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The order of growth of the fermion determinant in quantum electrodynamics, det(p' — eA), as an entire
function of e is reconsidered. This order is of utmost importance in the high-order estimates of the
perturbative expansion in QED. Explicit examples and some general arguments lead us to the conclusion
that this determinant is generally of order 4 in four dimensions. The behavior a"(n/2)i(— a)" of the nth
order of perturbation theory follows, disregarding ultraviolet problems.

I. INTRODUCTION

In a previous paper by three of us, under the
same title,! we presented a general investigation
of the large orders of the perturbative expansion
in quantum electrodynamics.

Two points were found crucial, namely, the role
of gauge invariance on the one hand and of Fermi
statistics of the charge-carrying field on the other.
It must be stressed that we are interested in the
behavior of Green’s functions at fixed, Euclidean
momenta and we study implicitly a regularized
theory. This was not stated perhaps with sufficient
clarity in previous papers dealing with this sub-
ject, as the main estimate was found independent
of ultraviolet divergences. The latter only oc-
curred in the subsequent terms of order k°,
k=1 ..., where k (> 1) denotes the order of per-
turbation and could be accounted for by introduc-
ing counterterms in a standard fashion. In other
words, the method implies an interchange of the
large-cutoff (A — =) and large-order (k- «) limits.
Within these limitations it was shown in I that if a
gauge-invariant amplitude, such as the vacuum
polarization for instance, is expanded in powers
of €2, where e is the elementary charge, its kth
order behaves as I'(k(1 = 2/p)). The real number
p is the order of the entire function (in e)

Ale) =det($ - eA +m)=exp[L(e)], (1.1)

describing the (Euclidean) vacuum-persistence
amplitude in the presence of the external c-number
potential A.

An attempt was made in I to evaluate p by analogy
with the simpler case of a Yukawa interaction.
Under such circumstances the order of the corre-
sponding determinant could be found by using a
quasiconstant (or locally constant) approximation
which was shown to be a relativistic generalization
of the Thomas-Fermi method of atomic physics.
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Its natural interpretation is an expansion of A(e)
with respect to Planck’s constant 7z; the leading
term is a classical contribution in7Z° The ex-
tension of these ideas to QED, however, was not
straightforward since a locally constant potential
may simply be eliminated by a gauge transforma-
tion. This is analogous to the absence of classi-
cal diamagnetism (the Bohr-Van Leeuven theorem)
in statistical mechanics.? Therefore, the next
possibility was to assume a quasiconstant field
F,,=8,A, -3,A,, leading to a function L(e) be-
having as e?”? in space-time dimension D, or
p=D/2.

However, this result was at variance with an
explicit computation of Adler,® who found in his
case an order p=4 for D=4. It is very likely that
this is the correct result even though we have not
succeeded in finding a mathematically clean proof
of this property. Nevertheless, we shall present
a number of arguments and explicit examples
which all support this view, namely, that in di-
mension D the determinant is of order p=D as in
the Yukawa case. What seems to happen is that
for real e (and A) A(e) does not assume its maxi-
mal growth but behaves as exp (const xe?’?) in
agreement with classical expectations. This cir-
cumstance would reconcile our previous analysis
with the general behavior for arbitrary complex
coupling.

The organization of the paper suffers unfortun-
ately from our lack of a rigorous proof. It is
roughly divided in two parts. Sections II and III
use extremely simplified examples as a basis for
a general conjecture. The latter is then tested in
two specific instances where calculations can be
performed in detail (Secs. IV and V). In Sec. VI
we summarize our conclusions. The role of spin
in this context is not altogether clear. Indeed some
of the intuitive arguments developed in I with some
precaution have to be revised in the light of the

1041



1042 R. BALIAN, C. ITZYKSON, G.

present work.

Beyond their relevance to perturbation theory we
beligve that the questions raised here may have
some bearing on various physical problems con-
nected with strong fields.

II. ELEMENTARY EXAMPLES

We are interested in the study of the analytic pro-
perties of the functions

Ae) =det[f- ed +m)
or
A(e) =det[ (p— eA VP +m?],

i.e., the functional determinants of the Dirac or
Klein-Gordon equations in the presence of a smooth
external electromagnetic potential A of fast de-
crease. We consider the Euclidean situation and
use the same notations as in I. When expanded in
powers of ¢® the logarithm

(2.1)

L(e) =1nA(e) (2.2)

is given by the set of Feynman diagrams with one
charged-particle loop and an arbitrary (even) num-
ber of external photon lines. By definition we set
L(0)=0 so that A(0) =1, If the Euclidean space
dimension D is greater than or equal to two, some
of these diagrams are divergent and the determi-
nant stands for a renormalized one. However,
when D < 4, insisting on gauge invariance elimi-
nates the divergent part without any recourse to a
normalization convention. If D =4, gauge invari-
ance alone is not sufficient to remove the genuine
logarithmic divergence in the ¢ term and some
conventional subtraction has to be performed,
which amounts to a charge renormalization.

As explained in I, A(e) is an entire function in e.
We observe for instance that the above arbitrari-
ness in the subtraction procedure only alters A (e)
by a factor exp(constx €? [ d* xF®). We want to
compute its order, i.e., its behavior for large e,
its distribution of zeros, and finally the asymptot-
ic behavior of its derivatives at the origin. Of
course these properties are not independent, and
the theory of entire functions may be used to in-
vestigate their mutual relations.

To get some feeling on the problem, it is in-
structive to consider some elementary cases. For
the moment, let us restrict our attention to the
Klein-Gordon case. Consider the trivial situation
of a circular ring of length L where |4,| is con-
stant and A, is tangent to the ring. The problem
is effectively one dimensional if we ignore the
transverse direction, with
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ae)=det[ (P, —e A +m?]/det[ P2 +m?]. (2.3)

The differential operator P =-i8, is defined on
periodic functions of period L and as a result A(e)
is a periodic function in e with period 27/A L. In-
deed the equation

[(8, +ie A —m?]p(x)=0 (2.4)

admits periodic solutions only for eA =2nl/L + im,
where ! is an integer. The entire function can now
be reconstructed from the knowledge of its zeros
and from the requirement of being even in e as
follows:

e e2A? . sir?(eAL/2)
A(e)—l::[_I” [1_(2_111—/L+im)2]-1+

sinh?(mL/2) "

(2.5)

We find that A(e) in an entire function of order one
(D =1), and moreover, for e real, we observe that
A(e) remains bounded (indeed it is periodic) while
for complex e, L(e)=1nA(e) behaves as

L(e)~LA|Ime| (2.6)

for large ¢ in agreement with the statements made
in the Introduction.

In passing we note that the two infrared zeros
eA =+ im together with the normalization condition
A(0)=1 prevent A from having a finite limit as
m-0. However, the mass does not affect the lead-
ing asymptotic behavior in e. This one-dimension-
al problem can readily be generalized to a non-
constant but periodic potential. If A(x +L)=A(x)
and ¢ stands for the corresponding “flux”

o= [ axae), 2.7)

then A(x) - (1/L)¢ can be written as (d/dx)A (x)
with A periodic. A gauge transformation implying
A(x) will effectively replace A (x) with the constant
¢/L. Therefore, the general result, valid for any
field is

L(e) =~

lel >

$|Ime|. (2.8)

We notice an interesting phenomenon which will
also be met in the sequel. Quantum effects pro-
duce oscillations along the real line which can be
neglected in a first approximation. They are,
however, the signal for the existence of zeros
near the real axis. For imaginary values of e
these oscillatory terms are transformed into ex-
ponentially increasing ones which dominate the
behavior of A(e).

Let us try now to generalize this to a two-dimen-
sional example with a constant potential along the
x direction. The corresponding operator
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H=(P,-eAP+P}r+m? (2.9)

is defined in a rectangular box of size L in the x
direction and T in the y direction. The physically
interesting case occurs when we impose periodic
boundary conditions in the x direction. In the y
direction we can impose any type of boundary con-
ditions. To avoid infrared problems in the zero-
mass limit, we require the wave function to vanish
for y =0, T, and for simplicity set m=0. The
“eigencouplings” e, corresponding to the vanishing
of H, are classified by two quantum numbers !
=p,L/2m and n=p,T /7 (n+0) corresponding to wave
functions

, e (11 2% i [TV
JJ,,"(n,y)-exp(zl I )sm(nT >,

nz1, 1=0,+1,..., . (2.10)
The zeros of A(e) are then given by
2nl  imn
el'"_AL +~A-i, n+0 . (2.11)

The smoothed density of zeros in the complex e
plane is therefore given by

dxdyA?
21’-2 ’

(2.12)

where we have set e =e, +ie,. The order p of the
entire function A(e) is, of course, 2 (D=2). It
may be computed from the distribution of zeros.
The zeros occur in pairs with opposite values;
therefore we can reconstruct the function from a
once-subtracted Hadamard representation as fol-

2
dv(e, e,)= -I;;—e de de,=dee, f

L(e)=—_[.° i—t i 2 {exp(—t[(z—Z—l—+eA>2+(

j==-w n=y

It is trivial to see that when eA L/27 is an integer
L(e) vanishes, and that for real e it admits the
period 27/AL. We can also verify in the repre-
sentation (2.15) that A(e) indeed satisfies the con-
dition of minimal growth along the real axis:

R sin®(eAL/2)
ale) _,,U, [1 * Sink?(en L/2T) ]

_6,(eAL/2m;e”"H/2T)
2 sin(eAL/2) q,°

exp(rL/8T), (2.16)

where 6,(v; 9) is the Jacobi function of modulus
q (Ref. 4):

lows:

Ale)= Hl l: <1— ::) exp(eez2 >] exp(Ce?) .

n>1, I,n I,n

(2.13)

Note that E,' . 1/e; .2 is not absolutely convergent
and that

Z Z ex,1n2¢zzl:g,,17 .

H n=1 n=

The use of a subtracted Hadamard representation
is therefore compulsory. The constant C should
in principle be fixed by requiring that the second
derivative of L(e) at e =0 coincides with the result
of a Feynman-diagram gauge-invariant computa-
tion. We may also expect A(e) to be a periodic
function of e with period 27/AL, a condition which
fixes C unambiguously. To clarify the situation we
note that L(e) can be written as

L(e)=—tr f (ztt— (exp{-t[(P, —eA) +P,2]}

(4]

—exp[-t (P,2+P,?)]).(2.14)

Expanding L(e) as a power series in e we repro-
duce the contribution of perturbation theory. The
ambiguity in the definition of the second-order
term is solved in a gauge-invariant way by inter-
changing the integration over ¢ with the trace. In
the language of Feynman diagrams this amounts to
using the representation (p2 +m?)™! =f:dt
x exp[-t (p? + m?)] and then exchanging the orders of
integrations over p and ¢.

We therefore find that

6,(v;9)=2, (=1)"1q4=12%gin[(2j - 1)m0]
i=1

=2q,q/4sinmy H (1-2g2%" cos2mw +q*")
1

and

‘IoEI;I(1-qz")=H[1-eXp(—n1rL/T)]. (2.17)

One can then verify the following properties of
Ale):

sup In|A(e)]|= 2% (Ime)PA2LT,

fel>w

(2.18)
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and

it [
e

Ale)=2 Ay W
5 ]

A r<k+1>cos1rk <2AZLT>”/2
~ -~ (— .
ko 2 2 T

This analysis can readily be extended to a D-
dimensional tube with longitudinal variable x and
d=D -1 transverse dimensions. A constant poten-
tial points along the x direction with magnitude A
and periodic conditions are imposed at the two
ends of the tube. We now study the function

Ale)=det[(P, —eA)? +P 2 +m?]

x det™![ P2+ P2 +m?]. (2.19)
On the surface of the tube we may impose any type
of conditions provided they are invariant under
translation along the x direction. Let y stand for
the transverse variables. We look for solutions of
the differential equation

[~(8, —ie A2 =, +m?]y(x, y)=0, (2.20)
having the form
Y(x, y) = exp (i g}j—l x) ) . (2.21)

If A\, are the positive eigenvalues of the operator
~A , +m? corresponding to the required boundary
conditions, we find the eigencoupling condition

1 /27l .
e,',,-A <—L~‘;tz)\,,>

Let S be the area of the transverse section of the
tube. The asymptotic density of eigenvalues is,
according to a famous theorem of Weyl,® inde-
pendent of the boundary conditions and given by

d A S
£= BT (2.22)

with o, the area of the unit sphere in d-dimension-
al space: 0,=21"2/T(d/2). As a consequence, the
density of zeros of A(e) is given asymptotically by
the expression

LSA? -
dv(e,, e2)=(2—ﬂ-)7, op_,(e,)P %dede, . (2.23)
For D =2 this agrees of course with (2.12). The
function A(e) is then of order p=D and if we again
impose periodicity, it can be written

ae)=]1 [1 ,SirleLA/2) ] . (2.24)

sinh®(A, L/2)

With some work one can show that
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sup In|a(e)|= (Ime)’AP LS

lel—
1
X @ @-=pT((D+1)/2)

(2.25)

and
had 3
e
A(e)=z Ak k! ’

Aﬁcos<%@> [T((Al—DfDS’)‘/?)]UD

1/2 - (1/D=1)&

(2.26)

up to a factor behaving at most like a power of %.
We note that in all the previous estimates, the
quantity of interest appears to be [d’xA”.

III. GENERAL CASE

We would like to extend the results of the pre-
vious section to the general case where A is not
constant. Rigorous results have been recently
summarized by Martin® for the similar problem
of the asymptotic distribution of eigenvalues in
the case of a scalar external potential. We will
try to use the same technique as far as possible.
At a crucial point, strong modifications are needed
and our results will only apply to a limited class
of potentials. Our arguments are far from rigor-
ous, however, we will be able to test the correct-
ness of the results in some particular cases in the
next two sections.

Let us first present a simple form of Martin’s
arguments neglecting any point of rigor. Consider
the functional determinant

A(g)=detH , 3.1)
==A +m? =gV, V(x)=0.

One wants to find an estimate of N(R) the number
of zeros of A(g) for |g|<R. The self-adjointness
of (=A +1n2)"V2V(=A +m?)""/2 implies that the zeros
are concentrated on the positive real axis. There-
fore the problem becomes equivalent to finding the
number of bound states in the attractive potential
—-gV with energy less than m?2. Assume that one is
able to find two Hamiltonians H,, such that H_
<H <H,, for which the number of bound states can
be exactly computed. If it turns out that one gets
the same estimate for N, (R) and N_(R) when R gets
large, the problem will be solved.

The Hamiltonians H, can be constructed as fol-
lows: Space is divided into cubic cells of size 6.
The operators H, and H_ coincide with H, except
that extra boundary conditions are imposed in such
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a way as to decouple the Schrddinger equations in
two different cells. Thus for H, we impose that
the wave function vanishes at the surface of the
cubes, while H_ is constructed by requiring the
normal derivative to vanish, disregarding the
continuity of the wave function from one cube to
the next.

While it is immediately seen that H,>H (one has
added an infinite repulsive potential along the cell
boundaries), it can also be proved that H>H_.

If we let the (linear) size 5 of the cells go to zero
when g goes to infinity, the potential may be as-
sumed to be almost constant throughout each cube.
Moreover, if 6%g also becomes infinite, so does
the number of bound states in each cell (inde-
pendent of the boundary conditions), and one finds
the following in dimension D:

MR~ 55 B2 [ Py PR [1+0(g7),

(3.2)

where € is a computable positive number and v,
is the volume of the unit sphere, v,=272"2/
DI(D/2). The same result also holds for N(R).
The reader will note that the above method yields
a justification of the so-called quasiconstant field
method to obtain large-g estimates.

Let us try to use similar methods in our case.
We call H=(P —eA)? +m?, again divide the space
into cubes of size &, and define two operators H,
and H_ as in the previous case. Although we are
now unable to bound the properties of H in terms
of those of H,, we feel that the two cases con-
sidered are rather extremal. If it turns out that
A, (e)=det H, have equal asymptotic behavior when
|e |~ e, the same result should be valid for A(e).
Now A, (e) factorizes into a product of determi-
nants Ai (e) pertaining to each cell and

ae)=ITaic . (3.3)

To zeroth order in % we may approximate the po-
tential A, by a constant in each box, and given the
boundary conditions we therefore find Af (e)=1. A
nontrivial result follows when one takes into ac-
count the second order in # which amounts to as-
suming a constant field within each box. To be
precise we ought to discuss each (entire) dimen-
sion separately, as the number of scalar invar-
iants of the field increases with D. Qualitatively
one finds, however, that for large real e we ob-
tain

Ai(e)~exp< constx 2”2 f dPx FP/2 ) , (3.4)

while for D =4 an extra logarithmic term arises

from ultraviolet divergences and

A, (e)~exp <constxe2f d“xF"’lne"’F"’) (D=4).
(3.5)

These are the approximations discussed in I. The
careful reader has noticed that here we have
stressed the fact that Eqgs. (3.4) and (3.5) are only
expected to be valid for real e (assuming of course
that A .is real). For complex values of e, the
asymptotic behavior of the determinant depends
crucially on the boundary conditions along the lines
of flow. By lines of flow we mean, in the present
context, the integral lines of the A, potential (i.e.,
the curves x,(s) such that %,(s)=A,[x(s)]). The
discussion of the preceding section shows indeed
that A, (e) is presumably an entire function of
order D/2 since with zero boundary conditions a
constant potential may be gauged away. It is not
likely that this is the case for A _(e); the condition
of a vanishing normal derivative is not seriously
different from periodic boundary conditions, pro-
vided that the cell substructure is adapted to the
lines of flow. In the latter case (periodic boundary
conditions), we already know from the preceding
section that

A,_boc.(e)*‘exp(constx |Ime|Ddex |A(x)["> .

(3.6)

Furthermore, this cannot still be the correct
answer in that it has not yet been given a gauge-
invariant expression. From this disaster (very
different behavior in complex directions according
to innocent-looking extra conditions) we learn that
we are not allowed to impose arbitrary conditions
along the lines of flow.

For our purposes it is strongly suggested that
one study the case where the vector potential sat-
isfies the Lorentz condition

a‘A(x)=0. (3.7)

We note that if in Euclidean space we insist on
a regular potential with fast decrease at infinity,
the Lorentz condition fixes the gauge unambigu-
ously. Using this choice the above lines of flow
are well defined.

We shall assume that Eq. (3.7) entails that the
lines of flow are closed without trying to extend
the discussion to a more generic situation. It is
then natural to divide space into tubes of small
(and in general varying) cross-sectional area S,
the surface of which is made of lines of flow.
Using our previous assumptions, these tubes will
have the topology of tori.

We now define operators H, by imposing, re-
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spectively, the vanishing of its normal derivative
along the surface of the tube, in such a way that
the determinant factorizes into eontributions per-
taining to each tube separately. Even when the
cross section is vanishingly small, the magnitude
of the potential A, will vary along the tube.
Therefore, to obtain an estimate it would be nec-
essary to extend the reasoning of the previous
section. We shall not do that here, and will fur-
ther restrict ourselves to the case where |A]| is
constant along the lines of flow. If V, denotes the
volume of the ith tube, in the limit of large e, we
find the following, independent of boundary con-
ditions:

Aﬁ(e)'*exp[aD(Ime)Df de’AT(x)[D] , (3.8)

for the contribution of the ith tube. Therefore we
have the following estimates for the complete
determinant:

A(e)~exp[aD(Ime)Df de]AT(x)ID} . (3.9)

In Egs. (3.8) and (3.9) a, stands for the quantity

a,?= (4n)‘D"”2Dr<D——2+ 1) ,

(3.10)
and the symbol T is to remind us that we deal with
the Lorentz (or transverse) gauge. Finally we ex-
pect the Taylor series of A(e) to be given as in
Eq. (2.26) with APLS replaced by [dPx|AT(x)|?.
As far as the density of zeros is concerned, it is
presumed to be of the form (2.23) with the same
substitution as before.

Let us stress the fact that the above results are
derived in the Lorentz gauge when the lines of
flow are closed curves, and when the A field has
a constant length along these lines, although it is
possible that their domain of validity is larger.

In the next two sections we show with specific
examples that the above estimates are indeed the
correct ones.

IV. TWO-DIMENSIONAL MODEL

The general statements made previously will be.
tested in two steps. In this section we study a two-
dimensional nontrivial example referring to the
Klein-Gordon equation (see, however, some re-
marks on the Dirac case at the end of this section).
In the next section a similar situation is studied
in a four-dimensional context with respect to the
Dirac spin-3 case.

Consider first a two-dimensional Hamiltonian of
the form

H=(P - eA)? +m?, (4.1)
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with A, (x) a prescribed external potential such
that the corresponding field F=8,4,-9,4, is in-
tegrable:

S| E )< (4.2)

This condition excludes the possibility of a con-
stant field throughout space. As recalled above,
the Feynman perturbation expansion of L(e) is con-
vergent due to gauge invariance but infrared di-
vergent if we set m =0. We therefore have to keep
m#0, and we keep only the leading nonvanishing
contributions as »7— 0. Also, since we are inter-
ested in alternative means of computing A(e), we
shall use for A(e) and L(e)=InA(e) an index F when
referring to the results of computations done with-
in the context of gauge-invariant Feynman pertur-
bation theory. In particular the second-order
term in L(e), call it e?L{?’, is finite and given by

Lpz=ﬂfd2qfiu(q)<5w-zzg—”>
x/iv(—q)<ln§;2 - 2) , (4.3)
with
Au(x)=fdzqfiu(q)eXP(iq'X). (4.4)

Dimension D =2 allows rotationally invariant field
configurations which we expect to simplify the
calculations seriously, hopefully without destroy-
ing the asymptotic large-e behavior. Define the
antisymmetric symbol €,,=~¢€,, such that€,,=1
and set

vu

x
Au(x)=€w;§¢(|x|). (4.5)
Note that Zmb(lx ) is the magnetic flux through the
circle of radius |x|. Using the notation
|x|=et (4.6)

we shall abusively use the same symbol for the
function expressed in terms of |x| or t variables.
Note that A4, (x) defined through (4.5) fulfills the
Lorentz condition 8-A(x)=0, and is also trans-
verse in x space, x*A(x)=0. Its Fourier trans-
form reads

A,Aq):zi’r m% [mdtJo(qe’)d.)(t), (4.7)

and may be substituted in (4.3) to yield _
aod + o 2
L® = f _qi lnq[ f dtd (t)Jo(qe')}
o] -0

— (um +1) fmdtq&"’(t). (4.8)
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In writing (4.8) we have assumed, of course, that
¢ vanishes sufficiently rapidly both when {—~ =
(|x|==) or t= - (|]x|~0). We turn now to a de-
termination of the eigencouplings to reconstruct
A(e) from a knowledge of its zeros. To this end
we use the rotation-invariant form (4.5) to intro-
duce an angular decomposition:

2 2
@-car=p Eof0P L5 _eor],

(4.9)

where the operator L is the orbital angular mo-
mentum with integer eigenvalues. For each partial
wave, we can compute a partial determinant
6,(e)=6_,(-e) in such a way that

a/(e)=5,(e) T 8:(0)5,(=e), (4.10)

1=1

using the fact that A is even in e. This time we
have used an index f to allow for a possible differ-
ence in normalization between this procedure

and the perturbative one (see below). In any case
As(e) and A(e) have the same zeros (of equal
multiplicity).

Let us consider the cases [#0, and I =0 sepa-
rately. In the former one we may assume /> 1
without loss of generality and set m =0 without
encountering any singularity. The equation

d2
[-52+0 - eg)|u()=0 (4.11)
admits solution regular at t=-«, i.e., behaving
as e't for t——«; this fixes their normalization.
Such solutions contain in general a term increas-
ing as §,(e)e’t for ¢t —. Clearly the coefficient
5,(e) has the following properties:

(i) It is equal to one if e=0,

(ii) it vanishes for an eigenvalue e, ,that is a coup-
ling constant such that Eq. (4.11) admits solutions
regular at both f=1c,

(iii) itisan entire function accordingto Poincaré’s
theorem. Indeed we recognize a method of com-
puting the partial determinant akin to the method
of Jost functions.

In the case I=0 we cannot set m =0 blindly for
otherwise ¢ =0 would appear as a zero of A, thus
conflicting with the normalization §,(0)=1. Other-
wise the same method as above does apply.

To be specific consider the “square well” case

¢, |tl<T
0, It|>T.

o(t) = (4.12)

An easy calculation yields indeed the entire func-
tions

1047
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5,(e) =exp(- 26¢T)<1 * Zz(_esze—@

x {1 - exp[-4T (I~ e¢>]}),

(4.13)

8,(e)=cosh(2e¢T) - e¢ sinh(2e¢>T)<ln % +T +y> .

Here y is Euler’s constant and §, has been com-
puted for vanishing m. The pattern of zeros is
shown in Fig. 1. It exhibits asymptotically an al-
most double periodicity with a constant density

characteristic of an entire function of order two:
~ _l. +i __T:IL
"¢ 29T

2 2
av =~ -—%—z de,de,,

e, (n integer),

in agreement with (2.12) and (2.23). The function
can be reconstructed by inserting expressions
(4.13) into Eq. (4.10), the result of which is an
absolutely convergent product when the contribu-
tions §,(e) and §,(—e) are grouped together. Let
L,(e) stand for the logarithm of A,(e) and denote
& L!? its second-order coefficient in a Taylor ex-
pansion around e =0. From the theory of entire
functions it follows that

Ag(e)=a(e) exp[gz(L(FZ) _ L(fZ))] ,
Ly()= Ly(e)+ (1 - 1),

(4.14)

The reshuffling implied by (4.14) may modify the
asymptotic behavior along certain directions, but
of course does not modify the overall order of
growth of the function.

Ime
10r e o 8 s " e °
' e © © ® o« o o
L e s s e .
.

1 " 1 n " 1

0 l ‘ 5 10 Re e

FIG. 1. The pattern of zeros of a two-dimensional
determinant arising from expressions (4.13), for the
values 27=1, ¢=1
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It is suggested that for an arbitrary smooth ¢,
the same type of behavior applies. We expect
Ap(e) to be of order two and therefore Eq. (4.14)
applies. Arguments to this effect can be based
on the analogy with the operator P2 +¢%V, where
the corresponding determinant is of order two in
dimension two.! The gauge-invariant minimal
coupling certainly does not increase the order.
The above explicit example shows, on the other
hand, that it does not decrease it.

Let us, however, study in more detail the be-
havior along the real axis. This can be done ex-
plicitly for the above example, but can even be
generalized to a smooth arbitrary ¢.

For the Ith partial wave the solution of the equa-
tion

82 2 -
('a—ﬁ +[l-e¢(t)]>zp,(t)—0, (4.15)
behaving as e** when t——«, can be estimated for
large e and !>0 as follows:

L(z)z—f+wdt¢2(t) 1]’12 +')’+t +Z‘°_1__./'#.gdt
! - 2 208 . T

It is then a matter of straightforward (but tedious)
calculation to verify that when these integrals are
substituted into relation (4.19) giving a, they can-
cel so that

(4.21)

It is noteworthy that this was the expectation from
the general considerations of Secs. II and IV,

This result may be interpreted as meaning that
for a smooth ¢ (i.e., a smooth A, leading to a
smooth F, ) the leading behavior along the real
axis may be estimated by using classical methods
which amount to assuming that the field intensity
F(t)=~ ¢(t) e~ is a slowly varying function. In two
dimensions this leads to the following estimate:

a=0.

N In2 r .,
Lele) = el [ @x1F)|

-4

+eo .
=112 [T ar do. (4.22)
Unfortunately, the explicit “square well” case
does not fulfill the above assumptions which we
were therefore unable to test directly. Indeed
for this singular case we found that while (4.22)
would lead to |e| ¢ In2, direct calculations yields
2|e| ¢. By a more accurate evaluation of the par-
tial determinants it would be interesting to verify
whether (4.22) is obeyed for a general smooth ¢.
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w,(t)Eexp{le‘ dt’[Il—eq)(t')l—l]}. (4.16)

This gives
6,(e)=expfwdt[|l—etp(t)l—l]. (4.17)

The leading behavior of L/(e) for real e is obtained
by inserting (4.17) into (4.10). This yields

ezf_:wdtqbz(t).

The corresponding result for L(e) has to take Eq.
(4.14) into account so that one finds

Ly(e) =~ (4.18)

e2—>co

+o
5’% ,,z:.e"zf_.o dt P +LP -1 . (4.19)
In the expression for a, L(,f) is given by the per-
turbative result (4.8), while L{?’ is easily obtained
as follows:

wdtze(tz— )bt ) (t,) exp[-21(t, - t,)]. @.20)

Until now the effects of Fermi statistics have
been discussed at length, but no mention has been
made of the influence of spin. The reader may
wonder how the previous considerations extend
to that case. In particular the analogous “deter-
minants” for two-dimensional QED (where the
Dirac operator replaces the Klein-Gordon one)
may seem at first deceptive. Indeed the limit
m =0 does not lead to any singularity any more
and for this value In[A(e)] is simply given by sec-
ond-order perturbation theory, a well-known
result due to Schwinger.” In other words one has
then

Ap(e)=exp[L(e)],
Le=-% [ a®xarep.

Recall that this is the origin of the fact that the
Schwinger solution generates a “mass” term |e|/
V7 for the photons. Of course Eq. (4.23) also
defines an entire function of order two in this case.
Therefore this general feature is preserved. How-
ever, expression (23) is of course very special
being only due to an anomaly of perturbation theo-
ry. The genuine nontrivial part of the determinant
is reduced to the identity in this massless ferm-
ionic case. One may wonder whether for any non-
vanishing 2 the behavior for large real ¢ is utter-
ly modified.

(4.23)
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V. FOUR-DIMENSIONAL EXAMPLE

We now turn to the case of real interest, name-
ly, QED in four dimensions, and we study the
Dirac determinant. We choose to do so for an ex-
ternal field configuration of a type already intro-
duced in our previous work.! This is again be-
cause of its great symmetry; it allows a complete
angular analysis. The vector potential is taken of
the form

Ay (x) =M, x"a(x?), (5.1)

where M is a 4X 4 antisymmetric constant matrix
with square equal to — 1. InI we have exhibited
solutions of the Dirac equation for specific in-
stances of a(x2). We note that the fermion mass
may be set equal to zero without encountering any
divergence. To compute A(e) = det(:f — e4), we
perform an angular analysis of the Euclidean Dir-
ac equation using its SU(2)xSU(2) invariance from
which we shall construct a complete set of pairs
(Y €,) of regular wave functions and associated
eigencouplings. As in I we introduce the matrices

5=(1,i%), 0=(I,-i%) (5.2)

[for typographical reasons, the notations of I
have been changed, o (¢) stands now for what used
to be noted ¥ (#)] and the notation

n=n,0*, n=n,0" (5.3)

for any four-vector n. The Euclidean massless
Dirac équation decouples into two two-dimensional
spinor equations:

(8 - eA)u=0, (id —eA)v=0. (5.4)
To an arbitrary rotation Re O(4)
Xy =x=Ry %, (5.5)

is associated a couple (U, V) of SU(2) matrices
such that

*=Rx=UxV". (5.6)

Of course (U,V) and (-U, -V) yield the same R.
From the orthogonality of R it follows that

Us,V'=R™, 5, (5.7)

from which we derive the transformation law for
the spinors u and v:

ug (x) =VulR ~'x),

vg(x) =Uv(R ~x),
to which one may add

Ay, r(¥)=Ry A R™x) (5.9)

so that the Eqgs. (4) are covariant. If # and v sat-
isfy (5.4) it follows that

(5.8)

(18 - eA x(x)]ugp(x) =0,

[i8 - eAp(x)]vg(x)=0.
For an A, (x) of the form (5.1), Egs. (5.4) are left
invariant by the set of matrices (U, V) such that

A(x)=AL(x) or A(x)=Az(x), respectively. If we
use some explicit form of M for instance

(5.10)

Hv»s

~T

= 1
Myy_ y (5.11)

such that A(x) = io,xa(x?), the above condition re-
duces to Uo,U'=0, or V03V7=03, respectively.
Thus the groups in question are U(1)xSU(2) or
SU(2)xU(1). This will enable us to diagonalize the
equations with respect to the conserved quantum
numbers.

From the relation

det(id — eA) = [det(id — e*A) J* (5.12)
it follows that

Ale) =det(P - eA) =D(e)D*(e*), (5.13)
where we focus our attention on

D(e)=det(id — eA) (5.14)

and correspondingly on the first of Egs. (5.4).
Similar considerations apply of course to the sec-
ond one.

Call m and j the conserved quantum numbers
characterizing the representation of the invari-
ance group U(1)xSU(2). Both can be integers or
half-integers. Here m corresponds to the U(1)
phase, while j labels the representation of SU(2).
Now each (m, j) representation must occur inthe
decompositionofa (I, I+ ) representation of the
SU(2) X SU(2) group (I integer or half-integer) since
these are all the relevant ones occurring for the two-
spinorsdefined on four-space. Fromthiswe learn
that -l <m <1 and | j - m | mustbe half-integers.
Moreover, each pair (j, m) occurs twice corre-
sponding to the values I=j+3 except when m=x(j+
).

Spinor harmonics belonging to the representation
(1, 1+ 3) may be written as follows:

(I, 30, 3|13, M)

u“"“/Z)(x)=§:€D’ %) s

mel REN TR P
(5.15)

in terms of Clebsch-Gordan coefficients and homo-
geneous rotation matrices. Corresponding to the
choice (5.11) of the matrix M, let us denote by I3
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and 7 the combinations

E=xy+ixg, N=x +ixg. (5.16)
Then we obtain
& n\ __ fEn
= _ _ Mx=1i0gx =2 _|,
-1 ¢ n -
(5.17)

CR S
5=2 >
-9, 9,

where a bar over a complex number means com-
plex conjugation. Furthermore, we have explic-
itly

fDL'u/=[(l+u.)!(l—/,L)!(l+u’)!(l— /.L')!]I/2

£ e )9 E

x 'n.ln.n,!
nytng=isp  N1iNpiNg Nyl

(5.18)

- ’
nytng= l+p
by -
un‘-z

When |m| <j-1/2, u spinors with quantum num-
bers j, M, and m (of course —j<M<j characterizes
the degeneracy) may be decomposed as follows:

ulx) =f (2320 (x) + g2 L (5.19)

Given (j,m) the Dirac equation reexpressed in
terms of the rotationally invariant f(x?) and g(x?)
is most easily derived by selecting a particular
value M=j. Reabsorbing some constant coeffi-
cients in f and g, u(x) takes the simple form

I3 -1/2+ "'171‘1/2-»: )

u(x) =f(x2)<
0

j=1/2+m=j=1/2=m
+g(.r2) ('glz"' |7112)E 1/2 n 2 . (5.20)
25"" 1/2+ m?ri+1/2-m

When this is inserted into the first Eq. (4) together
with A(x)=i0,%a(x?), one finds that

af 2€a\ _
—m-(2m+x z)g—O,

(5.21)
2 2+ 1g- L p=o0.
After a convenient change of variable
t =1nx? (5.22)
and of functions
f(x®)=exp[-(j+2)tlp(t),
glx®)=exp[-(j+3)th(®), (5.23)

a(x?)=exp[-t]a(t)
[where a(t) is analogous to what was denoted ¢f)
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in the previous section: it has the dimension of
a flux] the system reads as follows:

d . e
—ﬁ=(]+%)¢+2m7+—2¢!7,
(5.24)

Y _ _(i41),4 2
E——(J+2)7+ 5 ¢ -

We recognize a generalization of the system studied
in I which, however, did correspond to the lowest
quantum numbers j=%, m=0.

By forming suitable combinations of Eqs. (5.24)
it is easy to show that

@ =y =+ ety v 2moy,  (5.25)
where the potential has been eliminated,

Since |m| <j - 3 the right-hand side is positive
definite for real ¢ and y. Hence there exists no
real solution (i.e., no solution for e real) such
that the functions ¢ and y vanish at infinity.

Moreover, similar combinations yield

+

j dt|y|?

J_mdt a®(y?+lol?)

Rele]=-4m (5.26)

Thus for m=0, zeros lie along the imaginary axis
in the e plane, but move into the complex plane
for m+0. If o is positive, Re[e] has a definite
sign. With the above conventions mRe[e]<0. We
remark that if (¢,v, e) is a solution to (5.24) cor-
responding to (j,m), then (¢, -y, —¢) is also a
solution pertaining to the quantum numbers (j, -m ).

For completeness let.us mention what happens
when |m|=j+3%, corresponding to a unique set of
spinor harmonics transforming according to the
representation (I=j+3,[- %=j). Again when
M=j,

2j
u=f(xz)<'E K >, (5.27)
—62“1
and the Dirac equation leads to
d )
x? S f 2+ 1) +x% 2 f =0, (5.28)

Since this equation is readily solved for arbitrary
a(x?), it is easy to see that it admits no solutions
regular both at x?= and x2=0. We may there-
fore discard this case and henceforth restrict

m to the range

: 1 . 1
—Jtzsmsj-3.

(5.29)

As in the two-dimensional case, we may compute
the contribution d, ,(e) of each partial wave
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(j,m,M) to the determinant and reconstruct D(e)
formally as

i=1/2

pe- T 11

2j=1 m==j+1/2

[d; .(e)]**t, (5.30)

where the (2j+1)-fold degeneracy in M has been
taken into account.

We may now illustrate various properties on
the “square well” case

o, |tl<T
a(t)z{ (5.31)
0, |[t>T.

Then d, ,, is seen to be equal o
d; m(e)=exp[-2T (j+3)]

. 1,2 /
x{ cosh2KT + Q%)——illnfﬁ’ﬁ sinh2KTl ,
(7+3z) )
(5.32)

where

Ki=(m+sea) —m?+(j+5)2. (5.33)

This explicit expression enables us to find the
zeros of d,,. The nearest ones in the quadrant
Re(e) <0, Im(e)>0 are plotted in Fig. 2. The
asymptotic distribution satisfies in this case for
j >1, and |n| integer »>1,

a n?n? 0

ge:,,m,nﬁ—nzzi[wf(ﬂ%)2-7,1 (5.34)

|
i

from which we may verify that 5, . e, is
only semiconvergent, but ¥ le; |7 is finite
for arbitrary positive €. Thus A/(¢) constructed
from (5.13) and (5.30) using these expressions
for d; , is an entire function of order four as
was expected. Since in the four-dimensional case
Lg(e) differs from L,(e) by a polynomial of
degree four at most, we can conclude that Ag(e)
is also of order four.

The asymptotic distribution of zeros (5.34) is
in agreeinent with the results of Sec. Il and III,
which means that spin effects may be neglected
for large e:

A

-10

0

FIG. 2. The pattern of zeros of a four-dimensional determinant arising from expressions (5.32), for 27=1,
a=1. The various symbols correspond to different channels (j, m) as follows, where the number indicates the

value of (j—m):

el/2 113/2 O5/2  *7/2 m9/2  +11/2  «13/2

N15/2 0 X17/2
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det(p — eZ) xdet(p— eA) R [det(p — eA)?]?.

el—s>e

(5.35)

We also attempted to see whether the cancellation
mechanism along the real axis worked for Lg(e)
as it did in the two-dimensional situation. Un-
fortunately the calculation is long and tedious and
we cannot report any definite result here.

VI. CONCLUSION

The main conclusion to be drawn from the pre-
sent work is that the order in the coupling con-
stant e of the fermionic determinant in four-di-
mensional QED is four, very muchas in Yukawa
theory. Therefore, within the limitations in-
dicated in the introduction, perturbation theory
in QED diverges at least as badly as a*I'(k/2).
More precisely, if the fermionic determinant be-
haves as

A(e)~exp[(Ime)*L(A)]

for large values of e, where L(A) is a homoge-
neous functional of degree four, then according
to I the kth order of perturbation theory, i.e., the
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coefficient of a®, is asymptotic, up to powers of
k and constant factor, to

Z,~ (-1)kr<§>a*,

where

a= Elgmax{[L(A)]l/z /_[%de"x}.

Taking
L(A)=a4fA“Td“x,

the Sobolev inequality® tells us that a is less than
or equal to 1/7. To continue this study, two
directions at least require attention. First, one
would like to improve the above estimate by
computing the coefficients beyond I'(k/2)a*.
Second, it remains to investigate with greater
care the effect of renormalization.?
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