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2D-Conformal Field Theories (CFT): Quantum Field Theo-

ries covariant under conformal transfos. In 2d: analytical changes

of the variable z = x1 + ix2, enforced by action of Virasoro alge-

bra (or some “extended chiral algebra” A ⊃ Vir)

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)

(a quantum realization of `z = −zn+1 ∂
∂z), c = “central charge”.

In fact two copies of Vir, acting on variables z and z̄.

L0, L̄0, L−1, L̄−1 generators of rotation/dilatation, translations.

States fall into representations Vh ⊗ Vh̄ of Vir ⊗Vir:

Hilbert space : H = ⊕h,h̄Zh,h̄Vh ⊗ Vh̄ Zh,h̄ ∈ N .

Problem: Determine the possible multiplicities Zh,h̄.
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Problem: Determine the possible multiplicities Zh,h̄.

Cardy ’86 Compute the partition function on a torus, i.e., with

doubly periodic boundary conditions, and impose modular invari-

ance. Transfer matrix in statistical mechanics Z = tr T T .

Z must be invariant under L ↔ T :

Z = tr THT = tr TVL
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Problem: Determine the possible multiplicities Zh,h̄.
Cardy ’86 Compute the partition function on a torus, i.e., with doubly periodic

boundary conditions, and impose modular invariance.
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In CFT, translation operator on cylinder Lcyl−1 7→
−2iπ
L

(Lplane0 − c
24

), q := exp 2iπτ ,
=mτ > 0

Z = tr qL0−c/24q̄L̄0−c/24 =
∑
h,h̄

Zh,h̄χh(q)χ̄h̄(q̄)

with χh(q) = tr Vhq
L0−c/24. Z must be modular invariant, i.e.,invariant under

q = exp 2iπτ 7→ exp−2iπ/τ and q 7→ exp 2iπ(τ + 1).



Cardy ’86 Compute the partition function on a torus, i.e., with
doubly periodic boundary conditions, and impose modular invari-
ance.

In CFT, translation operator on cylinder Lcyl−1 7→
−2iπ
L

(Lplane0 − c
24

), q := exp 2iπτ ,
=mτ > 0

Z = tr qL0−c/24q̄L̄0−c/24 =
∑
h,h̄

Zh,h̄χh(q)χ̄h̄(q̄)

with χh(q) = tr Vhq
L0−c/24. Z must be modular invariant, i.e.,invariant under

q = exp 2iπτ 7→ q̃ = exp−2iπ/τ and q 7→ exp 2iπ(τ + 1).

Characters χh(q) transform by a linear, unitary, transformation
under these modular transformations, χi(q) =

∑
j Sijχj(q̃). Thus

Zh,h̄ = δhh̄ always a solution (diagonal).
Are there other solutions (with N00 = 1)?
Search in rational CFT’s, those that have a finite collection of
irreps of the chiral algebra (Vir or A).



Two classes of RCFT’s related to SU(2)

Minimal CFT’s, with c = 1 − 6(p−p′)2

pp′ , p, p′ two coprime inte-

gers [Belavin–Polyakov–Zamolodchikov], finite set of possible h-values,

hrs = (rp−sp′)2−(p−p′)2

4pp′ , 1 ≤ r ≤ p′ − 1,1 ≤ s ≤ p− 1; [Kac]

CFT’s with a current (aka affine Kac–Moody) algebra ŝu(2)

[Zamolodchikov] [Jan, J
b
m] = i εabcJ

c
n+m + knδn+m,0δab, k ∈ N, irreps

labelled by λ = 1, · · · , k + 1, c = 3k/(k + 2)

Non diagonal modular invariant solutions found gradually in the

spring 1986,

[Cardy], [Itzykson–Z], [Gepner–Witten], [Kac], [Gepner], [Z],

until complete solution was conjectured [Cappelli–Itzyskon–Z], with

parallel work on integrable lattice models [Pasquier].





Eigenvalues of adjacency matrix of diagram = 2 cosπ`n/h





Lattice height models

[Andrews–Baxter–Forrester], [Huse] had studied in-

tegrable lattice height “RSOS” models, in which at

each lattice site i, a “height” variable takes an in-

teger value hi ∈ {1, · · · , n}, and neighbouring sites :

heights |hi−hi+1| = 1. One of their critical regimes

was described by a minimal c < 1 CFT. Vincent Pasquier

Pasquier reinterpreted that as follows: hi is a node of diagram
2 3 n1 and neighbouring sites on the lattice are assigned

neighbouring heights on the diagram.
Then generalise to arbitrary diagram. Yang–Baxter integrability
condition (realized through the Temperley–Lieb algebra) and criticality
require that the eigenvalues of the adjacency matrix of the dia-
gram be in ]− 2,2[. Hence ADE Dynkin diagram!
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Proof of the ADE classification of modular invariants went in

two steps:

– characterization of all invariants, irrespective of the condition

Zhh̄ ∈ N, [Gepner–Qiu], [Cappelli–Itzykson–Z]

– imposing Zhh̄ ∈ N [CIZ], [Kato], later simpler proof by [Gannon]

Claude Itzykson Andrea Cappelli



Three natural questions:

1. Which of the items previously classified by ADE is that clas-

sification related to ?

2. Manifestations and/or implications of this ADE scheme ?

3. Extensions/generalizations to other RCFT ?



Three natural questions:

1. Which of the items previously classified by ADE is that

classification related to?

Long list of mathematical objects classified by ADE:

simply laced Dynkin diagrams, i.e., simply laced root systems [Killing], [Cartan]

finite simply laced crystallographic Coxeter (reflection) groups

finite subgroups of SU(2): McKay correspondence

Kleinian or simple singularities [Klein], [Arnold]

N-valued symmetric matrices with eigenvalues in ]− 2,2[;

finite index subfactors [Jones]

triplets of integers (p, q, r) such that 1
p

+ 1
q

+ 1
r
> 1

etc etc

2. Manifestations and/or implications of this ADE scheme ?

3. Extensions/generalizations to other RCFT ?



Three natural questions:

1. Which of the items previously classified by ADE is that clas-

sification related to?

2. Manifestations and/or implications of this ADE scheme?

Other occurrences of ADE in related theories or issues:

– N = 2 superCFT’s: chiral sector described by a “superpotential” in the list

of simple singularities [Martinec ’89], [Lerche–Vafa–Warner ’89]

– Graph algebras [Ocneanu], [Pasquier ’87] encode information about the Oper-

ator Product Algebra of the CFT [Pasquier ’87] [Petkova–Z ’94]

– Reflection group as a monodromy group of equations in TFT’s (twisted

N = 2 SCFT’s) [Dubrovin ’92]

– Boundary conditions are determined by the ADE graph [. . . ]

3. Extensions/generalizations to other RCFT ?



Boundary CFT: Cardy consistency condition

Zab =
∑
j∈E

ψ
(j)
a ψ

(j)∗
b

χj(e−4πL/T )

Sj1
=

∑
i

n b
iaχi(e−πT/L)

Cardy: diagonal theory, ψ(j)
a = Saj ⇒ Verlinde fusion algebra Nk

ij =
∑

`
Si`Sj`S∗k`
S1`

.

[Cardy ’89], [Saleur–Bauer ’89],[Cardy–Llewellen ’92]
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BCFT in non-diagonal theories
[Pradisi–Sagnotti–Stanev ’95], [Affleck–Oshikawa–Saleur ’98]

[Fuchs-Schweigert ’98], [Runkel-Schomerus ’98], [Watts], [Behrend-Pearce-Petkova-Z ’98]

Zab =
∑
i

n b
iaχi(e−πT/L) =

∑
j∈E

ψ
(j)
a ψ

(j)∗
b

χj(e−4πL/T )

Sj1

The index j ∈ E runs over the labels of the diagonal matrix elements of Z

(Coxeter exponents and generalization).

Roger Behrend Paul Pearce Valentina Petkova

n b
ia =

∑
j∈E

Sij
Si1
ψ(j)
a ψ(j)∗

b form a nim-rep (non-negative integer valued represen-

tation) of the fusion (Verlinde) algebra: ninj =
∑

kN
k
ijnk Nk

ij =
∑

`
Si`Sj`S∗k`
S1`

.

For ŝu(2) theories and minimal models, the matrix n2 should have its eigenval-

ues in ]−2,2[, hence be the adjacency matrix of an ADE Dynkin diagram!



Return to question 1:

1. Which of the items previously classified by ADE is that

classification related to?

– simply laced Dynkin diagrams, i.e., simply laced root systems ?

– finite simply laced crystallographic Coxeter (reflection) groups [Dubrovin] X

– finite subgroups of SU(2): McKay correspondence: the ni matrices are

related to Kostant polynomials. . . [DiFrancesco],[Ocneanu],[Dorey],[Z] X

– Kleinian or simple singularities : N = 2 SCFT’s [Martinec ’89], [Lerche–Vafa–

Warner ’89] X

– N-valued symmetric matrices with eigenvalues in ]−2,2[: [Pasquier, BPPZ] X

– subfactors of finite index [Pasquier] X

– triplets of integers (p, q, r) such that 1
p

+ 1
q

+ 1
r
> 1 ?



Three natural questions:
1. Which of the previous items classified by ADE is that classi-
fication related to ?
2. Manifestations and/or implications of this ADE scheme ?
3. Extensions/generalizations to other RCFT ?
Go over to ŝu(3) current algebra and associated lattice models.
– List of modular invariants [Bernard ’87] . . . completed by Gannon
’94
– Are there corresponding graphs ? Guiding principle: the la-
bels of diagonal matrix elements of Z must also parametrize the
eigenvalues of the adjacency matrix. Graph= deformation/truncation
of SU(3) weight lattice. Possibly, graphs are deformations/truncations
of graphs of finite subgroups of SU(3) (generalized McKay ?).

First examples due to [Kostov ’88]. Then [Di Francesco-Z ’89] with
“computed-assisted-flair”: finite list of exceptional graphs. List
finally completed in 2000 [Ocneanu], [Pugh–Evans]
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Adrian Ocneanu and JBZ
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Ocneanu’s graphs and defects in CFT’s



These graphs encode the partition functions Zx|y in the presence
of defect lines [Petkova–Z’00]

Generalized to higher rank [Coquereaux et al] [Evans–Kawahigashi et

al]

Big pattern and several approaches:
– fusion algebras of fields (CVO), of boundaries, of defects
– “Ocneanu’s cells”
→ 3-j and 6-j symbols of CVO algebra and
→ Boltzmann weights of integrable lattice models
– Ocneanu’s “double triangle algebra” as a weak Hopf algebra
[Böhm–Szlachányi], [Ostrik] . . .
– operator algebra picture, subfactors, α-induction etc. [Xu,

Böckenhauer–Evans–Kawahigashi–Pugh]

– 2D-CFT’s ↔ 3D-TFT’s, [Fröhlich–Fuchs–Runkel–Schweigert]



One last natural question: What do these new graphs en-

code, from a geometric point of view?

Generalized root system and corresponding reflection group ?

[Z. ’97] : reflection group relevant in Topological FT’s à la Dubrovin??

Higher Lie theory ? [Ocneanu] . . .



Thank you


