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A review of the basics of the QCD parton evolution picture is given with an

emphasis on recent findings that reveal intrinsic beauty, and hint at hidden potential

simplicity, of the perturbative quark–gluon dynamics.

I. INTRODUCTION

We are witnessing an explosive progress in analytical and numerical methods and tech-

niques for deriving sophisticated pQCD results, prompted to a large extent by the LHC

needs. The permanent fight for increasing the accuracy of pQCD predictions is being fought

on two fronts: on the one hand, increasing the αs-order of the exact matrix element calcula-

tions (hard parton cross sections) and, on the other hand, improving perturbative description

of space-like (parton distribution functions) and time-like (fragmentation functions) quark–

gluon cascades. The first battleground is process specific; the second one is universal and is

usually referred to as parton dynamics.

The universal nature of the parton dynamics goes under the name of factorisation of

collinear (“mass”) singularities. Physically, it is due to the fact that quark–gluon multi-

plication processes happen at much larger space–time distances than the hard interaction

itself. It is this separation that makes it possible to describe quark–gluon cascades in terms

of independent parton splitting processes. They success one another in a cleverly chosen

evolution time, t ∼ lnQ2, whose flow “counts” basic parton splittings that occur at well

separated, strongly ordered, space–time scales. Perturbative structure of the cross section

of a given process p characterised by the hardness scale Q2 can be cast, symbolically, as a

product (convolution) of three factors (for a review see [1]):

σ
(p)
h (lnQ2) ∝ C(p)[αs(t)] ⊗ exp

(
∫ t

t0

dτ P [αs(τ)]

)

⊗ wh(t0), t ∼ lnQ2. (1)
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Here the functions C[αs] (hard cross section; coefficient function) and P [αs] (parton evo-

lution; anomalous dimension matrix) are perturbative objects analysed in terms of the αs-

expansion. The last factor wh embeds non-perturbative information about parton structure

of the participating hadron(s) h, be it a target hadron in the initial state (parton distribu-

tion) or a hadron triggered in the final state (fragmentation function).

A borderline between perturbative and non-perturbative ingredients in (1) is fictitious;

it is set arbitrarily by choosing the launching hardness scale t0 ∼ lnQ2
0. This is however

not the only arbitrariness present in the representation (1). Namely, beyond the leading ap-

proximation (one loop; P ∝ αs), the separation between the C and exp(P ) factors becomes

scheme dependent. Here one talks about factorisation scheme dependence. Another nego-

tiable object is the expansion parameter αs itself whose definition depends on the ultravio-

let renormalisation procedure (renormalisation scheme dependence). The so-called MS-bar

scheme — a precisely prescribed procedure for eliminating ultraviolet divergences, based on

the dimensional regularisation — won the market as the best suited scheme for carrying

out laborious high order calculations. It is this scheme in which the parton “Hamiltonian”

P was recently calculated up to next-to-next-to-leading accuracy, α3
s, by Moch, Vermaseren

and Vogt in a series of papers [2, 3].

Formally speaking, the physical answer does not depend on a scheme (either factorisation

or renormalisation) one chooses to construct the expansion. There is a big if however which

renders this motto meaningless. It would have been the case, and consolation, if we had

hold of the full perturbative expansion for the answer. But this goal is not only technically

unachievable. More importantly, it is actually useless. Perturbative expansions in QFT are

asymptotic series. This means that starting from some order, n > ncrit = const(p)/αs, a

series for any observable (p) inevitably goes haywire and ceases to represent the answer.

For QED where ncrit ∼ 100 this is an academic problem. In QCD on the contrary the best

hope the perturbative expansion may offer is a reasonable numerical estimate based on the

first few orders of the perturbation theory (whose intrinsic uncertainty can often be linked

with genuine non-perturbative effects). This being understood, it becomes legitimate, and

mandatory, to play with perturbative series and try to recast a formal αs expansion in the

most relevant way, the closest to the physics of the problem.

In the beginning of the lecture I will remind you of the basics of parton dynamics, of

the origin of logarithmically enhanced contributions that lie in the core of the QCD parton
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picture. The basic one-loop parton Hamiltonian was long known to possess a number of

symmetry properties which made the problem look over-restricted and hinted at possible

hidden simplicity of the parton dynamics.

We shall discuss in detail the notion of the parton evolution time and how it gets modified

due to coherence effects in space-like (DIS) and time-like (e+e− annihilation) processes.

Then, we will have a closer look at an intimate relation between evolution of space- and

time-like parton cascades which I believe has not been properly explored. I will argue that

paying a deeper respect to this inter-relation should help to better grasp the complicated

structure of two and three loop anomalous dimensions as they are known today.

II. PARTON DYNAMICS

A. Hard QCD processes and partons

Hard processes answered the quest for finding out what hadrons are made of. The answer

was rather childish but productive: take a hammer and hit hard to see what is it there inside

your favourite toy.

We may hit (or heat, if you please) the vacuum as it happens in e+e− → qq̄ → hadrons.

Then, one may hit a proton with a sterile (electroweak) probe giving rise to the famous Deep

Inelastic lepton-hadron Scattering (DIS) : e−p → e− + X. Finally, make two hadrons hit

each other hard to produce either a sterile massive object like a µ+µ− pair (the Drell-Yan

process), an electroweak vector boson (Z0, W±), or a Higgs, or a direct photon or a hadron

with large transverse momentum with respect to the collision axis. Importantly, in all cases

it is large momentum transfer which is a measure of the hardness of the process.

Let us turn to DIS as a classical example of a hard process.

P
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Here the momentum q with a large space-like virtuality Q2 = |q2| is transferred from an

incident electron (muon, neutrino) to the target proton, which then breaks up into the final
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multihadron system. Introducing an invariant energy s = 2(Pq) between the exchange

photon (Z0, W±) with 4-momentum q and the proton with momentum P , one writes the

invariant mass of the produced hadron system which measures inelasticity of the process as

W 2 ≡ (q + P )2 −M2
p = q2 + 2(Pq) = s(1 − x) , x ≡ −q2

2(Pq)
≤ 1 .

The cross section of the process depends on two variables: the hardness q2 and Bjorken x.

For the case of elastic lepton-proton scattering one has x≡1 and it is natural to write the

cross section as

dσel

dq2 [dx]
=

dσRuth

dq2
· F 2

el(q
2) · [δ(1 − x)] . (2a)

Here σRuth ∝ α2/q4 is the standard Rutherford cross section for e.m. scattering off a point

charge and Fel stands for elastic proton form factor. For inclusive inelastic cross section one

can write an analogous expression by introducing “inelastic proton form factor” which now

depends on both the momentum transfer q2 and the inelasticity parameter x:

dσin

dq2 dx
=

dσRuth

dq2
· F 2

in(x, q2) . (2b)

What kind of behavior of the form factors (2) could one expect in the Bjorken limit Q2 → ∞?

Quantum mechanics tells us how the Q2-behavior of the electromagnetic form factor is

related to the charge distribution inside a proton:

Fel(Q
2) =

∫

d3r ρ(r ) exp {iQ · r} .

For a point charge ρ(r) = δ3(r), it is obvious that F ≡ 1. On the contrary, for a smooth

charge distribution F (Q2) falls with increasing Q2, the faster the smoother ρ is. Experimen-

tally, the elastic e-p cross section does decrease with q2 much faster that the Rutherford one

(Fel(q
2) decays as a large power of q2). Does this imply that ρ(r) is indeed regular so that

there is no well-localized — point-charge inside a proton? If it were the case, the inelastic

form factor would decay as well in the Bjorken limit: a tiny photon with the characteristic

size ∼ 1/Q → 0 would penetrate through a “smooth” proton like a knife through butter,

inducing neither elastic nor inelastic interactions.

However, as was first observed at SLAC in the late sixties, for a fixed x, F 2
in stays

practically constant with q2, that is, the inelastic cross section (with a given inelasticity) is

similar to the Rutherford cross section (Bjorken scaling). It looks as if there was a point-

like scattering in the guts of it, but in a rather strange way: it results in inelastic break-up
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dominating over the elastic channel. Quite a paradoxical picture emerged; Feynman–Bjorken

partons came to the rescue.

Imagine that it is not the proton itself that is a point-charge-bearer, but some other

guys (quark–partons) inside it. If those constituents were tightly bound to each other, the

elastic channel would be bigger than, or comparable with, the inelastic one: an excitation of

the parton that takes an impact would be transferred, with the help of rigid links between

partons, to the proton as a whole, leading to elastic scattering or to formation of a quasi-

elastic finite-mass system (Nπ, ∆π or so), 1−x� 1.

To match the experimental pattern F 2
el(q

2) � F 2
in(q2) = O(1) one has instead to view

the parton ensemble as a loosely bound system of quasi-free particles. Only under these

circumstances does knocking off one of the partons inevitably lead to deep inelastic breakup,

with a negligible chance of reshuffling the excitation among partons.

The parton model, forged to explain the DIS phenomenon, was intrinsically paradoxical

by itself. In sixties and seventies, there was no other way of discussing particle interactions

but in the field-theoretical framework, where it remains nowadays. But all reliable (renor-

malisable, 4-dimensional) quantum field theories (QFTs) known by then had one feature

in common: an effective interaction strength g2(Q2) — the running coupling — increasing

with the scale of the hard process Q2. Actually, this feature was widely believed to be a

general law of nature. At the same time, it would be preferable to have it the other way

around so as to be in accord with the parton model, which needs parton–parton interaction

to weaken at small distances (large Q2).

Only with the advent of non-Abelian QFTs (and QCD among them) exhibiting an anti-

intuitive asymptotic-freedom behavior of the coupling, the concept of partons was to become

more than a mere phenomenological model.

B. Partons and Quantum Field Theory

Thus, the existence of the limiting distribution

F 2
inelastic(q

2, x) =⇒ Dq
P (x) ; |q2| → ∞, x = const,

constituted the Bjorken scaling hypothesis. It became immediately clear however that the

Bjorken scaling regime is unattainable in the QFT framework. Indeed, in QFT particle



6

virtualities (transverse momenta) are not limited as the parton model suggested. In partic-

ular, in a DIS process, “partons” (quarks and gluons) may have transverse momenta k2
⊥ up

to Q2 = |q2|. As a result, the number of particles turns out to be large in spite of small

coupling:
∫

dw ∝
∫ Q2

αs

π

dk2
⊥

k2
⊥

∼ αs

π
lnQ2 = O(1) .

Such — “collinear” — enhancement is typical for QFTs with dimensionless coupling, known

as “logarithmic” Field Theories, and makes the probability of finding a QCD parton, q, inside

the target, h, depend on the “resolution”, q2,

Dq
h = Dq

h(x, lnQ
2) .

Physically, a particle is surrounded by a virtual coat ; its visible content depends on the

resolution power of the probe λ = 1/Q = 1/
√

−q2. So, a QCD parton is not a point-like

particle as the orthodox parton model implied.

Large probability of quark–gluon multiplication processes posed another serious problem.

The Feynman–Bjorken picture of partons employed the classical probabilistic language, ex-

pressing the hadron interaction cross section as the product of the corresponding parton cross

section and the probability to find a proper parton inside the hadron target: σh = σq ⊗Dq
h.

However, as we see, quarks and gluons multiply willingly, w = O(1). Is there any chance

in these circumstances to speak of “QCD partons”, to use the language of probabilities?

The question may sound silly, since in QFT the number of Feynman graphs grows with the

number n of participating particles very fast, roughly as (n!)2, so that the quest of rescuing

probabilistic interpretation of quark–gluon cascades looks hopeless.

However, let us ask ourselves, which are the graphs that contribute most? In other

words, which are the most probable parton fluctuations? Selecting in the n-th order of the

perturbative expansion the maximally enhanced contributions,

(αs)
n =⇒ (αs · lnQ2)n = O(1),

constitutes the logic of the so-called Leading Log Approximation (LLA) [4].

In the DIS environment, the initial parton A with a negative (space-like) virtuality decays

into B with the large space-like virtual momentum |k2
B| � |k2

A| and a positive virtuality

(time-like) C. The parton C generates a subjet of secondary partons (→ hadrons) in the

final state. As long as the process is inclusive, that is that no details of the final state
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structure are measured, integration over the subjet mass is due, dominated in LLA by the

region k2
C � |k2

B|. The latter condition makes C look quasi-real as compared with the hard

scale of |k2
B|. The same is true for the initial parton A.

Given this ordering of virtualities of participating partons, the splitting can be viewed as

a large momentum transfer process of scattering (turnover) of a “real” target parton A into

a “real” C in the external field mediated by high-virtuality B. At the next step of evolution

it is B’s turn to play a rôle of a next target B ≡ A′, “real” with respect to yet deeper probe

|k′2B| � |k2
B|, and so on.

Successive parton decays with step-by-step increasing space-like virtualities (transverse

momenta) constitute the picture of parton wave-function fluctuations inside the proton. The

sequence proceeds until the overall hardness scale Q2 is reached.

C. Apparent and hidden beauty of Parton Dynamics

Dependence of the parton decay probability A → B[z] + C[1 − z] on the momentum

fraction variable z is given by the “splitting function” ΦBC
A (z). When studying inclusive

characteristics of parton cascades, one traces a single route of successive parton splittings.

Having this in mind, we can drop the label that marks partons C whose fate does not concern

us, ΦBC
A (z) =⇒ PB

A (z) or, in the standard Altarelli–Parisi [5] notation, ≡ PBA(z).

We cannot predict, from the first principles, parton content (B) of a hadron (h). However,

perturbative QCD tells us how it changes with resolution of the DIS process — momentum

transfer Q2. It is driven by the parton Evolution Equation whose structure reminds that of

the Schrödinger equation. In the leading order (one loop, LLA) it reads

d

d lnQ2
DB

h (x,Q2) =
αs(Q

2)

2π

∑

A=q,q̄,g

∫ 1

x

dz

z
PB

A (z) ·DA
h (
x

z
,Q2). (3)

To fully appreciate the power of the probabilistic interpretation of parton cascades have a

deeper look at parton splitting probabilities — our evolution Hamiltonian.

For discussion of the relations between the LLA splitting functions it is convenient to

strip off colour factors and introduce

P q
q (z) = CF V

q
q (z) , P g

q (z) = CF V
g
q (z) ,

P q
g (z) = TR V

q
g (z) , P g

g (z) = CA V
g
g (z) .

(4)
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Here CF and CA = Nc are the familiar quark and gluon “colour charges”, while TR is a

scientific name for one half:

Tr(tatb) =

Nc
∑

i,k=1

taik t
b
ki ≡ TR δ

ab =
1

2
δab .

In this notation the LLA splitting probabilities read

q

P

2

3

4

5

1
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z

1−z
V q

q (z) =
1 + z2

1 − z
(5a)

z

V g
q (z) =

1 + (1−z)2

z
(5b)

z

V q
g (z) =

[

z2 + (1−z)2
]

(5c)
z

V g
g (z) =

1 + z4 + (1−z)4

z(1 − z)
(5d)

They have the following remarkable symmetry properties.

Parton Exchange results in an obvious relation between probabilities to find decay prod-

ucts with complementary momentum fractions:

V
B(C)
A (x) = V

C(B)
A (1 − x) . (6a)

Another relation between the elements of the LLA parton Hamiltonian is the

Gribov-Lipatov Reciprocity

V A
B (x) = (−1)2sA+2sB−1 x V B

A

(

x−1
)

. (6b)

It is a marriage between the

Drell-Levy-Yan Crossing Relation that links two splitting processes corresponding to

opposite “evolution time” sequences [6],

V
A

B (x) = (−1)2sA+2sB−1 x V B
A

(

x−1
)

, (6c)

(with sA the spin of particle A) and the

Gribov-Lipatov relation

V
B

A(x) = V B
A (x), (6d)
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stating that “Hamiltonians” that govern the LLA dynamics of space- (V ) and time-like

parton cascades (V ) are simply identical [4].

The LLA relations (6a)–(6d) are of general nature as they hold not only in QCD but for

any logarithmic QFT. In fact they were first established and discussed in the QFT models

of fermions–“quarks” interacting with pseudoscalar and Abelian vector “gluons” [4, 7, 8].

The relations (6a) and (6b) do not leave much freedom for splitting functions. One could

borrow V q
q from QED textbooks, reconstruct V g

q by exchanging the decay products (6a),

and then obtain V q
g using the crossing (6b). This is the way to generate all three splitting

functions (5a)–(5c) relevant for the Abelian model.

The last gluon-gluon splitting function (5d) transforms into itself under both (6a) and

(6b). The more surprising is the fact that the gluon self-interaction kernel could actually

have been also obtained “from QED” using the

Super-Symmetry Relation [9]

V q
q (x) + V g

q (x) = V q
g (x) + V g

g (x) , (6e)

which reflects the existence of the supersymmetric QFT closely related to real QCD. But

even this is not the end of the story.

Conformal Invariance leads to a number of relations (involving derivatives) between

splitting functions, the simplest of which reads [8]

(

x
d

dx
− 2

)

V q
g (x) =

(

x
d

dx
+ 1

)

V g
q (x) . (6f)

Generality of the symmetry properties makes them practically useful when studying sub-

leading effects in parton dynamics where one faces technically difficult calculations.

To illustrate the idea have a look at one of the most advanced results — the next-to-

next-to-leading prediction for the ratio of mean parton multiplicities in gluon and quark jets

derived by Gaffney and Mueller [10],

Ng

Nq

' Nc

CF

−
(

Nc

CF

+
Tf

CF

− 2
Tf

Nc

)

[

√

αsNc

18π
+
αsNc

18π

(

25

8
− 3Tf

4Nc

− TfCF

N2
c

)

]

.

Here Tf ≡ 2nfTR, with 2nf the number of fermions (quarks and antiquarks of nf flavours).

Symmetry between quarks (fermions) and gluons (bosons) is hidden in QCD. It becomes

manifest in QCD’s supersymmetric partner QFT in which “quark” and “gluon” belong to
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the same (adjoint) representation of the colour group. Given identity of all colour factors

in (4), CF = CA = TR, the relation (6e) can be spelled out as an equality of the total

probabilities of “quark” and “gluon” decays. (By the way, the fact that it holds identically

in x means that there is an infinite number of non-trivial hidden conservation laws in this

theory!)

Equating the colour factors and bearing in mind another subtlety, nf = 1
2

(since the

“quark” is a Majorana fermion there), it is easy to see that the ratio of multiplicities in

“quark” and “gluon” jets indeed turns into unity, in all known (as well as in all unknown)

orders. The SUSY-QCD [11] (see also [12] and references therein) had been also used to judge

two contradictory calculations of the next-to-LLA (two-loop) anomalous dimensions in the

early 80s [13, 14]. Let me mention that at the three loop level the fate of the SUSY relation

for the anomalous dimension matrix remains unknown since the necessary translation of the

MS-bar results [2, 3] to a SUSY-respecting renormalisation scheme (based on “dimensional

reduction” rather than “regularisation” [15]) has not been established yet.

III. EVOLUTION TIME AND COHERENCE

A. Relating DIS and e
+
e
−

As we have seen above, space- and time-like parton cascades are intimately related. No

surprise, this. In the DIS case a large virtual momentum q transferred from an incident

lepton to a target nucleon with momentum P is space-like, q2 < 0. Remind you, inelasticity

of the process is conveniently characterised by the Bjorken variable xB = −q2/2(Pq). On the

other side, inclusive fragmentation of an e+e− pair with total momentum q (large positive

invariant mass squared q2) into a final state hadron with momentum P is characterised

by the Feynman variable xF = 2(Pq)/q2 (hadron energy fraction in the e+e− cms.). The

fact that Bjorken and Feynman variables are indicated by the same letter is certainly not

accidental. In both channels 0 ≤ x ≤ 1 though these variables are actually reciprocal,

xF ⇐⇒ 1/xB, rather than identical:

xB =
−q2

2(Pq)
, xF =

2(Pq)

q2
. (7)

One x becomes the inverse of the other after the crossing operation Pµ → −Pµ. Apart from

the difference in the hadron momentum P belonging to the initial state in DIS and final state
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in e+e− case, Feynman diagrams for the two processes are just the same. In particular, “mass

singularities” that emerge when some parton momentum become collinear to P are therefore

also the same. That is why in the two processes similar parton interpretation emerges in

terms of QCD evolution equations, and space- and time-like evolution anomalous dimensions

turn out to be related.

In fact, relations between the two objects are many and this may cause confusion. Let

us recall and discuss three important ones.

a. Drell-Levy-Yan relation. The DLY relation (6c) has a “kinematical” origin in a

manner of speaking, as it follows directly from the comparison of the structure of Feynman

diagrams in space- and time-like channels. As we have seen above it states that the e+e−

splitting function can be obtained from that of DIS by replacing xB → 1/xF (modulo a kine-

matical factor). So, the DLY relation addresses functional dependence on x of two different

functions, the time-like anomalous dimension γ+(α, x) and the space-like one, γ−(α, x), irre-

spectively to the value of the argument, x. In higher loops, (6c) was being used to determine

time-like splitting functions from their space-like counterparts.

b. Analytic continuation. This is a different story. It is about deriving, say, γ+(x)

by analytic continuation of the function γ−(x) into the unphysical region x > 1 (and then

replacing x → 1/x < 1). The continuation path crosses a singular point x=1. This calles

for special care to be taken of defining certain complex logarithms in “arithmetic” sense,

ln(1 − x) =⇒ | ln(1 − x)|, see [8, 9]; beyond the first loop, see [12] and references therein.

c. Gribov-Lipatov relation. Finally, the GL relation (6d) states simply γ+(α, x) =

γ−(α, x) and applies in the physical regions of both channels, x ≤ 1, though the vari-

ables are actually given by different expressions (7). True in the leading order (LLA), this

relation is known to break beyond the first loop. But why?. . .

B. Long live parton fluctuation time!

It is instructive to look more carefully into the origin of logarithmically enhanced contri-

butions to the DIS cross section. Introducing two light-like vectors pµ
1 and pµ

2 one can write

down Sudakov (light-cone) decomposition of momenta:

kµ = βpµ
1 + αpµ

2 + kµ
⊥ , k2 = αβs− k2

⊥

(

s = 2Pq , (kµ
⊥)2 = −k2

⊥

)

. (8)
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Then, for kµ
1 + kµ

2 + kµ
3 = 0 it is straightforward to derive the identity

k2
1

β1
+
k2

2

β2
+
k2

3

β3
=

β1β2

β3

(

k⊥1

β1
− k⊥2

β2

)2

. (9)

Let us now apply this general relation to the parton splitting that involves a space-like

parton A decaying into B+C. Choosing for the sake of simplicity the direction of p1 so that

P

q

k

kB

A

k
C
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k⊥A = 0 (so that k⊥B = −k⊥C ≡ k⊥ is relative transverse

momentum in the splitting) the relation (9) applied to our

basic space-like splitting A→ B[z] + C[1 − z] gives

−k2
B

z
=

−k2
A

1
+

k2
C

1 − z
+

k2
⊥

z(1 − z)
, (10)

where z is the longitudinal momentum fraction — the ratio

of the Sudakov light-cone variables β. Since the 4-momenta

of A and B are space-like, all terms in (10) are positive.

B being an intermediate virtual state, k2
B enters Feynman denominators in the matrix

element. The collinear-log contribution arises upon integration over k2
⊥, over the region

where the last term dominates in the r.h.s. of (10), that is from the region

|k2
B|
z

' k2
⊥

z(1 − z)
� |k2

A|
1
,

k2
C

1 − z
. (11)

The physical origin of this strong inequality becomes transparent in terms of lifetimes of

virtual states (pµ
1 ' P µ, pµ

2 = qµ + xP µ)

βiP

|k2
i |

' k0
i

|k2
i |

= τi, τB � τA , τC . (12)

This shows that LLA contributions originate from the sequence of branchings well separated

in the fluctuation time (12). Invoking the local-scattering analogy (recall A → C on the

“external field” B), we can say that the classical picture naturally implies “fast scattering”:

probing time τB much smaller than proper lifetimes of the “target” before (τA) and after

the scattering occurs (τC).

In DIS kinematics, evolution goes from the proton side and, on the way towards the virtual

probe Q2, parton fluctuations become successively shorter-lived (the “probe” is faster than

the fluctuation time of the “target”). Assembling a “ladder” of successive parton splittings

we have the nth-order LLA contribution (αs lnQ2)n coming from time-ordered kinematics

P

µ2
� τ1 � τ2 � . . . � τn � xP

−q2
; x = xBjorken ≡ −q2

2Pq
. (13a)
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In the crossing channel, e+e− → qq̄ → h(x)+X, the process starts from a large scale q2 (cms

annihilation energy) and results in triggering a final particle h with momentum P . Here

order of events is opposite: a parton of the generation (i + 1) lives longer than its parent

(i):
P

xq2
� τ1 � τ2 � . . . � τn � P

µ2
; x = xFeynman ≡ 2Pq

q2
, (13b)

where we have used that the energy of the initial quark stemming form the γ∗ → qq̄ vertex

is q0/2 = P/xF .

Comparing the two sequences (13) we see that the x→ x−1 reciprocity is well present in

the ordering of successive fluctuation times. So, why does the Gribov–Lipatov relation break

up in higher orders? The answer is simple: it is because we never followed the fluctuation

time ordering for constructing anomalous dimensions. And for a good reason it seemed.

C. Coherent effects in space- and time-like parton evolution

Beyond the 1st loop, it starts to matter how does one order successive parton splittings.

That is, what variable precisely one takes for parton evolution time t ∼ lnQ2.

Within the LLA framework it does not make much sense to argue which of possible

“evolution times” ln(k2/β), or ln k2, ln k2
⊥ or alike, does a better job: various options differ by

subleading terms O(αs), negligible compared with αs lnQ ∼ 1. However, when numerically

small values of Bjorken x are concerned the next-to-LLA mismatch contributions amount to

αs ln2 βi+1

βi

= αs ln2 z =⇒ (αs ln2 x)n. (14)

They become significant and must be taken care of — “resummed” — in all orders when

αs ln2 x ∼ 1. In this situation soft gluon emission comes onto stage. Here we better be

careful: the catch is, for a relatively soft gluon with z � 1 to be emitted later does not

guarantee being emitted independently. Quantum mechanics, you know. Interference dia-

grams with gluon radiation off harder partons of different generations enter the game. Does

this imply losing probabilistic picture? Not necessarily. It was realised quite some time ago

that probabilistic interpretation could be rescued by simply cutting off definite part of the

logarithmic phase space formally allowed by the “kinematical” fluctuation time ordering.

In the DIS environment, the transverse momentum ordering proved to be the one that

took good care of potentially disturbing corrections (14) in all orders, and in this sense
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became a preferable choice for constructing the probabilistic scheme for space-like parton

cascades (DIS structure functions). On the other hand, in the case of time-like cascades

it turned out to be the relative angle between offspring partons (rather than transverse

momentum) that had to be kept ordered, decreasing along the evolutionary decay chain

away from the hard production vertex;

dt− = d ln k2
⊥ (space-like), (15a)

dt+ = d ln
k2
⊥

β2
(time-like). (15b)

Observing that k⊥/βP = k⊥/k+ = 2 tan(θ/2), we confirm that the variable (15b) corre-

sponds indeed to angular ordering.

The choice of the variables (15) is a clever dynamical move which takes into consideration

soft gluon coherence and prevents explosively large terms (14) from appearing in higher loop

anomalous dimensions. What is the difference between the two prescriptions (15) and how

do they relate to the fluctuation time ordering represented by (13)?

For z � 1 we have |k2| ' k2
⊥ and the comparison goes as follows

DIS











time ordering: τi =
βiP

k2
⊥i

> τi+1 =
βi+1P

k2
⊥i+1

,

k⊥ ordering: k⊥i < k⊥i+1;

mismatch =⇒ z · k2
⊥i < k2

⊥i+1 < k2
⊥i, (16a)

while for the time-like cascades

e+e−















time ordering: τi =
βiP

k2
⊥i

< τi+1 =
βi+1P

k2
⊥i+1

,

angular ordering: θi =
k⊥i

βiP
> θi+1 =

k⊥i+1

βi+1P
;

mismatch =⇒ θ2
i < θ2

i+1 <
θ2

i

z
. (16b)

We conclude that in both cases the fluctuation time ordering turns out to be more liberal

than the corresponding “clever dynamical variable”. Let me briefly remind you underlying

physics of QCD coherence that overrides the τ ordering in each of the two channels.

1. DIS: Vanishing of forward inelastic diffraction

Let us zoom onto a bit of the DIS ladder — a two-step space-like evolution process

ki−1 → ki + k′, ki → ki+1 + k′′; βi−1 > βi � βi+1, (17)
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which is composed of two successive decays producing in the end of the day a soft gluon

ki+1. In the kinematical region (16a) the time-ordering is still intact, which means that the

virtual space-like momentum ki+1 is transferred fast as compared with the lifetime of the

first fluctuation ki−1 → ki + k′.

Since ki+1 is the softest, energy-wise, the process can be viewed as inelastic diffraction

in the external gluon field (ki+1). The transverse size of this field is ρ⊥ ∼ k−1
⊥i+1. The

characteristic size of the fluctuation ki−1 → ki + k′, according to (16a), is smaller: ∆r⊥ ∼
k−1
⊥i < ρ⊥. We thus have a compact state propagating through the field which is smooth at

distances of the order of the size of the system and cannot therefore resolve internal structure

of the fluctuation. In these circumstances you have to consider also scattering of the final

state parton k′ off the field, in addition to that of the soft virtual offspring ki. You will

observe that the two components of the fluctuation scatter coherently. As a result the sum

of the two amplitudes will turn out to be identical, and opposite in sign, to the interaction

of the external field (ki+1) with the initial state ki−1. Inelastic breakup does not occur.

In QCD the cancellation of these three amplitudes in the region (16a), and thus the k⊥

ordering, is a direct consequence of conservation of colour current. The underlying physics

is however more general. Phenomenon of vanishing of inelastic transitions in the forward

direction was demonstrated by V.N. Gribov in the late 60s on the example of diffractive

dissociation of deuteron, which example he used in order to construct the so-called weak

reggeon coupling regime in general context of high energy hadron interactions.

2. e
+
e
−: No soft gluon multiplication at large angles

Now we have to examine the same two-step process (17) but with all the parton momenta

being time-like. The way coherence works here turns out to be spectacularly different.

Physics of QCD angular ordering in soft gluon multiplication has a good old QED predecessor

— the Chudakov effect. In the 50s cosmic ray physics was a synonym of high energy physics.

An electron traversing the cosmic ray detector was

leaving a trace in photo-emulsion looking like this:

A pair of charges emerging from γ → e+e− was

expected to show up as a double density track:

What was observed instead looked rather like →
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Physical electron is a charge surrounded by proper Coulomb field. In quantum language

the Lorentz-contracted Coulomb-disk attached to a relativistic particle may be treated as

consisting of photons virtually emitted and, in due time, reabsorbed by the core charge.

Such virtual emission and absorption processes form a coherent state which we call a “phys-

ical electron” (dressed particle). It is this Coulomb field which is responsible for electron

interaction with the emulsion, ionising the atoms it passes by. But this field is not given

for granted: the photon conversion produces not “physical” charges but “half-dressed” ones.

Their proper field-coats lack components whose lifetime is larger than that of the production

process itself, τ0 ∼ 1/
√

(Pe+ + Pe−)2. It takes time to build up Coulomb disks adjusted to

the charges. In the course of this regeneration process, extra photon radiation takes place

giving rise to two bremsstrahlung cones centered around Pe+ and Pe−.

ϑ e

k

p
ϑp+kphoton

Let ϑe be an opening angle of the e+e− fork, and θ

the angle of secondary photon radiation off one of the

charges. To evaluate the formation time of the photon k

we use the uncertainty relation to estimate the lifetime

of the virtual electron state p+ k as follows:

tform ' (p+ k)0

(p+ k)2
' p0

2p0k0(1 − cosϑ)
' 1

k0ϑ2
' 1

k⊥
· 1

ϑ
= λ⊥ · 1

ϑ
(18)

What will the photon “see” when its formation time (18) elapses and it has to decide

whether to get radiated? Look at the distance between the charges ∆r — the size of the

e+e− dipole — and compare it with characteristic size of the photon-to-be, λ|| ∼ ω−1,

λ⊥ ∼ k−1
⊥ ' (ωϑ)−1:

∆r|| ∼
∣

∣v2|| − v1||

∣

∣ · c tform ∼ ϑ2
s ·

1

ωϑ2
=

(

ϑs

ϑ

)2

λ|| ⇔ λ|| ; (19a)

∆r⊥ ∼ ϑs · c tform ∼ ϑs ·
1

ωϑ2
=

(

ϑs

ϑ

)

λ⊥ ⇔ λ⊥ . (19b)

At angles smaller than the angle between the charges, ϑ < ϑe, the photon sees the two

charges as independent classical emitters. On the contrary, when ϑ > ϑe it cannot resolve

the internal structure of the pair and interacts with the total electric charge of the system.

In our QED example the latter is zero so that photons disappear altogether.

Returning to QCD cascades, see (17), large angle secondary gluon radiation (ki+1) may

be still present. However, coherent sum of emission amplitudes off the partons of the previ-

ous generation, k′′ and k′, will make its intensity proportional not to the sum of the squared
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colour charges of the “parents” but to the squared charge of the “granddad” ki−1. Prob-

abilistically, it is the granddad the emission of the soft gluon ki+1 has to be ascribed to.

Angular ordering, that is. It does not matter whether the parton ki−1 actually split into two

or whether there was a whole bunch of partons with small relative angles between them.

Soft gluon radiation at large angles is sensitive only to the total colour charge of the final

parton system, which equals the colour charge of the initial parton. This physically trans-

parent statement holds for arbitrary processes involving quark and gluons (or any other

colour objects for that matter).

IV. ISN’T QCD ACTUALLY SIMPLE?

So, fluctuation time ordering proves to be wrong both in space- and time-like kinematics.

Interestingly, it also happens to be equally, symmetrically wrong: the τ -ordering positions

itself just in the middle between the two “clever” ones:

k2
⊥ =⇒ k2

⊥

z
=⇒ k2

⊥

z2
.

What if we decided to play a fool and stubbornly stick to the “wrong” τ -ordering?

Combining (12) and (13) we get the upper limits of virtuality integrals to be

DIS :
∣

∣k2
i

∣

∣ � βi

βi+1

∣

∣k2
i+1

∣

∣ = z−1 ·
∣

∣k2
i+1

∣

∣

e+e− : k2
i+1 �

βi+1

βi
k2

i = z · k2
i















z =
βi+1

βi

≤ 1. (20)

Different placing of the z factor causes, beyond the first loop, violation of the Gribov–Lipatov

reciprocity (GLR). Moreover, it is likely to be the one and only source of this breaking!

A. Rescuing Gribov–Lipatov reciprocity

Let us probe this idea. Choosing κ2 = |k2| as an integration variable and assembling

parton evolution sequences, for the probability D(x,Q2) to find a parton with virtuality

integrated up to a given Q2 we obtain (omitting a trivial Born term)

D(x,Q2) =

∫ 1

x

dz

z

∫ Q2

κ2

κ2
P [z, αs]D

(x

z
, zσκ2

)

; σ = ±1 for the T/S channel. (21)
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The second argument of the D function on the r.h.s. of the equation follows from (20). The

equation (21) looks more complicated than the standard integral equations that determined

the anomalous dimensions of DIS structure functions (γ−) and fragmentation functions (γ+),

D(S)(x,Q2) =

∫ 1

x

dz

z

∫ Q2

κ2

κ2
P (S)[z, αs]D

(S)
(x

z
, κ2

)

, (22a)

D(T )(x,Q2) =

∫ 1

x

dz

z

∫ Q2

κ2

κ2
P (T )[z, αs]D

(T )
(x

z
, κ2

)

. (22b)

In terms of Mellin moments of parton distributions and splitting functions,

DN(Q2) =

∫ 1

0

dx

x
xN D(x,Q2), P(N,αs) =

∫ 1

0

dz zN−1 P [z, αs],

one had

∂ln Q2DN(Q2) ≡ γ(N,αs)DN(Q2) =

∫ 1

0

dz

z
zN P [z, αs]DN

(

Q2
)

= P(N,αs)DN (Q2), (23)

which equated the anomalous dimensions with Mellin images of the corresponding splitting

functions, γ− ≡ P(S) and γ+ ≡ P(T ).

Non-locality of the new equation (21) in longitudinal (z) and transverse variables (k2 ∝
k2

t ) breaks identification of splitting functions with anomalous dimensions. What it offers

instead is a link between the two channels by means of universal reciprocity respecting

splitting function matrix P, one and the same for T and S evolutions. In spite of the fact

that the new “splitting functions” P in (21) do not correspond to any clever choice of the

evolution variable, in either T- or S- channel (explosive αs ln2 x terms being present in both

cases), this universality can be exploited for relating DIS and e+e− anomalous dimensions.

One can expect that by separating the notions of splitting functions and anomalous

dimensions by means of the Reciprocity Respecting Evolution equation (RRE) (21) the

Gribov–Lipatov wisdom can be rescued in all orders. This guess ascends to an old remark

made by Curci, Furmanski & Petronzio [13] who observed that the GLR violation in the

second loop non-singlet quark anomalous dimension amounted to a “quasi-Abelian” term

∝ C2
F with a suggestive structure

1
2

[

P (2,T )
qq (x) − P (2,S)

qq (x)
]

=

∫ 1

0

dz

z

{

P (1)
qq

(x

z

)}

+
· P (1)

qq (z) ln z . (24)

This observation hinted that the GLR violation was not a dynamical higher order effect but

was inherited from the previous loop via a non-linear relation.
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In the Mellin space the convolution (24) translates into PN
d

dN
PN = PN ṖN . Let us check

that it is this structure of the GLR breaking that emerges from (21). Differentiating (21),

∂ln Q2DB(x,Q2) =

∫ 1

x

dz

z
P [z, αs]D

A
(x

z
, zσQ2

)

, (25)

and taking Mellin moments of both sides of the equation we obtain

γσ(N)DN(Q2) =

∫ 1

0

dz

z
zN P [z, αs] z

σ∂
ln Q2DN (Q2) , (26)

where we have used the Taylor expansion trick. The integral formally equals

γσ(N) = (DN )−1 P(N + σ∂ln Q2)DN , (27)

expressing the anomalous dimension through the Mellin image of the splitting function with

the differential operator for argument, N → N + σ∂ln Q2. The derivative acts upon DN(Q2)

producing, by definition, γ(N)DN . In high orders it will also act on the running coupling

the anomalous dimension depends on, γ = γ(N,αs). The latter action gives rise to terms

proportional to the β-function. Such terms are scheme dependent as they can be reshuffled

between the exponent and the coefficient function C[αs] in (1). Neglecting for the time being

such contributions by treating αs as constant, (26) reduces to a functional equation

γσ(N) = P (N + σγσ(N)) . (28)

Since γ = O(αs), we can expand the argument of the splitting function perturbatively,

γσ = P + Ṗ · σγ + 1
2
P̈ · γ2 + O(β(α)) + O

(

α4
)

. (29a)

Solving (29a) iteratively we get

γσ = P + σPṖ +
[

PṖ2 + 1
2
P2P̈

]

+ . . . (29b)

Restricting ourselves to the first loop, P = αP (1), with P (1) the (Mellin image of) good old

LLA functions, gives

γσ = αP (1) + α2 σP (1)Ṗ (1) + . . . (30)

The second term on the r.h.s. of (30) generates the two-loop Curci–Furmanski–Petronzio

relation (24) all right.1

1 A month after this lecture had been delivered, the structure of the GLR breaking predicted by (27), (28)

was verified in [16] for non-singlet anomalous dimensions in three loops.
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The same structure of the GLR violation holds for gluon→gluon evolution as well. Strictly

speaking, this is true only for two colour structures that emerge in the second loop anomalous

dimensions P(2)
gg namely, C2

A and CACF . The third one, 2nfTRCF , corresponds to the g →
q(q̄) → g two-step transition that mixes gluon and quark states. The same colour factor is

also present in quark evolution, q → g → q described in two loops by the singlet anomalous

dimension P(2)
qq,s. As a result, generalisation of (24) for this specific colour structure turned

out to be more involved though natural [17]:

1
2
[P(2,T )

qq,s − P(2,S)
gg ] =⇒ P(1)

gq Ṗ(1)
qg , 1

2
[P(2,T )

gg − P(2,S)
qq,s ] =⇒ P(1)

qg Ṗ(1)
gq . (31)

The analysis of non-diagonal parton transitions is more difficult since here the scheme de-

pendence is more pronounced. Stratmann and Vogelsang have addressed this issue in [12]

where a detailed discussion was given of a possibility to rescue GLR in two loops in terms

of factorisation scheme transformation. The problem remains open and should be further

pursued.

The RRE framework allows us to relate various interesting phenomena that were discov-

ered separately in DIS and e+e− context. The first example concerning large-x behaviour

of anomalous dimensions was reported in [18].

B. Large x: classical radiation

The RRE (21) has an unexpectedly simple but powerful application to the large-x region,

(1−x) � 1. Here non-diagonal q ↔ g transitions do not matter and one can restrict oneself to

non-singlet quark evolution. The large-N behaviour of corresponding anomalous dimensions

can be parametrised as follows:

γσ(N) = −A(ψ(N+1) + γe) +B − Cσ
ψ(N+1) + γe

N
+
Dσ

N
+ O

(

logpN

N2

)

, (32a)

where A, B, C, D are given in terms of series in αs in a given renormalisation scheme. The

coefficients A and B are the same in the two channels. In x space (32a) corresponds to

γσ(x) =
Ax

(1−x)+
+B δ(1−x) + Cσ ln(1−x) +Dσ + O((1−x) logp(1−x)) . (32b)

Specific structure of the first — the most singular — term x/(1 − x) is dictated by the

Low–Burnett–Kroll theorem [19]. It is a consequence of the fact that soft radiation at
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the level of dσ ∝ dω(ω−1 + const) has classical nature. The coefficient A in front of this

structure has a meaning of the “physical coupling” measured by the intensity of relatively

soft gluon emission. This coefficient (calculated in three loops in the MS-bar scheme) is

known to universally appear in all observables sensitive to soft gluon radiation: quark and

gluon Sudakov form factors and Regge trajectories, threshold resummations, singular part of

the Drell–Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics,

heavy quark fragmentation functions, etc. The structure (32) applies to large-x behaviour

of the g → g anomalous dimension as well, with A(g)/A(q) = CA/CF , in all orders.

Quantum effects show up only at the level of dσ ∝ ω dω that is at the level of contributions

that were neglected in (32b). At one loop, subleading terms C ln(1 − x) and the constant

D in (32) are absent. This suggests that in higher loops they should emerge as “inherited”

rather than non-trivial entries.

Indeed, to keep under control all the terms in (32) it suffices to use the following general

expression for the large-N asymptote of the splitting function P(1):

P(1) = −A(ψ(N+1) + γe) +B + O
(

N−2
)

, (33a)

which gives

Ṗ(1) = −A

N
+ O

(

N−2
)

. (33b)

Substituting (33) into (29b) produces then the all-order relations [18]

Cσ = −σ A2, (34a)

Dσ = −σ AB. (34b)

The relation (34a) is “conformal” while (34b) acquires corrections due to running of the

coupling. In three loops (34a) was recently verified for the time-like channel in [16].

C. Small x: relating space- and time-like mysteries

As we have discussed above, in small-x kinematics the RR parton splitting functions P
based on the fluctuation time ordering contain double logarithmic (DL) series, (α log2 x)n.

In the anomalous dimensions γσ they combine with another series of DL enhanced terms

that originate from non-locality of the RRE and are contained in the σPṖ structure. As

we already know, the resulting series can be absorbed into modifying the evolution time
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from fluctuation time to transverse momentum ordering in the case of DIS space-like parton

cascades, and to the ordering of angles of successive parton splittings in e+e−. Such a clever

transformation of the ordering variable is a result of cancellation, due to destructive soft

gluon coherence, of a part of the logarithmic phase space allowed by the lifetime ordering.

Thus, from the point of view of the RRE, the angular ordering in time-like evolution can be

considered to be an image of the kt ordering in DIS, and vice versa.

Even more, beyond the leading log approximation, the RRE should link together two

puzzling small-x phenomena which, to the best of my knowledge, were never thought to be

of a common origin. These are: absence of the α2
s and α3

s terms in the BFKL anomalous

dimension in the DIS problem on one hand [20],

γBFKL
− [N,αs] ∼ αs

N
+ 0 ·

(αs

N

)2

+ 0 ·
(αs

N

)3

+
(αs

N

)4

,

and, on the other hand, exact angular ordering [21] which seems to hold further than ex-

pected, down to the next-to-next-to-leading (N-MLLA) order (Malaza puzzle [22]).

Examine the system of equations

γ−[N,αs] = P
(

N − γ−[N,αs], αs

)

, (35a)

γ+[N,αs] = P
(

N + γ+[N,αs], αs

)

. (35b)

Knowing the DIS anomalous dimension γ− we can plug it into (35a), find P and use this

information in (35b) to determine γ+.

Small-x limit corresponds to Mellin moments N → 0. Perturbative series for the S- and

T-case can be organised according to strength of the N → 0 singularity as follows

γ−[N,αs] =

∞
∑

p=1

p
∑

k=0

sp k
ᾱp

s

Nk
, γ+[N,αs] =

∞
∑

p=1

2p−1
∑

k=0

tp k
ᾱp

s

Nk
. (36)

For example, processing through (35) the leading term in the space-like function,

γ−[N,αs] =
ᾱs

N
, ᾱs ≡

Nc αs

π
, (37a)

gives the time-like anomalous dimension in the DL approximation

γDLA
+ [N,αs] =

1

4

(

−N +
√

N2 + 8ᾱs

)

. (37b)

Incorporating the first subleading correction O(1) into (37a),

γ−[N,αs] =
ᾱs

N
− ᾱsa, a =

11

12
+

nf

6N3
c

, (38a)
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analogously produces the next-to-leading (MLLA) expression for γ+,

γMLLA
+ [N,αs] = γDLA

+ [N,αs] − ᾱs
a

2

(

1 +
N√

N2 + 8ᾱs

)

, (38b)

(correct modulo a β-function term) [21], etc.

The space-like anomalous dimension is known to three loops. Adding to it the known

infinite BFKL and next-to-BFKL [23] series of 1/N -enhanced terms and plugging this in-

formation into the RRE, one should be able to obtain five successive terms in the
√
αs

expansion for the time-like anomalous dimension, from the leading
√
αs downto α

5/2
s . The

coefficients sp k and tp k in (36) can be arranged into series as depicted by the following chart.

α 3/2

α 1/2

α 2
α 5/2

α 3

1 2 3 4 5 6

0

1

2

3

4

5

BFKL

N−BFKL6

7

1 k

N
( )

αp

α

This chart demonstrates inter-

dependence between perturbative

series for γ− (solid lines) and γ+

(dashed). Black circles show the

BFKL terms ᾱp
s/N

p. Empty circles

on the same line stand for BFKL

terms that are “accidentally” zero.

The parallel (green) line collects the

next-to-BFKL terms ᾱp
s/N

p−1.

Not knowing the (N–N–BFKL) point

p = 4, k = 2 prevents us from finding

the N-N-N-N-N-LL time-like anoma-

lous dimension term O(α3
s).

V. CONCLUSIONS

Getting hold of the MS-bar space-like anomalous dimension in three loops (with the time-

like case on the way) was a great achievement. But equally is it a cause for depression: how

much physics would you be able to enjoy while browsing through some 100K of formulae?

We formulated the quest for simplifying perturbative expansions and discussed a number

of internal symmetries the parton evolution Hamiltonian possesses. In particular, at the

LLA level there are excessively many symmetry relations so that the system of two-parton

splitting functions turns out to be over-restricted! This observation is rather suggestive and

encourages one to look for definite simplifications when attacking higher orders.
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In the present lecture I put emphasis on exploring, and exploiting, inter-relation between

DIS and e+e−, between space- and time-like parton evolution. We have constructed to-

gether the Gribov–Lipatov–Reciprocity respecting equation (21) and demonstrated that it

is well suited for elucidating the physics of the large-x limit. The RRE also seems to offer

an intriguing possibility of mirroring two “accidental” zeroes in the BFKL series with the

absence of corrections to exact angular ordering in small-x time-like cascades [24].

Large x being a realm of the Low–Burnett–Kroll wisdom, the main terms in q → q and

g → g anomalous dimensions in all orders are basically governed by the first loop, provided

we cast the series in terms of the physical coupling αphys ≡ A(q)/CF = A(g)/CA. Given such

reshuffling, non-trivial quantum effects may enter only at the level of corrections suppressed

w.r.t. to the classical result as O((1−x)2), modulo logarithms.

We discussed the terms ln(1 − x) and (1 − x)0 present in diagonal quark and gluon

anomalous dimensions. In the LBK nomenclature, these terms fall “in between” classical

and quantum contributions: they are less singular than the former, O((1 − x)−1), and more

singular than the latter, O(1−x). Therefore they must be “trivial”, inherited from classical

physics. Indeed, the RRE framework allowed us to guess these sub-singular contributions

in all orders.

Pushing the inheritance idea to the extreme I would dare to propose a heretic “letter

of intent” and suggest, what one should aim at searching for ideal perturbation theory.

Stepping up the order of the perturbative expansion, n → n + 1, we add a parton to the

system of n partons that determined the parton Hamiltonian in the nth order, P (n). If a

“quantum object” (quark or hard gluon) is added, the phase space volume consideration

tells us that the next order anomalous dimension will acquire an extra suppression factor,

P (n+1)(x) ∝ (1 − x)P (n)(x). Adding a soft gluon as the (n+1)st parton would avoid the

phase space suppression. However, this specific contribution we should be able to reduce to

the previous order dynamics by exploiting the classical nature of soft gluon radiation.

So, if we were smart enough to systematically relate all soft gluon effects to classical

inheritance and formulate parton dynamics as quantum dynamics, then the genuine higher
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order contributions to the anomalous dimension would have followed the ideal pattern2

γ
(n)
quantum ∼ (1 − x)n.

For such an ambitious programme to succeed, it is not enough to merely switch to “physical

coupling”. It will also be necessary to design a physically motivated separation between the

anomalous dimension (Hamiltonian) and the coefficient function (short-distance cross sec-

tion), in other words, to properly choose factorisation scheme. This battle the conventional

MS-bar prescription is bound to lose. As it was remarked in [12], an alternative calculation

based on the cut vertex formalism naturally produced reciprocity respecting γ and C in two

loops [26]. Systematic physically motivated renormalisation/factorisation method is wanted.

Physics of soft gluons is that of classical radiation. The depth of this statement was not

granted attention it rightfully deserved. “Classical” implies manageable, solvable, simple.

Let us list some examples of soft gluon governed phenomena where these key words happen

to materialise:

• Manageability of the so-called “maximum helicity violating” (MHV) multi-gluon am-

plitudes (Parker–Taylor amplitudes are literally the soft LBK ones).

• Picking up from the QCD parton Hamiltonian the so-called “maximal transcenden-

tality” structures (driven by soft gluon radiation physics) produces the anomalous

dimension of the N = 4 SUSY (see [27] and references therein), the QFT model

known to be exactly solvable.

• The second loop soft gluon radiative correction to parton scattering matrix elements

turned out to be “surprisingly simple” [28]. Actually, non-existent: the first loop takes

it all in (recall the “physical coupling” message).

To add to the list, let me mention a recently observed unexpected property of the “soft

anomalous dimension” occurring in the gluon–gluon scattering. The programme of resum-

ming logarithmic effects due to large angle soft gluon emission in hadron–hadron collisions

was pioneered by Botts and Sterman [29] and developed in a series of papers [30]. In [31] it

was demonstrated that this anomalous dimension possesses a mysterious symmetry between

2 Such programme was carried out for heavy quark fragmentation functions to two loops in [25] where the

genuine second loop contribution was shown to be negligibly small, uniformly in x.
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internal and external variables of the problem, linking the rank of the gauge group with

scattering kinematics,
1

Nc
⇐⇒ ln(t/u)

ln(t/s) + ln(u/s)
.

The origin of such a weird symmetry is very unlikely to be understood from within the QFT

framework and seems to call for an enveloping “theoretical theory” wisdom which may shed

additional light onto hidden beauty of parton dynamics.

Good luck.
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