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Abstract: We consider an extended version of Horn’s problem: given two orbits Oα

and Oβ of a linear representation of a compact Lie group, let A ∈ Oα , B ∈ Oβ be
independent and invariantly distributed random elements of the two orbits. The problem
is to describe the probability distribution of the orbit of the sum A + B. We study in
particular the familiar case of coadjoint orbits, and also the orbits of self-adjoint real,
complex and quaternionic matrices under the conjugation actions of SO(n), SU(n) and
USp(n) respectively. The probability density can be expressed in terms of a function that
we call the volume function. In this paper, (i) we relate this function to the symplectic
or Riemannian geometry of the orbits, depending on the case; (ii) we discuss its non-
analyticities and possible vanishing; (iii) in the coadjoint case, we study its relation to
tensor productmultiplicities (generalized Littlewood–Richardson coefficients) and show
that it computes the volume of a family of convex polytopes introduced by Berenstein
and Zelevinsky. These considerations are illustrated by a detailed study of the volume
function for the coadjoint orbits of B2 = so(5).

1. Introduction

Horn’s problem is the following question. Given n-by-n Hermitian matrices A and B
with known eigenvalues α1 � . . . � αn and β1 � . . . � βn , what can be said about the
eigenvalues γ1 � . . . � γn of their sum C = A + B? After decades of work by many
mathematicians, the answer to this question is now well known [17,19,21].

There is an extension of Horn’s problem that is both more general and more quanti-
tative. Let V be a representation of a compact Lie group G. To each G-orbitO ⊂ V we
associate the orbital measure atO, which is the unique G-invariant probability measure
on V that is concentrated on O. The orbit space is the topological quotient V/G, in
which each point corresponds to a G-orbit. If Oα and Oβ are two such orbits and we
choose A ∈ Oα and B ∈ Oβ independently at random from their respective orbital
measures, the sum C = A + B will lie in a random orbit Oγ . For each pair (Oα,Oβ),
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we thus obtain a probability measure on the orbit space, called the Horn probability
measure. Concretely, C ∈ V is distributed according to the convolution of the orbital
measures at Oα and Oβ , and the Horn probability measure is the pushforward of this
convolution by the quotient map V → V/G. The extended problem is then to give an
explicit description of the Horn probability measure, whereas the original Horn’s prob-
lem is to describe only the support of this measure in the specific case where V is the
coadjoint representation of U(n).

In this paper, we study the extended Horn’s problem in two families of cases that are
of special interest:

1. Coadjoint representations: G is an arbitrary compact, connected, semisimple Lie
group acting by the coadjoint representation on the dual of its Lie algebra g.

2. Spaces of self-adjoint matrices: G is one of the classical groups SO(n), SU(n) or
USp(n) acting by conjugation on, respectively, real symmetric, complex Hermitian
or quaternionic self-dual matrices. Following convention, in these cases we study the
distribution of the sorted eigenvalues of A + B rather than its orbit.1

We will refer to these respectively as the “coadjoint case” and the “self-adjoint case.”
The main object of our study will be a function J , called the volume function,

which can be computed from the density of the Horn probability measure (and vice
versa). This function encodes various kinds of geometric information about the orbits,
and in the coadjoint case it additionally encodes combinatorial information related to
tensor product multiplicities of irreducible representations of g. We discuss the singular
and vanishing loci of J , its relationship to the Riemannian geometry of the orbits as
submanifolds of V , and (in the coadjoint case) its interpretation as both a symplectic
volume and the volume of a convex polytope, as well as identities that relate J to the
tensor product multiplicities of g. Finally, we carry out a detailed case study of the
coadjoint case for g = so(5).

This paper discusses several constructions related to the extended Horn’s problem
and to tensor product multiplicities, including a number of previously known results that
we recall for the sake of completeness. However, to the authors’ knowledge, Proposi-
tions 1 through 4, Eq. (19), and the conjectured expression (59) either are new or extend
in various ways several results previously obtained by two of us in [6,7,39]. Proposition
3 is a particular instance of a more general phenomenon whereby the volumes of certain
symplectic manifolds equal the volumes of polytopes whose integer points count repre-
sentation multiplicities [15,16]. As far as we have been able to determine however, our
proof is novel and the precise statement has not appeared previously.

In the following two subsections we define J for the coadjoint and self-adjoint
cases. To avoid overloading notation we give separate definitions in the two cases, but
the concepts are analogous.

1.1. J in the coadjoint case. We first develop some preliminaries related to Horn’s
problem. Let 〈·, ·〉 be the G-invariant inner product given by −1 times the Killing form.
We identify g ∼= g∗ using the inner product and we then identify the orbit space with
the dominant Weyl chamber C+ of a Cartan subalgebra t ⊂ g, so that the quotient map
g∗ → g∗/G sends each orbit to its unique representative in C+. We identify functions

1 In most cases this distinction is immaterial because the spectrum of A + B uniquely determines its orbit.
The only exceptions are the even special orthogonal groups G = SO(2n), in which case diag (x1, . . . , xn)

and diag (xw(1), . . . , xw(n)) lie in different orbits whenever w ∈ Sn is an odd permutation.
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on C+ with their unique G-invariant extension to g. The Jacobian of the quotient map
g∗ → g∗/G is equal to κg�g(x)2, where �g(x) := ∏

ααα>0〈ααα, x〉 is the product of the
positive roots of g and κg is a numerical coefficient. For the classical Lie algebras, κg
may be determined by computing in two different ways a Gaussian integral over g and
making use of the Macdonald–Opdam integral [26,27], giving

κg = (2π)Nr

�g(ρ)
= (2π)Nr

∏r
i=1 	i ! × K (1)

in terms of the Weyl vector ρ = 1
2

∑
ααα>0 ααα, the rank r , the number Nr of positive roots,

and the Coxeter exponents 	i of g. The coefficient K = ∏
α>0

〈θθθ,θθθ〉
〈ααα,ααα〉 , where θθθ is any long

root, equals 1 for simply laced algebras, while for the non-simply laced cases it takes
the values K = 2r for Br (r > 1), K = 2r(r−1) for Cr (r > 1), K = 212 for F4 and
K = 33 for G2 [5].

An element x ∈ t is said to be regular if �g(x) 	= 0. This term should not be
confused with the more general notion of a regular value of a differentiable map, which
we will also use frequently. For x regular, the Jacobian of the quotient map is equal
to the Riemannian volume of the orbit Ox with respect to the metric induced by the
inner product. (Note that this Riemannian volume differs from the symplectic volume
discussed below.)

The Horn probability measure is supported on a convex polytope Hαβ ⊂ C+, called
the Horn polytope, and is absolutely continuous with respect to the induced Lebesgue
measure on Hαβ . We assume in what follows that α and β are regular, in which case
dimHαβ = r and the measure has a global density on C+.

Our discussion of the Horn probability measure will make ubiquitous use of the
orbital integral (also called the Harish-Chandra orbital function), defined for α, x ∈ C+
as

H(α, i x) =
∫

G
dg ei 〈g·α,x〉, (2)

where dg is normalized Haar measure. Considered as a G-invariant function of x ∈ g,
H(α, i x) is the Fourier transform of the orbital measure at Oα , so that the charac-
teristic function of the convolution of orbital measures at Oα and Oβ is the product
H(α, i x)H(β, i x).

The probability density function (PDF) of theHorn probabilitymeasure can bewritten
in terms of orbital integrals by taking the inverse Fourier transform of this characteristic
function, rewriting it as a function of γ ∈ C+, andmultiplying by the Jacobian κg�g(γ )2

to account for the quotient map. The resulting expression for the PDF is

p(γ |α, β) = κ2
g �g(γ )2

(2π)dim g|W |
∫

t
dx �g(x)

2H(α, i x)H(β, i x)
(H(γ, i x)

)∗

= 1

(2π)r |W |
(

�g(γ )

�g(ρ)

)2 ∫

t
dx �g(x)

2H(α, i x)H(β, i x)
(H(γ, i x)

)∗(3)

where dx is the Lebesgue measure on t associated to the inner product 〈·, ·〉 and |W | is
the order of the Weyl group. Similar formulae for the convolution of orbital measures
have appeared in [11].
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The volume function J (α, β; γ ) is then defined as

J (α, β; γ ) := �g(α)�g(β)

�g(γ )�g(ρ)
p(γ |α, β)

= �g(α)�g(β)�g(γ )

(2π)r |W | �g(ρ)3

∫

t
dx �g(x)

2H(α, i x)H(β, i x)
(H(γ, i x)

)∗
.

(4)

For fixed α and β it is a piecewise polynomial function of γ . The last line of (4) can be
used to defineJ without assuming thatα orβ is regular, though one finds thatJ vanishes
for non-regular arguments. Note that although we take γ ∈ C+ above, the expression (4)
extends naturally to a function on t that is skew-invariant under the action of W .

The volume function is the central concern of this paper, and it admits several inter-
pretations. To begin with, J computes the symplectic (Liouville) volume of a family
of symplectic manifolds parametrized by the triple (α, β, γ ). Here we take α, β regular
and γ on the interior of a polynomial domain of J . Coadjoint orbits admit a canonical
G-invariant symplectic form, the Kostant–Kirillov–Souriau form [18], for which the
inclusion into g∗ is a moment map. For x ∈ t∗ regular, the Liouville volume of the orbit
Ox is then equal to �g(x)/�g(ρ). (See e.g. [30] Sects. 4.2 and 4.3 for a derivation
of this well-known fact.) The product of orbits Oα × Oβ × O−γ carries a diagonal
G-action with moment map φ : (A, B,−C) 
→ A + B − C . Let μ be the Liouville
volume measure onOα ×Oβ ×O−γ . The pushforward φ∗μ is the Borel measure on g∗
defined by φ∗μ(U ) = μ(φ−1(U )), U ⊂ g∗. This measure is equal to the convolution
of the three orbital measures times the volumes of the orbits, so that it has a density
(Radon–Nikodym derivative) given by

hγ
αβ(z) = 1

(2π)dim g

�g(α)�g(β)�g(γ )

�g(ρ)3

∫

g
dx H(α, i x)H(β, i x)H(−γ, i x) e−i 〈x,z〉

= κg

(2π)dim g|W |
�g(α)�g(β)�g(γ )

�g(ρ)3

∫

t
dx �g(x)2H(α, i x)H(β, i x)

[H(γ, i x)H(z, i x)
]∗

(5)

with respect to Lebesgue measure dz on g∗. Thus we find that

J (α, β; γ ) = (2π)Nr �g(ρ) hγ
αβ(0). (6)

By the theory of Duistermaat–Heckman measures [12], hγ
αβ(0) equals the symplectic

volume of φ−1(0)/G, the Hamiltonian reduction of Oα × Oβ × O−γ at level 0. For
a more detailed discussion of these reduced symplectic manifolds in the context of the
classical Horn’s problem, we refer the reader to [20].

The volume function is also related to tensor product multiplicities (generalized
Littlewood–Richardson coefficients) in representation theory. Let Vλ, Vμ, Vν be irre-
ducible representations of g with highest weights λ,μ, ν, which we assume to be a
compatible triple, meaning that λ + μ − ν belongs to the root lattice. Then, in the lan-
guage of geometric quantization, J (λ, μ; ν) is a “semiclassical approximation” for the
tensor product multiplicity Cν

λμ := dimHomg(Vλ ⊗ Vμ → Vν). Indeed, a connection
with representation theory is already apparent in (4). Let a prime denote the Weyl shift
of a weight: λ′ = λ + ρ. By the Weyl dimension formula, dim Vλ = �g(λ

′)/�g(ρ), so
that we have
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J (λ′, μ′; ν′) = dim Vλ dim Vμ dim Vν

(2π)r |W |
∫

t
dx �g(x)

2H(λ′, i x)H(μ′, i x)
(H(ν′, i x)

)∗
.

(7)

We explore the representation-theoretic significance of J more thoroughly below in
Sect. 3, where we derive two explicit relations expressingJ in terms of themultiplicities
Cν

λμ. In Sect. 4 we provide yet another perspective on the relationship between the
volume function and tensor product multiplicities, by showing that that J (λ, μ; ν) is
proportional to the Euclidean volume of a polytope whose number of integer points is
equal to Cν

λμ.

1.2. J in the Self-Adjoint Case. The volume function in the self-adjoint case does not
offer as rich an array of geometric interpretations as in the coadjoint case, largely due
to the fact that, in general, the orbits do not carry a natural symplectic structure. The
exception is when G = SU(n), in which case the coadjoint representation is equivalent
to the action by conjugation on traceless Hermitian matrices, so that for α, β traceless
the coadjoint and self-adjoint cases coincide. However, for real symmetric or quater-
nionic self-dual matrices we are not dealing with a coadjoint representation, and the
interpretations of J as the volume of a symplectic manifold or a polytope do not apply.
Nevertheless, J still encodes substantial geometric information.

We first observe that a translation A 
→ A + aI, B 
→ B + bI (a, b ∈ R) merely
translates the distribution of each γi by a + b. Therefore, up to a translation of its
support, the Horn probability measure depends only on the trace-free parts of α and β.
Accordingly, in what follows, we assume without loss of generality that A and B are
traceless.

Let G = SO(n), SU(n), or USp(n). We label these three cases by a parameter2

θ that respectively equals 1/2, 1 or 2. Let Mθ,n be respectively the space of n-by-n
real symmetric, complex Hermitian, or quaternionic self-dual matrices. Then G acts
on Mθ,n by conjugation. Let M0

θ,n be the subspace of traceless matrices in Mθ,n . We
define aG-invariant inner product 〈·, ·〉 onMθ,n using the trace form 〈A, B〉 = tr (AB).
The space of spectra of matrices in M0

θ,n is naturally identified with the space of real
diagonal matrices diag (x1, . . . , xn) such that x1 � . . . � xn and

∑
xi = 0, which we

also denote C+. We identify the space of all real traceless diagonal matrices with R
n−1,

and we identify functions on C+ with their symmetric (in the xi ’s) extensions to R
n−1.

The Jacobian of the diagonalization map is equal to κθ |�(x)|2θ , where �(x) :=∏
i< j (xi − x j ) is the Vandermonde determinant, and the constant κθ may again be

determined by computing in two different ways a Gaussian integral over Mθ,n and
making use of the Mehta–Dyson integral

∫

Rn
dx |�(x)|2θe− 1

2

∑
i x

2
i = (2π)n/2

n∏

j=1

�(1 + jθ)

�(1 + θ)
, (8)

whence

κθ = (2π)
1
2 n(n−1)θ n!

∏n
j=1

�(1+ jθ)
�(1+θ)

. (9)

2 In the language of β-ensembles appearing in random matrix theory, our θ is equal to β/2. We opted for
this notation, which is more common in symmetric function theory, to avoid overloading the symbol β.
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If�(x) 	= 0 we say that x is regular; this means that x is a diagonal (traceless) matrix
with distinct eigenvalues. For x regular and G 	= SO(n) for n even, the Jacobian of the
diagonalization map is equal to the Riemannian volume of the orbit Ox with respect
to the metric induced by the inner product. (When G = SO(n), n even, there are two
distinct orbits with the same spectrum, so that the Jacobian is equal to twice this volume.)

As before, the Horn probability measure is supported on a convex polytope Hαβ

in C+, also called the Horn polytope, and is absolutely continuous with respect to the
induced Lebesgue measure on Hαβ . We assume for the remainder of the paper that α

and β are regular, in which case dimHαβ = n−1, so that the Horn probability measure
has a density with respect to Lebesgue measure on C+.

For α, x ∈ C+, the orbital integral is again defined by

H(α, i x) =
∫

G
dg ei 〈g·α,x〉. (10)

Following an analogous procedure to the derivation of (3), we take the inverse Fourier
transform of the characteristic function of the convolution of orbital measures, then
multiply by the Jacobian of the diagonalization map to obtain the PDF of the Horn
probability measure:

p(γ |α, β)= κ2
θ �(γ )2θ

(2π)
dimM0

θ,n n!

∫

Rn−1
dx |�(x)|2θH(α, i x)H(β, i x)

(H(γ, i x)
)∗

, γ∈C+,
(11)

where dx is the Lebesgue measure induced by identifying R
n−1 with the hyperplane∑

xi = 0 in R
n .

We expect to recover (3) from (11)when θ = 1. In fact for SU(n)wehaveκsu(n) = κ1,
�su(n) = �, dimM0

θ,n = n2 −1 = dim su(n), and |W | = n!, so indeed this is the case.
By analogy with (4), we define the volume function J (α, β; γ ) by

J (α, β; γ ) := (2π)θn(n−1)

κ2
θ �g(ρ)3

(
�(α)�(β)

�(γ )

)θ

p(γ |α, β) (12)

=
(
�(α)�(β)�(γ )

)θ

(2π)n−1n! �g(ρ)3

∫

Rn−1
dx |�(x)|2θH(α, i x)H(β, i x)

(H(γ, i x)
)∗

.

(13)

Here �g(ρ) indicates the same quantity as in the coadjoint case for the group G, so that
this expression for J recovers (4) for θ = 1. It is clear that J depends in both cases on
the choice of G, but for the sake of brevity we choose not to append this information to
the notation J and will instead specify the case and group under discussion whenever
necessary.

Note that J is defined in (12) only for traceless α, β, γ , but since in (13) R
n−1 is

understood as the space of traceless x’s, H(α, i x) is invariant under translation of all
αi by the same constant a:

H(α + aI, i x) = ei a
∑

xiH(α, i x) = H(α, i x) , (14)

so that one may extend J to arbitrary α, β, γ , even relaxing the conservation of traces.



On Horn’s Problem and Its Volume Function 2415

1.3. Organization of the paper.

• In Sect. 2 we consider the self-adjoint case. We first show in Sect. 2.1 that J is
real-analytic away from a particular collection of hyperplanes, and that the equations
defining these hyperplanes are the same in all three cases of real symmetric, complex
Hermitian, and quaternionic self-dual matrices. Next, in Sect. 2.2 we relate J to the
Riemannian geometry of the orbits, considered as submanifolds of V , and we explain
how this interpretation helps to understand the nature of the divergences that arise in
J in the case of real symmetric matrices [7].

• For the remainder of the paper after Sect. 2, we restrict our attention to the coadjoint
case. In Sect. 3 we discuss the relationship between J and tensor product multiplic-
ities, and we derive two different identities that express J in terms of tensor product
multiplicities when the arguments are particular triples of highest weights.

• In Sect. 4.1, we relateJ to the Euclidean volume of theBZ polytope, which provides
a polyhedral model for tensor product multiplicities. This point of view explains
geometrically the relationship between J and tensor product multiplicities, and also
provides insight into the nature of the non-analyticities of J . It also leads to a proof
that J does not vanish in the interior of the Horn polytope.

• Sect. 5 is a detailed case study of the above considerations for B2, i.e. the case
g = so(5).

2. The Self-Adjoint Case

In this section we take G = SO(n), SU(n) or USp(n), and we respectively fix θ = 1/2,
1, or 2 and let M0

θ,n be the set of traceless n-by-n real symmetric, complex Hermitian

or quaternionic self-dual matrices. We study the action of G on M0
θ,n by conjugation.

In Sect. 2.1 we present an argument showing that non-analyticities of J lie along the
same hyperplanes in all three cases. In Sect. 2.2 we writeJ in terms of quantities related
to the Riemannian geometry of the orbits, which can help to understand the origin of
the divergences that appear in both J and the Horn PDF in the real symmetric case.

2.1. Singular loci and nature of the non-analyticities. What follows is essentially an
argument due to Michèle Vergne [38], based on a technique originally used to identify
the singular loci of Duistermaat–Heckman densities in symplectic geometry. It is well
known [12] that for a Hamiltonian G-action on a symplectic manifold, the associated
Duistermaat–Heckman measure on R

r , r = rank(G), has a piecewise polynomial den-
sity with non-analyticities along certain hyperplanes. In the coadjoint case the Horn
probability measure is equal to a polynomial times the Duistermaat–Heckman measure
for the diagonal G-action on Oα × Oβ , so these symplectic methods can be used to
identify the singular locus of the density. In this section we show that an analogous
technique works even in cases where the orbits do not carry a symplectic structure.

For A, B ∈ M0
θ,n we can write A = g1αg

−1
1 , B = g2βg

−1
2 for some g1, g2 ∈ G,

where α and β are diagonalizations of A and B. Given α and β ordered and regular, and
g1, g2 drawn independently at random from the Haar probability measure on G, we are
interested in the distribution of γ = diag (γi ), where γ1 � . . . � γn are the eigenvalues
of C = A + B.

Proposition 1. The distribution of γ has a piecewise real-analytic density. Non-
analyticities occur only when γ lies on a hyperplane defined by an equation of the
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form
∑

j∈K
γ j =

∑

j∈I
α j +

∑

j∈J

β j , (15)

where the subsets I, J, K have the same cardinality: |I | = |J | = |K |.
Proof. Following M. Vergne, we consider the map � : G × G → M0

θ,n that sends
(g1, g2) 
→ C = A + B. The pushforward by � of the product of the Haar measures is a
G-invariant measure on the image, which has a density ρA,B(C). The map � is proper
and real-analytic, so that forC0 any regular value of�, a result of Shiga (see [34, p. 133])
guarantees the existence of a neighborhood E 
 C0 such that �−1(E) ∼= �−1(C0) × E
as real-analytic manifolds. Let (z,C) be local analytic coordinates on �−1(C0) × E . In
these coordinates the Haar measure has a real-analytic density h(z,C), and for C ∈ E ,
ρA,B can be written as

ρA,B(C) =
∫

�−1(C0)

h(z,C) dz,

which is clearly a real-analytic function on E . It follows that ρA,B is analytic in a
neighborhood of every regular value of �. As before, let C+ ⊂ M0

θ,n denote the cone
of traceless diagonal matrices diag(γ1, . . . , γn) with γ1 � . . . � γn . The restriction of
ρA,B to C+ equals the volume function J , up to a normalizing factor depending on α

and β. All non-analyticities of J must therefore occur at non-regular values of �, i.e. γ
such that the differential d� fails to be surjective at some point in the preimage�−1(γ ).
The claim will now follow by identifying all non-regular values of �.

At the point (g1, g2), the differential is

d(g1,g2)�(X,Y ) = [X, A] + [Y, B], X,Y ∈ g

where we have identified the tangent space T(g1,g2)(G×G)with g⊕g. At a point where
d� is non-surjective this operator has a non-trivial kernel, corresponding to a non-zero
solution Z ∈ M0

θ,n of

∀X,Y ∈ g, tr (Z · ([X, A] + [Y, B])) = 0 . (16)

Thus we must determine for which (g1, g2) such a Z exists.
(1) Using the invariance ρA,B = ρgAg−1,gBg−1 , we can reduce to the case g1 = I (at

the price of redefining X,Y, Z ). Then taking Y = 0, the condition (16) reduces to

∀X ∈ g, tr (X · [Z , diag (αi )]) = 0,

so that we must have [Z , diag (αi )] = 0. Since the eigenvalues αi are assumed distinct,
this implies that Z is diagonal.

(2) Having taken g1 = I , we rewrite g2 = g. For X = 0, Y arbitrary, the condition
(16) reads [Z , B] = 0.
– If Z is regular, this implies that B is diagonal, and since β is regular, this implies that
g acts as a permutation: B = diag (βwi ) for some w ∈ Sn . Thus the ordered eigenvalues
γi of C are

γi = αw′
i
+ βwi w,w′ ∈ Sn, i = 1, · · · , n , (17)

which is a particular case of (15).
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– If Z has repeated eigenvalues, with eigenvalue z	 of multiplicity r	 for 	 = 1, · · · , s,
one may only assert that B is block-diagonal, with s blocks of size r1, r2, · · · rs . For
each block of size 1, one is back to the situation described in (17). For each block B	

of size r	 > 1, the partial trace over the corresponding block in diag (α) + B is a sum
of r	 eigenvalues γ j , which we write

∑(	)
γ j = ∑(	)

α j + tr B	. But since the trace
of the block B	 is just the sum of the β j pertaining to that block, tr B	 = ∑(	)

β j , we
have

∑(	)
γ j = ∑(	)

α j +
∑(	)

β j , which we can rewrite in the form (15). Such a linear
relation on the γ ’s defines a hyperplane in R

n−1, since we have assumed that A, B and
C were traceless. ��
Remarks. 1. The possible singularities identified in (15) include the hyperplanes that

contain the facets of the Horn polytope (other than the walls of the Weyl chamber),
where the Horn PDF and volume function vanish in a non-C∞ way. The reader will
recognize in (15) the form of Horn’s (in)equalities.

2. The singular hyperplanes in γ -space depend only on α and β and not on θ . This is
in agreement with Fulton’s argument [14] that Horn’s inequalities are the same for
all three cases considered in this section. This also justifies the empirical observation
made previously that the singular locus, for given α and β, is the same in all three
cases [7,39].

3. Equation (15) is only a necessary condition for a non-analyticity. It doesn’t tell us on
which hyperplanes a non-analyticity does in fact occur. Also, it doesn’t tell us that all
the points of that hyperplane are singular. An example is provided by the case n = 3
where some singularities occur along half-lines in the (γ1, γ2)–plane [7,39].

4. The argument above doesn’t tell us anything about the nature of the singularity.
Indeed much stronger singularities appear in the real symmetric case (where J can
actually diverge) than in the complex Hermitian or quaternionic self-dual cases [7].
For θ = 1 or 2, and for all of the coadjoint cases, we can use explicit formulae for
the orbital integrals to write J as a sum of Fourier transforms of rational functions.
A power-counting argument (differentiating under the integral sign and using the
Riemann–Lebesgue lemma) then yields a lower bound on the number of continuous
derivatives ofJ . In the complex Hermitian case with n � 3, one expects the function
to be at least of differentiability class Cn−3 (see [39]). For example, it is continuous
but non-differentiable for SU(3), and at least once continuously differentiable for
SU(4). For SU(2), J is the indicator function ofHα,β and is therefore discontinuous
at the boundary. For a geometric interpretation of these singularities, see Sect. 4.4
below.

2.2. Riemannian interpretation of J , and singularities in the real symmetric case. In
this section we interpret J in terms of the Riemannian geometry of the orbits. The
Riemannian interpretation can help to understand the origin of the divergences that can
appear in J when θ = 1/2. It was observed in [7,39] that for SO(2) and SO(3) acting
on real symmetric matrices, J actually tends to infinity as it approaches certain singular
hyperplanes. It is unknown whether J diverges for θ = 1/2 and n > 3. We follow the
notation of Sect. 1.2, and we assume as before that α and β are regular and traceless.

The inner product 〈A, B〉 = tr(AB) gives aG-invariant Riemannianmetric onMθ,n ,
so that we obtain G-invariant induced metrics on the orbits Oα and Oβ . The associated
Riemannian volumemeasuresμα andμβ are alsoG-invariant, so they must respectively
equal μα(Oα) and μβ(Oβ) times the unique invariant probability measure on each
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orbit. If α and β are both regular as we assume, then we have μα(Oα) = κ ′
θ�(α)2θ ,

μβ(Oβ) = κ ′
θ�(β)2θ , where � is the Vandermonde determinant, and the constant κ ′

θ

equals κθ except when θ = 1/2 and n is even, in which case κ ′
θ = 1

2κθ .

Let �̃ : Oα × Oβ → C+ be the map that sends (A, B) to the diagonaliza-
tion of A + B with non-increasing entries down the diagonal. Define the measure
ν on Oα × Oβ as the product measure of the normalized G-invariant measures on
each orbit. If we endow Oα × Oβ with the product metric of the induced Rie-
mannian metrics, so that its volume measure is the product μα ⊗ μβ , then we find
ν = κ ′−2

θ (�(α)�(β))−2θ (μα ⊗ μβ). The Horn probability measure on C+ is the push-
forward �̃∗ν = κ ′−2

θ (�(α)�(β))−2θ �̃∗(μα ⊗ μβ).
We can rewrite the measure in a simpler form by eliminating one of the orbits from

the domain of �̃. Recalling that �̃ is invariant under the diagonal G-action onOα ×Oβ ,
it suffices to consider the case A = α and the “reduced” map � : Oβ → C+ that sends
B ∈ Oβ to the diagonalization of α + B with non-increasing entries down the diagonal.
The Horn probability measure is then equal to κ ′−1

θ �(β)−2θ�∗μβ .
If γ0 is a regular value of �, then for a sufficiently small coordinate neighborhood

E 
 γ0 all fibers of � over E are diffeomorphic, and �−1(E) is diffeomorphic to
�−1(γ0) × E . Let z1, . . . , zm be local coordinates on the fiber �−1(γ0), where m =
dimMθ,n−n+1. Then (z, γ ) are local coordinates on�−1(E), so that for γ sufficiently
close to γ0 we can write the Horn PDF as the fiber integral

p(γ |α, β) = κ ′−1
θ �(β)−2θ

∫

�−1(γ0)

√
gβ(z, γ ) dz, (18)

where gβ is the determinant of the induced metric on Oβ in our chosen coordinates.
Accordingly, we have

J (α, β; γ ) = (2π)θn(n−1)

κ ′
θ κ

2
θ �g(ρ)3

(
�(α)

�(β)�(γ )

)θ ∫

�−1(γ0)

√
gβ(z, γ ) dz (19)

for γ sufficiently close to any regular value γ0 of �.
Equation (19) gives the desired Riemannian interpretation of J and provides some

geometric insight into the origin of the volume function’s singularities. In particular,
this point of view helps to explain why J can actually diverge in the real symmetric
case. The integral appearing in (18) and (19) looks almost like the induced volume of
the (compact) fiber �−1(y), so it may be surprising at first that for θ = 1/2, J can tend
to infinity on the interior of Hαβ . However, this integral is not the volume of the fiber.
If g�

β and g⊥
β are the determinants, respectively, of the restriction of the induced metric

on Oβ to the tangent bundle and normal bundle of �−1(γ ), then we have

Vol(�−1(γ )) =
∫

�−1(γ0)

√
g�
β (z, γ ) dz,

whereas
∫

�−1(γ0)

√
gβ(z, γ ) dz =

∫

�−1(γ0)

√
g�
β (z, γ ) g⊥

β (z, γ ) dz.
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Fig. 1. The J function for α12 = 1, β12 = 2

The factor g⊥
β can blow up as γ approaches a non-regular value of �. This merely

reflects a singularity of the particular choice of coordinates (z, γ ), but it will cause J to
diverge if g�

β doesn’t diminish sufficiently to compensate.
To illustrate this idea, we consider the simple example of SO(2) acting on 2-by-2

real symmetric matrices, relaxing temporarily our assumption that α and β are traceless.
In this case, the orbits of regular elements are circles embedded in M 1

2 ,2
∼= R

3. If we
parametrize SO(2) as rotation matrices

R(φ) =
[
cosφ − sin φ

sin φ cosφ

]

, 0 � φ < 2π,

then the orbit of β = diag(β1, β2) is

R(φ)βR(φ)T =
[
β1 cos2 φ + β2 sin2 φ (β1 − β2) cosφ sin φ

(β1 − β2) cosφ sin φ β1 sin2 φ + β2 cos2 φ

]

, 0 � φ < 2π.

We have C+ = {diag (γ1, γ2) | γ1 � γ2 and γ1 + γ2 = α1 + α2 + β1 + β2}, so that
C+ ∼= [0,∞) parametrized by the single coordinate γ12 := γ1 − γ2. The map � sends
φ ∈ [0, 2π) to γ1 − γ2 where γ1, γ2 are the eigenvalues of α + R(φ)βR(φ)T , and we
have

�(φ) =
√

α2
12 + β2

12 + 2α12β12 cos(2φ),

where α12 := α1 −α2, β12 := β1 −β2. The image of � is the interval [|α12 −β12|, α12 +
β12]. We assume that α1 	= α2 and β1 	= β2, as otherwise this image is just a single
point. An explicit computation yields

J (α, β; γ ) =
⎧
⎨

⎩

2
π2

√
α12β12γ12

((α12+β12)2−γ 2
12)(γ

2
12−(α12−β12)2)

, γ12 ∈ [|α12 − β12|, α12 + β12],
0, otherwise.

Figure 1 shows the plot of J as a function of γ12 for α12 = 1, β12 = 2.
J diverges at the endpoints |α12 − β12| = �(0) and α12 + β12 = �(π), which are

the non-regular values of �. The fiber of � over a regular value consists of two points,
one in each of the open sets of Oβ parametrized by 0 < φ < π and π < φ < 2π .
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In this case we may think of � as giving a coordinate chart on either of these two

open sets; the density of the Riemannian volume form in these coordinates is just
√
g⊥
β ,

which in this case is a function only of γ12, for α12, β12 fixed. Since the fibers are 0-
dimensional, the induced Riemannian volume on each fiber is just the counting measure,
so that Vol(�−1(γ12)) = 2 when γ12 is a regular value. Inverting the prefactor before
the integral in (19) and dividing by 2 to account for the volume of the fiber, we find that
on either submanifold φ ∈ (0, π) or φ ∈ (π, 2π), the density of the Riemannian volume
on Oβ can be expressed in terms of the local coordinate γ12 as

√
g⊥
β (γ12) = π3

√
2

√
β12γ12

α12
J (α12, β12; γ12).

The divergences of J at the endpoints indicate that this coordinate becomes singular as
it approaches a non-regular value of �.

3. Relation J ↔ LR in the Coadjoint Case

For the remainder of this paper, we restrict our attention to the coadjoint case. Let G
be a compact, connected, semisimple Lie group, g its Lie algebra. Here and in Sect. 4
below, we will always make the further assumption that g contains no simple summands
isomorphic to su(2); this assumption can be removed, but this requires some additional
care due to the discontinuity ofJ at the boundary of the Horn polytope in the su(2) case
(see [6], Sect. 4.1.1).

For x ∈ t, a Cartan subalgebra, define3

�g(x):=
∏

ααα>0

〈ααα, x〉 �̂g(e
i x ):=

∏

ααα>0

(
e
i
2 〈ααα,x〉 − e− i

2 〈ααα,x〉) . (20)

Then the Weyl–Kirillov formula for the character χλ of an irreducible representation
(irrep) Vλ of highest weight (h.w.) λ reads

χλ(ei x )

dim Vλ

= �g(i x)

�̂g(ei x )
H(λ + ρ, i x) (21)

withH the orbital (Harish-Chandra) integral

H(λ, i x) =
∫

G
dg ei 〈λ,Ad(g)x〉 . (22)

Let Q be the root lattice of g, P the weight lattice, and P∨ the coweight lattice. If
(λ, μ, ν) is a compatible triple of h.w., i.e. λ + μ − ν ∈ Q, and if we denote by primes
λ′, μ′, ν′ the shift of λ,μ, ν by the Weyl vector ρ, i.e. λ′ = λ + ρ, etc., we have

J (λ′, μ′; ν′) = dim Vλ dim Vμ dim Vν

(2π)r |W |
∫

Rr
dr x |�g(x)|2 H(λ′, i x)H(μ′, i x)(H(ν′, i x))∗

= 1

(2π)r |W |
∫

Rr
dr x |�̂g(ei x )|2 �̂g(ei x )

�g(i x)
χλ(e

i x )χμ(ei x )(χν(e
i x ))∗

3 In the following, we use boldface ααα to denote roots, not to confuse them with eigenvalues αi .
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=
∫

T

dT
∑

δ∈2π P∨

�̂g(ei (x+δ))

�g(i (x + δ))
χλ(e

i (x+δ))χμ(ei (x+δ))(χν(e
i (x+δ)))∗

=
∫

T

dT

(
∑

δ∈2π P∨
ei 〈ρ,δ〉 �̂g(ei x )

�g(i (x + δ))

)

χλ(e
i x )χμ(ei x )(χν(e

i x ))∗ (23)

where the last integration with respect to T = ei x is carried out on the Cartan torus
T = R

r/(2π P∨), with the measure

dT = 1

(2π)r |W | |�̂g(e
i x )|2 dr x .

In the above calculation we used the fact that compatibility of the triple (λ, μ, ν) implies
that exp i 〈(λ + μ − ν), δ〉 = 1 for all δ ∈ 2π P∨, so that only the shift by ρ leaves a
non-trivial contribution.

By a similar calculation, we find that for (λ, μ, ν) compatible,

J (λ, μ; ν) =
∫

T

dT

(
∑

δ∈2π P∨

�̂g(ei x )

�g(i (x + δ))

)

χλ−ρ(ei x )χμ−ρ(ei x )(χν−ρ(ei x ))∗ .

(24)

Now, as observed in [6] in the case of G = SU(n) and proved in full generality in
[13], the two sums over the coweight lattice P∨ that appear in (23, 24) can each be
expressed as a finite sum of characters over a set K , resp. K̂ , of h.w.

R :=
∑

δ∈2π P∨
ei 〈ρ,δ〉 �̂g(ei x )

�g(i (x + δ))
=

∑

κ∈K
rκχκ(T ),

R̂ :=
∑

δ∈2π P∨

�̂g(ei x )

�g(i (x + δ))
=

∑

κ∈K̂
r̂κχκ(T ) , (25)

where rκ and r̂κ are coefficients to be determined, see below. According to [13], in order
for the character χκ to occur in the sum R defined in (25), κ should belong to the interior
of the convex hull of the Weyl group orbit of ρ. More precisely, K is the set of dominant
weights occurring in the irrep of h.w. ρ − ξ , where

ξ =

⎧
⎪⎨

⎪⎩

∑r
i=1 αααi (sum of simple roots) if ρ ∈ Q

∑r
i=1 kiαααi if ρ /∈ Q, with ki =

{
1 if 〈ρ, ω∨

i 〉 ∈ Z

1
2 if 〈ρ, ω∨

i 〉 /∈ Z

(26)

where the ωi , i = 1, · · · , r , are the fundamental weights. Observe that ρ − ξ , and
therefore all weights κ ∈ K , must lie in the root lattice. Obviously R̂ and R differ only
if ρ 	∈ Q, in which case K̂ consists of the dominant weights occurring in the irrep of
h.w. ρ − ξ̂ , where ξ̂ is obtained by swapping the two lines above:

ξ̂ =
r∑

i=1

k̂iαααi with k̂i =
{

1
2 if 〈ρ, ω∨

i 〉 ∈ Z

1 if 〈ρ, ω∨
i 〉 /∈ Z.

(27)

Note that the trivial weight 0 always occurs in K , but never occurs in K̂ when ρ 	∈ Q.
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Examples. For SU(3) we have ρ − ξ = 0, and R = R̂, given by the r.h.s. of (25),
equals 1. For SU(4) we have ρ − ξ = ω1 + ω3. One finds K = {(0, 0, 0), (1, 0, 1)},
with r0 = 9/24 and rρ−ξ = 1/24, (see [6], Eq. (62a)). One finds also ρ − ξ̂ = ω2,
K̂ = {(0, 1, 0)}, and r̂κ = {1/6} (see [6], Eq. (62b)).

More generally, for the Ar series, one has ξ = ∑
i odd αααi/2 +

∑
i evenαααi if r is odd,

and ξ = ∑
i αααi if r is even. Moreover ξ̂ = ξ if r is even and ξ̂ = ∑

i αααi if r is odd.
Explicit results for R, i.e., for χκ and rκ , in the cases SU(5) and SU(6), are also given
in [6], see Sects. 4.2.2, 4.2.3, 4.2.4, as well as the results for R̂ in the case of SU(6).

For SO(5), ρ = 1
2 (3ααα1 + 4ααα2), ξ = 1

2ααα1 + ααα2, ρ − ξ = ααα1 + ααα2 = ω1, K =
{(0, 0), (1, 0)}, and R = 1

8 (3χ0 + χω1). One also finds ξ̂ = ααα1 + ααα2, K̂ = {(0, 1)} and
r̂(0,1) = 1/4.

For SO(7), we find K = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (2, 0, 0), (0, 0, 2), (1, 1, 0),
(1, 0, 2)} and the corresponding list of coefficients rκ : 1

92160 {7230, 3995, 1651, 85, 479,
29, 1}. One also finds ξ̂ = ααα1 + ααα2 + ααα3, K̂ = {(0, 0, 1), (1, 0, 1), (0, 1, 1)} and r̂κ =
1

2880 {190, 26, 1}.
Introducing (generalized) Littlewood–Richardson (LR) coefficients

Cν
λμ:= dimHomg(Vλ ⊗ Vμ → Vν),

Cν
λμ κ := dimHomg(Vλ ⊗ Vμ ⊗ Vκ → Vν),

and putting (25) into (24), we finally obtain:

Proposition 2. Let (λ, μ; ν) be a compatible triple of h.w., i.e. such that λ+μ− ν ∈ Q.
Let (λ′, μ′; ν′) be the corresponding triple shifted by the Weyl vector ρ: λ′ = λ + ρ, etc.
Then we have the two J -LR relations

J (λ′, μ′; ν′) =
∑

κ∈K ,τ

rκC
τ
λμC

ν
τ κ =

∑

κ∈K
rκC

ν
λμ κ (28)

J (λ, μ; ν) =
∑

κ∈K̂ ,τ

r̂κC
τ
(λ−ρ) (μ−ρ)C

ν−ρ
τ κ =

∑

κ∈K̂
r̂κC

ν−ρ

(λ−ρ) (μ−ρ) κ . (29)

Remarks. 1. The previous derivation generalizes and simplifies substantially the dis-
cussion given in [6] for the case of G = SU(n).

2. The coefficients rκ , r̂κ may be determined either by a direct calculation of the sums
in (25), (as it was done in [6]), or by a geometric argument [13], or by noticing that
at the following special points, (28,29) reduce to:4

rκ = J (ρ, ρ, κ + ρ), κ ∈ K and r̂κ = J (ρ, ρ, κ + ρ), κ ∈ K̂ . (30)

3. Taking the limit x → 0 in (25), we see5 that
∑

κ∈K
rκ dim Vκ = 1 and

∑

κ∈K̂
r̂κ dim Vκ = 1 . (31)

4 The r.h.s. of (30), interpreted as a volume as we shall see in the next section, can be read, for instance,
from the (stretched) LR polynomial defined by the triples that appear as arguments of J , or, for low rank,
computed from explicit expressions such as those in [39] or below in Sect. 5.1.

5 One may use this relation and the dimensions dim (Vκ ), κ ∈ K , to check the weights rκ . In the above
examples of B2 and B3, the dimensions dim (Vκ ) for the representations with κ ∈ K are respectively {1, 5}
and {1, 7, 21, 27, 35, 105, 189}.
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4. For ν deep enough in the dominantWeyl chamber, so that all the weights ν−ρ−k are
dominant when k runs over the set wt(κ) of weights of each Vκ , the r.h.s. of (28-29)
may be written explicitly

J (λ, μ; ν) =
∑

κ∈K̂
r̂κ

∑

k∈wt(κ)

multκ(k)Cν−ρ−k
(λ−ρ) (μ−ρ) , (32)

and a similar formula forJ (λ′, μ′; ν′). See examples for Ar in [6] and for B2 in Sect.
5.5.2 below.

4. Coadjoint Case: J as the Volume of a Polytope

In this section we show that J (α, β; γ ) is equal to the (relative) volume of a certain
convex polytope, the Berenstein–Zelevinsky (BZ) polytope Hγ

αβ , and we explore some
consequences of this fact. The primary importance of the BZ polytope is that the tensor
product multiplicity Cν

λμ is equal to the number of integer points in H ν
λμ. This fact

provides another perspective on the link between J and tensor product multiplicities.
In Sect. 4.1 we recall the definition of the BZ polytope, and we show in Sect. 4.2 that J
computes its volume. In Sect. 4.3 we use this geometric interpretation to show that J
cannot vanish on the interior of the Horn polytope, and in Sect. 4.4 we discuss how the
non-analyticities of J arise from changes in the geometry of Hγ

αβ as γ varies.

4.1. The BZ polytope. Following Berenstein and Zelevinsky (BZ) [1–3], one may deter-
mine the LR coefficientCν

λμ pertaining to a compact or complex semisimple Lie algebra
g of rank r by counting the number of integer points of a certain convex polytope, the
BZ polytope (in the Ar case it is closely related to the hive polytope6 of [22]), which we
denote H ν

λμ. We will show below that the volume function J (λ, μ; ν) is proportional
to the Euclidean volume of this polytope. Intuitively, for a compatible triple of h.w.
(λ, μ, ν), if the polytope H ν

λμ is very large then we expect that the number of its integer
points should give a very good approximation of its volume. In practice there are some
additional subtleties because we want to count the integer points in a space of higher
dimension than H ν

λμ, however at a heuristic level this intuition illustrates geometrically
why J (λ, μ; ν) can be considered as a semiclassical approximation of Cν

λμ.
The BZ construction hinges on the result that Cν

λμ equals the number of ways of
decomposing the weight σ = λ + μ − ν as a positive integer combination of positive
roots, such that the decomposition also satisfies some additional combinatorial con-
straints. To construct the polytope H ν

λμ, one therefore starts by introducing real param-
eters u1, . . . , uNr , where Nr denotes the number of positive roots ααα1, . . . ,αααNr of g. A
decomposition of σ as a positive linear combination of positive roots corresponds to a
point in the polytope of g-partitions with weight σ ,

Partg(σ ) = {(u1, . . . , uNr ) :
Nr∑

a=1

uaαααa = σ } ∩ R
Nr
+ , (33)

6 Actually the BZ-polytope is the image of the hive polytope under an injective lattice-preserving linear
map [32], so that one can identify them for the purpose of counting arguments; however the Euclidean volumes
of the two polytopes differ by an r -dependent constant.
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where R
Nr
+ is the positive orthant in R

Nr . Since σ lies in an r -dimensional space, we
have dim Partg(σ ) = Nr − r =: dr . Positive integer decompositions of σ correspond to
integer points of Partg(σ ). Additional linear constraints must still be imposed on these
integer decompositions, so that the BZ polytope H ν

λμ is finally obtained by intersecting
Partg(σ ) with some number of half-spaces. Generically we have dim H ν

λμ = dr , but for
non-generic triples we may have dim H ν

λμ =: d � dr .
One may alternatively introduce the quantity fr = Nr +2r that, in the case Ar , is the

number of “independent fundamental intertwiners" (see [8, Sect. 4]), and then impose
3r conditions on the three weights λ,μ, ν recovering dr = fr − 3r = Nr − r . Finally
the dr independent parameters are again subject to linear inequalities, thus defining the
convex polytope H ν

λμ.
Note that we have defined H ν

λμ as the solution set of a system of equations and
inequalities that depend linearly on λ, μ and ν. We can therefore talk about the BZ
polytope Hγ

αβ associated to any triple of points (α, β, γ ) in the dominant Weyl chamber,
which may not be compatible highest weights or even rational points.

In the case that (λ, μ, ν) is indeed a compatible triple, H ν
λμ is not in general integral,

but it is always rational. Upon scaling by a positive integer s, Pν
λμ(s) := Csν

sλ sμ is a
quasi-polynomial of the variable s, and is the Ehrhart quasi-polynomial of the polytope
H ν

λμ [35]. It is sometimes called the stretching quasi-polynomial orLRquasi-polynomial.

Remarks. 1. The definition of Pν
λμ(s)makes sensewhether or not (λ, μ, ν) is a compati-

ble triple. In many instances in the literature, like the construction of the BZ polytope
and the discussion of saturation or of the properties of the stretching polynomial,
compatibility of the triple is generally assumed. Since in the present paper we do not
limit our consideration to compatible triples,7 we will make clear the hypothesis of
compatibility whenever it is necessary.

2. When discussing such topics (stretching polynomials, saturation property, etc.) in
terms of the representation theory of semisimple compact Lie groups rather than
semisimple Lie algebras, one should be specific about the group under consideration
since the conclusions will usually differ if one compares two Lie groups with the
same Lie algebra but different fundamental groups. In the present paper, even though
we consider the coadjoint representation of the orthogonal group SO(n), the tensor
product multiplicities that arise in this setting for algebras of types B or D actually
correspond to those of the simply connected group Spin(n).

4.2. J and the Euclidean volume of the BZ polytope. In this section we show that
J (α, β; γ ) is proportional to the Euclidean dr -volume of the BZ polytope Hγ

αβ for
an arbitrary compact or complex semisimple Lie algebra g with no su(2) summands.
Specifically, we show that J equals the relative dr -volume of the BZ polytope, defined
as the Euclidean dr -volume divided by the covolume (volume of a fundamental domain)
of the lattice � := aff(Hγ

αβ) ∩ Z
Nr . Here aff(Hγ

αβ) indicates the affine span of Hγ
αβ ,

i.e. the minimal affine subspace of R
Nr

containing Hγ
αβ , and Z

Nr is the integer lattice

of the parameters ua appearing in (33). When dim Hγ
αβ = dr we have aff(Hγ

αβ) =
aff(Partg(σ )), and the covolume of � is a constant cg that depends only on the root

7 For instance, as noted in the previous section, for some algebras if a triple is compatible then the corre-
sponding Weyl shifted triple is not. This occurs for example in the case of B2.
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Table 1. The numbers Nr , fr , dr , δr for the various simple algebras

g Nr fr dr δr

Ar
1
2 r(r + 1) 1

2 r(r + 5) 1
2 r(r − 1) (r + 1)r−1

Br r2 r(r + 2) r(r − 1) (2r − 1)r

Cr r2 r(r + 2) r(r − 1) 2r−2(r + 1)r

Dr r(r − 1) r(r + 1) r(r − 2) 2r−2(r − 1)r

E6 36 48 30 21235

E7 63 77 56 26314

E8 120 136 112 283858

F4 24 32 20 2238

G2 6 10 4 243

The quantity δr , discussed in the appendix, is a conjectured value of the squared covolume of the lattice �

defined in Sect. 4.2

system of the algebra g, so that we have

Volrel(H
γ
αβ) = 1

cg
Vol(Hγ

αβ), (34)

whereVolrel is the relative dr -volume andVol is the Euclidean dr -volume.We discuss the
covolumes cg in more detail in the appendix, where we explain the conjectured values
for δr := c2g appearing above in Table 1. Below when we refer to the “volume” of the BZ
polytope, it will be understood that we mean the relative volume. (Note that the relative
volume is not the same thing as the normalized volume considered in [6]).

In the Ar case (i.e. SU(r +1) acting on traceless Hermitian matrices), the relationship
between the volume functionJ (α, β; γ ) and the Euclidean volume of Hγ

αβ follows from
the well-known fact that the stretching quasi-polynomials (for compatible triples) are
genuine polynomials [10]. In fact for Ar , if one considers the hive polytope rather than
the BZ polytope, it turns out that J exactly computes the Euclidean volume, without a
covolume factor. Since this has been treated in several other places we shall not dwell on
the matter, and instead refer the reader to the paper [6] for a more detailed discussion.
In the remainder of this section we treat the general case, namely:

Proposition 3. Let g be any compact semisimple Lie algebra without su(2) summands.
Then for any α, β, γ ∈ C+,

J (α, β; γ ) = Volrel(H
γ
αβ). (35)

Proof. Webegin by assuming that we areworkingwith a compatible triple (λ, μ, ν)with
Cν

λμ 	= 0, though later we will remove this assumption. The stretching quasi-polynomial

of H ν
λμ can be written8

Pν
λμ(s) =

d∑

k=1

ak(s)s
k, (36)

where d = dim H ν
λμ � dr and each ak is a rational-valued periodic function on N.

8 For example, by inspection of the BZ inequalities for B2 (see (53) below), it is easy to see that in this
case Hν

λμ may have corners at integer or half-integer points, hence Pν
λμ(s) is a quasi-polynomial of period 2.

In fact it is well known that in the Br , Cr and Dr cases, the period of Pν
λμ(s) is at most 2 [9].
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Step 1: Using the assumption that Cν
λμ 	= 0, it follows from results of McMullen [29]

that the leading coefficient of the quasi-polynomial Pν
λμ is constant. At the end of this

section we will sketch an intuitive argument for why this must be so, which does not
require knowledge of [29]. The fact that ad is constant implies that it equals the d-volume
of H ν

λμ, by the following simple observation.
Since H ν

λμ is a rational polytope, we can choose m � 1 such that the m-fold dilation
mH ν

λμ is an integral polytope, whose Ehrhart polynomial is equal to

Pν
λμ(ms) = ad(ms)d +

d−1∑

k=1

ak(m)(ms)k .

By the standard result that the relative volume of an integral polytope equals the leading
coefficient of its Ehrhart polynomial, we then have Volrel(mH ν

λμ) = admd , and thus

Volrel(H
ν
λμ) = ad . (37)

Step 2: We may now use (37) to identify the function J with the dr -volume of the BZ
polytope. Upon dilation of λ,μ, ν by a factor s, relation (28) gives

J (sλ + ρ, sμ + ρ; sν + ρ) =
∑

κ∈K
τ

rκC
τ
sλ sμC

sν
τ κ . (38)

Since g has no su(2) summands, we can determine from the Riemann–Lebesgue lemma
(see Remarks in Sect. 2.1) that J is a continuous function of its three arguments. For
s � 1, we use the continuity and homogeneity of J to approximate the l.h.s. of (38) by
J (sλ, sμ; sν) = sdrJ (λ, μ; ν). On the r.h.s., we observe that for s large, any weight
τ = sν−k, where k runs over the set wt(κ) of weights of Vκ , is dominant and contributes
multκ(k) to Csν

τ κ ,

∑

κ∈K
τ

rκC
τ
sλ sμC

sν
τ κ

s�1=
∑

κ∈K
k∈wt(κ)

rκ multκ(k)Csν−k
sλ sμ ≈

∑

κ∈K
rκ dim Vκ C

sν
sλ sμ, (39)

where we have approximated Csν−k
sλ sμ ≈ Csν

sλ sμ. This approximation is justified by the
geometric observation that, since the equations and inequalities defining the BZ polytope
depend linearly on (λ, μ, ν), the difference between the number of integral points in
Hsν
sλ sμ and in Hsν−k

sλ sμ must be lower order than sdr for s large. Finally using relation (31),
we obtain

∑

κ∈K
rκC

sν
sλ sμκ ≈ Csν

sλ sμ = Pν
λμ(s) = adr s

dr + lower-order terms,

whence the identification

J (λ, μ; ν) = adr = Volrel(H
ν
λμ) . (40)

Note that J (λ, μ; ν)may vanish for a compatible triple, but in this case by the above
argument we have adr = 0, so that these are exactly the cases when d < dr and the
dr -volume of H ν

λμ vanishes.
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Step 3: We now use a simple approximation technique to remove the assumption of
compatibility and show that J (α, β; γ ) = Volrel(H

γ
αβ) for arbitrary points α, β, γ in

the dominant chamber. It will be apparent from the proof of Proposition 4 below that if
γ 	∈ Hαβ then Hγ

αβ is the empty set. Accordingly we may assume γ ∈ Hαβ . For any
ε > 0 we can find a compatible triple (λ, μ, ν) with Cν

λμ 	= 0 and N ∈ N such that
|α − λ/N | + |β − μ/N | + |γ − ν/N | < ε. We have

J (λ/N , μ/N ; ν/N ) = N−drJ (λ, μ; ν) = N−drVolrel(H
ν
λμ) = Volrel(H

ν/N
λ/N μ/N ),

and |Volrel(H ν/N
λ/N μ/N )−Volrel(H

γ
αβ)| = O(ε) for ε small. SinceJ is continuous, letting

ε → 0 we obtain J (α, β; γ ) = Volrel(H
γ
αβ). ��

We end this subsection by sketching a brief argument that the leading coefficient ad
of Pν

λμ must be constant when (λ, μ, ν) is a compatible triple with Cν
λμ 	= 0. For the

sake of simplicity we will assume that Pν
λμ has period 2, so that it has the form

Pν
λμ(s) =

d∑

k=1

(a+k + (−1)sa−
k )sk (41)

where a+k , a−
k are rational coefficients. However, the discussion easily extends to an

arbitrary period.
Since Cν

λμ 	= 0, aff(H ν
λμ) obviously contains at least one integer point. Moreover

aff(H ν
λμ) is a d-dimensional rational affine subspace, so the fact that it contains one

integer point implies that it contains an entire d-dimensional sublattice� ⊂ Z
Nr . Choose

an affine transformation ψ : aff(H ν
λμ) → R

d that maps � bijectively to Z
d . For all

s = 1, 2, ... the number of integer points in sH ν
λμ is equal to the number of integer

points in sψ(H ν
λμ), so that these two polytopes have the same Ehrhart quasi-polynomial

Pν
λμ(s). Thus we have reduced the problem to studying dilations of a full polytope (that

is, a d-dimensional polytope in R
d rather than the higher-dimensional space R

Nr ).
Now suppose for the sake of contradiction that the leading coefficient of Pν

λμ(s)were

not a constant, i.e. a−
d 	= 0 in (41), and compute the difference Pν

λμ(s + 1) − Pν
λμ(s) =

2a−
d s

d + (lower-order terms). This equals the difference between the numbers of integer
points in the two polytopes (s+1)ψ(H ν

λμ) and sψ(H ν
λμ). It is easy to see that this number

is bounded by a multiple of the (d − 1)-dimensional surface area of the larger polytope
and is therefore O(sd−1), in contradiction with the previous expression. This proves that
the leading coefficient of Pν

λμ(s) must be a constant.

4.3. Non-vanishing of J on the interior of the Horn polytope. Proposition 3 leads to a
proof of the following proposition, which generalizes a result that was shown for the Ar
case in [6].

Proposition 4. For all α, β ∈ C+ and γ in the interior of Hαβ (in the topology of t),
J (α, β; γ ) > 0.

Proof. Wemay assume that dimHαβ = r ; otherwise its interior is empty. It follows from
Proposition 3 that J (α, β; γ ) > 0 exactly when dim Hγ

αβ = dr . There is at least one

point γ� in the interior such that dim Hγ�

αβ = dr , sinceJ is locally a polynomial of degree
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dr > 0 and cannot vanish everywhere. It thus suffices to show that d(γ ) := dim Hγ
αβ is

constant on the interior of Hαβ .
The BZ polytope Hγ

αβ is the simultaneous solution set of the equation

Nr∑

a=1

uaαααa = α + β − γ (42)

and a collection of m linear inequalities that can all be written in the form

v j (u1, . . . , uNr ) � h j (α, β, γ ), j = 1, . . . ,m, (43)

where each v j is a linear functional on R
Nr and h j is a linear functional on R

3r . Moving
all terms involving γ to the left-hand side, we can rewrite (42) and (43) as

Nr∑

a=1

uaαααa + γ = α + β, (44)

v′
j (u1, . . . , uNr , γ ) � h′

j (α, β), j = 1, . . . ,m, (45)

where each v′
j is a linear functional on R

Nr+r and h′
j is a linear functional on R

2r .
Considering γ as an independent variable, the simultaneous solution set of (44) and (45)
is a polytope in R

Nr+r , which we denote Uαβ . The projection R
Nr+r → R

r onto the γ

coordinates maps the relative interior of Uαβ onto the interior of Hαβ . Let P be this
map on the interiors. Each fiber P−1(γ ) is in turn the relative interior of Hγ

αβ , so that

dim P−1(γ ) = dim Hγ
αβ . Moreover the map P is a global submersion, so that its fibers

all have the same dimension (see e.g. [24, ch. 7]). This completes the proof. ��

4.4. Geometric origin and nature of the non-analyticities of J . We now explain how
the non-analyticities of J can be understood in terms of the geometry of Hγ

αβ. The

facets of Hγ
αβ are cut out by some number of hyperplanes in R

Nr corresponding to the
BZ inequalities. For fixed α and β, these hyperplanes undergo linear translations when
γ varies in the dominant chamber. As γ varies, an inequality may become redundant,
meaning that the corresponding hyperplane no longer intersects the polytope, so that the
polytope has one fewer facet; or alternatively, a previously redundant inequality may
become relevant, meaning that the corresponding hyperplane intersects the polytope,
forming a new facet. Non-analyticities of the volume J as a function of γ occur at such
points, where one of the hyperplanes defined by the BZ inequalities hits the polytope
Hγ

αβ , or conversely does not intersect it anymore.
Sincewe know thatJ is a piecewise polynomial function of γ , these non-analyticities

take the form of a change of polynomial determination (i.e., the local polynomial form of
J ). For a pointγ at a distance ε fromanon-analyticity hyperplane (see Proposition 1), the
change of determination is of the form�J = O(εm), which is the volume of the piece of
the polytope chopped off by the incident hyperplane. In the neighbourhood of that non-
analyticity hyperplane, the function is thus of differentiability class Cm−1. Obviously
the integer m is bounded from above by dr , but also from below due to known lower
bounds on the number of continuous derivatives ofJ (see the Remarks in Sect. 2.1). One
finds r − 1 � m � dr = 1

2r(r − 1) for the Ar cases, and 2(r − 1) � m � dr = r(r − 1)
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Fig. 2. Artist’s view of the intersection of a (d − 1)-hyperplane with the polytope Hγ
αβ , here in d = 3

dimensions, chopping off a volume of order O(ε3), O(ε2) or O(ε). We argue in the text that the right-most
case cannot occur

for Br . For example in the case of SU(4), an explicit (unpublished) calculation with
α = β = (3, 2, 1, 0) has revealed non-analyticities of class C1 and C2. See Fig. 2 for
illustration, where the right-most case is in fact prohibited by the above bound on m.
One may convince oneself that this bound on m guarantees that any non-analyticity of
the volume of the polytope must involve the appearance or disappearance of a facet, and
not merely a rearrangement of lower-dimensional faces.

5. The Case of B2

In this section, we illustrate the previous considerations in the case of B2 = so(5).

5.1. The function J for SO(5). Consider two skew–symmetric 5 × 5 real matrices, in

the block diagonal form A = diag

([
0 αi−αi 0

]

i=1,2
, 0

)

and likewise for B. For SO(5)

orbits of these matrices, the function J has been written in [39] in the form

J (α, β; γ ) = 1

64π2

∫
ds dt

st (t2−s2)
[sin s(α1+α2) sin t (α1−α2)−sin s(α1−α2) sin t (α1+α2)]

[same with β] [same with γ ] , (46)

which may then be written explicitly as a degree 2 piecewise polynomial. (Here the
PDF, normalized on the Horn polytope Hαβ , is given by 3

2
|�O (γ )|

|�O (α)| |�O (β)|J .) Recall
that the B2 Weyl group W = Dih(4) = S2 � (Z2 × Z2) acts on the 2-vector (α1, α2)

by a change of sign of either component, or by swapping them. Denote the action of
(w,w′, w′′) ∈ W 3 on the vector α + β − γ by σ := w(α) + w′(β) − w′′(γ ), and thus
σi = w(α)i + w′(β)i − w′′(γ )i , i = 1, 2. Let ε(w) denote the sign of a Weyl group
element. Then

J = 1

28
∑

w,w′,w′′∈W
ε(w)ε(w′)ε(w′′)

(
4σ1|σ1|−4σ2|σ2|−2(σ1−σ2)|σ1−σ2|

)
sign (σ1+σ2) .

(47)

(Note that one may get rid of one of the three summations over the Weyl group, fixing
one of the w’s to the identity and multiplying the result by a factor |W | = 8, which
simplifies greatly the actual computation.)
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It follows from this expression thatJ is of differentiability classC1.9 Recall that one
may always assume that α1 > α2 > 0, β1 > β2 > 0 and γ1 � γ2 � 0. The support of
J is determined by generalized Horn inequalities of B2 type. To write them down, we
note that if A is a skew–symmetric real matrix, then i A is a complex Hermitian matrix.
Thus the inequalities of B2 type follow from the classical Horn’s inequalities [14,17] of
A4 type (i.e., for 5 × 5 complex Hermitian matrices), applied to matrices of the form
diag(α1, α2, 0,−α2,−α1), and likewise for β and γ . One finds

max(|α1 − β1|, |α2 − β2|) � γ1 � α1 + β1 (48)

max(0, α2 − β1,−α1 + β2) � γ2 � min(α1 + β2, α2 + β1) (49)

|α1 − β1| + |α2 − β2| � γ1 + γ2 � α1 + α2 + β1 + β2 (50)

max(0, α1 − α2 − β1 − β2, β1 − β2 − α1 − α2) � γ1 − γ2 � α1 + β1 − |α2 − β2| .
(51)

These inequalities, supplemented by γ1 � γ2 � 0, define the boundaries of the (B2–
generalized) Horn polygon, see Fig. 3 for examples.

The singular lines of J may be determined by the same kind of argument as in Sect.
2.1, or, following the same reasoning as above, as a special case of the singular lines of
A4 type. Thus the possible lines of non-C2 differentiability are those among

γ1 = γ1s ∈ {α1 + β2 , α2 + β1 , α2 + β2 , |α1 − β2| , |α2 − β1|} ,

γ2 = γ2s ∈ {α2 + β2 , |α1 − β2| , |α2 − β1| , |α2 − β2| , |α1 − β1|}
γ1 + γ2 = γ1+2 s ∈ {α1 + α2 + β1 − β2 , |α1 + α2 − β1 + β2| , α1 − α2 + β1 + β2 ,

| − α1 + α2 + β1 + β2| , α1−α2 + β1−β2}
γ1 − γ2=γ1−2 s ∈ {|−α1 + α2 + β1 + β2| , |α1 + α2 − β1 + β2| , α1 − α2 + β1 − β2 ,

|α1 − α2 − β1 + β2| , |α1 + α2 − β1 − β2|} (52)

that intersect the Horn polygon.
Onemay find an explicit piecewise polynomial representation of the volume function

J . At the price of swapping α and β, one may always assume that

|β1 − α2| � |α1 − β2| .
The lines (52) have 4-fold intersections at four vertices, denoted I, J, K , L , with coor-
dinates

I = (α1 + β2, |α2 − β1|); J = (α2 + β1, |α1 − β2|);
K = (|β1 − α2|, |α1 − β2|); L = (α2 + β2, |α1 − β1|),

some of which may be outside the Horn polygon.
Then two cases arise, depending on whether α1 � β1 or β1 � α1. In the latter case,

and only then, I and L belong to the same diagonal γ1 −γ2 = constant. A fairly generic
example of each case is depicted in Fig. 3. (Some of the lines might merge or disappear
from the figure for other values of α or β.) The heavy solid lines shown in the figure are
the loci of singularities, where the polynomial determination changes. Note that these
lines join at “four-prong vertices", either inside the polygon (Fig. 4a), at some of the
points I, J, K or L , or at its boundary (Fig. 4b).

9 There is an unfortunate misprint in Sect. 5 of [39]: the function J of Br = so(2r + 1) is of class C2r−3,
again as a consequence of the Riemann–Lebesgue lemma.
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Fig. 3. Two examples of the Horn polytope and of the singular lines for α = (17, 4), β = (15, 9) and for
α = (15, 3), β = (17, 8). The function J has a quadratic change of determination across the solid lines, and
a linear change across the two dashed boundaries of the Horn polytope

Rather than giving a detailed polynomial expression in each sector arising from this
decomposition, it is simpler to give an empirically observed set of rules that determine
the change of polynomial determination. These rules are as follows.

Starting from the exterior of the polygon,whereJ vanishes, enter the polygon through
any of the solid red lines. Crossing any of the solid lines along the direction of the arrow
increases J by 1

2�
2, where � = (γi − γis) for a vertical or horizontal line of equation

γi = γis , and� = 1√
2
(γ1±γ2−γ1±2 s) for an oblique line of equation γ1±γ2 = γ1±2 s .

The arrows are shown in Fig. 4. When two lines merge, the differences 1
2�

2 add up.
Now the reader will verify that this prescription is consistent:

– Following a closed loop around a four-prong vertex, see Fig. 4, we return to our initial
expression for J (ensuring that the rules actually give a well-defined function), thanks
to the trivial identity

x2 + y2 =
( x + y√

2

)2
+

( x − y√
2

)2

where x = γ1 − γ1s and y = γ2 − γ2s .
– By considering a path that crosses the polygon, this implies in particular thatJ returns
to 0 outside the polygon.

Also note that along the boundaries γ1 − γ2 = 0 or γ2 = 0 of the polygon, which are
not boundaries dictated by Horn’s inequalities, but just consequences of our convention,
J may vanish only linearly. This is why those lines have been depicted by dashed lines
in Fig. 3, and is also why no prescription is given for the crossing of those dashed lines.

At this stage, this piecewise polynomial construction of J is just a conjecture that
has been checked on many examples. In principle, establishing it should follow from
a careful examination of Eq. (47) and of its possible changes of determination across
the singular lines given in (52). Obtaining this construction of J from the complicated
expression (47) has so far resisted our attempts.
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Fig. 4. Prescriptions of changes of J across the lines emanating from a four-prong vertex. This holds for any
rotated configuration of the two types of vertices depicted

Fig. 5. Roots and weights of B2: the positive roots in red, the two fundamental weights in blue, and the Weyl
vector in black. The shaded octant is the first (dominant) Weyl chamber

5.2. Geometry of the B2 root space. Possible vanishing of Cν
λμ and saturation property.

Recall that if ei , i = 1, 2, are two orthonormal vectors, the two simple roots may be
written as ααα1 = e1 − e2, ααα2 = e2, while the fundamental weights are ω1 = e1 =
ααα1 +ααα2, ω2 = 1

2 (e1 + e2). See Fig. 5. In what follows, weights will usually be specified
by their coordinates in the (ω1, ω2) basis (“Dynkin labels"). Occasionally we’ll have to
use the simple root basis (“Kac indices") or the ei basis.

In the case of B2, the compatibility condition σ := λ + μ − ν ∈ Q amounts to
σ2 = 0 mod 2. As an example, for λ = μ = ν = ω2 (the spinorial representation),
σ = ω2 = ααα1/2 + ααα2 /∈ Q, and Cν

λμ = 0 as this is a non-compatible triple. By way
of contrast, if λ = μ = ν = ω1 (the vectorial representation), the triple is compatible
since σ = ω1 = ααα1 + ααα2 ∈ Q, but nevertheless we still have Cν

λμ = 0. Thus in both

cases Cν
λμ = 0, while C2ν

2λ 2μ = 1 .

A semisimple algebra g is said to satisfy the saturation property if CNν
Nλ Nμ 	= 0

implies Cν
λμ 	= 0 whenever N ∈ N and (λ, μ, ν) is a compatible triple. The saturation

property is proved for An but fails for Bn , in particular for B2, as the example just given
shows.

5.3. Berenstein–Zelevinsky parameters. For the convenienceof the reader,we reproduce
here the result of Theorem 2.4 of [3], specialized to the case of B2. Introduce four real
parameters t (0)0 , t (1)−1 , t

(1)
0 , t (1)1 , that express σ = λ+μ− ν in terms of the positive roots,

σ = (t (1)−1 − t (1)0 + 2t (1)1 )ααα1 + t (0)0 ααα2 + (t (1)0 − 2t (1)1 )(ααα1 + ααα2) + t (1)1 (ααα1 + 2ααα2) .
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Note that these parameters are linear combinations of the ua associated to the (overcom-
plete) family of positive roots in (33). The t’s are subject to the conditions

2t (1)−1 � t (1)0 � 2t (1)1 � 0 and t (0)0 � 0

σ = λ + μ − ν = (t (1)1 + t (1)−1 )ααα1 + (t (0)0 + t (1)0 )ααα2

λ1 � max(t (1)1 , t (1)0 − t (1)−1 , t
(1)
−1 − t (0)0 ) and λ2 � t (0)0

μ1 � max(t (1)−1 + 2t (1)1 − t (1)0 , t (1)1 ) and μ2 � max(t (0)0 + 2(t (1)0 − t (1)−1 − t (1)1 ), t (1)0 − 2t (1)1 ). (53)

Then Cν
λμ is equal to the number of integral solutions of (53).

5.4. Stretching. Parameter polytope. Under stretching, Pν
λμ(s) :=Csν

sλ sμ is in general
not a polynomial of s but a quasi-polynomial.
For example for λ = (5, 6), μ = (3, 4), ν = (5, 6), we find

Pν
λμ(s) = 6s2 +

7

2
s +

1

4
(3 + (−1)s) . (54)

The 2-dimensional parameter polytope defined by the inequalities (53) is therefore in
general not an integral polytope.

In the previous example where λ = (5, 6), μ = (3, 4), ν = (5, 6), after eliminat-
ing10 the parameters t (1)−1 and t (1)0 through the 2 equalities λ + μ − ν = · · · , we find the

polytope (here a polygon) in the (t (0)0 , t (1)1 ) plane defined by the inequalities

{0≤ t (0)0 <6 and 0≤ t (1)1 ≤3 and t (0)0 +3≥2t (1)1 and 3≤ t (0)0 +2t (1)1 ≤7 and t (0)0 +t (1)1 ≤5}
depicted in Fig. 6a. It has Cν

λμ = 10 integral points but its corners are not integral, and
its Ehrhart quasi-polynomial is given in (54). Note that its (relative) “volume,” here an
area, is V = 6, in accordance with the computation of J .

In contrast, for λ = (5, 6), μ = (3, 4), ν = (6, 4), we find Cν
λμ = 10, V = 11/2,

Pν
λμ(s) = 11

2
s2 +

7

2
s + 1 , (55)

and the parameter polygon defined by

{2≤ t (0)0 ≤6 and 0≤ t (1)1 ≤3 and t (0)0 +2≥2t (1)1 and 4≤ t (0)0 +2t (1)1 ≤8 and t (0)0 +t (1)1 ≤6}
is shown in Fig. 6b. Note that the polygon is again not integral, although its Ehrhart
quasi-polynomial is the genuine polynomial (55).

There are also cases where the polygon is integral. For example, still with λ =
(5, 6), μ = (3, 4), and now ν = (2, 10), we get Cν

λμ = 8 and

Pν
λμ(s) = 7

2
s2 +

7

2
s + 1 , (56)

see Fig. 6c.

10 Note however that when counting integer solutions to the BZ inequalities, we must make sure that the
eliminated parameters are also integers.
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Fig. 6. The parameter polytope in the t(0)0 − t(1)1 plane for λ = (5, 6), μ = (3, 4) and (a) ν = (5, 6); (b)
ν = (6, 4); (c) ν = (2, 10)

Note that in the three previous cases, Pν
λμ(−1) gives the number of internal points,

as it should [35]: respectively, 3, 3 and 1.
In order to make a few simple comments of a geometrical nature, we assume in

the rest of this subsection that the sub-leading coefficient of P(s) is constant. We have
found no counter-example of this property for B2 BZ polygons, but we do not offer
a proof. In other words we assume that (non-degenerate) B2 stretching polynomials
read P(s) = V s2 + L/2s + (p + (−1)s(1 − p)) where V is the (relative) area of the
parameter polygon, L is the (relative) length of its boundary and p is some scalar. For a
genuine polynomial — i.e., not quasi — one has p = 1. The polytope being closed and
convex we know that P(0) = 1. Let C :=Cν

λμ = P(1) be the LR coefficient, i.e. the
total number of integer points of the polytope. Then i := P(−1) is the number of interior
points (byEhrhart–Macdonald reciprocity), and b :=C−i is the number of integer points
belonging to the boundary. Evaluation of P at +1 and −1 gives C + i = 2(V + (2p−1))
and C − i = L; together these two equations imply

2C − 2V − L = 2(2p − 1). (57)

Moreover the two relations C = b + i and C = L + i imply L = b. All these relations
can be checked in the three examples above (see Fig. 6).

Notice that the polytope is integral only if p = 1, i.e. if 2C − 2V − L = 2; this is
what happens in the third example above, where C = 8. In general, p may be read off
from (57). For instance in the first example where V = 6, L = 7 and C = 10, we find
2C − 2V − L = 1 and p = 3/4, in agreement with the expression of the stretching
polynomial. When the polytope is integral, Pick’s theorem, written V = i + b/2 − 1,
applies, and this is of course equivalent to (57) with p = 1.

Finally there are cases where the polygon degenerates, either to a point (whenever
Cν

λμ = 1), or to a segment. In the Ar case, Cν
λμ = 1 implies ∀s, Csν

sλ sμ = 1, as proved
in [23]. Whether this holds true for other cases like Br seems to be still an open question.
The polytope may also degenerate to a segment, as occurs for example when we keep
λ = (5, 6), μ = (3, 4), but take ν = (0, 10). Then we find Cν

λμ = 3; the segment has
length 2, and upon dilation Pν

λμ(s) = 2s + 1.
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5.5. Volumes and multiplicities in practice.

5.5.1. Determination of multiplicities in the B2 case In order to determine the general-
ized Littlewood–Richardson coefficients in the B2 case, one can use the Racah–Speiser
algorithm [33]whichworks for any semisimpleLie algebra (even for affineLie algebras),
or equivalently Klimyk’s formula [19], which is implemented in several computer alge-
bra packages such as LiE [25]. Another possibility, since the Kostant partition function
is known for B2 (see [37], [4]), is to use the Steinberg formula [36]. A third possibility
is to use Berenstein–Zelevinsky polytopes, as explained in Sect. 4.1 and 5.3. We imple-
mented these three methods11 inMathematica [28], which was also used for most formal
manipulations done in this paper (and also for graphics).

5.5.2. The many ways to compute the volume of a BZ polytope Let (λ, μ, ν) be a given
compatible triple of highest weights of g. We are interested in the (relative) volume V
of the associated BZ polytope.

There are — at least — four ways to compute this:

1) One can use the volume function Jr (λ, μ, ν) when it is explicitly known, as is the
case for Ar , with r = 1, 2, 3, 4 (see [39] and Sect. 4 of [6]), and for B2 via the
expression (47).

2) One can use (29) (also formula (36) of [6]) that expresses V in terms of a finite
number of multiplicities (LR coefficients) and of the constants r̂κ (defined in Sect.
3) associated to g.

3) One can determine the stretching quasi-polynomial defined by the triple, by calcu-
lating stretched multiplicities Csν

sλ sμ up to some s of the order of � × dr where �

is the quasi-period (not more than 2 for classical Lie algebras), and dr is the degree
(see Table 1 in Sect. 4). Then V is the coefficient of the leading-order term.

4) When the BZ-polytope is explicitly defined in terms of appropriate parameters (for
instance the BZ-parameters described previously for B2), one can compute its vol-
ume by integrating the constant function 1 on the polytope, possibly after eliminating
redundant parameters. When using the ua parameters of (33), this method will com-
pute the Euclidean volume, so to obtain the relative volume one must divide by the
covolume cg = δ

1/2
r , see Table 1.

For illustration, let us consider the following triple for B2: λ = (4, 7), μ =
(5, 3), ν = (2, 4) in the basis of fundamental weights. Equivalently in the ei basis,
λ = (15/2, 7/2), μ = (13/2, 3/2), ν = (4, 2). This triple has multiplicity 5.

1) Direct evaluation of (47) with the above arguments gives V = 7/4.
2) The set K̂ contains only one element, κ = (0, 1), with rκ = 1/4. The non-zero

contribution to (29) comes from the following weights (with multiplicities) that enter
the decomposition of the tensor product of (3, 6) = (4, 7)−(1, 1) and (4, 2) = (5, 3)−(1, 1):
{(0, 4), 1}, {(1, 2), 1}, {(1, 4), 3}, {(2, 2), 2}, so that one obtains V = (1+1+3+2)/4 = 7/4.
More generally, for ν deep enough (see (32)), one finds

J (λ, μ; ν) = 1

4

∑

k

Cν−k
(λ−ρ)(μ−ρ) with k ∈ {(2, 0), (1, 2), (1, 0), (0, 2)} .

11 In the Ar cases we prefer to use our own version of an algorithm using Ocneanu-blades (or O-blades, see
[8]), because it has an easy interpretation and because it is fast.
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Fig. 7. The BZ polytope in the (t(0)0 , t(1)1 ) plane for λ = (4, 7), μ = (5, 3), ν = (2, 4)

3) For scaling factors s = 0, 2, 4 themultiplicities are respectively 1, 13, 39. For scaling
factors s = 1, 3, 5 the multiplicities are respectively 5, 24, 57. The quasi-polynomial
reads 7s2

4 + 5s
2 +1 when s = 0mod 2 and 7s2

4 + 5s
2 + 3

4 when s = 1mod 2. As expected,
the leading coefficient of both polynomials is V = 7/4.

4) In the t (0)0 , t (1)1 plane, this BZ polytope is defined by the inequalities:
(t(1)1 = 2 and t(0)0 = 6) or (2 < t(1)1 ≤ 7/2 and 10−2t(1)1 ≤ t(0)0 ≤ 8−t(1)1 ) or (7/2 < t(1)1 ≤ 4 and 3 ≤
t(0)0 ≤ 8 − t(1)1 ).
It is displayed above (Fig. 7); note that it is not an integral polygon. Its area (V = 7/4)
can be readily calculated.

5.5.3. Determination of the coefficients rκ and r̂κ As explained in Sect. 3, the formula
(30) can be used to determine the constants rκ and r̂κ . Take for example κ = (0, 0)
in B2; the triple (ρ, ρ, ρ + κ) used in the first equation (30) is never compatible. One
computes the multiplicity of the scaled triples (s(1, 1), s(1, 1), s(1, 1)), which is 0 when
s is odd (in particular for s = 1), and equal to (1, 4, 10, . . .) when s = 0, 2, 4, . . .; the
quasi-polynomial is 0 when s is odd, and 3s2

8 + 3s
4 + 1 when s is even. The leading

coefficient obtained for s even gives r(0,0) = 3/8, as desired.
Likewise for B3, the coefficient rκ associated with κ = (0, 0, 0) can be determined

from the scaled triples (s(1, 1, 1), s(1, 1, 1), s(1, 1, 1)). Here the quasi-period is 4 (a
result which is not in contradiction with known theorems, since the triple is not com-
patible). The LR quasi-polynomial vanishes for odd s, whereas when s = 0mod 4 or

s = 2mod 4, one gets respectively 241s6
3072 + 241s5

512 + 4165s4
3072 + 19s3

8 + 523s2
192 + 2s + 1 or

241s6
3072 + 241s5

512 + 4165s4
3072 + 281s3

128 + 839s2
384 + 19s

16 + 35
64 . Therefore r(0,0,0) = 241/3072 =

7230/92160 as given in Sect. (3). Notice that here one has to use scaling factors up to
s = 6 × 4 = 24 and s = 6 × 4 + 2 = 26, to obtain the two non-trivial polynomial
determinations of this quasi-polynomial.
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Appendix: Covolumes

Let us sketch how the covolume cg may be determined for the lattice� of integer points
of aff(H ν

λμ), in the case that dim H ν
λμ = dr so that aff(H ν

λμ) = aff(Partg(σ )), see (33).

This affine span has codimension r in the Euclidean space R
Nr generated as the formal

span of the positive roots, which are taken to form a canonical basis, i.e. 〈αααa,αααb〉 = δab,
a, b = 1, · · · , Nr . Since the covolume of � is independent of the value of σ , we may
take σ = 0. Thus we consider the lattice of integer combinations of the positive roots
αααa subject to the condition

Nr∑

a=1

uaαααa = 0 ∈ t∗. (58)

Suppose that the first r of the ααα’s are the simple roots, and denote by A the (Nr − r)× r
matrix that expresses the non-simple roots in terms of the simple ones:

αααa =
r∑

i=1

Aaiαααi , a = r + 1, . . . , Nr .

Then eliminate the parameters ui for i = 1, . . . , r in the condition (58), using the
relation ui = −∑Nr

a=r+1 ua Aai . The lattice is thus generated by the linear combinations
∑Nr

a=r+1 ua(−
∑

Aaiαααi + αααa). Under the assumption that its fundamental domain is
generated by the Nr − r vectors wa = (−∑

Aaiαααi + αααa), we can compute the volume
of this fundamental domain, i.e. the covolume, as follows. The Gram matrix of the
vectors wa in the Euclidean space R

Nr reads

Gab = 〈wa, wb〉 = δab +
r∑

i=1

Aai Abi .

The covolume is then the square root of the determinant δr of G, cg = δ
1
2
r . We have

computed these determinants for the classical algebras Ar , Br , Cr and Dr up to r = 8
and the values of δr listed in Table 1 are extrapolations of these numbers. The values for
the exceptional algebras are also included in Table 1. A last observation is that for all
the simple algebras, a single formula encompasses the expressions found in the table:

δr = (h∨)r

detC

r∏

i=1

〈θθθ,θθθ〉
〈αααi ,αααi 〉 , (59)

where C is the Cartan matrix, h∨ is the dual Coxeter number and the product runs over
the simple roots.
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