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We present an explicit construction of the singular (or null) vectors in highest weight Verma modules. 

In this short communicat ion,  we give an explicit construction o f  singular vectors in Verma modules over the 
Virasoro algebra. We proceed in two steps, the first being a reformulation o f  a series of  such vectors obtained by 
Benoit and Saint-Aubin [ 1 ], in a formalism inspired by the study of  W-algebras. The second step uses the fusion 
method of  Belavin, Polyakov and Zamolodchikov [2 ], a rephrasing of  Wilson's short-distance expansion ap- 
plied to primary fields. This yields the general singular vectors. Detailed proofs and examples will be presented 
in a more comprehensive exposition [ 3 ]. 

Verma modules V(c, h) of  the Virasoro algebra 

[L,, ,  Ln] = ( m - n ) L , , + ~  + ~ c m ( m  2 -  1 )~m+n,O ( 1 ) 

are characterized by the existence o f  a unique highest weight v e c t o r f  (up to a factor) such that 

Lof=hf ,  Lmf=O, m > 0 .  (2) 

In the Verma module freely generated by elements 

fp~,p2,...,pk=L_p~L_p2...L pkf, 1 <~p~ <~P2 <~...<~Pk, (3) 

a "singular" vector arises at level n when a combinat ion F of  the form 

F =  Z Cp,,p2,...fp,,pz,... = ~ ( L  ,, L_2 .... ) f  (4) 
p l  q - p 2  + . . . .  /7 

satisfies the properties of  a highest weight: 

L o F = ( h + n ) F ,  LmF=O, m > 0 .  (5) 

Parametrize c, h as follows, wi th j  a n d j '  integers or half-integers: 

J r ( m +  1 ) - s m ]  z -  1 
6 h =  r = 2 j ' +  1 s = 2 j +  1 (6) 

c= 1 r e ( m +  1) ' 4 m ( m +  1) ' ' 
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and rn is any complex number, the values 0 and ~ being included in a limiting sense ( fo r j '  = 0  and j = 0  respec- 
tively). From a theorem of  Kac [4] and Feigin and Fuchs [5] ,  one knows that V(c, h) admits a non-zero 
singular vector at level n = rs, and conversely, all singular vectors are obtained in this way. The general form of 
the singular (or "null"  ) vector was, however, now known in general. These expressions have a practical interest 
in writing differential equations satisfied by correlation functions (after quotienting by the null vectors) [ 2 ]. 

In the particular case where e i ther j  o r j '  vanishes, an explicit formula was given by Benoit and Saint-Aubin 
[ 1 ]. We shall rewrite their expression in a more compact  way. 

Let us concentrate on the case r =  1, n = s =  2 j+  1 for definiteness. Then (6) reduces to 

m 
c = 1 3 + 6 ( t + t - l ) ,  h = - j - t j ( j + l ) ,  t= m + l '  n = 2 j + l ,  (7) 

where j =  ~, 1, 3, .... In V(c, h) we introduce a sequence of  elements denoted 

f =f_j ,  f _j+ , , ...,fj,fj+ , = F , (8) 

where f_j  is the highest weight s t a t e f  ~+,  is the singular vector F andfM satisfies 

LofM = ( j+ M)fM . (9) 

We define the n-dimensional vectors 

f = ( f j , £ _ , , . . . , f _ j ) T ,  F = ( F ,  0 .... , 0 )  T. (10) 

This n-dimensional space carries a representation o f  sp in j  o f s l (2  ) and we choose generators o f  the form 

0 0 0 ° 0 0 
J _ =  1 , j + =  0 0 3 - ( n - 3 )  0 

"'" "'" 1 ... 0 0 ( n - 1 ) . l  
"'" ... 0 0 

Jo = d i a g ( j , j -  1 ..... - j +  1, - j ) .  ( 11 ) 

We claim that the set of  equations embodied in the linear system: 

F =  - J _ +  ~ L_k_~(tJ+)  k f (12) 
k=O 

defines F = ~ +  ~ = ~ fas  a non-vanishing singular state at level n in V(c, h).  Moreover the successive components  
of  f satisfy the relation 

p > 0 ,  L J = { [ J o - ½ ( 3 p + l ) ] - ¼ t - ' ( 3 p + l ) } ( t J + ) P f  (13) 

obtained by induction on the index M of  the components  of  f starting from the last one, for which both sides o f  
( 13 ) vanish (highest weight). Eq. ( 13 ) for p = 1, 2 implies it for higher p by commutation.  It also extends to 
M = j +  1 for which it means that F is annihilated by the Lp, p >  0. The details of  the proof  will be presented 
elsewhere in greater detail [ 3 ]. Eliminating all components  fM for -- j  + 1 ~< M<~j leads to an explicit expression 
of  ~ which reproduces the result of  ref. [ 1 ]. 

An unexpected similarity with classical W-algebras, i.e. algebras of  deformations of  differential operators, 
appears in the form (12).  Following Drinfeld and Sokolov [ 6 ] it is appropriate to represent an nth order linear 
differential operator in terms of  a first-order matrix differential operator. The substitution 
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L_x~d/dx,  tkL_k_~Wk+j (14) 

on the RHS of  (12) produces the covariant n×n differential operator attached to the W(A,,_t )-algebra [7] 
with a change of  the W-basis [ 8,3 ]. 

The case where both j and j '  are different from zero may be obtained by fusion of  (0, j )  with (j ' ,  0). It is 
known [2] that the fusion of  the two corresponding primary fields gives rise to a single conformal family. In 
general the leading term in the operator product expansion of  two primary fieldsf~ a n d ~  is also a primary field, 
d e n o t e d f = f  co): 

~ (xl)f~(x2)- zhl+h2_h zg""~(U), (15) 
/ = 0  

where we expand (for example ) around the mid-point  u = ½ (xt + x2 ) and z = x~ -x2 .  The covariance of  eq. ( 15 ) 
determines unambiguously a l l f  ~t), modulo the ideal generated by possible singular vectors in the V(h, c) mod- 
ule. This is the heart of  our method to obtain the singular vector. The Virasoro generators acting on the field at 
xj may be reexpressed in terms of  those acting at u according to 

L~,~=(-z)-P[h2(p -1)+½zL_,-zO~]+ Z (½z)k( p+k-2"~L k~o k ] _p_~, (16) 

and likewise for the L c2~ with h?-'h2, z ~ - z .  Given the operator ~c~) (L(t)) of (12) that constructs the sin- 
gular vector F~ attached tof~ at level nj = 2 j +  1, one may thus reexpress it in terms of  L's and compute the 
operator product expansion of  F~ a n d S :  

1 
FI(XI)f2(X2)~- ~(I)(L ) zht+~h2_hl~o Zlf (])(U) . (17) 

The leading term in this expansion must be a primary field. An explicit calculation shows that the coefficient of  
the singular term 1/z  h' +h~-h+,, vanishes [ 3 ]. This implies that the actual leading term is a primary field among 
the descendents o f f = f  c o~, hence (in the generic case) the unique singular field attached to f (corresponding to 
the singular vector in the module) .  The vanishing of  all coefficients of  the intermediate singular terms 
1/z h' +h~-h+ . . . .  , r =  0 ..... n -- 1, determines the n = (2 j+  1 ) (2j '  + 1 ) first t e r m s f  co), ..., f ~,,- ~ ) in the expansion 
(15) and agrees with the general method discussed in ref. [2].  In practice, to determine the expression of  the 
singular field o f f  one eliminates the contribution o f f  c~) by forming the following combination of  d c,~, i = 1, 2: 

1 n - - I  

= h m  F(u) " rhl+/'2-h-n(a2Zn'~Cl)--alZn2~C2)) rh,+h2-h ~ zlfCl)(U)' 
z ~ O  ~ l = 0  

eq= I~ { ( j - M ) [ 2 j ' + l + t ( j + M + l ) ] - n } ,  (18) 
- j ~ <  M~<j  

and a2 is given by a similar formula withj~--~j ', t*--~t 1. 
To summarize, we have obtained a complete description of  all singular vectors in the Verma modules of  the 

Virasoro algebra. Although we do not have in general formulas as explicit as in the case j or j ' =  O, we have a 
well-defined algorithm to construct the singular vector, which involves the application o f  an explicit operator 
on explicit expressions. This is to be contrasted with the preexisting situation in which the determination of  the 
singular vector of  level n involved solving a linear system of  P(n  ) equations (P (n )  is the number  o f  partitions 
o f  n). Conversely the method can perhaps be turned around to give not only the singular vectors but the ingre- 
dients which yield the Kac determinantal formula as well as the possible embeddings of  Verma modules. 
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