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What is the problem ?
α a set partition, of the set {1,⋯, n}:
α of type [α] = [1α1,⋯, nαn] if α` = #blocks of size `. (Note [α] ⊢ n)

Represent it diagrammatically by a circle with n points on it
numbered from 1 to n and α` `-vertices inside disk, and
a map between vertices and circle that respects the order(*).
Then genus g given by Euler formula

2 − 2g = #vertices −#edges +#faces=∑α` + 1 −n + f
For example the partition ({1,3,4,6,7},{2,5,9},{8},{10}) of {1,⋯,10}: type

[12,3,5] represented by the map
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Here ∑α` + 1 = 5, n = 10, f = 3 hence g = 2.
Note 1: it is the constraint (*) that makes the counting non trivial.

Note 2: since f ≥ 1, g ≤ gmax ∶= ⌊1
2(n −∑αk)⌋



Problem: compute the number C
(g)
n,[α] of partitions of type

[α] and genus g.

Their sum over g is known Cn,[α] = ∑gC
(g)
n,[α] =

n!
∏n`=1α`!(`!)

α`

(Faà di Bruno coefficients: n-th derivatives of a composition of two functions dn

dtnf(g(t)).)

Introduce generating functions (GF)

W (x) = ∑
n≥1

κnx
n

for a set of indeterminates κn, n ∈ N+, and

Z(x) = 1 + ∑
n≥1

∑
[α]⊢n

Cn,[α]κ[α]x
n =∑

g
Z(g)(x)

Z(g)(x) = δg0 + ∑
n≥1

∑
[α]⊢n

C
(g)
n,[α]κ[α]x

n

where κ[α] ∶=∏n`=1κ
α`
`
.



Side remark: in probability theory or statistical mechanics :

κ` = `-th cumulant, mn = n-th moment of r.v. X.

mn = ∑[α]⊢nCn,[α]κ[α]: ordinary “cumulant expansion”

mn = ∑[α]⊢nC
(0)
n,[α]κ[α]: “expansion on non-crossing (aka planar or

free) cumulants”, in (large) matrix integrals or free probability.

Thus knowledge of the C
(g)
n,[α], g ≠ 0, would yield an interpolation

between ordinary and free cumulants expansions:

mn(ε) = ∑
[α]⊢n

gmax([α])
∑
g=0

C
(g)
n,[α]ε

gκ[α] .

For example, m4(ε) = κ4 + 4κ3κ1 + (2 + ε)κ2
2 + 6κ2κ1

2 + κ1
4 .



Outline of this talk

1. A few exact results

2. Genus 0, planar (aka non-crossing) partitions. Kreweras’

formula and Cvitanovic’s equation

3. Reduction to “primitives” [Cori and Hetyei]

4.-5. Dressing primitives: the case of genus 1 and 2

6. Final remarks.



1. A few exact results
– partitions in pairs, i.e.,of type [2k].
An old problem [Walsh–Lehmann ’72, Harer–Zagier ’86, . . . ]

C
(g)
2k,[2k] =

(2k)!
(k + 1)!(k − 2g)!

⎡⎢⎢⎢⎢⎣
( u/2

tanhu/2)
k+1⎤⎥⎥⎥⎥⎦u2g

– partitions into two parts, i.e.,of type [n − p, p] [Z’23]

C
(g)
n,[p,n−p] =

n

g + 1
(p − 1

g
)(n − p − 1

g
)
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– genus 0, any type: see below



2. Genus 0. Non-crossing partitions

Kreweras’ result (1972)

C
(0)
n,[α] =

n!

(n + 1 −∑αk)! ∏kαk!
, (1)

Z(0)(x) = 1 +W (xZ(0)(x)) . (2)

Reappeared later in [Brézin-Itzykson-Parisi-Z ’78, Cvitanovic ’81, Speicher ’94]
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Equivalently, X(y) ∶= y−1(1 +W (y)), Y (u) ∶= u−1Z(0)(u−1) satisfy X ○ Y = id (“inverse relation”).

R(z) = Y (z) − 1
z is Voiculescu’s R function.



3. Reduction to primitives [Cori–Hetyei 2017]

4 operations that do not affect the genus of a diagram. Recall

that 2 − 2g = ∑α` + 1 −n + f
– removal of singletons:

α1 → 0, n→ n −α1



Reduction to primitives
4 operations that do not affect the genus of a diagram. Recall

2 − 2g = ∑α` + 1 −n + f
– removal of singletons

– removal of “centipedes”:

αp → αp − 1, n→ n − p, f → f − (p − 1)
r+1r+p



Reduction to primitives
4 operations that do not affect the genus of a diagram. Recall

2 − 2g = ∑α` + 1 −n + f
– removal of singletons

– removal of “centipedes”

– removal of “adjacent pairs”

∑α` unchanged, n→ n−1, f → f−1
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Reduction to primitives
4 operations that do not affect the genus of a diagram. Recall

2 − 2g = ∑α` + 1 −n + f
– removal of singletons:

– removal of “centipedes”:

– removal of adjacent pairs

– removal of parallel lines

(one of which at least attached to a 2-vertex)

αp → αp − 1, n→ n − 2, f → f − 1
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Reduction to primitives
4 operations that do not affect the genus of a diagram.
– removal of singletons

– removal of “centipedes”

– removal of adjacent pairs

– removal of parallel lines
a semi-primitive diagram

Primitive diagrams are those in which all these reductions have
been carried out.
Result independent of the order of reductions.
(Need some removal convention for later reconstruction)

Another subtlety: primitive have no parallel pairs; “semi-primitive” diagrams

may still have some, attached to vertices of valency > 2

Theorem [Cori–Hetyei, 2017] For given g, there are only a finite
number of primitives and semi-primitives.
Hint: for a primitive, no 2-cycle, hence f ≤ n/3 and ∑α` ≤ n/2, hence n ≤ 6(2g − 1).

Idea: Reconstruct all diagrams by “dressing” the primitive ones.
“dressing”= reintroduce the lines removed above



4. Genus 1.

Cori–Hetyei’s result (2013, 2017). There are two primitive dia-
grams of genus 1:

(g = 1)

The two “primitive” diagrams of genus 1. The blue figure in the middle is the length of its

orbit under rotations.

Then write a Cvitanovic-like relation:

Z(1)(x) = ∑
n≥2

κnnx
n(Z(0))n−1Z(1)(x) + sum of dressed diagrams of Fig. (g = 1)



Z(1)(x) = ∑
n≥2

κnnx
n(Z(0))n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xW ′(xZ(0))

Z(1)(x)+sum of dressed diagrams of Fig. (g = 1)
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where

X2(x) ∶= ∑
k≥2

(k − 1)κkxk Y2(x) = ∑
k≥2

k(k − 1)
2

κkx
k



Dressing of the two primitive diagrams gives

X2Y2/(1 −X2)3 +X2
2Y2/(1 −X2)4 =X2Y2/(1 −X2)4∣

x̃=xZ(0)(x)

Theorem 1. If x̃ = xZ(0)(x), the generating function of genus 1

partitions is given by

Z(1)(x) = X2(x̃)Y2(x̃)
(1 −X2(x̃))4 (1 − V (x))

. (3)

with

X2(x) ∶= ∑
k≥2

(k − 1)κkxk Y2(x) = ∑
k≥2

k(k − 1)
2

κkx
k V (x) =∑

k

kκkx
kZ(0)k−1 = xW ′(x̃) .



5. Genus 2. Same idea . . . but more complicated !!
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diagrams of genus 2

dressed (semi−)primitive  
Z

(0)

2-vertices one 3-vertex two 3-vertices two 3-vertices one 4-vertex
n semi-prim.
6 0 0 1 0 0
7 0 14 0 0 0
8 21 0 20 0 6
9 0 141 0 0 0
10 168 0 65 15 15
11 0 407 0 0 0
12 483 0 52 36 9
13 0 455 0 0 0
14 651 0 0 21 0
15 0 175 0 0 0
16 420 0 0 0 0
17 0 0 0 0 0
18 105 0 0 0 0

Table 1. Number of (semi-)primitive diagrams of genus 2.



The 52 primitive diagrams of type [27] and genus 2,

of total weight 651

The 3 semi-primitive diagrams of

type [22 32] and genus 2, of total

weight 15



Theorem 2. The generating function of genus 2 partitions is
given by

Z(2)(x)(1 − V (x)) = z2 + z3 + z33 + z33s + z4 (4)

where V (x) = xW ′(x̃), x̃ = xZ(0)(x) as before and
z2 = Ỹ2(21X̃3

2 + 168X̃4
2 + 483X̃5

2 + 651X̃6
2 + 420X̃7

2 + 105X̃8
2) ;

z3 = X̃3Ỹ2(8X̃2 + 94X̃2
2 + 296X̃3

2 + 350X̃4
2 + 140X̃5

2)

+X̃2(6X̃2 + 47X̃2
2 + 111X̃3

2 + 105X̃4
2 + 35X̃5

2)(Ỹ3 + X̃3
2Y2(x̃)

(1 −X2(x̃))
) ;

z33 = X̃2
3 Ỹ2(5 + 26X̃2 + 26X̃2

2)

+X̃3(1 + 15X̃2 + 39X̃2
2 + 26X̃3

2)(Ỹ3 + X̃3
2Y2(x̃)

(1 −X2(x̃))
) ;

z33s = Ỹ2X̃
2
3X̃2(6 + 18X̃2 + 12X̃2

2)(1 −X2(x̃))
+Ỹ3X̃3X̃

2
2(9 + 18X̃2 + 9X̃2

2)(1 − (X2(x̃)) + X̃2
3X̃

2
2(15 + 30X̃2 + 15X̃2

2)Y2(x̃) ;

z4 = Ỹ2X̃4(3X̃2 + 9X̃2
2 + 6X̃3

2) + (3X̃2
2 + 6X̃3

2 + 3X̃4
2)(Ỹ4 + X̃4

2Y2(x̃)
(1 −X2(x̃))

) ,

and

X`(x) =∑
k≥`

(k − 1

` − 1
)κkxk; Y`(x) =∑

k≥`

(k
`
)κkxk; if ` > 2 X̃`(x) ∶=

X`(x̃)
(1 −X2(x̃))`

; Ỹ`(x) ∶=
Y`(x̃)

(1 −X2(x̃))`
.



An example: Higher genus Fuss-Catalan

Case κi = δi,3. Partitions into triplets, type [3k]
Genus 0: Z(0) satisfies (xZ)3 −Z + 1 = 0: this is the GF of Fuss–
Catalan numbers;

Z(0)(x) = 2√
3x3

sin (1

3
Arcsin (3

2

√
3x3)) .

Then

Z(1)(x) =
1152x3 sin6 (1

3Arcsin (3
√

3x3

2 ))

(2 cos (1
3Arccos (1 − 27x3

2 )) − 1) (9
√
x3 − 4

√
3 sin (1

3Arcsin (3
√

3x3

2 )))
4

and

Z(2)(x) =
192s6x6 (8s3 (128 (11264s9 + 8676

√
3s6x3/2 + 3105s3x3) + 9315

√
3x9/2) + 729x6)

(2 cos (1
3Arccos (1 − 27x3

2 )) − 1) (9
√
x3 − 4

√
3 sin (1

3Arcsin (3
√

3x3

2 )))
10

Also: reproduce former results of Cori–Hetyei on “genus depen-

dent Bell or Stirling numbers”: total number of partitions of

order n and genus 0,1, 2, with/without fixed number of parts. . .



A curious observation [math.CO:2306.16237]

Inspired by the inversion relation Alex Hock (Oxford) made some amazing
observations that simplify these results a great deal.

Let y ∶= Y (x) = x−1Z(0)(x−1), X(y) = y−1(1 +W (y)) its (functional)
inverse. Reexpress Theorems 1 and 2 in terms of x =X(y)

x−1Z(1)(x−1) = ∂

∂x
( 1

4y4X ′(y)2
+ 1

6y6X ′(y)3
)

and

x−1Z(2)(x−1) = ∂
∂x( 21

8y8X ′(y)4 + 74
5y10X ′(y)5 + 24

y12X ′(y)6 + 12
y14X ′(y)7

− X(3)(y)
8y8X ′(y)6 − X(3)(y)

4y10X ′(y)7 − X(3)(y)
8y12X ′(y)8

+ (X(2)(y))2

24y6X ′(y)6 + (X(2)(y))2

y8X ′(y)7 + 19(X(2)(y))2

8y10X ′(y)8 + 35(X(2)(y))2

24y12X ′(y)9

+ X(2)(y)
y7X ′(y)5 + 23X(2)(y)

3y9X ′(y)6 + 29X(2)(y)
2y11X ′(y)7 + 8X(2)(y)

y13X ′(y)8).

Conjecture generalization to higher genus with undetermined coefficients.

But what is the combinatorial interpretation of these coefficients?

Topological relation at work ?



6. Final remarks
– Singularities of the Generating Functions

Some evidence of a universal singular behaviour of all GF

Z(g)(x) ∼ (x0 − x)
1
2
−3g

implying a large n behaviour of coefficients C(g)
n,[α] (for appropriately rescaled

patterns α)

C
(g)
n,[α] ∼ const x

−n−3g+1
2

0 n3g−1
2 as n, [α] grow large .

Also encountered in enumeration of unicellular maps [Chapuy], and in bound-

ary loop models and Wilson loops [Kostov]. . .

– Topological Recursion [Chekov–Eynard–Orantin]

Does it apply to the enumeration of higher genus partitions? [Hock] ?



Thank you !


