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Correlation Functions of the Critical Ising Model on a Torus. 
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PACS. 02.40. - Geometry, differential geometry, and topology. 
PACS. 64.60. - General studies of phase transitions. 
PACS. 75.40D - Ising and other classical spin models. 

Abstract. - Using different kinds of bosonization techniques, we derive expressions for the 
correlation functions of the critical Ising model on a torus. They are solutions of linear 
differential equations generalizing those written by Belavin, Polyakov and Zamolodchikov in the 
plane, involving derivatives with respect to the torus modular ratio. Two- and four-spin 
correlation functions provide an expression of the renormalized coupling constant M4/Mg,  in 
good agreement with numerical studies. 

Much progress has been done recently in the study of 2D critical phenomena by using 
their conformal invariance [l-31. For a very large class of systems, the so-called degenerate 
theories [l], all possible scaling dimensions are given by the Kac formula [41 in terms of a 
single number, the central charge c,  and correlation functions on the plane satisfy linear 
differential equations which have been solved in some cases [5]. Study of 2D critical systems 
on a torus [6] is also of interest. For instance, the constraint of modular invariance of the 
partition function has allowed a systematic classification [7,8] of all possible degenerate 
theories, determining their complete operator content. 

In this letter, we address the question of the critical correlation functions on a torus. 
They must satisfy linear differential equations generalizing those of the plane [9], involving 
now derivatives with respect to the modular ratio. We consider the Ising model only, for 
which we determine all correlators with arbitrary numbers of spins, disorder and energy 
operators. This provides in principle the partition function in the whole critical domain [lo]. 
As an application, we give an expression for the renormalized coupling constant M,lM:, in 
good agreement with lattice numerical studies [U]. A detailed version of this work will be 
published elsewhere [12]. 

We first recall that the king model is described in the vicinity of the critical temperature 
T ,  by a Majorana fermion field with action[13] 

-4 = I 1 d2 x ($ez (i/ + 6 d, $+ im $4) (1) 2r; 

(where we use complex coordinates z = x + iy) ,  the mass m being proportional to T - T,. On 
a torus, periodic (P) or antiperiodic (A) boundary conditions (b.c.) must be assigned to (+, $1 
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along the periods wl, we, thus giving rise to four sectors labelled by v = 1, ..., 4 for PP, PA, 
AP, AA. The partition function has been evaluated [14,101 and reads for ?n = 0 

where the 8, are Jacobi theta-functions [ E ] ,  is Dedekind’s function [14] and 7 = w2/w1 is the 
modular ratio (in the following we take w1 = 1). The associated central charge is c = 112, and 
the fundamental (primary) operators [l] are the energy E and the spin S, which describe the 
response of the model to a change of temperature or magnetic field. From (l), the energy 
operator is represented by E = @ $ ,  and thus energy correlation functions at  T,  can be 
evaluated in a simple way. If v # 1, knowledge of the fermionic propagator (,5,5)., [9,141 
gives 

(where the ;-dependence of theta-functions is not written for brevity). Care must be taken 
with the first sector which has Z1 = 0, but can nevertheless contribute to other quantities. 
For instance, in the case of ( E )  one has ( E ) , + ~  = 0 by Wick’s theorem, while the latter 
provides an undetermined form if Y = 1. A calculation in the presence of a mass term 
gives [lo] in the limit m + 0 

where only v = 1 contributes to the numerator. In the case of (3) one can use the short- 
distance expansion [ 13 

~ ( 1 ) ~ ( 2 ) -  1x1 - x : ! ~ - ~ C X ~ , V A . ~ . ~ ( Z ~ ,  81)(~1  - ~ : ! ) ” ( i i  - &)’, ( 5 )  

where the operators AN,?;‘ belong to the conformal block of the identity. Since Zl(1 )  = 
= Z1 = 0, repeated application of Ward’s identity on the torus [9] gives Zl(ANLq)  = 0, and 
thus Zl( E E )  = 0. Then 

Correlation functions of 2n energies are evaluated in the same way, and give in each sector 
v # 1 the square modulus of a Pfaffian constructed out of fermionic propagators. (2n + 1)- 
point functions are nonzero due to the v = 1 sector, as in (4). We discuss them later. 

We turn now to spin correlation functions. The formulation (1) is not convenient here 
because, due to the nonlocality of the Jordan-Wigner transformation [13], S is not local in 
terms of $, $. For calculations on the plane, various authors [16,17] have considered instead 
a duplicated Ising model. The resulting c = 2 x 112 = 1 theory involves a Dirac fermion fie14 
and may be bosonized in terms of a Gaussian field $ [18]. Squares of spin correlation 
functions translate into correlation functions of exponentials of 5 [17], and can be easily 
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evaluated. An alternative (and perhaps more physical) method proceeds via the Ashkin- 
Teller (AT) model. The latter presents a critical line which renormalizes onto a Gaussian 
field theory[19], a special point of which corresponds simply to two noninteracting Ising 
models. The product SlS2 is well known as the polarization operator [19], and represented 
by cos+ At the decoupling point, squares of Ising functions will thus be obtained by 
considering correlators of cos +. 

Both approaches can be repeated on the torus where the b.c. must be treated carefully. 
The formal bosonization along the lines of ref. [16] supplemented by precise prescriptions on 
0 [20] gives results in each sector separately. For explicit computations we refer to [12]. I t  
differs now from calculations within the AT approach. In the latter, the field turns out to be 
an angle identified with its opposite [213, i.e. lies on the orbifold S1/Z2 of radius 1 (or 1/2 by 
duality). Accordingly, the functional integral splits into a sum of sectors in which the field + 
undergoes a shift multiple of 27: across the torus: + ( x +  l )=$(x)+2xm, + ( x + z ) =  
= $ ( x )  + 27:m', and of three sectors where it changes sign along either or both periods: those 
are the twisted (T) sectors TP, PT, TT. The correlation function, therefore, reads 

mm' 

The computation in a shifted sector (mm') is done by introducing the classical background 
satisfying the b.c. and using doubly periodic propagator [141 for the quantum fluctuations, 
whereas in each twisted sector one uses Wick's theorem with the appropriately 
antisymmetrized propagator. From (7) the total correlation function is thus obtained. The 
consistency of both approaches is instructive to check and involves various identities for the 
square modulus of theta-functions. We refer the reader to [121 for details and give only the 

Contrary to (3), (8) is not periodic. Indeed, since S is not local in terms of $, 4, shifting x1 - x2 
by 1, 7 or 1 + z modifies the b.c. and thus the sector. Only the total correlation function 
( S S )  = 22, ( S S ) , / Z  is periodic. The sector 1 contributes now, as expected from (4) and 
SS-E. a 

One can as well consider disorder operators. Self-duality is broken on a torus, so (pp) is a 
priori different from ( S S )  . There are, in fact, four disorder operator correlation functions, 
depending on the topology of the frustration line F. If F is homotopic to a point when x1 + x2 
one has 

- 21 ( S S ) ,  + c 2" (SAS), 
(10) , = e  

Z ( P P )  = 
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The others are then deduced by modular transformations, and involve similar sums with one 
single minus sign. If T is homotopic to one period w l ,  w2 or w1 + w2, as x1 += z2,  one has the 
short-distance behaviour ( 8u(l) ~ ( 2 ) )  = 1 z1 - x2 1 - 114 Zf’uSt/Z, where ZfrUSt is the frustrated 
Ising partition function [221 with antiperiodic b.c. for the spin along the corresponding 
period. 

A remarkable property of eqs. (8), (9) is that they satisfy Eguchi and Ooguri’s [91 
differential equations expressing the degeneracy of S at level 2, and generalizing those 
written by BPZ in the plane [ll.  One has, for instance [9], 

4 16 

where q1 is a standard constant of elliptic function theory, LE and C are Weierstrass and zeta- 
functions [E] .  

Our method allows in fact to  give the most general correlator. In the AT model at the 
decoupling point the product c1z2  of energies of the two Ising models translates into the 
marginal operator [19], i . e .  (V+)2, while ,ul,u2 corresponds to sin 0. Thus we have 

(S(1) ... S(2n)p(2n + 1) . . . ,U  (2% + 2p)E(2n + 2p + 1) ... E(2n + 2p + q ) ) Z =  

= Z n + P ( - ) 4  (cos +(I) ... sin@n + 1) ... [V+ (2% + 2p + I)] ’... ) , (12) 

where # is a free-boson field with propagator behaving as (+U) #(2)) = - 1/2 log lxl - x 2 /  at 
short distances. As above, the computation may be carried out either sector by sector, using 
the bosonization prescription, or for the full correlation function, as in eq. (7). The 
consistency between these various expressions, or with eq. (6) (for n + p = 0) follows from 
identities between &functions. We refer the reader to [12] for details. For example, the 
explicit form of the 3-point function of the energy operator reads 

where, as argued above for ( E ) ,  only the first sector contributes. 
Finally we present a numerical check of (8), (9). In[11] Burkhardt and Derrida have 

considered a lattice Ising model on squares N x N ,  and calculated using a transfer matrix 
technique the first moments of the magnetization Mzn = ((E SJzn ) .  They have obtained, in 
particular, the renormalized coupling constants V ( N )  = M 4 / M ;  for N < 14. In the limit 
N +  CQ,  the values converge to a universal constant evaluated as V = 1.1670 k 0.0015. Now 
we can give an analytic expression of M4 and M2 using (8), (9), since 

Mzn = J d&.. . d2XZn (S(1) . . . S(2n)) 
square 

The integrals cannot be performed analytically, but we have estimated them using a Monte 
Carlo method. For 10 samples of lo5 points we obtain V = 1.168 k 0.005 which is in good 
agreement with the above value. We have also checked the 7-dependence of M 2 ,  M4 against 
transfer matrix data. 
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