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Explicit expressions are given for all correlation functions of spin, disorder and energy 
operators of the critical Ising model in the plane or on the torns. Formulae for insertions of 
energy-momentum tensors may also be written, giving access to correlation functions of secondary 
fields. Two alternative methods are used throughout the paper: bosonization of the fermion 
representation of the Ising model or use of the free field (orbifold) interpretation of the 
Ashkin-Teller model. Many identities result from the consistency between these alternative 
approaches. 

1. Introduct ion 

This long paper  is devoted to the calculation of  correlation functions of the 

critical Ising model  in the plane and on the torus. These correlation functions are 

interesting objects in statistical mechanics, and our expressions may  be tested 

against  numerical  calculations [1]. They are also objects of theoretical importance,  

since they provide  a natural  way to study deviations from criticality. Moreover,  they 

give access to informat ion on the corresponding conformal  field theory: operator  

p roduc t  coefficients, matrix elements of  operators. In this paper, we shall see that 
they are also instructive from a technical standpoint,  as their calculation involves 

several ideas of  current interest in conformal  field theory and string theory:  
orbifolds,  spin structures, theta function identities and bosonization. 

The  lattice action of  the Ising model reads: 

1 
d = - ~  E oioj, o , =  ± 1 ,  (1.1) 

<i,j> 

where T is the temperature and (i, j>  denotes pairs of neighbouring sites on say the 
square lattice. The Jordan-Wigner  t ransformation allows us to re-express this model  

in terms of  an t icommut ing  variables [2]. In the vicinity of  the critical point  T~, these 

variables fo rm the two components  of  a real (Majorana)  free fermion field [3-4], of  
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1 fd2x(q, Og,+¢O,~+imq,~,)  =2-g ( 1 . 2 )  

(where we are using complex notations z = x 1 + ix  2, 0 = O/OZ etc . . . ) .  The mass m 
is proportional  to T -  T c. Therefore at the critical point, to which we shall restrict 
our attention in this study, the two fields ¢ and f decouple in the action and have 
factorized correlation functions: 

(I'~(Z1)''" ¢ ( W I ) ' ' ' )  = (~ (Z1 ) ' ' ' ) ( ¢ (~21 ) ' ' ' ) "  ( 1 . 3 )  

Moreover the + (resp. ¢)  correlation functions are meromorphic functions of the 
arguments z~ . . . .  (resp. ~ . . . .  ), and are nothing but Pfaffians of the two-point 
functions (or "propagators") 

= (1.4) 

The short distance behaviour of this propagator is universal: 

- + . . . ,  ( 1 . 5 )  
Z - - W  

but its explicit form depends of course on the boundary conditions imposed on d/. 
On a torus of periods ~o 1 and ~0 a, for example, the two-component fermion field q' 
may and must be assigned periodic or anti-periodic boundary conditions along ~ol 
or ~0 2. This means that any functional integral over '/' splits into four sectors (or 
"spin structures"). 

F rom (1.2) we learn that the energy operator of the Ising model, which controls 
its approach to criticality, is represented by the product 

5) = i ¢ ( z ) ¢ ( s ) .  (1.6) 

This representation reduces the calculation of energy correlation functions to a 
product  of Pfaffians. We shall, however, present alternative expressions in terms of 
boson free fields, which will be shown to be equivalent thanks to non-trivial 
identities between rational or elliptic functions. 

The expression of the original spin variable o i or rather of its continuous limit 
o(z ,  5) in terms of the fermion field, on the other hand, is non-trivial, because the 
Jordan-Wigner transformation is non-local. To circumvent this difficulty, we adopt 
two alternative methods. The first one, introduced in ref. [5], used the technique of 
bosonization of a free complex fermion field to express the square of the spin 
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correlation functions in the plane in terms of a bosonic free field. We shall argue 
that the same relation remains valid on a compact surface like the torus, with due 

attention paid to boundary conditions. 
The second method, which may look more physical, proceeds via the Ashkin-Teller 

(AT) model, which consists of two Ising models on a square lattice coupled by a 

four-spin term 

1 1 
~= E --~(OiOjA~-TtTj)----~Oi(IjTiTj' Oi'Ti =~1" (1.7) 

( i , j )  

It presents a critical line given by the self-duality condition e x p ( - 2 / T ' ) =  
s i nh (2 /T )  which terminates at co tanh(2 /T)  = 2, and for T '  = oo it decouples into 
two independent Ising models. A reformulation of (1.7) as a solid-on-solid surface 
model shows [6] it renormalizes at criticality onto a free scalar field theory with 
action 

g ~ 2 

g being a coupling constant given by 

8 [ c o t a n h ( 2 / T ) ]  (1.9) 
g =  ~s in  1 2 

and the various operators are identified as exponentials of ~, topological objects 
involving discontinuities or twists, and ( ~ ) 2  for the marginal operator. This 
general formalism can then be used at the decoupling point (g = 2) to obtain results 
for the Ising model. Such a gaussian field has a propagator which behaves at short 
distance, irrespective of boundary conditions on ~, as 

1 
( 0 ( z ,  e ) ¢ ( w ,  ~ ) )  - - - l og l z  - w t. (1.10) 

g 

On a torus the functional integrals for (1.7) must be summed [7, 8] over an infinite 
number  of sectors. Three of these correspond simply to antiperiodic (twisted) 
boundary conditions for q~ along one (or both) periods, and the others to shifted 
boundary conditions, where 4> has a discontinuity multiple of 2v along the two 
periods. This means that the free field ~ is to be considered as an angle, with 
moreover the identification ~ = - ,~ rood 2~r, i.e. 4) belongs to the orbifold S1/Z 2- At 
the decoupling point, the relation with the fermionic sectors of (1.2) is not simple 
but has been clarified as far as the partition functions are concerned [9, 8] (sect. 3). 
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One of the issues of this paper is to unravel the corresponding relation for the 
correlation functions. 

Besides the fermion fields ~ and q~ and the spin and energy operators a and e, 
there is an important object in the critical Ising model, as in any conformal theory, 
viz the energy-momentum tensor with its two components T(z), T(£) which reads 
simply for the Majorana field 

r ( z )  = - o z , ( z ) :  

r 1 
= - {  l i m / - ( ~ p ( z )  Ow~P(w ) - O=~(z)~(w)) 

w--.~ [2 
1 ] ,  (1.11) 

( z - w )  2 

with an analogous expression of T in terms of ~. 
Likewise, the energy momentum tensor of the gaussian field (1.8) reads 

T ( z ) = - g : ( O z q S ) 2 : = -  gO/o(z'5)Owq~(w'w)+ 2 (z w) 2 " 

In the Ising model, we are mostly interested in correlation functions of the energy 
e and of the spin a operators. The correlation functions of their descendants result 
from the application of Virasoro generators on a and e, or alternatively from 
insertions of T 's  and T's  into the correlation functions. We shall present a 
technique to derive explicit expressions for all these functions below. We recall that 
e and cr are primary operators and as such, their correlation functions satisfy various 
identities. 

(i) As in any conformal theory, conformal Ward identities relate correlation 
functions with various numbers of insertions of T (or T). These identities encode 
the variation of the fields a, e (and T, T) under changes of coordinates. Their 
explicit expression has first been written in the plane [4], then extended to a 
Riemann surface of arbitrary genus [10] (see below sect. 3). 

(ii) The energy and spin operators have also the additional property of being 
"degenerate" at level 2. This means that the combination L 2 -  (3/2(2h + 1))L2_1 
of Virasoro generators, with h = ~ (resp. ~6) for e, (resp. a) cancels them. The action 
of L_ 1 is a simple differentiation with respect to z, while the one of L_ 2 may be 
derived from the insertion of T. Usually, the latter is eliminated using the Ward 
identity (i), to yield a partial differential equation for ( o . . .  e . . . )  [4,10]. In this 
work, as we have access to correlation function with arbitrary numbers of insertions 
of T's ,  we should be able to test separately (i) and (ii). 
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(iii) Finally, the operator product algebra [4] provides consistency checks between 
various correlation functions. At short distances: 

~p(z)~p(w) = ( z - w )  + ' " '  (1.13a) 

e(z, 5)e(w, ~)  = I z _ wl------- ~ + 0(1) ,  (1.13b) 

1 
o(z ,  5)o(w,  ~)  Iz - wl 1/4 

+ Co,~]z-  w13/%(w, ~ )  + . . .  , (1.13c) 

1 
--  W)I/2II(W , ~ )  + "'" , (1.13d) ¢(z)o( . ,~)  (z_ 

1 
~ ( Z ) O ( W ,  W) -- (Z -- W) , / 2 f f ( W '  ~ )  -1- " ' "  ' (1.13e) 

, / , ( z ) ~ ( ~ )  = - i 4 w ,  ~ )  + . . - .  (1.13f) 

The field # denotes the disorder operator [11], dual to the spin o, endowed with the 
same conformal weights and algebra. These relations may be summarized in a more 
compact way in terms of conformal blocks [4] as: 

[¢][, / , ]=[11, 

[d[d =[11, 

[o][o]  = [1] + [~1, 

[¢l[.l  = [~1, 
[ + ] [ H  = [ , , ] ,  

[,,t:][,,] = [ ~ ] ,  

[+1[¢1 =[d. 
For example, by a suitable short distance expansion, the ( too)  function should be 
extracted from the 4-spin function, etc . . . .  

To summarize, as the Ising model is represented in its critical regime by a free 
fermion field, the problem of computing its correlation functions might look trivial. 
It is not so for four main reasons: 

(i) The non-local character of the spin variables in terms of fermions. 
(ii) The fact that the original Ising fermions are real (Majorana) rather than 

complex (Dirac) makes their bosonization less direct. Actually, as we shall see, this 
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suggests that duplicating the Ising model and hence computing squares of correla- 
tion functions may simplify matters. The resulting c = 1 theory is then amenable to 
bosonization [12-14]. 

(iii) The fact that our physical observables o and e are "non-chiral",  i.e. are 
functions of both z and ~, prevents us from using existing techniques and formulae 
[15-16]. As a result, correlation functions appear as sums of modulus squares of 
analytic functions. 

(iv) On a torus (or a higher genus surface), the role and contribution of the 

various sectors of boundary conditions of the free fermion or of the equivalent free 
boson have to be examined with care. Ultimately, we shall find that our correlation 
functions are combinations of chiral correlation functions computed in string theory 
[16]. Whether  there is a more direct route to this result is not clear to us. 

The paper  is organized as follows. In sect. 2, we present expressions for the 
correlation functions in a plane, and introduce some of the themes which will recur 
in the following sections: bosonization versus Ashkin-Teller, identities of various 
origins . . . .  Sect. 3 is a reminder of some results about the Ising and AT models on a 
torus: parti t ion functions, sectors, expectation values of the energy operator. Sect. 4 
is mainly devoted to the two-point function of the energy operator. The equivalence 
between the fermionization-bosonization and the AT approaches will result from a 
detailed analysis of the contribution of the various sectors, and involves a lot of 
identities between Jacobi 0-functions. We insist on carrying it through, at the 
possible price of some lengthiness, to establish the coherence of the different 
standpoints.  

We turn to the case of the spin-spin correlation function in sect. 5, where we 
present three different methods of computation; one of them relies on the chiral 
bosonization which we recall there. Again the mutual equivalence of these methods, 

the role of the various sectors and some of the information that may be extracted 
f rom this spin-spin function are analysed in detail. Sect. 6 generalizes this to higher 
correlation functions on the torus and sect. 7 contains our final comments. Finally, 

an appendix gives some details on the equivalence between chiral and non-chiral 
bosonizations. 

2. Ising correlation functions in the plane 

In this section, we present various expressions for the correlation functions of the 
Ising model (at the critical point) in the plane*. This aims at preparing the reader 
for the discussion of the case of the torus. 

* Many results presented in this section have been obtained in an earlier unpublished work by one of 
us with C. Itzykson. 
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2.1. As explained in the introduction, the energy correlation functions are 
simply a product of Pfaffians of ~p or f propagators: 

(E(Z1, Z1) . . .e(Z2n,  Z2n)) 1-~ P f ( ( ~ ( z i ) ~ ( z j ) ) )  X Pf( (~(2 i ) f (~y)>) .  (2.1) 

With our conventions, the propagators of the ~ and f fields in the plane read: 

1 1 
(¢(z)¢(w)) - ( 2 . 2 )  

and it is understood that the antisymmetric matrix (@(Zi)~(Zj)) has no diagonal 
term. 

Therefore, in the plane: 

1 2. 

(e(zt, St). . .  e(z2,,,~2,)) ' =  Pf z , - z j  (2.3) 

Throughout this paper, we shall denote such a correlation function (e(1)... e(2n)), 
and keep z, Y, coordinates only when we want to stress the holomorphic (or 
antiholomorphic) properties of the correlator. 

In the Ashkin-Teller model, the energy operator is known [6] to be represented by 
the cosine of the free boson field of eq. (1.4): 

e AT oC cos2~ (2.4) 

up to a normalization. In a field theoretical language, this is expressed by the 
equivalence between the massive Thirring model and the sine-Gordon system 
[17-181 

(e(1) . . .  e(2n)) A'r ~x @os2q,(1)...cos2q~(2n)) 

1 
= 22--G ~ I-I Jz i -  zjl 4~'`'/g. 

ei=±l l~i<j~2n 
Ee, = 0 

(2.5) 

The constraint ~..ei= 0 expresses the "electric neutrality", consequence of the 
translation invariance ¢(x)  ~ ~(x) + const. 

At the decoupling point g = 2, where the AT model reduces to two independent 
Ising models, e is the sum of two Ising energy operators: 

e AT = e l i  -~- •12. (2.6) 

In the plane, where the expectation value of an odd number of Ising energy 
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operators vanishes (because of the self-duality of the model under which e is odd), 
this gives: 

<e(1) . . .  e(2n))ATIg=2 ----- 2@(1) . . .  e (2n) ) '  

n-- 1 

+2~ 
p ~ l  

[(e(1) ... e ( 2 p ) ) t ( e ( 2 p  + 1) . . .  e (2n) ) '  + perm.] ,  

(2.7) 

and implies a series of identities equating sums of modulus squares of Pfaffians with 
the r.h.s, of eq. (2.5) computed at g--  2. For example, for the four-point function: 

i 1 1 2 + - -  + + + 
Z12Z34 213Z24 Z14223 

2 213224 2 I 2 -- Z12234 - F  - -  - ] -  214Z23 , (2.8) 
Z13Z24Z14Z23 I Z12Z34214223 Z12234Z13224 

where zij = z i - ej. 
2.2. For reasons discussed in the introduction, it seems more suitable to write 

expressions for the squares of the Ising correlation functions. We claim that for the 
energy correlation functions, up to a normalization: 

@ ( 1 ) . . . e ( 2 n ) )  2°c ((V'VP(I))2--. (V'q,(2n))2>, (2.9) 

where 4~ is again a bosonic spinless free field of propagator 

<,(z,  e ) , (w ,  ~)> = - ¼log(z- w ) ( e -  ~) .  (2.10) 

In eq. (2.9), ( ~ ) ) 2  ~. ggVO>~Ov~ = 40/OO, eo 

One may prove (2.9) directly from the previous expression (2.3). On the right-hand 
side, the contractions of O~ and Oq~ decouple: 

<ale(z, e) owq,(w, ~)> 
4 ( z _ w )  =' 

(O,4~(z, e) O~4~(w, ~ ) )  4(5 - ~ ) 2 ,  (2.11) 
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so that eq. (2.9) follows from the identity: 
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1 1 

z , -  -s  ( z ,  - z , )  2 
(2.12) 

We recall that the Haffnian of a 2n × 2n symmetric matrix A~j 

1 
Hf(Aij ) = n!2 n ~ A,,&... A i . . . .  &,, 

permutations 
(il . . . . .  i2,,) 

o1"(1 . . . . .  2n) 

is defined as 

(2.13) 

and again here it is understood that our matrix A has no diagonal term. Identity 
(2.12) may be proved in a straightforward way, but for later purposes it is more 
useful to see it as a limiting case of the celebrated Cauchy determinant formula: 

det( 
\ z i - w j  

I-I (z;- zj)( w;- w~) 
= ( -  1) "(" 1)/2 i<j 

I-I(z~- T) 
i , j  

(2.14) 

Indeed, taking wj = zj + ej, letting all ei tend to zero and identifying the regular term 
yields (2.12). This completes the mathematical proof of (2.9). 

It is also useful to develop a physicist's interpretation of this result, appealing to 
the Ashkin-Teller lore. The square of an Ising energy correlation function may be 
regarded as the product of two correlation functions pertaining to two decoupled 
Ising systems, or alternatively as the correlation function of the products of the two 
energy operators for the two independent Ising constituents of the Ashkin-Teller 
model at its decoupling point: 

( (e (1) . . .  e (2n)) ' )  2 = (e l ( I ) . . .  gl(2n))l l(82(1). . ,  g2(2n)) 12 

= ( ( ~ 1 e 2 ) ( 1 ) . , .  ( e l e 2 ) ( 2 n ) )  AT. (2.15) 

Now the operator ele 2 in the Ashkin-Teller model has been identified [6] as the 
marginal operator coupled to the continuous parameter. In the coulombic or free 
boson reinterpretation of the AT model this is known [6] to map onto the operator 
(~q~)2. The value g = 2 at the decoupling point gives the propagator (2.10). 

2.3. As explained in the introduction, the computation of spin correlation 
functions is less straightforward, because of the non-locality of o in terms of 4. In 
ref. [5], a solution was given, along the following steps: 

(i) The spin-spin correlation function of the lattice model was expressed, through 
the Jordan-Wigner transformation, as the expectation value of a product of fermionic 
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operators ~,_ -- i (~ - ~b) and ~b+ = ~ +  ~b: 

(o(O)c(r))=( ~_(O)[[~=ll~b+(i)~_(i)].~b+(r)l (2.16) 

(where coordinates are measured in lattice units). 
(ii) The Ising model was then duplicated: the square of the correlation function 

(2.16) was expressed in terms of the two copies of the Majorana field, ~b 1 and ~Y2 
(and ~1, q~2), with which a Dirac field 

(D(z)l 1_~( ~Pt + i~21 (2.17) 

was constructed. 
(iii) In the continuum limit, this Dirac field was bosonized [18,19] in terms of a 

free boson field* ¢ such that the conserved current Jr reads: 

J~  = Dy~'D = e ~'" 0~¢ .  (2 .18 )  

In today's language and complex notations, we would say that each chirality 
component  D and b is written as: 

D(z) = exp iq0(z), 

D(Y) = exp iq3(~) (2.19) 

(up to factors, normal ordering prescriptions, e tc . . . ) ,  that the two components of 
the current satisfy: 

4 ( . )  = J ' ( z )  = 2 0¢  = 0 r ,  

~ ( ~ )  = j z ( y . )  = _ 2 b e  = 0q~, ( 2 . 2 0 )  

and the free field q~ is nothing but 

¢ (z ,  ~) = ~(q0(z) - ~(Y)) .  (2.21) 

(iv) A careful analysis of short distance singularities in operator products led 
ultimately to the expression 

(o(z, Y)o(w, ~ ) ) 2 =  sV-l(cos ¢ ( z  ' £)cos q~(w, ~ ) )  (2.22) 

* Actually, the analysis of ref. [5] was performed in the critical regime at T # T~; the fermion field was 
then massive and ¢ was a sine-Gordon field. Moreover, we use slightly different conventions in the 
bosonization which translate ¢ and change its normalization: sin ~/~q, becomes cos ¢. 
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up to a certain normalisation ./V'I, to be adjusted by the short distance behaviour  to 
.A/1 = 2. Of course, this relation is trivially true in the plane, since it gives nothing 
more  than the power law: ( o ( l ) o ( 2 ) )  = 1 / [ z  1 - z211/4. The point  is that, as we shall 
argue in sect. 5, it holds also on a toms. 

(v) Such an expression was finally generalized to the 2n-point  function "on-l ine",  
i.e. assuming the 2n spins to be aligned in the plane. It seems very reasonable to 
drop  this restr ict ion and to write: 

2n ) 
( O ( Z 1 , Z 1 ) . . , { ~ ( Z 2 n ,  Z 2 , ) > 2 = ~ / ' n  I~ COS {~( Zi, Zi) 

i=i 

= 2 2 .  E I - I I z i - z y  ' ° / 2  (2.23a) 
ei= +1 i<j 
E6 =0 

and the short  distance expansion show that ./V', = 2". The same formula was also 
ob ta ined  in ref. [17] by a different method.  

Changing ~ into ~ r  - ~ reverses the sign of the energy operator  cos2qa and must 
be identif ied with the duality transformation.  In (2.23) it changes the spin operator  
into its dual, the disorder operator  >, with the same correlation functions: 

<~(l). . . / l(2n)>2=.,d/" n Hs inq~( i )  = ( o ( 1 ) . . . ~ ( 2 n ) )  2. 
t=l 

(2.23b) 

This suggests a more general formula: 

(CI(ZI' Z1)' ' '(J(Z2n, Z2n)J~(W1, W1)'''~(W2m, W2rn)> 2 (2n / 
= ./K. +,~ I-I cos q~(z,, ~,) sin,/,(wj, ~j) 

i=1 

( -- 1 ) "  

2~+m E 
e,= ±i 
4 =  ±I 

E ~ + E 4 = 0 

N~'k I-I Iz,- zjl*'~'/alw, - wzl 4";12 I - I l z ,  - wkl ~,412 . 
k i<j t, k 

k<l 

For  example,  for n = m = 1: 

(2.23c) 

( o ( 1 ) t ,  (2) o (3) /z (4) )  2 = 
1 1 1 

2 I ( z t -  z3) (z  2 -  z4)[ 1/2 Ix(1 - x ) l  1 / y [ I x l  + II - x } -  1] 

in terms of  the cross-ratio x = (z a - z 2 ) ( z  3 - z 4 ) / ( z  I - z 3 ) ( z  2 - z 4 ) .  This has the 



5 3 8  P. Di Francesco et al. / Ising correlation functions 

correct z 2 --+ z 4 (x --, ~)  limit, and agrees up to a sign (a misprint?) with ref. [4]. 
The x ---, 0 limit, on the other hand, is consistent with short distance expansion of 0 
and t~ of the form: 

1 
- ~  " - - - - - - -  - - ~ e i ~ / 4 ( z _ w ) l / 2 ~ ( w ) + e - , , / 4 ( ~ _ ~ ) + ( ~ ) }  + 

0(z,  lz-wl 1/" 
I w 

(2.24) 

As in the case of energy correlations, these expressions may also be derived from 
considerations on the Ashkin-Teller model. The square of the Ising spin correlation 
may be regarded as the correlator 

(o(1)r(1)o(Z)r(2).. .  o(2n)r(Zn)) 

of the AT model at its decoupling point. The product or, however, is well known in 
the AT model [6]: it is the "polarization operator", of conformal dimensions 
h ---,~ = ~ represented in terms of the free field ~ as the "electric operator" exp iep, 
or rather as cos ~. 

It might seem that the bosonization of the Ising fermion or the considerations on 
the AT free field are just equivalent. It is so indeed in the plane. We shall see, 
however, in sects. 3-5, the subtleties associated with the boundary conditions on a 
torus say. 

2.4. The merit of the bosonization approach sketched above is that it may yield 
explicit expressions for other correlators of interest, namely mixed correlators 
containing both fermions and spins. It is not difficult to repeat the steps (i) to (v) 
above in the presence of "spectator" fermions. The duplication of the model leads 
for example to: 

2( g'( z, ~) q'( w, ~)  o (1). . .  o (2 n )) (o (1). . .  o (2n)) 

= (g'~(z, Z)gq(w, ~)a~(1). . .  aa(2n))(a2(1)... 02(2//)5 

+ (ol(1) . . .  %(2n))(~t*2(z, e)'I'2(w, ~)o2(1) . . .  %(2n))  

= 2..at (D*( z, ~)D(w, F)cos ~(1) .. .cos ~(2n))  (2.25a) 

and 

2(~/'(z, ~)g'(w, ~)g ' (u ,  K)'P(v, 0)o(1) . . .  o (2n) ) (o (1 ) . . ,  o(2n))  

+ 2('~'(z, ~) g'(w, ~ )o (1 ) . . .  a(2n))( '~ '(u,  fi)g'(o, 0)a(1) . . .  o(2n))  

+2(g ' ( z ,  Y)'/'( u, f i)o(1). . ,  o(2n))( ' / ' (w,  ~) 'P(  u, 0)o(1) . . .  o(2n))  

+ 2(g ' (z ,  ~)g'(v, 6)o(1) . . .  o (2n)) (g ' (  w, ~)g ' (u ,  ~)o(1) . . .  o(2n))  

-- &Ar~(D* (z, ~)D(w, ~)D*(u,  fi)D(v, 0)cos ~ ( l ) . . . cos  ~S(Zn)) (2.258) 
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etc . . . .  In these expressions '/', D, D* denotes one of the two chiral components of 
the spinors: 

,t, = + ( z )  1 f ( z )  l '  D = ~/T-~- (qq + i~2) '  D* = ~-5 ( q ' a -  iq*2). (2.26) 

These expressions enable us to form other correlators, by suitable limiting proce- 
dures, in particular (e . . .  {J... ) or (T . . .  a . . .  ). We have for example: 

(~(z,  ~ ) o 0 ) . . .  o ( 2 n ) > ( o 0 ) . . ,  o (2n) )  

= .At,( cos 24} (z, 5)cos ~ (1). . .  cos ff (2 n ) ) ,  (2.27) 

(e(z, e)e(w, ~ ) o ( 1 ) . . .  o(2n))(o(1).. ,  o(2n) )  

+ (e(z,  5 ) o ( 1 ) . . . o ( 2 n ) ) ( e ( w ,  ~ ) o ( 1 ) . . . o ( 2 n ) )  

= 2.A~@os 2~ (z, e)cos 2,t,(w, re)cos,/,(1)..,  cos,/,(2,,)),  (2.28) 

and 

2(T(z)o(1) . . .  o ( 2 n ) ) ( o ( 1 ) . . ,  a (2n) )  =.Ar~(-g(z)cos ~a(1).. .cosg}(2n)),  (2.29) 

2(T(z)T(u)o(1) . . .  o ( 2 n ) ) ( o ( 1 ) . . ,  o (2n) )  

+ 2 ( r ( z ) o ( 1 ) . . . o ( 2 n ) ) ( T ( u ) o ( 1 ) . . . o ( 2 n ) )  

= .At,(1-( z )T  ( , )cos  ~} (1) . . .  cos ~ ( 2 ,  ) ) .  (2.30) 

On the left-hand sides of these two latest equations, T(z) denotes the stress-energy 
of the c = ½ real fermion system (cf. eq. (1.11)), whereas 3- on the r.h.s, denotes the 
tensor pertaining to the c = 1 system: 

[ - g ( z ) = - l i m  z ½(D*(z) OwD(w ) -OzD*(z )D(w) )  ( z - w )  2 

[ ' ' 7  = - ~-+zlim 2 o , , ( z ,  ~) a w , ( W ,  ~ )  + 2 (~ - w t2 . (2 .31)  

Notice the change of the normalization by a factor 2 from (2.23) to (2.29). This 
factor 2, which comes from the duplication, will be important in a while. 
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Finally, it is very natural to unify expressions (2.9) and (2.23) into a single 
formula: 

(o(1)...o(2m)~(2m+ 1)...~(2n)e(2n+ 1)...e(2n+p)) 2 

=JV' ,p (COS~(1) . . . cos~(Zm)s in~(Zm+l) . . .  

s i n~ (2n) (V~(2n  + 1))2...(V'O(2n+p)) 2) (2.32) 

and 

2 ( T ( z ) o ( 1 ) . . . b t ( 2 m  + 1) . . .  e(2n + 1 ) . . . ) ) ( o ( 1 ) . . . / ~ ( 2 m  + 1) . . .  e(2n + 1 ) . . . )  

=.Ar~p(~-(z)cos ~(1) . . .  s in~(2m + 1) . . .  ( ~ ( 2 n  + 1))2...  ) ,  (2.33) 

e tc . . .  
Confrontation of (2.27)-(2.28) against (2.32) leads to consistency relations, of 

which we have only checked the first ones (n = m = 1, p = 1 and 2). 
The short distance behaviour fixes the normalization: 

.W'np = ( - 1)P2 n . (2.34) 

2.5. We are now ready to test the various identities and relations between 
correlators discussed at the end of the introduction. 

(i)  Ward identities in the plane for n primary fields Ai of conformal weights hi, 
have a general form [4]. 

hi 
( V ( z ) A l ( 1 ) " ' A " ( n ) ) =  i=1 ~ ( z - z i )  2 + (A10)... A,(n)), 

Z - - Z  i i 

(2.35) 

whence 

2(T(z)Aa(1)... A,(n))(AI(1)... A,(n)) 

2h i 1 O ) 
- -  ( Z T Z i )  2 q'- (AI(1) . . .  A , ( n ) )  2. (2.36) 

i = 1  Z - -  Z i O Z  i 

It is clear now that the Ward identity relating (To...bt... ~...) and (o . . .  
a b t . . .  / ~ . . .  e) (with h ,  = ~ and h~ = ~-) is satisfied if and only if 
(T cos ~ . . .  sin ~ . . .  (V~) z. . .  ) and (cos ~ . . .  sin 0 . . .  ( ~ )  2... ) satisfy it (with h ~os 
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-~-  1 and h(6~)~ = 1). The latter, however, involves only free fields, and may be 
readily checked. The identity involving two T insertions may be handled in the same 
way. 

(ii) Degeneracy equations. We want to check that 

< [ ( g  2 - 4 L 2 1 ) o ] ( 1  ) _ ~  _ . . . . . . .  /~(2rn+ 1) e ( 2 n +  1) . .  ) = 0 ,  (2.37) 

([(L 2-~L2~)e](2n+ l)...e(2n+p)o(1)...~t(2m+ l)...)=O. (2.38) 

L_ l is just z differentiation, while the action of L 2 may be computed by a contour 
integral from eq. (2.29). 

2(( L 2o)(1)o(2)...o(2m)/~(2m + l).../~(2n)e(2n + l)...e(2n + p)) 

X (o(1).. . /~(2m + 1)... e(2n + 1). . . )  

dz (-¢(z)cos 0(1).. .  sin q~(2m + 1)... (~O(2n + 1))2... ) 
= ~ " , ~  2~ i (~ -  ~,) 

=sV'~p((L 2cos q))(1).. ,  sin ~b(2m + 1) . . .  (~ '0(2n  + 1))2.. .  ) .  (2.39) 

Therefore, eq. (2.37) is equivalent to the non-linear identity 

( ( ( L  2 - ~ L 2 1 ) c o s q ~ ) ( 1 ) . . . s i n q ~ ( 2 r n + l ) . . . ( ~ O ( 2 n + l ) ) 2 . . . )  

× (cos q~(1).., sin q~(2m + 1) . . .  (~¢)(2n + 1))2. . .  ) 

+ } ( ( L  l c o s 0 ) ( l ) . . ,  sinq~(2m + 1) , . .  ( ~ 0 ( 2 n  + 1))2.. .  )2 = 0,  (2.40) 

with a similar expression for eq. (2.38). The merit of this method is that solving or 
checking complicated partial differential (linear) equations has been replaced by 
verifying a mere combinatorial identity. Still, the general expressions are cumber- 
some and difficult to handle. For example, for n = m, p = 0, eq. (2.40) is equivalent 
to: 

E HIZi- Zjl (e'ej+Efe;)/2 
(~,~') i<j  

X 
1 

i~l (~1 - z~) 
~'~ ] 

Z (z 1- zi)(z~_zj)6~,,~:6~,.4 = 0, (2.41) 
j > i > l  
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with Ee = ~.e' = 0. We contented ourselves with checking such identities only in the 
first cases: eq. (2.37) for n = m = l  (trivial) and n = 2 ,  p = l ,  eq. (2.38) for 
n = m = l ,  p = 2 ,  n = l ,  m = 2 ,  p = 0  and n = m = 0 ,  p - - 4 .  

(i i i)  Finally, we turn to the operator product expansions (1.13). Part of this 
information has already been implicitly incorporated in the bosonization formulae 

and their normalization. Less trivial is the determination of the coefficient Coo ~ in 
the product  oo. Starting from the 4-spin correlator written as in (2.23) and 

identifying the first two terms in the expansion as z a --* za, z 3 ~ z 4, we find 

2 __ l 

hence C,o~ = + ½. The plus sign may be chosen at the price of a possible redefini- 
tion of the energy operator e. 

This completes the tests of our general formula (2.32). Our task will now be to 
extend these results to a critical Ising model in a finite box with periodic boundary 
conditions, i.e. on a toms. We shall see that all the expressions for the correlation 

functions look very similar to those of the plane, with monomials z, - zj replaced by 
appropr ia te  Jacobi 0-functions (and with a little extra decoration). Before em- 

barking on that discussion, however, we need to recall a few facts about the 

part i t ion function, the stress energy tensor and related quantities for the Ising and 

AT models on a torus. 

3. Generalities on the torus 

We collect in this section various results which will be useful in the following. The 
torus is described by two complex periods % , % ,  r-~ % / %  = % +  ir x is the 
modular  ratio, and q = e 2i'~. With no loss of generality we take from now on w 1 = 1. 

3.1. We first consider partition functions. For the Ising model, the successive 
steps of the solution impose the summation of the functional integral over four 

sectors [2], thus 

z ' =  q~lexp(-ag)- ~ [det(-A,q~) I '/2, (3.1) 

where a,/3 E {0,½} and d e t ( - a  ¢) is the determinant of the laplacian evaluated 
with the boundary  conditions for the field 

= (3.2) 

Standard calculations [20] give de t ( -A00 ) = 0 due to the zero mode, and the 
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regularized values 

(det( zl ] ] 1 / 2  --  1 / 2 , 0 ] ]  = [04(0, r ) / ~ ( r ) l  = Irl2(r/2)/rl2(r)l, 

( d e t (  - a  1/2 2 2(2r) 
0 , 1 / 2 .  = = , 

(det( n , ~ I / 2  7]4( T ) , 
- -  1 / 2 , 1 / 2 1 ]  = 103( 0, r ) /~ / ( r ) [  = ~02(2,r),02(w/2) (3.3) 

where B is Dedekind's function r/(r)  = q l / 2 4 1 - I ~ =  1(1 - q") and O,(z, r) are the usual 
Jacobi theta functions [21]. In the following we generally use the index v to denote 
fermionic sectors or spin structures but sometimes, we characterize them by two 
numbers a and b taking the values 0 or }" (a, b) = (}, 1 ~), and _ . ~ ( ~, 0), (0, 0) (0, J) for 
v = 1, 2, 3, 4 respectively. Notice that a = a + ~ rood 1, b = fl + ½ rood 1. With these 

o. = o [ . q  in Mumford's notations [21]. Z I reads thus conventions, 

1 
Z ' =  (I02(0)1 + [03(0)1 + 104(0)]), (3.4) 

2171 

with no contribution from the first sector (the normalization is chosen such that the 
identity operator is non-degenerate). Transformation formulae of the 0,'s ensure it is 
modular invariant. The small q behaviour corresponds [22] to the central charge c 

1 = ~, and the decomposition in characters of the Virasoro algebra [23,20] to the 
associated minimal theory with only three primary fields: the identity, the energy 
and the spin. For the Ashkin-Teller model, the free field mapping generates an 
infinite number of sectors on the toms, as has been explained in ref. [8]. Those 
corresponding to shifts of the field q~ appear because the introduction of surface 
variables is only local and cannot be done in a consistent way on a torus. The value 
of g given in (1.9) corresponds to a normalization of 4} such that discontinuities are 
multiples of 2¢r. The functional integral 

Zmm'(g)= f~<:+l,=+(.,+2.m'[@]exp(-g/4~r f[+@[2 ) 
q , ( z + 7 ) = 9 { z ) +  2rrm' 

0.5) 

has been calculated [24, 25] 

i ' - , ~ l -  Vfg [ m'2+m2(r2+r2)-2mm'rR] Zmm,(g ) - -  r ~ e x p  -~rg (3.6) 
T I 

(fg- appears here due to the subtraction of the zero mode). The sum over m, m'  
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gives then the first contribution to Z AT as a "coulombic" partition function 

1 
/ c C g )  = E Zmm ' =  ~ ' ~  e~mq(e/~/g+rn~[d)2/4q (e/~fd-mfd)2/4 (3.7) 

mm*EZ ~Z 

(this last equality being obtained by the Poisson formula) which is modular 
invariant. The small q behaviour corresponds to c = 1 and the other terms to 
gaussian primary operators with dimension x = h + h = e2/2g + ~gm 2 and spin 
s = em. To reproduce the order-disorder operators, one must add [7, 8] to (3.7) three 
sectors with antiperiodic (twisted) boundary conditions for q~ along at least one 
period, giving the other contribution (independent of g) as 

E'ldet(-A~,) 1-1/2 C3.8) 

(where the prime on the summation means that the doubly periodic sector is 
omitted). It is also modular invariant, and contains in particular the spin dimension 
x~ = ~, constant along the critical line. One gets finally 

z A T  1 E '  I'ql (3 .9 )  
=  Zc(g) + 1o (o){ ' 

the relative normalization being fixed by degeneracy arguments [7,8]. In the 
following we use (ram'), c, or (a]3) to denote AT sectors. 

At the decoupling point g = 2, Z AT= (Z / )  2. This is easily verified. Indeed the 
known identity 

2 ~13 = 0 2 (0) 0 3 (0) 0 4 (0) (3.10) 

allows one to identify the crossed terms in the square of (3.4) with the contribution 
of the twisted sectors (3.9). The direct terms reproduce the coulombic contribution 
due to the identity 

~ ' l  0,'(0)12 = 2v/2 [ m'2+m2('r2+'r2)--2mrn'rR] 
I.I1/---T E exp - 2 ~  , (3.11) 

turn' 'rI 
eZ  

which is a particular case of a result we establish later (4.19). 
In other words [9], taking the square of Z 1 amounts to computing the partition 

function of a system of two independent free Majorana fields '/'1 and '/'2- If these 
two fields have the same BC (direct terms in the expansion of (ZI)2), one may 
construct a Dirac field out of them, as in sect. 3, whose partition function is 
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represented by Z c. The cross-terms, on the contrary, lead to the twisted terms in 

(3.9). Thus there is no one-to-one correspondence between the fermionic sectors in 
the Ising model and the sectors of the AT model. 

It  is worth noticing that the last results could be recovered in a rather different 
approach [26]. For simplicity we consider only the decoupling point. Then it is 
known [27] that the transfer matrix of the AT model with periodic boundary 

1 conditions on a strip of width 5L corresponds in a hamiltonian language to the XX 

model  on a chain of length L 

~ =  ~ v -  x x Y Y ( 3 . 1 2 )  ~Z. ,o i  oi+1 + - -  (ii (ii + 1 

i 

where the o are Pauli matrices, summed over the BC, (i) (o•+1, a[+l)= (a{, (i(), 
0 x ( i  x (ii) ( L+I, o{+1) = - ( o { ,  (i(), (iii) ( L+~, o[+1) = (oi l  -o{) .  In the first two sectors, 

s tandard manipulations allow one to transform (3.12) into a diagonal [17] Luttinger 
model with periodic or antiperiodic BC. The spectrum is one of two decoupled Ising 
models whose number  of excitations are of the same parity. This in turn is 
t ransformed into the hamiltonian of a free scalar field using the procedure of ref. 
[26]. This field is not periodic but presents discontinuities which are multiples of the 
number  of excitations, or equivalently of the magnetization ()2(if). Finally, the 
transfer matrix calculation is reformulated in a functional integral language to 
recover Zo(2). One recovers in particular the fact that the coulombic part  of Z AT 

(g = 2) comes from the direct terms in ( Z I )  2. A similar procedure can be used to 
treat (iii) and recover the twisted sectors. 

3.2. The (doubly periodic) sector v = 1 does not contribute to the Ising partition 
function; however it cannot be always discarded. A simple example is provided by 
the calculation of the mean value of the energy operator at criticality on the torus. 
For  v = 2, 3,4, Z,  • 0 and a standard application of Wick's theorem gives ( ~ ) ~  = 0 
while for v -- 1, since Z 1 = 0 one gets an undetermined form. In ref. [28], Z 1 was 
calculated in presence of a mass term. Taking the derivative with respect to m one 
then finds 

Z l ( e ) l ( m  ) ~ qrl'r/{ 2, m ~ 0 (3.13) 

(e being normalized by (1.13b)). Thus the mean value of the energy is 

4 

Z '  2v ~,,{0,(0) I , 
v 

(3.14) 

in agreement with lattice calculation of Ferdinand and Fisher [29]. Here the result 
comes from the v = 1 sector only. 
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This result admits a natural interpretation in the language of free fermions. Z~ 
vanishes because in the grassmannian integral in the doubly periodic sector 

= f # [ ¢ ,  qZ]e 

the zero modes qJo, ~0 do not appear in the integrand and fd~P0 d~0 = 0. In the 
computation of Zl(e)l however one finds 

= f d0/o d~o +o¢0f 1-I d~bk d f k e  -~¢ 

o: 1 X 1712 . 

It is instructive to rederive (3.14) using the AT model at the decoupling point. As 
mentioned above (sect. 2) the operator energy e translates into cos 2~ in the scalar 
field formulation (1.8). A calculation using the naive (infinite) value for the 
coincident point propagator would give zero for (e) A'r since the Wick's theorem 
(cos2~} ---e -2(*~) -=-0. We shall instead use renormalized values which have been 
obtained in ref. [28] by adding a mass t e r m  m2qb 2 to  (1.8), differentiating partition 
functions with respect to m 2 and letting m go to zero. We quote only the results 
here 

n 2 ( 2 7 )  2 
exp(-2(~b2)0,,)=4~re -v ~ = ~ r e  3 '102(0 ) ]2  , 

v ~2(r/21 2=~re-VlO4(0)12 ' 
exp(  - 2(~b2) 12,0) = rr e 

7(') 

exp(--2(q52}},,) = ~re- '  rls ( " r )  2 
~ / 2 ( 2 r - ~ r / 2  ) = rre-'[O3(0)[ 2, (3.15) 

while @52)o0 is still infinite due to the zero mode. The numerical constant ~re -7 
(3, = Euler's constant) depends on the regularization procedure (a zeta regularization 
was used in this calculation). Then we find 

E ' Z a B e  2(~2)~ 

(cos 2<)) AT = ~ {~713 (3.16) 
zA T = rre " Z'lO,,(O)l 

z~ 

the universal (q-dependent) part of which agrees with (e) t in (3.14). 
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We can as well recover (3.14) in a third way, using the fact that at the decoupling 
point the square of Ising energy correlation functions is a correlation function of the 
marginal operator- I ~'~'[ 2 in the AT model (2.9). We show later that (I~4}l 2)(~/}). (00) 
= 0. In the coulombic sector (l~{bL 2) is calculated by differentiating Zc(g) with 
respect to g 

4v 0 
( [ ~ l  2)c r, ag l°g z : ( g )  (3.17) 

One has 

O Zc(g)= ~*~ 

~ Z  

gT e2 --m2)(qq)e2/4g+gm2/4( q] " (3.18) 

For g = 2, and using Jacobi's identity 

1 2 Y', ( - 1 ) ' ( 2 n  + 1)q ('+1/~')/2 = 713(q), (3.19) 
m ~ Z  

one gets [30] 

Thus 

and 

c9 Zc(g) g=2 Og = ½~r'rll~ 14 (3.20) 

(}~I2)1g=2 = Zc(2 ) (3.21) 

( 1 6 , 1 2 ) A ,  = _ (3.22) 

in agreement with (3.13). The minus sign may appear surprising since both sides of 
the equality are squares of real quantities. One should not forget, however, that they 
are renormalized quantities. 

3.3. Another quantity of interest is the mean value of the stress energy tensor. It 
is simply related to the partition functions by [10] ( T ) =  2irrO~ log Z. Using the 
differential equation satisfied by theta functions [21] 

020~( z, q) = 4i~rO,O~( z, q) (3 23) 

and 

0{(0) = 2v~ 3 , (3.24) 
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we get for the Ising model and v =g 1 

o~(o) 1 
<T)~ = i~rO, log 

12 

3o"(oi  o~"(o) ] _ e, , 
(3.25) 

or(o) o;(o) ] 4 ' 

where e,'s are standard constants of theta function theory [21]. To give a meaning to 
the stress energy tensor in the first sector, we use the same procedure as above by 
using calculations for the massive Ising model of ref. [28]. One finds 

97 

<T)l=2i~rO, l ogZ: (m)~  -~1+ --,  m--+O, (3.26) 

where 

1 0;,,(0) 
711 6 0 ; ( 0 )  " (3.27) 

Thus Z:(T)I  = 0 and 

~'lO~(O)[e~_ ~Z~<T>~ 1 1 
P P 

<r)I= Z '  4 ~'{0~(011 ' (3"28t 

P 

which can also be recovered via the AT model. 
Related to the stress energy tensor is the Ward identity on the torus. It has been 

derived in details in ref. [10] and we give only the result here 

<V( Z )Al(1 ). . .  A.(n )) - ( T ) < A : ( 1 ) . . . A , ( n ) )  

= ~ {h i [ga(z - z i )+Z~l l+[ f ( z - z i )+Z~:z i ]O: , }~A: (1 ) . . .A , (n ) )  
i = l  

+ 2i~rO,<A:(:)... A,(n)>, (3.29) 

where the f and Weierstrass ~ functions are related to the 0 functions by 

o ; ( z )  
~ ( z ) -  01(z ) + 2 ~ : z ,  

~ ( z )  = - ~ ' ( ~ ) .  (3.30) 
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Formula (3.29) is the natural doubly periodic extension of (2.35) taking into account 
that (T)4= 0 on the torus. The additional term involving the derivative of the 
correlation function with respect to r follows from the deformation of the torus in a 
coordinate transformation. 

The correlation functions involving degenerate operators satisfy then differential 
equations [4]. For an operator A degenerate at level 2 we have 

3 
2(2h + 1) O~(A(z, ~)A1(1).. .  A,,(n)) - (T}(AI (1 ) . . .  A,,(n)) 

={2hrh+2rllzO~ + ~ {hi[ga(z-zi)+2~l]+[~(z-zi)+2~lzi] Q } }  
i=1  

× CA(z, 5)A1(1). . .  A,(n)) + 2i~rO,(A(z, e )Al (1 ) . . .  A,(n)), (3.31) 

which can also be recast as 

3 
2 ( 2 h +  1) 32-2rhzO~- ~ [~(z-zi)+ 2~lZi] O~'-2irrO'-2h~l 

i=1  

-i=l~hi[~(z-zi)+ 2~l]} Z(A(z'y)AI(1)'''A"(n))=O' (3.32) 

where the differential operator acts on the product Z{ ). Thus the differential 
equation will be satisfied for the total correlation function if it is in each sector 
separately. This of course is also expected since a coordinate transformation leaves a 
given sector unchanged. 

4.[.  

sponding to (2.2) in the different sectors [10,20] 

where 

4. Two-point energy correlation functions on the torus 

Stress energy tensor. We first recall the free fermion propagators corre- 

v=  2,3,4 ,  (4.1) 

~@~{z) = { ~ -  e~ 1) 1/2 0[(0) O~(z) 
- o (o) o l ( : )  

(4.2) 

Using these results it is easy to check the value of (T)~ given in (3.26) and to obtain 
[10] 

(T(z)T(w))~ - (T )  2 = - ¼ [ (~ / )2  _ ~ , , , ~ ] .  (4.3) 
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This can be shown to agree with the Ward identity with two insertions of T and 
n = 0  

( T ( z ) T ( w ) > ~ -  <T> 2 = ~ c ~ " ( z -  w) + 2 [ ~ ( z -  w) + 2~/1](T>~ 

+ 2ivrO,(T)~ (4.4) 

_ _  1 for c -  7. 
Note that the general structure of (4.4) is imposed by analyticity and periodicity 

arguments. Because of the short distance expansion 

one has 

e l2  2T OwT 
+ - -  + - -  + regular terms, (4.5) ~ ( z ) ~ ( w ) - ( z _ w ) ,  ( z - w )  2 ~ - w  

<T(z )T(w) )~  = ~ c ~ " ( z  - w) + 2 ( T > ~ ( z  - w) + const, (4.6) 

~ "  (resp. ~ )  being up to a constant the unique elliptic functions singular as 
z 4(z-2)  when z--* 0. The Ward identity allows in addition the determination of 
the constant term. 

4.2. Energies. The two-point energy correlation function is then immediately 
obtained in each sector v ~ 1 as 

o;(o) ~ o~(z- w) 2 
(~(z)~(w)) ,=L~,(z-  w)l 2= ~ 0,(z w) ' (4.7) 

i.e. the square modulus of an analytic function. It is periodic and satisfies the 
differential equation (3.32) as checked in [10]. It is then tempting to conclude that 
the total correlation function reads 

~'z,,(,~G, io,f(o)l~ ~'lO~(z-w)12/Io~(o)l 
(~(z)dw)) z '  10,(z-w)l 2 ~'10~(0)1 , (4.8) 

p 

which enjoys the correct modular properties 

( e ( z ) e ( w ) ) ( ¢  + 1) = ( e ( z ) e ( w ) ) ( r ) ,  

( 4 - , ) 4 w ) ) ( - 1 / , )  = I ,J2(~(,z)4~w))(O. (4.9) 

This expression was already proposed in ref. [20]. To establish its correctness 
however we must prove the absence of any contribution from the first sector. For 
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this, consider the short distance expansion 
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Z.e(Z)e(W)----Iz--wl-2~_.aN~Z, AN~(Z,?)(Z--W)P"(~--~) ~, (4 .10)  

where AN~ a r e  operators in the conformal block of the identity Ill]. Taking the mean 
value one finds on the r.h.s, of the equality terms a s  Zv(AN~)~. If v=  1, this 
vanishes for the identity and stress energy tensor and thus, by successive application 
of the Ward identity, for any descendant of ~. The 1.h.s. must then be also zero, 
confirming (4.8). The specific heat, i.e. the integral of (4.8) on the torus is ultraviolet 
divergent. A regularized value has been obtained in ref. [28], 

'10~ (0)  I logl0.  (0) r 
C = - ½~r log(~re-VlO~ll ) - ~r ~-~,10.(0) ] - ~-rlO~l]2(e) 2 , (4 . l l )  

where we have reinstated I~011 4:1 for a while to insist on the characteristic logl~01l 
dependence. 

4.2. We now rederive (4.8) using the AT model. First, we establish a useful 
identity for the square modulus of theta functions. Consider for convenience 03, 
defined by 

03(Z , T) = ~ exp(i~'rN 2 -  2i~rNz).  ( 4 . 1 2 )  

N =  o:~ 

One has 

103(z, "r)l 2=  ~ exp(i'rr('rN2-ZrM2)-2irr(Nz-Mz)). (4.13) 

We perform the summation over 

P = N - M ,  

Q = N + M,  (4.14) 

where P, Q are now integers of the same parity. Then (4.13) reads 

103(z, ~)12 = E + E )exp[-~rrI(PZ+Q2)-i~rPQrR 
P,O P,Q) 
even odd 

+ 2i~P Re z + 2~rQ hn z] .  (4.15) 
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In the first sum we set Q = 2m and perform a Poisson transformation over m to get 

1 E exp{ _ rr P2 r2 + r• rrP '2 
2 ~ /  e even  2 r I 2 r I + rrPP' rRrI 

p ,  

Im z Im 2 z ) 
+2iTrPRez - 2i~r ( P %  - P ' )  + 2~r 

T I T I 

E A e e , ( z , r ) ,  (4.16) 
P even ,  P '  

which defines Ape,(z,  r). In the second term we set in the same way Q = 2m + 1 
and we obtain 

E e x p [ -  ~Trr,(P2 + Q2) _ irrPQr R + 2irrP Rez + 27rQ Im z] 
P ,  Qodd 

= E ( - l ) P ' A e m ( z , ~ ) .  (4.17) 
Poad, P' 

Thus finally 

[03(z 'r)12=( E + e , e '  RE +even eEoad --P,~P') AeP ' ( z ' r ) "  
even P '  odd  P '  even odd  

(4.18a) 

Identities for other 0 's follow by shifting z by half periods. Indeed [01[ 2 is obtained 
multiplying (4.18) by ( - 1 )  P+P', J021: by ( - 1 )  e' and 10412 by ( - 1 )  e. In general, we 
write 

IO~(z,'r)[ 2= Z e(fi)2, e'/2Ap, p ' (Z , r ) ,  (4.188) 
P, P ' ~ Z  

where the signs e(~)2, P,/2 depend only on the class of P and P '  modulo 2 and are 
given by table 1. This reproduces the sign assignments given in ref. [12] to the 
shifted (or "winding") sectors of a boson field in order to match the four fermion 
spin structures. As a first application one has 

ElO~(z , r ) l  2 2v~ [ 2v Im2 z = ~ e x p /  
Vr: ~ rx 

m2(r~ + r•) + rn ' z -  2mm'% 
× ~ exp - 2 

mm t E Z TI 

m~" R - m' ] 
+ 4 i r r m R e z - 4 i ~ r  I m z ,  (4.19) 

1 T I 

which establishes in particular (3.11) for z = O. 
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TABLE 1 
The signs (,I weighting the contributions of the (m. m')-sector 8m m ' 

in eqs. (4.18b), (5.18) or (A.3) 

• (m,m') (0,0) (0,{) (},0) (} ,~)  

[ a l ' ~  °d 1 

KZJ  
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Here, m,  m '  E ~ L  and ~,,~.,,,, depend only on  their residue rood 1; v or are the two alternative 

descript ions of  fermionic sectors introduced at the beginning of sect. 3. 

The energy is represented by cos2~ in the AT model, and we calculate now its 
correlation functions sector by sector. First we consider the coulombic (shifted) 
sectors. The free field propagator for periodic BC corresponding to (1.8)-(1.10) is 

[201 

1 []OI(Z-- W)I2 ( 
( , ~ ( z , ~ ) q ~ ( w , ~ ) ) = - ~ g l o g  {~;(~)~5 e x p - 2 7 r  

Im2(z - w) 

q'I 

1 
= -Tglog r ( z -  w, , ) .  (4.20) 

If 0 is constrained by (3.5), one can write 4)= $ + ~cla~s where ~ is now doubly 
periodic and Cbdass is given by 

~class = ie 
m~-- m'  

z+c.c.=amm, z+c.c . ,  (4.21) 

w i t h  A~class = 0 ,  o r  equivalently 

m , r R  -- m p 
~class = 2~rmRe z - 2~ Im z. (4.22) 

T I 
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l 0{ (0) 1 e2/g 
<eieq'(z,rOe-ieq'(w,~)>mm,= iOl( z_W)l 

[ ' / r e  2 Im2(z - w) 
×exp[ g rI + 2 iwemRe(z  - w) 

- 2i~e 

1 

m r  R -- m '  ] 
I r a (z -  w) 

J "r I 
(4.23) 

and 

Zc ( g )<eieq'(z,~) e-ie'C'(w, ~))c 

t ~2/g [ Im2(z - w ) f g  [0f(0)[ ] expl rre 2 
r1/aln12 101-~z -- w) I g r, 

× mm,~eZ exp(-Trg 
m '2 + m~(r~  + r ? ) -  2mm%R 

'7" I 

+ 2i~rem Re ( z - w) - 2i~re 
m ' r  R - -  m' / 

I r a ( z - w )  . (4.24) / T I 

At the decoupling point g = 2 one thus finds using (4.19) 

1 10;(0)12 ~ l O , ( z  - w, r)] a. (4.25) 
Zc(COS2@(z, e)cos2@(w, ~)>c 41712 101~-~_--w)r2 

Using (3.13) and (4.7) we identify this 

E z. <~>. + (z,(~>) =. Z~<cos 2@ cos 24,>c : ' 2 
p 

(4.26) 

We consider now the twisted sector (aft)  = (1, 0). Then the propagator analogous 
to (4.20) reads 

1 F [ ( z  - w)/2, r/2] 
(O(z,  ~)O(w, ~))'z,0 = - -~g l°g r [ ( z _  w + 1) /2 ,  r/2] ' (4.27) 

where F(z, r) is given in (4.20). To represent the energy correlation function, we 
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cannot however consider e x p [ - ( e =  2)2@5(z, 5)qffw, w))'~,0] alone since it is not 
periodic. We consider instead 

e x p ( - 4 (  q~( z, ~)~( w, w)) ~,o) + exp(4(~( z, z)qJ( w, w) } ~,-,o), 

which gives at the decoupling point g = 2 

( z - - w  2) 2 0 1 ( z - - w + l  "r) 2 
01 2 ' 2 ' 2  

+ 
( z - w + l  ,r) 2 ( z - w  "r) 2 

01 2 ' 2 01 2 ' 

After computing the residue at z = w we find the correctly normalized result 

2(cosZ0(z, £)cosZq~(w, ~)}'~,0 

4 IO~(z-w)l 2 01 2 ' 2  + 02 2 ' 2  . (4.28) 

Eq. (4.28) amounts in fact to giving a meaning to all terms in the calculation of 
@os 2~ cos 2q~) using Wick's theorem and renormalized expressions like (3.15). (We 
thus make the difference between cos 2~ and sin 2q~.) Electric neutrality is indeed no 
more required since we are working in a twisted sector. On the other hand, using 
(4.7), 

101'(0)12 (102(z-w) ,  a [03(z-w) '  2) 
<eE)2 q-(I~E}3 IOI(Z--W)} 2 ~2~)--~ + -~(6 i7  ' (4.29) 

which can be rewritten using the duplication formula [21] 

O (z) = 
022(z/2) 0 2 ( z/2) - O~ ( z/2) 042 (z/2) 

02(o)od(o) 

o d ( z / 2 ) o 3 2 ( z / 2 )  + o?(z/2) 042(z/2) 
03(z) = od(o)03(o) (4.30) 

(all theta functions being evaluated with the same modular ratio T) 

(ee)2 + (ee)3 = 2,rr 2 
184(o)1 1 

Io2(o)121o3(o)12 IOx(z- w)l a 

(4.31) 
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Finally using the expressions of theta functions as infinite products one easily 
proves 

1,/2 02(0) 03(0 ) 
O2(z/Z)O3(z/2) = 2 l 02(z/2' r / 2 ) ,  

O, (z/2) 04 (z/Z) = [ 
02 (o) o, (o) 11/2 J O,(z/2, ~-/2), (4.32) 

2 

and thus 

2(cos2~(z,  f )cos2¢(w,  w))'~,o = l({e( z, f )e(w,  ~))2 + (e(z, 5)e(w, V~))3), 

(4.33) 

or equivalently 

2Z' 2,0 (cos 2q5 cos 2q~) ,2, 0 = Z2Z 3 ((ee)2 + {ee)3 ). (4.34) 

Similar identities follow then for the two other twisted sectors using modular 
transformations. For completeness we give forms similar to (4.28) 

2(cos2¢(z,  ,~)cos2¢(w, ~))o,, 2 

= 2lrl - Z(cos2eo( z/r, f./÷)cos2e~( w/r, ~/~) ):,o( - 1 )  

2 102(0) 12 2r)l 4 104(z w)2¢14) (4.35) 
10, _-7)32 w ,  + - , 

and 

2(cos2$(z,  5)cos2~(w, w-))~,3, 1 

= 2@os2@(z, f)cos 2,#(w, ~)) ,  o(~" + 1) 

~ 7  2 Io~(o, ~)1: 
I O , ( z  - w)121o2(o)121o4(o)12 

X ( 1 0 i ( l ( z -  w), T)14103(l(Z- W), 'T)I 4 

" - k I O 2 ( 1 2 ( Z - - W ) , ? ) I 4 1 0 4 ( I ( z - - W ) , ' r ) I 4 ) .  (4.36) 
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Collecting (4.26) and (4.33)-(4.36) we get finally 
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2(cos 20 c o s  2 ~ )  AT = 

Z~'z.<~>~Z;'z~ 
V V 

( / /  + (@)t) 2= (ee)'+ ((e)') 2. (4.37) 

The additional term here comes, as in (2.7), from the fact that cos2ep 0c e& + e&. 
Then, the correctly normalized expression for (4.37) is 2(cos 20 cos 20) = ½ ((e II + 
&)(d ,  + d~)) = <~) '  + ((~),)2. 

4.4. It is also interesting to recover (4.8) using the o p e r a t o r  ( ~ a )  2 in the AT 
model. We first consider a shifted sector with indices ram'. Then using the notations 
of (4.21) O~ ~(z, Y) = O~0 + amm, and 

= ( (  OzO + a,,m,)( O~4 + a,,,,~,)( O,,~ + atom,)( a~,~ + amm,)) 

= ( ( < # 0 j ; )  + a:m,)× c.c.+ + × c.c. 

Using 

+ 2la2m, l[(O~4 0:4) + (Ofl~ O~@]. 

1 
(,~(z, ~)e~(w, ~ ) )  = - - - l o g  F, 

2g 

(4.38) 

we have 

qr 
0~ logF=  _~a_ 2~ 1 + _ ,  (4.39) 

T I 

^ ^ 2 . - _  _ c)SaOw63 + amm,= - - -  
~a 711 ¢r 

+am,~ , z  - - - + - - .  (4.40) 
2g g 2gr I 

On the other hand 

E 2 
amm,Zmm, 

2/, ( 1 )  
2i~r O,Zc( g) + - - Z c (  g ) 8 ,  log (4.41) 

g g r~ /21n l  2 • 

But for g = 2 
t 2 ~zc(2) = Z z~. 

V 
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Thus  
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1 
' 2 O,Zc(2 ) = 4 Y]~'Z~ O,Z ,  = - - -  E Z ~ e , - l ,  

4i~r p II 
(4.42) 

where we have used (3.25). One has also 

( ) , 1 ~1~ + - -  
8, log r~/21r/i 2 = 2i--~ 4r~ 

and 

atom,  __ _ _  _~_ Zrnm, 1 ~ t ,72 = ~Z.., / ' r e , , - 1 .  
mm* 2 te 
~ Z  

(4.43) 

(4.44) 

In a very similar way by calculating 8,  O~Zc(g ) one finds 

a t o m '  - -  gll q'- amrn'  --  ~1 
mttl p 
Gag 

q7 t 2 - 

+ Zmm'=~EZvev-le"-lv 8 ' r 2 "  (4.45) 

Since 

one has finally 

o r  

q7 
( a ~ 4 a ~ 4 )  = - ( a z 4 a ~ 4 ) ,  

2gr i  

_- Zc (2 )~ l~a (z  _ w)12 _ ~ v , , ~ , ~ -  L ,  l - , v ev_  1 

i 2 
1 - -  t 2 1 E Z u e v  l e v  - g ~ Z , e , _ l + g  _ _~,  

p p 

t 2 2 

(4.46) 

(4.47) 

(4.48) 
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We consider now the twisted sector (a,/3) = (0, ~) The propagator reads 

1 F ( z - w , 2 " c )  
~ ( z ,  ~ ) ~ ( w ,  ~))0,'2 = - ~ l ° g  r (  z _ w + ~ , 2 , )  

and the only relevant terms are 

1 
~ Ozd~(z,5) aw~(W, W))o,l  = ~ g [ ~ @ ( z -  w , Z . c ) - ~ ( z -  w+.c , z . r ) ]  ; 

thus for g = 2 

2 Z W . 

Using (4.2) we can write 

~ ( z , 2 ~ ' )  - ~ ( z  + ~-,2~-) = [02(0,2~_) 01(z ,2 , )  + [ 0 4 ( z , 2 , r )  . 

The following relations between squares of theta functions [21] 

O?(z)O~(O) = 03~(z)0~(0) - 0~(z)0~(0),  

O~( z )O~(O) = O~( z )O~(O) - O~( z )O~(O) , 

give 

IOn(z,  2~)0~(z,  2~) + Od(z, 2¢)024(z, 2r)]  02(0, 2~-) 

= [ O 4 ( z , 2 r )  - e~(z,2,)] e~(0,2~-) 

while the duplication formula [21] 

gives then 

04(2z ) = 
O¢(z)  - o~( z )  

o34(0) 

04(2z,2r)  
~ (z ,2~- )  - ~ (  z + r , 2 r  ) = [ 0 ; ( 0 , 2 " r ) ] 2 0 4 ( 0 , 2 r )  O?( z, 2r )O~(  z , 2 r )  " 
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(4.49) 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

(4.56) 
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Now we return to (z, r)  arguments. One has [21] 

03(z, r)O4(z, r) 
04(2z,2r ) = 04(0,2 , )  ' 

1 01(Z , ,)020304(0 , , )  
o,(z,2~)O4(z,2,) = ~ 02(0 ,2 , )  

which gives for the r.h.s, of (4.52) 

4[O{(O,2r)]eo2(O,2r) 03(z, r)04(z,  r )  

o~o~o~(o,,) Oe(z,,) 

From (4.57), 044(0, 2r )  = 02(0, r)Of(O, ~') while [21] 

1 o~(o,,)o;(o,,) 
0; (0 ,2 , )  = 7 [0,(0, , )04(0,  , )]~/~ ' 

and finally 

(4.57) 

(4.58) 

(4.59) 

[0;(o,,)12 0 , ( z , , ) 0 4 ( z , , )  
~ ( z , 2 r )  - ~ a ( z  + r , 2 r )  = 03(0, r)04(0, r )  O2(z,, ) (4.60) 

Thus ( ( ~ ) 2 ( ~ q ~ ) 2 ) o ,  2 = <ee)3(ee)4. Since Z A T -  2ZIZ~ one has as well 0,3-- 

Zo,,((~,)2(~a)2>o,,i=2Z3Z4(ee>3(ee>4. (4.61) 

Similar identities for other sectors are then obtained by modular transformations. 
Combining (4.48), (4.61) we obtain at the end 

AT 
<( ~ ,  )2( ~ ,  )2> = (<E~>I)2, (4.62) 

as expected. 

5. Spin-spin correlation function on the torus 

Our purpose in this section is to obtain an analytic formula for the spin-spin 
correlation function of the Ising model on a torus. 

We will proceed in three different ways. The first uses techniques introduced by 
Dixon, Friedan, Martinec and Shenker [15] and extensively employed by Atick and 
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Sen [16] in the slightly different context of "spin field" correlation functions of 
string theory on the torus. The extension of this method to higher correlation 
functions appears problematical. 

The second uses arguments presented in sect. 2 and argued to extend to the toms, 
and bosonization techniques [13-14]. This method seems very powerful, does extend 
to all correlation functions (see sect. 6) and presumably to higher genus, but does 
not look as physical as the others, in view of our lack of understanding of the 
boundary conditions on the boson field. 

Finally, as for the energy correlation functions, we present a third approach, 
based on the Ashkin-Teller model. 

5.1. In the first approach, the operator product algebra of ~b or ~ with o plays a 
crucial role. The ½ exponent in (1.13) implies the monodromy property [31] of 
insertions of o-spins in + or f correlators, namely that when the argument of o 
describes a loop around the argument of a k or a q~, the correlator changes sign. 

We consider the ~b propagator in the presence of two spins in the sector v: 

~ ( Z ) ~ ( W ) O ( Z 1 ,  Z1)O(Z2, Z2)>v 
Gv(z  , w,  z1, z2) = <(I(z1, z 1 ) ° ( z 2 ,  z2))v (5.1) 

which is analytic in z, w except at the branch points and poles where it has the 
behaviour: 

1 
G~ 

z--+zl ( Z - -  Z1) 1/2 ' 

1 
G~ 

Z~Z2 (Z -- .72) 1 /2 '  

1 
G~ 

w~zl ( W - -  Z1) 1/2 ' 

1 
G v 

w ~ z 2  ( w  - z 2 )  1/2 ' 

1 
G~- + reg. terms (z ~ w).  (5.2) 

Z - - W  

Using 0 functions transformation properties, we find a candidate for G~, which is 
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doubly periodic in z and w and has the requested behaviours (5.2) 

G v ( z ,  W, z1, z2 )  = 
1 0;(0) 
2 01(z - w) 

~ ) 

0 1 ( Z - - Z 1 ) O I ( W - - Z 2 )  

× O l ( z - ~ :  + ( 2 ~ 1  . (5.3) 

If the present case, analyticity arguments together with the antisymmetry of G, 
under the exchange w ~ z show that this function is unique [36]. 

Next step consists in evaluating the stress energy tensor insertion: 

T(z)= z--,wlim :[:(0~q,: : (z)~,(w)-q,(z)a.~q,(w))+ 1 ], (5.4) 
(z-w): J 

<T(z)o(z1, z1)a(z2, z2)>v 1 [~(Z__Z1) O;(Z__Z2)] 2 
(o (z : ,  51)o(z 2, -~z))~ -- 16 [ 8: 01 

: o; ] 
+ ~ ~ - - 7 ) / 0 :  (z- z:)- ~(z-  z~) 

+reg. terms (z ~ z l ) .  (5.5) 

On the other hand, T is the generator of conformal transformations and we have in 
z ~ z: limit: 

( T ( z ) o ( z  1, 51)o(z2, 52))~ ho 

<O(Z1, Z1)O'(Z2, Z2)>v z- -z1)  
+ - -  

1 
(g - zl) 3Zll°g(o(Zl' ~l)°r(z2' 52)>v 

+reg. terms (z ~ Zl). (5.6) 

Hence we recover the conformal dimension of the spin operator h o = :~6, and the 
(zl,  z2) dependence of the two-point function: 

[ (zx-z2)]:J2 
<O(Zl, e , )o(z2 ,  e2)>o = c,  [0:(z: - z2)] 1/8 " (5.7) 
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In fact we could have considered the antianalytic part of this function, by insertion 
of ~ ( ~ ) ~ ( ~ ) ,  leading to the same z 1, z 2 dependence. 

The spin-spin correlation function in a given sector v is thus the square modulus 
of an analytic function (the reason of this remarkable property is not clear). We 

have for v 4= 1 

< . ( z , ,  e=)>. = 
10;(0)11/4 0, ( ~ @ )  

10.(0)l 101(Zl -Z2) l ' / 4 '  
(5.8) 

the normalization being chosen to give the short distance behaviour (1.13c). In the 
first sector, (go)1  is infinite, since it appears in the short distance expansion a term 
proportional to the energy operator, and we have already argued that <e)l = m. 
Now we construct 

P 

<o(1)~(2)> '  = Z,Z. (5.9) 

An interesting property is that <o(1)o(2)), is not periodic by itself (contrary to what 
happened for the energies). This is because spin operators are not local in terms of 
fermions: translating z I - z  2 by 1, r or 1 +-r amounts to creating a "frustration 
line" winding around the torus and changes the sign of the BC for ~ along %,  %,  
or % and % [16]. Now the periodicity of the total correlation function (5.9) is 
ensured if the terms corresponding to different sectors in (5.9) exchange under these 
Z 1 - -  Z 2 shifts. This works clearly for v ~ 1, and fixes Z1(~o)1 which is finite, thus 

Z --  Z 2 )  
0 , - -  

1 " -1 /3  t"  " 1 '12 2 
Z,(oo), = g(2~)  I01(0)l j ib-~(~-7~)lw)4, (5.10) 

valid for any v. One checks that (5.10) enjoys also modular covariance properties 
similar to (4.9)*. 

In the present case of the two-point function, we can also justify the result 
(5.9)-(5.10) by proving that sector by sector, it satisfies the Ward identity and 
degeneracy equation (see below (5.19)-(5.20)). 

We also notice that the square of this result, in each sector, is the modulus square 
of the Atick-Sen chiral spin correlation function. In other words: 

<O(Z, Z.)O(W, ~)>2 = i<S+(z )S  (w)> 12 = <S+(z)<.~+(z)S-(w)~.~-(w)>, ( 5 . 1 1 )  

* The ansatz proposed  in ref. [20] for the spin-spin correlation function is incorrect: it does no t  satisfy 
eq. (3.32). 
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where S + and S -  are their chiral spin fields, S+ and S-  spin fields of the opposite 
chirality. This is quite reminiscent of what we have found in the plane (2.22) and 
suggests applying the bosonization procedure to (oo)2. 

5.2. The arguments which led to the representation (2.22) of the square of the 
spin-spin correlation function were based on: (i) a lattice regularization, and the 
explicit fermionization of the spins through the Jordan-Wigner transformation, 
followed by the duplication of the system: all these steps may be carried out on a 
torus; the duplication is done sector by sector, and leads to Dirac fermions with the 
same BC on their two components; (ii) explicit bosonization prescriptions for each 
chirality component of a free Dirac field: these have been developed recently 
[13-14] on a torus or a higher genus surface in a given field fermionic sector; (iii) 
short-distance expansions leading ultimately to the operator cos qs: these are univer- 
sal and do not depend on the topology. We conclude that a natural ansatz for the 
square of the spin-spin correlation function is 

(o(z,  Y)o(w, ~)>~ = 2(cos ~(z ,  ~)cos ~(w,  ~)>~. (5.12) 

We have, however, to explain how to compute with the field ~ in the sector r. We [a] follow here the prescriptions of [14]. In each fermionic sector labelled by b ' there 
exist two fields q0(z) and q?(5), such that, as in (2.19): 

D(z) = e x p i ~ ( z ) ,  

b ( ~ )  = e x p @ ( f ) .  (5.13) 

In the calculation of expectation values involving ~, one imagines that ~ is written 
a s  

qo( z) = 2~rPz + ~p( z).  (5.14a) 

P has eigenvalues n + a, n ~ Z, of relative weights 

q (  n+ a )Z /2  e2~ri( n + a)b , (5.14b) 

while q~ is subject to Wick theorem, with propagator 

< , ( z ) ¢ ( w ) >  = - l o g  
ol(z-w) 

o;(o) (5.14c) 

In ref. [14], this was supplemented by a normalization factor [0,(0)] -1. As we want 
to discuss also the contribution of the doubly periodic sector u = 1, a = b = ½, we 
rather compute Z~( . . .  ), by the previous rules and add the overall factor (2~) l(q) 
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to the previous rules. For example: 

5 6 5  

Z~(eie~(Z)e-ie~(w))~ 

1 ~ q(,+,)~/2e2~i(,+,)(b+~(~_~))(0;(0) ) 
- 2 ~ ( q ) . = - o ~  01( -z~w)  

e 2 

X o tetzw  (O'lO  )e 
27/(q~ O(z - w) (5.15) 

We recall that 0[(0) = 2~r~3(q). Somehow, Z~ represents the analytic part (in ~- or 
q) of the Dirac fermion partition function Z 2, square of the Majorana partition 
function Z~. 

z~ = z y z ~  = IZ~l 2 

=10.(0) 
-5 -C ' 

¢(o) 
Z~ - (5.16) 

2r/(q) " 

As in sect. 2, we finally set ~ = ½(qp - qS) in eq. (5.12): the computation of the r.h.s. 
can now be carried out: 

0 (U) 
2B(q) 

2 

o;(o) )x/4 
01(z - w) ' (5.17) 

in agreement with the previous derivation (5.10). 
These chiral bosonization prescription, which amount to extracting the analytic 

part of fermionic calculations [13], may look ad hoc. They enjoy, however, remarka- 
ble consistency conditions [14], that we shall examine in the next section. On the 
other hand, the physical meaning of these prescriptions remains obscure (to us), 
reflecting the absence of a functional integral over qo (or qS) with well defined 
boundary conditions. 

The combined prescription on q~ and (p, on the other hand, may be interpreted in 
a more perceptible way. Each fermionic sector by transformation similar to the 
calculation of eqs. (4.13)-(4.19), gives rise for correlation functions like Z~(oo)~ to 
a sum of contributions with signs of the various shifted sectors of ~, corresponding 
to integer or half-integer winding numbers [12] (see appendix). Stated differently, 
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one may suspect that in our computation of physical quantities which are non-chiral, 
we might avoid the use of chiral bosonization, and use rather the non-chiral one of 
ref. [12], 

_ !  E ~ × (g=2) (cos , (z  e)cos,(~,~)) . ,m,,  - -  8 - m , m ' - - m , m '  
t m 'G~Tg  

(5.18) 

where the relevant expressions have been given in eqs. (3.6), (4.18b) and (4.23) and 
table 1. 

5.3. We show here that our expression for Z~(oo)~ satisfies the differential 
equation (3.32) in each fermionic sector v, including the doubly periodic sector. 
After some algebra, one finds that this equation is equivalent to the identity: 

-~71 (z)  - 4 + 6 ~ t = 0 ,  (5.19) 2 + + 

which is proved by the standard procedure. The left-hand side is shown to be 
doubly periodic and with vanishing residue at the possible poles z = 0 and 1 7, 
(1 + r ) / 2 ,  r /2  depending on whether v = 2,3,4: it is thus a constant which is 
computed at a special point. 

As explained in sect. 2, we can actually test separately the Ward identity and the 
degeneracy equation which lead to (3.32). The insertion of T(z) into the spin-spin 
correlation function is related to that of 1-(z) is (T(z)cos ~(1)cos ~(2))~ 

Z 2 ( T ( z ) c o s  ~ (1)cos 4,(2) )~ 

= - Z) lim ( [2 Ozep( z ) Oweo( w ) 
W ~ Z  \ 

+ 
1 1 

2 (z w) 2 
c o s , ( 1 ) c o s  ~ ( 2 ) )  ~ 

1 Off - 1 0~' - [ 0 f ( z _ _  0f ( z - z 2 )  ] 

+g g(~-zl)-  gll(Z-z2) +nl z~<cos,(1)cos,(2)>~. (5.2o) 

By the same kind of argument as in sect. 2, the Ward identity for ( o o )  is equivalent 
to the Ward identity for (cos ~ cos ~). The latter which involves only a free field 
should be an identity which is rather a test of the computation rules with % One 
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f inds that  it holds provided:  

0~' 0" 0[' 20[ [0' ] 

0' 0 I 
1 (z_z2)  +6vh =0,  -2  ( z -z1)  ~ (5.21) 

which is again  proved by the same method as (5.19) to which it reduces for u = 1 

and  z - z 2 = 2(z - zl)- 
5.4. We now commen t  on some of the features of  our result (5.9)-(5.10). 
The  presence  of a term coming f rom the first sector is natural,  due to Z l ( e ) l  4= 0. 

W e  have  indeed [16] 

Z - - W )  

2 1 ( o o )  1 = ~(2~)1/310£(0)}_1/12 01 --T-- 

~lz - w l~- l /4~ ln l  2, z ~ w, {5.22) 

in ag reemen t  with o(z)o(w) -- eoo~lz - w[1-1/4e(z), coo - = ~_ and Zl(e)t = ~rl~[ 2. 
The  singulari ty (5.22) being factorized all remaining terms in the expansion of (5.22) 
have  even powers  of  z - w, z - w. This is easily explained writing the short  distance 

expans ion  

+ I Z - - W l I - 1 / a ~ f i N ~ ( Z - - w ) N ( ~ - - ~ ) ~ B N ~ ( Z , Z ) ,  (5.23) 

where  AN~ (resp. BNN ) are opera tor  belonging to [1] ([e]). 
T a k e  now the mean  value of bo th  sides for ~ = 1. First ZI(ANN)I is zero for any 

N, N as discussed after eq. (4.10). Similarly, since ~ ( z - w )  in (3.29) has an 
expans ion  with even powers of z - w ,  the only opera tors  of [e] with non-zero 

ZI£BNN)I are those with N, N even. This explains the structure of  (5.22). 
In  the sectors u 4~ 1, after factorization of [z - w] 1/4, one gets also an expansion 

in even powers  of z -  w, z -  w. Here,  all the expectat ion values for opera tors  

be longing  to [el, as well as belonging to [11] with N, N odd, vanish. One has in 
par t icular  

Zv 1 ( z - w ) 2  [ 30/'(0) 01'" (0) 12  (5.24) 
Zu(°o')z' - ]z _.-W]1/4 -}- 4-8 0 - -~  ~ ' 

1 in ag reemen t  with (3.25) and coo T = 4" 
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It is also interesting to consider the small q (strip) limit. Then one finds 

Z(o (  z, ~)o(w,  ~) )  

(~r)l/4(q4)-l/48{l + (q~t)l/t6(lcos½=(z_w)[ +]sin½=(z_w)[)  + . . .  } 
= ]sin ~r (z ~ w-- ~ 

(5.25) 

the first term is the usual result of the logarithmic mapping [23]. On the other hand, 
taking for simplicity % = 0, we can write (oo)  in the transfer matrix formalism [23] 

as 

Z ( o ( z ,  ~)o(w,  ~ ) )  = El(NKISInk)12exp(--ENri + iK) 

× exp[(eN - E.)Im(z - w )  + i(k - K)Re(z  - w)] .  (5.26) 

Thus in the limit r I + m, i.e. q ---, 0 we have 

Z ( o ( z ,  e)o(w,  ~)> 

= e - E o ~ , ~ , l ( O I S I n k ) 1 2 e x p ( ( E  o - E,)am(z - w) + ikRe(z  - w)) 

+ e -  Em ~ l ( l 1 8 1 n k  )12exp( ( E1 - E.)Im(z - w )  + i k R e (  z - w ) ) 

+ . . . .  (5.27) 

10) and I1) being respectively the ground state (E o = ~=c = liar) and the first 
(scalar) excited state. The factor (q~)1/16 appearing in (5.25) corresponds thus to 
11) = }o) with E 1 - E 0 = 2qr(ho + ho) = ¼=. Expanding now (5.25) in exponentials 
of z - w, ~ - ~ gives then various sum rules for 8 matrix elements. One has [23] 

( = ) 1 / 4  

Isin~r( z w)[ t/4 = ( 2 7 ) 1 / 4  ~ F ( n + l / 8 )  F ( ~ + l / 8 )  
- . , ~ = 0  r(1/8)n! C(1/S)n! 

× e x p [ - 2 = ( ~  + n + ~ ) I m ( z -  w) + 2 i = ( n -  ~ ) R e ( z -  w)] ,  

which gives [23] for instance 

z 
independent F(1/8) N ! 
operators at 
level N, N in 

[,,1 

(5.28) 

(5.29) 
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coupling 10) to states of [o] only. In the same way we find 

5 6 9  

(or) 1/4 

I sin ~ (z  - w)l 1/4 (I cos ~ .  (~ - w)l + I sin 1,7 (z - w)l) 

= (2 , ;7" )  1 / 4  

n,~_ 
m , m  

n + n even  

F(n - 1/2)  F(~ - 1/2)  F (m + 1/8)  F (N  + 1/8)  

r ( - 1 / 2 ) n !  r ( - 1 / 2 ) ~ !  F(1/8)m! r ( 1 / 8 ) m !  

Xexp[-2~r(  - 1  + l (n  + ~) + m + ~ ) I m ( z  - w) 

+ 2 i r r ( ½ ( n -  ~) + m -  ~ ) R e ( z -  w)] .  (5.3o) 

If n = a = m = ~ = 0 we find I(O[O{0)I 2 = (2"/r) 1/4, while n = ~ = 1, m = ~ = 0 gives 
[(o[Sle}[ 2 = ( 2 ¢ r )  1 / 4  • g - t  --(2qr)l/4c2ot as expected. Sum rules similar to (5.29) are 
then deduced, for instance 

E 1(°181½ + N, ½ + N}[ 2 = (2'/7") l / 4  
i n d e p ,  op .  a t  
level  NN in  

[el  

N r ( 1 / 2  + 2N - 2m) 

~-" F ( - 1 / 2 ) ( l + 2 N - 2 m ) !  m , ~ = 0  

X 
F(1 /2  + 2 N -  2N) F(m + 1/8)  F (N  + 1/8)  

F(-1/2)(l+2N-2~)! F(1/S)rn] F(1/8)~! 

(5.31) 

Conversely, the knowledge of all coefficients in operator product expansions should 
in principle allow one to recover (5.31), (5.29) or (5.25) via the logarithmic mapping 
although it seems a difficult task in practice. 

5.5. We can once again verify (5.9), (5.10) using the AT model, for which the 
correlation function @os ~ cos qS) AT should equal ((oo)1) 2. With the same steps as 
above we have first putting e = 1 in (4.24) 

Z c (2)@os ~(z ,  5)cos ~(w, ~))~ 
1 ( 10;(0)1 

41~1 a O ~ ( z - w )  

t / z  

and thus 

Zc(COS ~ cos ~>c = E z ) { o o ) ~  (5.33) 
P 

Then we discuss for instance the (a,/8) = (0, 12) sector. A straightforward repetition 
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of the calculation with e = 1 instead of e -- 2 gives 

2(cos i f(z ,  5)cos q~(w, W))o, '~ 

182(o) I '/2 
= q r  1/2  [ 0 1 ( z _ w ) l l / 2 ( 1 8 a ( z - w , 2 r ) l + 1 8 4 ( z - w , 2 r ) l  ) . (5.34) 

On the other hand the identities 

81(z ,2r  ) = 
81 ( i / 2  , r )82(  z / 2  , r )  

84(0,2,) 

83(z /2  , r )O4(z /2  , ,r) 
04(z ,2r  ) = 84(0, 2,r ) ' 

(5.35) 

give 

z , (oo ) , z2 (oo )2  + z3(oo)3z4(oo)~ 

=¼(2,~)2/3 Io;(o)1 i/6 z_w)8(z_w) z-w o(Z-Wl ,81(Z_w)ll/2(81(T J 2~TJI-t-83(T ) 4~ 2 ] ) 

_~ l ( 2 r r )  2/3 [8((0)1-1/6184(0,2"r)1 
[01(z -- w ) l l / 2  (181( z -- w, 2~-)I + 184(z - -  w , 2 r ) l  ) . (5.36) 

Since 84(0, 21-) = [83(0 , r)84(0 , r)] 1/2, Zo,,: = 183(0, r)1184(0 , r)1//217/I a, one finds then 

2Z0,~(cos ~ cos ~)o,, 2 = 2(Z1Z2(oo)1(oo)2  + Z3Z4(oo)3(oo)4  ) (5.37) 

and similar relations obtained by modular  transformations. Combining (5.33), (5.37) 
gives as expected 

2(cos q~ cos q~)AT = ((OO),) 2 ' (5.38) 

5.6. The first method we used for determining the spin-spin function also yields 
the disorder-disorder correlation function(s) @(1)/z(2))~. We start from (2.24) and 
rewrite it as 

e i~/4 ~ ( w , w )  
~ b ( z ) o ( w , g ~ ) -  v~  ( z - w )  1/2 + "'" " (5.39) 
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Then  per forming  the w + z I and z --+ z 2 limits in (5.3) we get: 
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i < ~ ( z 1 ,  -71)~(z2 ,  -72)>v 1 0 ; ( 0 )  

2 0 1 ( z  2 -- Zl)  - /' Z1 -- Z2 o;(o) 

i 
= +_ ~e~,  (5.40) 

where  e, is the pari ty of the 0~ function: q = - 1, e~ = + 1 for v =g 1. The sign is 

fixed to be + by the short distance behaviour 

~ ( Z 1 ,  Z, 1)I~(Z2, Z, 2) - 
1 1 
Z2 '1/41 2 IZ1 -- Z213/4E( Z2' -72) -~- " ' "  (5.41) IZl 

obta ined  f rom (1.13c) by the duality transformation.  

The  total disorder-disorder function reads then: 

< ~ ( Z ,  -71)~t (Z2, -72)  ) = 

Ee~z,,(o(a)o(2)5~ 
1) (5.42) 

Cont r a ry  to the spin-spin function, this expression is not periodic on the torus: 

changes of  z x into z a + 1, z I + r, z I + 1 + r permute the Z~(oo)~ and generate three 

o ther  disorder  functions. The disorder-disorder correlator may be regarded as 

creat ing a fustrat ion line joining z 1 and z 2. In working out the short-distance limit 

z 1 --+ z 2 above, and determining the signs in (5.40), we have implicitly assumed that 

this f rustra t ion line shrinks to a point. The effect of translations of z 1 along ~1, % 

or % + ~02, however, is to let this line wind around the torus along the correspond- 

ing direction. Letting then zl tend to z 2 leaves a closed non-contract ible  frustration 
line. More  precisely, if one denotes by a superscript a = 1 . . . . .  4 the four functions 

ob ta ined  f rom (5.42) by translation of z I by  0, 1 + r, r respectively, then in the limit 

Z 1 ~ Z2~ 

(/* (1 )~(2 ) )  {~) = Z2 q- Z3 q'- Z4 [z1 _ z211/4 , (5 .43)  

with e~ ~)=  + 1  and v t ~ ) = - l i f f a = v .  

The  numera tors  in (5.43) for c~ = 2, 3,4 are nothing but  the frustrated part i t ion 

funct ions  of  the Ising model on a torus and match the expressions given in ref. [32]. 
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6. Higher-correlation functions on a torus 

This section is devoted to higher correlation functions. Candidates for the n-point 
correlation functions of the energy operator, or for the squares of correlators of 
spins and energies are now easy to write, and our main task here is to comment on 
the various consistency relations that these expressions must satisfy and that we 
should check. 

In each fermionic sector different from the doubly periodic one, v ¢ 1, we have 
three alternative formulae for the energy correlators: 

(e(1) . . .  e(2n))~ = IPf(~k(z~) q, ( Zj)))v[ 2 

=lPf[~(zi-zj)][  2, (6.1a) 

[@(1)...e(2p))~(e(2p+ 1) . . .  e(2n))~ + perm.] 
p=l 

= 2 3"  - 1(COS 2~ (1) . . .  cos 2~ (2 n ) }~ 

and 

2 n - 1  E 
ei= ± 1  
E e = O  

Ov(Eg, iZi) 21__[ 01(Zi__Zj ) 2Ely J 

o . ( o )  ' 
(6.1b) 

(e(1) ... e (2n) )  2= ( (  V¢a(1))2... (VO(2n))2)  ~ 

= o ( -1)~ o,(o1 

0~t '  (0~ (Zzk-1 - z2k) + perm. (6.1c) X ( Z  1 --  Z2).. .  1 

which generalize eqs. (2.3), (2.5) and (2.9). The consistency of (6.1a) and (6.1c) 
follows from Fay's identity [21,13, 14]. This identity, which generalizes the Cauchy 
determinant formula of eq. (2.14) to an arbitrary genus Riemann surface reads on a 
torus (i, j = 1 . . . . .  m) 

det -[ . . . .  O~(z,- wj)O;(O) ] = m 
[ 01(zi-wj)O~(O) . ( -1)m'"-1) /210;(0)]  

HOI(Zi - -z j )OI(Wi--Wj)  o~(~( z , -  w,)) ,<j 
× (6.2) o~(0) [Iol(z,-  wj) 

i,j 
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As in sect. 2, we take m = 2n, w~ 
term. This result is precisely 
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= zi + ~i, let e, go to zero, and keep the regular 

(6.3) 

d e t [ ~ . ( z i -  z i)] 

1' (o;]' 
= k=0 £ (--1)k 0r(0) O,] (Zl - -Z2) ' ' "  O,] ( Z 2 k _  1 -- Z2k ) + p e r m .  

= ( - - 1 ) k  2rt 

(Z  1 -- Z 2 ) . . .  t ( Z 2 k _  1 -- Z2k ) -~- p e r m .  

(6.4) 

This leads to non-vanishing odd correlators: 

@(1) . . .  e(2n + 1 ) ) -  

The 2n-spin correlator is given by 

Z~z(o(1)... a (2n) )  2 = 2"Z2(cos ¢ (1) . . . cos  q}(2n)), 

1 

b / ( q ) l  2 1 
Ee=O 

in each of the sectors v = 1 to 4. 

ZI(E... E)I 
Z 

(6.5) 

0/(0) (6.6) 

Consistency of (6.1a) and (6.1b) has been checked only for n = 1 and 2. 
The correlation functions with an odd number of energy operators vanish 

identically in the sectors v ¢ 1. On the contrary, only these do not vanish in the 
sector v = 1. This is a consequence of the operator product expansion and of the 
fact that Z l ( [ 1 ] )  1 = 0 ,  Z l ( [ e ] )  1 4 = 0, as already discussed. Their explicit calculation 
may be carried out in a way analogous to (6.1c) 
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We notice above in eq. (5.11) that the two-point correlation function squared may 
be expressed in terms of the correlation function of the chiral "spin fields" of refs. 
[15,16]. For the 2n-point function, this connection reads: 

(2° )} 
( o ( 1 ) . . . o ( 2 n ) )  2 0c I--[ (S+(Zi)g+(zi) q- S-(zi)g-(zi) 

i=1 v 
(6.7) 

Whether there is a more direct connection between the spins of the Ising models and 
these spin fields, is not clear to us. 

As in the plane, taking suitable short distance limits enables one to recover energy 
correlation functions, through various identities. 

We now generalize eqs. (6.1), (6.6) to the most general correlator of spins and 
energies in the form: 

Z~(o(1)  ... o(2n)e(2n + 1) . . .  e((2n + p ) ) ) 2  

= 2 " ( -  1)PZ2(cos qS(1)...cos qS(2n)( ~'4,(2n + 1))2...(~'~(2n + p) )2 )  , (6.8) 

where the r.h.s, has to be computed using either the prescription of chiral bosoniza- 
tion of eq. (5.14) or those of eq. (5.18). The consistency is established in appendix A. 
As in sect. 2, operator product expansions provide consistency relations between 
these expressions. 

As in eq. (2.33), one may also write a similar ansatz for correlators with insertions 
of T. For example: 

2Z~(T(z)o(1). . .  a(2n + p ) ) , ( o ( 1 ) . . ,  e(2n + p))~ 

=2"(-1)PZ21-~(z)cosq~(1)...(Wep(2n+p))2) , (6.9) 

which enable us to write the Ward identities and the degeneracy equations, and to 
compute correlators of secondary fields. 

Let us restrict ourselves to 2n-spin correlators. After some algebra, one finds that 
the Ward identity is satisfied in the sector v iff: 

where 

E [LI2ge( Z, Z1 . . . . .  Z2n ) = O, ( 6 . 1 0 )  
E,= +I 
5"~, =0 

1-.<<i<j~ 2n 
(6.11) 
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and 

8;, . ( 8; l ' ( z  - z') - j 

t <./ 

_ ! 11 
(z - z,) + 2 ~ % : ) - ( ~ -  ~j) 

-- ei 8~1 i < j  01 

[ 8; ( z_  z ,)_ 8; (z_z.j)]. (6.12) x [ 8~ 8~ 

By the same method again, one may show that each g~ actually vanishes. 
Finally the degeneracy equation (L_ 2 4 2 - xL_l)o = 0 leads as in eq. (2.40) to the 

following identity 

1 2 " - "  ~ 

e,=±l e;'= ± 1 Ee,=O Ze'=O 

12iEl >~1 ( 8 [ ]  t 81 ] 2-41 [i>~ 1 O[ ]2 -2-~[ 

+ 

[; 0, x ,F_., q 2 (  0/ ,>t 8t zi-z,)+-~. = 0 ,  (6.13) 

where in the expression ekZk, the summation over k is implicit. We have already 
checked this identity for n = 1, and recover in the limit z~--+ zj, i4=j the plane 
identity (2.41). It is a remarkable feature that our bosonization process gives 
non-analytic identities between 8-functions. 

7. Conclusion and perspectives 

The reader who has followed us that far is hopefully convinced that we can write 
any correlation function on the plane or on the torus involving an arbitrary number 
of spin a n d / o r  energy operators. At the price of some combinatorics, we may even 
manufacture correlators involving arbitrary numbers of energy momentum tensors, 
hence generate also correlators for arbitrary secondary fields. Admittedly, we have 
not checked all Ward identities, degeneracy equations and consistency relations of 
various kinds, which amount to non-trivial identities between rational functions in 
the plane, theta functions on the toms. Our formulae, however, have a high degree 
of plausibility. 
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Let us stress the salient features of our analysis. 
(i) By a systematic comparison between different methods, we have demonstrated 

the consistency of the chiral bosonization and of the orbifold nature of the critical 
Ashkin-Teller model. Let us emphasize that these provide two distinct bosonizations 
of the Ising model. Chiral bosonization enables one to compute (squares of) 
correlation functions in each fermionic sector, whereas the orbifold bosonization of 
the AT model yields directly the (square of the) full correlator. 

(ii) The role of the various fermionic sectors has been elucidated. In particular, 
the doubly periodic sector has been shown to contribute to a variety of observables. 

(iii) As was already apparent on the form of the four-spin correlation function on 
the plane, the correlators are not in general the squared modulus of some analytic 
function. 

One can think of extending these results in various directions. The most obvious 
one is the computation of correlation functions of the c = ~ unitary conformal 
theory on a higher genus surface. (Its interpretation as the critical limit of a 
microscopic Ising model becomes however delicate.) It is likely that consistency 
relations between correlation functions will generate hosts of interesting identities. 

One may also try to generalize this work to other minimal or non-minimal 
conformal theories. Although these models do not have the simplicity of the Ising 
model with its underlying free fermion field, their partition functions admits a free 
boson representation [30, 33]. Repeating our work using this representation and 
extending it to other models would be very interesting. We recall that integral 
representations for correlators (in the plane) of minimal theories have been given by 
Dotsenko and Fateev [34], and that the four-spin correlation function of the AT 
model has been studied by Zamolodchikov [35]. 

Finally, one may ponder about the huge information stored in this infinite 
collection of Ising correlation functions at the critical point. In  principle,  this 
information should enable us to explore the critical region around the critical point. 
Perturbative calculations in that direction have already been attempted [28]. Using 
our correlators in a non-perturbative way remains a challenge. 

We would like to thank J. Cardy, T. Eguchi, E. Rabinovici, D.J. Smit, A. and H. 
Verlinde for useful discussions. We are particularly grateful to C. Itzykson for many 
suggestions. 

Appendix A 

In this appendix, we prove the equivalence between the prescriptions of eqs. 
(5.14), (5.15) and those of eq. (5.18) namely between chiral and non-chiral bosoniza- 
tion, for a class of correlation functions: 

k 1 j 
(A.1) 
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satisfying the condition of "electric charge conservation" (or momentum conserva- 
tion, in the context of vertex operators of string theory). 

Y'~ ej = O. (A.2) 

In each fermionic sector, labelled by v = l  . . . .  ,4 or by [~1' the claim is that: 

Z~( X), ~ ~_~ (") . (A.3) = '  e,.,m,Z~m,(2)( X>~, 
m , m t ~ 1 2 Z  

The 1.h.s. is evaluated using the prescriptions of eqs. (5.14)-(5.15), whereas the 
computation of the r.h.s, is carried out by the same method as in eq. (4.23) and 
following, shifting the field @ by the classical field of winding numbers m, m' and 
weighting the contributions by Zm,~,, the signs e~)m , are given in eq. (3.6) and table 1. 
Although such a property is stated in refs. [12, 13], we find it useful to make its 
proof explicit here. 

It is convenient to first generalize slightly the computation of (4.12)-(4.18) to 

= ~.exp{iTr[,r(n+a)2-~(~+a)2 l 
n , n  

+2ir r [ (n  + a)b- (~  + a ) b ] }  

1 
E (-1) = ' ( 2  ),/z "l" I p , p'  ~ 2t 

×exp{-~-~rt(p%-p'+b-b)2-  ~-~p2+iTrp(b+b) }. 

(A.4) 

In this computation, a is integer or half-integer, but b and b are kept for a while 
arbitrary. This enables one to compute the 1.h.s. of (A.3) by differentiations with 
respect to b or b. For any functional ~ of the field ~ = ~(qp - q~) we write: 

×((,~{~'(n+a)zj-rr(~+a)2j+½~(zj)-½~(2j) I> 

12n12 

(A.5) 
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where the symbol ( ( ) ) ^ m e a n s  that contractions are done according to eq. (5.14a). 
The sum of the ~ and q5 contractions, however, differs from the propagator (4.20) 
by the anholomorphic term ~r ImZ(z - w)/2"r I. It is a mere exercise of combinatorics 
to reshuffle (A.4) to build up this propagator, and we only sketch the steps. 
According to (A.5), we write 

(/ I 1° 1 ][ Ol 1 + ~ O¢(v,) ~ 2i Ob 2 Oct(w,) 

°[;]°*[Z] ,,f 
× 12r/12 

(A.6) 

The product  Hjexp(½Q(zj O/Ob + 5j. 0 /02) )  is the operator which translates b by 
1 ½EQzj, b by 5F~ejz~. Therefore 

liej( gP(zs) -~(zs))}O[ ;lO*[b] 

(2rt) 1/21 p,p'~ (-1)P'<P+2")exp{-~(P%-P'+b--b+2r t Y"}Q(Z/-5i)) 2} 

× lq exp(~ie, ( , ( z j ) -  *(~,))) 
J 

1 { gr qTYI / 
p ,p '  

× exp { - - -  i~ ( b - b ) E e j  Im Z/} 1-I exp iQ { ~ ,~ (z j ,  5j) + ½@(z,) - ½~({j) } 
T1 j 

× e x p ~ ( E e j  Im zj) 2 , (A.7) 

where ~class is the classical field of eqs. (4.21)-(4.22), pertaining to winding numbers 
rn=-~p,  m ' =  1 , ~p .  Then we let the other O/3b, 0/05 derivatives of (A.6) operate. 
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One finds: 

Z 2 ( X ) ~  = p~p _ _ p , ) 2  rr'rI 2] 
127712 ( 2 r i )  1/2 , e ( ( ) P " j e x p  ~q (prR 2-P t 

, vk) - ~ r  I E ej Im z,  

+ - -  ~ ej Im zj + contracted terms 
2r~ 

)) 2 
× 1- Iexp ie /p ( z , ,~ j )  e x p ~ ( E e j l m z , )  , (A.8) 

J 
^ 2 

where ~ denotes the combination q~a,, + ½(q~ - eo) and the "contracted terms" stand 
for terms where pairs of curly brackets relative to (G,  oh), (G, gb) or (~ ,  ~b) are 
removed and replaced respectively by ~r/4~" I, - ~ r / 4 r  x or ~r/47 I. 

Finally, the terms +(~r/2rl)EejImz i in the curly brackets are rewritten as 
-(v/2r~)~jejIm(v k- zj) or (~r/2ri)~2jejlm(w ;- zj), thanks to the condition 
(A.2), and are nothing but the contribution of the anholomorphic term to the 
contraction of Oq~ or 0eo with IIexp(iejq~(za, Sj)). Likewise the "contracted terms" 
build up this contribution in contractions of 3q5~ with Oq~ b, etc . . . .  and the last 
factor in (A.8) does the same for self-contractions within the exponentials: 

((He p  iey(p(zj, zj))))(-~rt(~ejImzj)2 ) 
J ~p. '2p' 

(A.9) 

because of the identity 

( E e j . I m z j ) 2 =  - y', ejekIm2(zj--zk), 
j<k  

(A.101 

a consequence of (A.2). 
Putting everything together, we obtain the announced result (A.3). As already 

noticed in (4.19), in the sum over v, only integer m and m'  contribute: 

4 

E Z2(X), = ½ ~ Z . . . .  , (2)(X)m m, (A.11) 
v=l m, m'~ 7/ 

and the factor ½ matches the one of (3.9). This is the first step towards establishing 
in general the consistency between the bosonization and the AT approaches, namely 
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be t we en  eq. (6.8) and:  

( ~ ' ~ Z ~ ( o ( 1 ) . . . o ( 2 n ) e ( 2 n +  1 ) . . .  e(2n + p ) ) , )  2 

= 2~( - 1) p ( Z ' )  2 (cos  ~ ( 1 ) . . .  ( ~q~ (2n + p ) )2)  AT 

=2n(--1) p 12 E Zmmt(COS ~k. .. (17q) ) )ram, q- E t z a f l (  .. . )afl . (A.12) 

Gene r a l i z i ng  what  we have found  after the labor ious  computa t ions  of subsects.  (4.3) 

a n d  (5.5), we m a y  conjecture  that  in general:  

2( Z : Z 2 ( o . . .  E)I(CJ... C)2 q- Z 3 Z 4 ( o . . .  E)3(O. . .  E)4) 

= 2 " ( -  1) p Z o ,  2 (cos  q~... ( ~q5)2)o12, (A.13)  

and  s imi lar  o ther  ident i t ies  ob ta ined  b y  modu la r  t ransformat ions .  Together  wi th  

(A.11),  these ident i t ies  would  es tabl i shed  (A.12). 
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