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We generalize the Feigin-Fuchs construction to the torus, and propose an ansatz for certain correlation functions of the minimal
conformal models. Our ansatz is periodic, modular-covariant and has the correct short-distance behavior. As an example, we
compute the one-point function of the Ising-model energy operator on the torus.

The computation of correlation functions on arbi-
trary-genus Riemann surfaces is an important prob-
lem in conformal field theory. On the sphere, the
minimal model correlation functions can be calcu-
lated using the Feigin—Fuchs construction [1]. For
higher-genus surfaces, there is no known method for
systematically computing the correlation functions.
In this letter we generalize the Feigin-Fuchs con-
struction and propose an expression for certain min-
imal model two-point functions on the torus.

In the Feigin-Fuchs construction, the minimal
models with central charge [2]

1y2
_p e 1)
pr
are represented in terms of a free scalar field ¢(z, 2)
interacting with a background charge —2a,=
—2(p—p')/p’ atinfinity. The scalar field is normal-
ized so that its planar two-point function is given by
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Bz f)¢(w,vv)>=—”;log|z—w1. (2)

The spin-zero primary fields in these models have
conformal dimensions

—pn'e)2__ _n’ )2
hrszh—r,\'z (pr psipp,(p p) . (3)

They are represented in terms of vertex operators
Ay (z, Z)=explia,¢(z, 2) ], (4)

where @, =$(1-r)a,+}(1-s)e, a, =2p/p’ and
a_=-2.

The planar four-point functions of the spin-zero
fields can be represented in terms of the vertex oper-
ators A4,,(z, Z) [1]. In particular, we have
(B|4,,(1)4,,(z, 2)|B>

=<{(B(o0)A,(1)A4,,(z,2)B(0))

=4 {exp[ —ifg(co) ] explic,$(1)]

Xexp[io.¢(z, 2)] exp[ifp(0) Q'O 'y,

(5)
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where .4; is a normalization constant. The
Q.=[d*wexp[ia.¢(w, w)] are screening opera-
tors. They have conformal dimension zero and are
introduced to balance the charge in the correlation
function (5). The conformal blocks can be exhibited
by converting the two-dimensional integrals into
contour integrals on the plane [3].

The explicit formulas of ref. [1] show that .4; does
not depend on the state |B). Thus we can use (5) to
write the two-point functions in terms of screening
charges

(A (1)A,5(2,2) >
=1’l <eXp[iart\‘¢( 1 ) ] exp [iar'.r¢(za 2) ]
XQT Q. (6)

Power-counting arguments show that (6) scales as
1/|1=z{*". In the two-point functions, .¥; is chosen
so that the singularity has residue one.

In what follows we generalize these two-point func-
tions to the torus. Before we do this, however, let us
first recall the possible forms for the zero-point func-
tions on the torus. These are just the possible parti-
tion functions, which can be naturally expressed in
terms of the Virasoro characters y,(g).

The possible modular-invariant partition func-
tions are classified by pairs of simply-laced Lie alge-
bras (4, ,, G, _,) with Coxeter numbers p and p’
[4,5]. The allowed partition functions then take the
form [6]

Z( Ap—1.Gp —1)

) 2nn , ,
=§Z Z COST <77’1, m >Zm.m'(p/p )s (7)

nomnt ez

where Z,, ., (g) is the partition function for a free
scalar field, compactified on a circle, with action (g/
n) fd*z 3.69.¢. The different sectors of the partition
function are labeled by integers m and m’, corre-
sponding to the boundary conditions @(z+1,
Z+1)=¢(z, 2)+2am and ¢(z+1, Z+7)=
¢(z, Z) +2nm’, where 7 is the modular parameter on
the torus. The sum over » runs over the exponents of
the G, _, algebra, and {(m, m’> denotes the greatest
common divisor of nz and m’'.

On the torus, the generalization of the background
charge at infinity is given by the finite set of values
n/p’. For unitary theories, |p—p’ | =1 and the back-
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ground charge can be identified with 1/p’. The cou-
pling of the charges to the winding numbers m and
m’ through cos 2zn{m, m'> /p' arises naturally in
the discussion of the corresponding lattice models [ 6—
9]. This coupling is also consistent with modular
invariance.

To obtain our ansatz for the two-point functions of
the spin-zero fields on the torus, we combine (6) and
(7). We restrict ourselves to primary fields with #!
r=1. (The case r# [ and s=1 can be obtained by in-
terchanging p and p’ in the formulas below.) Our
expression for the two-point functions on the torus is

Z<Arl (Za E)Al'l (O) >lorus

i 2nn .
= %Lt, z Z Ccos 7 <m; m’ >Zm.n1’ (p/p )

n omm'eZ

X <exp[ial¥¢(29 Z_)] exp[lalx¢(0)] QS—Al >m.m’-
(8)

The screening charges are integrated over the funda-
mental region of the torus T. Similar expressions can
be written for other n-point functions.

Ineq. (8) the expectation value is computed in the
winding number sector labeled by m and »i’. There
are two contributions to the expectation value; one
classical and one quantum mechanical. The classical
contribution is found using the solution

Oa(z, 2)=2nIm[(m —mT)z]/Im 1. (9)

The quantum contribution is obtained using Wick’s
theorem and the doubly-periodic propagator

<¢qu(z’ f)¢qu(0) >1orus

Y, (z]71) p (Imz)®
Bloo)io) T p Ime

p'

- = (10)
4

In what follows we shall only consider the diagonal
(A4, A) minimal theories, where all fields have spin
zero. (The other cases can be treated in a similar
fashion.) For (A4, 4) theories, the sum over 7 in (8)
runs from 1 to p’~', and we have

*! When we study the periodicity properties of the correlation
functions, we shall see why we restrict ourselves to these values.
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ST eosSEmm > Zw /1)

n=1mmeZ

X <exp[ials¢(z’ 2)] eXp[la”Q)(O)] st—l >m,m’

= z 'Zp’Zm‘m'(p/p')

X Cexplics(z, 2) ] exp[iay9(0) ] Q7'
- Z 5 Zan' (p/p' )

X <€Xp[i0(15¢(2, Z_)] eXp[ials¢(O)] Q'T—_l >m‘m'~

(11)

After a Poisson transformation on the summation in-
dex m’, the integrand factorizes into holomorphic and
antiholomorphic contributions

Z<AI,\‘(Za Z)Als(o) >torus

( ) q/mn q—h—pm
=14 - —— |E(z)|%¢
. mez/‘i'z m;ez ’7((1) ’7(61)

eeZ/p’

s—1
X | TT1d%u, TT |EQu;—u;) |5

i=1 i<j

X TTIE(z—u)E(u)|**-"*

i
X exp 772 [A(,,,, (a_ > u +ozz>

i, <a_ y Lt,+af)], (12)

where a« =a,and g=exp(2nit). In (12), n(g) is the
Dedekind #-function, E(z) =3,(z|7) /¥, (0]| 1) is the
prime form and

[[ e - I{ e
A(’lnz E (:/; +m\/§> ’ Awnz E <_\/_§ —n’l\/§> .
(13)

The exponents k., =42, and A,,, =42, are the con-
formal weights of the gaussian field.

The conformal weights 4., and A4, can be ex-
pressed in terms of p, p’, integers #, 7 and a residue A
[4]. When eeZ/p’ and mep'Z, we have

4 _2pp'nti - 2pp'A+i (14)
em 2\/"? bl em 2\/1; )

while for eeZ and meZ, we find
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2pp'n+A i =2pp’ﬁ—woi (15)
2 /pp, s em 2\/1? -

Here wo=ap+bp', where the integers a and b satisfy
ap—bp' =1. Following ref. [4], we can trade the sums
over ¢ and m in (12) for sums over », 7 and A. This
gives the final formula for the spin-zero two-point
functions on the torus,

Z<Al.\(z> Z_)AI\(O) >1orus

A(’nl =

s—1
=34, |E(z) |a2/gj lj[l d*u, H |E(u; —u,) | %%

i<j

X TTIEG=u)E@) % 3 (g, W)

4 mod 2pp’
(16)
where

1 ® . L
(g w)y= —— q(~np n+2)2/4pp
n(q) ,,:‘\;oo

Xexp[2mi(2pp' n+i)w]
1

20
Z q(pr’rx—rmA)3/4[71;’

T n(g) e
Xexp[2ai(2pp n—wyd)w] (17)
and

1 s—1
W= — — 2u;, —2z). 18
2[) IZ:I ( ) ( )
The function y,(q, w) is a generalization of the
Virasoro character, which is obtained by setting w=
0. It immediately follows from the definition (17)
that the generalized Virasoro character satisfies

wla, wy=x_;(q. —w). (19)

It is also easy to verify that y; obeys the following
property:

Xl(q’ W) =X2.+21)11'(qa W) = _X—wul(qa W) (20)

Because wop = —p' (mod 2pp’), the generalized
character y; vanishes when A is a multiple of p’. Un-
like the Virasoro character, y; does not vanish when
A is a multiple of p. Therefore the expressions for the
correlation functions contain more terms than the
corresponding formulas for the partition functions.
Let us now return to the two-point functions and
study their properties. It is not hard to check that the
integrand in (16) is doubly-periodic in each of the
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variables u,, with periods 1 and 7. This property is
what allowed us to restrict our u-integrals to funda-
mental domain of the torus T. Note, however, that
the integrand is not manifestly periodic if we relax
the condition r=1. This is the reason why we re-
stricted the parameters s and r in the above discus-
sion. It is also easy to check that the two-point func-
tions (16) are doubly-periodic in the variable z.
Furthermore, they are even functions of z, as follows
from (19).

The modular properties of the correlation func-
tions are obtained from the corresponding properties
of the generalized Virasoro character. For example,
one can show that the two-point functions transform
covariantly

CA(2/7, 2/ TYA0) ) _y o= 1T <A(2, 2)A(0) )
(21)

under the modular transformation 7——1/7 and
z—»z/T by using the following property of the gener-
alized character x; (g, w):

w(exp(=27i/1), w/t) =exp(2nmipp' w?/ 1/ 2pp’)
X Y exp(—imAd'/2pp’) xa (g, w).  (22)

+° mod 2pp’

Note that the above correlation functions alse have
the correct behavior at short distances. This can be
seen by taking z—0, where we recover the universal
behavior <A(z, 2)A4(0) > —1/|z|*. This follows from
the fact that the u-integrals are dominated by the re-
gion |u| ~ |z}. The generalized characters decouple
in the integral and reproduce the partition functions.
In this limit we recover the result (6) on the plane.
The normalization constant .4, is determined by de-
manding that the residue be equal to one. The nor-
malization .4} is independent of ¢ and coincides with
its value on the plane.

A second interesting limit is Im t— oo, where the
torus degenerates to a long cylinder. Expanding the
correlation function in a small g-expansion, one can
read off the two- and four-point functions {44 ) and
(BAAB> on the plane. For example, in the Ising
model we have checked that the two-point function
of the energy operator €(z, Z) has the following small
g-expansion:
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Z{€(2,2)€(0) > torus
= (2n)’explin(z—2)](qq) ~""**
X [Ce(w, w)e(1) ) piane
+(gq)"""*Cale(w, w)e(1) [0 piane
+(qq)" > Cele(w, w)e(1) € prane +---1, (23)

where o is the spin operator, w=exp(2riz), and the
normalization .¥; is chosen as in (6). The correlation
functions on the right-hand side of (23) are all eval-
uated on the plane.

The two-dimensional integrals over « can be trans-
formed into contour integrals. As mentioned earlier
this form is useful for displaying the holomorphic and
antiholomorphic conformal blocks. To show how this
works, we shall consider the one-point function of the
Ising-model energy operator. (The two-point func-
tions can be treated using similar techniques.) The
energy operator can be represented by the vertex op-
erator Ay, and its one-point function follows trivially
from (8), after exchanging p with p’. On the torus,
this operator has a nonvanishing expectation value.

To compute the expectation value of the energy op-
erator, we must insert one screening charge into the
correlation function. We then have

Ze>
« [ ¢ Cexplioe, o(u, 1) ] expl —ict, 6(0) 1>

[ @ulE@IS S w28

To transform the integral over u to a contour integral,
we use Stokes theorem. A simple calculation gives

1
ZOEE § du Eu) =5 (q u/4) £ (),
Car

(25)
where

= [ a7 0. (26)
\)

The integral in (25) is over the boundary of the fun-
damental region of the torus, defined by the parallel-
ogram (0, 1, 1 +1, 7). Neither E %%y, nor f; is dou-
bly-periodic, but we have

E=328 wer =exp[in(A+3)/21E=3 21, (27)

323



Volume 216, number 3,4
and
E73/2X1|“+T=CXD(—37[i/2)E*3/2X,1_(,|u. (28)

Using (25), (27) and (28), we can express Z{ ¢} as
a sum of contour integrals of £ ~3/?y, around the 1-
and 7-cycles. We can eliminate the integral over the
1-cycle using Cauchy’s theorem,

§ du E=" ()20, u/4) =0. (29)

ot
After some algebra we find that only A= £ 2 contrib-
utes to the one-point function

2

[ quE@) = 2paa 04| (30)

0

Z{ey

This integral is defined by an analytic continuation
of the exponent — % /2gto —3/2. As expected, only
one conformal block contributes to {€>. This block
corresponds to the propagation of the spin field and
its descendants around the torus.

Our results for the two-point functions give rise to
a host of interesting identities for integrals over theta
functions. These are obtained by comparing the in-
tegral representations presented here to known
expressions [10].

In this letter we have proposed an expression for
certain minimal model two-point functions on the
torus. Our ansatz has the correct periodicity, modu-
lar properties and singularity structure. However, we
have not proven that our expression is indeed cor-
rect. In particular, it would be desirable to prove that
(8) or (12) satisfy the partial differential equations
ofref. [11].

After this work was completed we received a paper
by Felder [12] which uses an algebraic approach to
the Feigin~Fuchs construction to derive an integral
representation for the conformal blocks on the torus.
Felder uses the fact that no null states propagate along
the torus, so his integrals automatically satisfy the
differential equations of ref. [11]. We have checked
that our integrand coincides with that of Felder. It
must therefore be possible to reduce our two-dimen-
sional integrals to those of ref. [12].

Our expressions can be readily generalized to more
complicated situations. For example, they can be
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applied to non-diagonal minimal models with oper-
ators of nonzero spin [13], to Feigin-Fuchs rep-
resentations of coset theories [14-18], as well as to
models for which representations similar to (7) are
known [8,19]. One would also like to extend our re-
sults to higher-point functions and to the case of op-
erators with r and s> 1. (This restriction does not
appear in ref. [12].) It would also be interesting to
find a derivation of (8) starting from the corre-
sponding lattice model, thus extending the Coulomb
gas techniques of ref. [20] and the arguments of ref.

[6].
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