986) 742; 
(b) I. Affleck, Phys. Rev. Lett. 56 (1986) 746 

[58] J.L. Cardy, J. Phys. A19 (1987) L1093; (C) A20 (1987) 5039 
[59] (a) H. de Vega and M. Karowski, Nucl. Phys. B285 [FS19] (1987) 619; 

(b) H. de Vega and F. Woynarovich, Nucl. Phys. B251 (1985) 439; 
(c) F. Woynarovich and H.P. Eckle, J. Phys. A20 (1987) L97 

[60] R. Shankar, Phys. Rev. Lett. 55 (1985) 453; 
Y. Goldschmidt, Phys. Rev. Lett. 56 (1986) 1627 



432 P. Di Francesco et al. / Critical models 

[61] G. Mussardo, G. Sotkov and M. Stanishkov, Trieste preprints 17/87/EP and 30/87/EP 
[62] V.A. Fateev, Sov. J. Nucl. Phys. 33 (1981) 761 
[63] V. Pasquier, in preparation 
[64] A.B. Zamolodchikov and V.A. Fateev, Soy. J. Nucl. Phys. 43 (1986) 657 [Yad. Fiz. 43 (1986) 1031] 
[65] O. Foda, Utrecht preprint THU-87-25 
[66] L. Dixon, P. Ginsparg and J. Harvey, preprint HUTP 87/A085 
[67] H.M. Babujian, Nucl. Phys. B215 [FS7] (1983) 317 
[68] S.K. Yang and H.B. Zheng, Nucl. Phys. B285 [FS19] (1987) 410 
[69] G. yon Gehlen and V. Rittenberg, J. Phys. A20 (1987) 227; 

V. Rittenberg, in String theory-quantum cosmology and quantum gravity - integrable and confor- 
mal invariant theories, ed. H. de Vega and N. Sanchez (World Scientific, Singapore) 

[70] A.B. Zamolodchikov, Theor. Math. Phys. 63 (1985) 1205 [Teo. Mat. Fiz. 65 (1985) 347] 
[71] (a) V.A. Fateev and A.B. Zamolodchikov, Nucl. Phys. B280 [FS18] (1987) 644 

(b) F.A. Bais, P. Bouwknegt, M. Surridge and K. Schoutens, Amsterdam-Utrecht preprints ITFA 
87-12, THU 87-18 and ITFA 87-18, THU 87-21 
(c) V.A. Fateev and S.L. Lykyanov, Int. J. Mod. Phys. A3 (1988) 507 
(d) M.R. Douglas, Caltech prep. 68-1453, to appear in Nucl. Phys. 

[72] M. Jimbo, T. Miwa and M. Okado, Lett. Math. Phys. 14 (1987) 123; Mod. Phys. Lett. B1 (1987) 73; 
Comm. Math. Phys. 116 (1988) 507 
V. Pasquier, Nucl. Phys. B29S [FS21] (1978) 491 

[73] D. Gepner, Nucl. Phys. B290 [FS20] (1987) 10 
[74] I. Kostov, Saclay preprint SPLT/88-035 
[75] T. Eguchi and K. I-Iigashijima, in Recent developments in quantum field theory, ed. J. Ambjorn, B. 

Durrhus, J.L. Petersen (North-Holland, Amsterdam) 
[76] V.G. Kac and D.H. Peterson, Adv. Math. 53 (1984) 125 


