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3rd loop 3rd loop, and again
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3rd loop 3rd loop, and still some more
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3rd loop 3rd loop, and UFF
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3rd loop facing music of the spheres

2× 2 anomalous dimension matrix occupies

1 st loop: 1/10 page

2 nd loop: 1 page

3 rd loop: 100 pages (200 K asci)

Moch, Vermaseren and Vogt

[ waterfall of results launched

March 2004, and counting ]

V ∼

{
10

N(N−1)
2

−1

102N−1−2

not too encouraging a trend . . .
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➥ A playing ground for theoretical theory: SUSY, AdS/CFT, . . .
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strongly ordered lifetimes of successive parton fluctuations !
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Fluctuation time ordering
How to Order parton splittings?

Beyond the 1st loop, it starts to matter how does one order successive
parton splittings that is, what one chooses for ”parton evolution time”.

The ”clever choices” had been established quite some time ago:

dξ = d ln
k2
⊥

1
(space-like), dξ = d ln

k2
⊥

z2
(time-like).

Transverse momentum ordering vs. angular ordering.
Each of these two clever choices — consequence of taking into full
consideration soft gluon coherence in order to prevent explosively large
terms (αs ln2 x)n from appearing in higher loop anomalous dimensions.

A good dynamical move. But a lousy one kinematically :
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True in any QFT, it reflects the crossing and allows to link the two
channels by analytic continuation, from x < 1 to x > 1 :

Bukhvostov, Lipatov, Popov (1974)

Drell–Levy–Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)

In the Leading Log Approximation (1 loop),

Gribov–Lipatov relation

P
(T )
BA (x Feynman ) = P

(S)
BA (x Bjorken ) ; xB = −q2

2pq
, xF = 2pq

q2

Mark the different meaning of x in the two channels!
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channels by analytic continuation, from x < 1 to x > 1 :

Bukhvostov, Lipatov, Popov (1974)

Drell–Levy–Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)

In the Leading Log Approximation (1 loop),

Gribov–Lipatov reciprocity

PBA(x) = ∓x · PAB(x−1)

GLR was found to be broken beyond the 1st loop. But WHY ?
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B (z ;αs) DB
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, zσQ2
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P(z) zN =⇒ γN · DN(Q2) = PN+σd · DN(Q2)

the evolution kernel P emerges with the differential operator for argument.
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(
σγ+β/α

)
+1

2 P̈ ·
[
γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ

]
+O

(
α4

)
.



Perturbative QCD (16/48)

Innovative Bookkeeping

GLR respecting evolution
GLR beyond the 1st loop

Examine the “reciprocity respecting equation” (RRE) by feeding in the
one-loop parton “Hamiltonian”, P(α) ' αP1 :

γ[α] = P + Ṗ ·
(
σγ+β/α

)
+ 1

2 P̈ ·
[
γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ

]
+ . . .

= αP1 + α2 · (σ P1Ṗ1 + β0) + O
(
α3

)
.
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.

The difference between time- and space-like anomalous dimensions,
1
2

[
P(T ) − P(S)

]
= α2 · P1Ṗ1 + O

(
α3

)
,

in the x -space corresponds to the convolution

1
2

[
P

(2),T
qq − P

(2),S
qq

]
=

∫ 1

0

dz

z

{
P

(1)
qq

(x

z

)}

+
· P

(1)
qq (z) ln z ,

responsible for GLR violation in the 2nd loop non-singlet quark anomalous
dimension, as found by Curci, Furmanski & Petronzio (1980)
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GLR respecting evolution
GLR beyond the 1st loop

Examine the “reciprocity respecting equation” (RRE) by feeding in the
one-loop parton “Hamiltonian”, P(α) ' αP1 :

γ[α] = P + Ṗ ·
(
σγ+β/α

)
+ 1

2 P̈ ·
[
γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ

]
+ . . .

= αP1 + α2 · (σ P1Ṗ1 + β0 + P2) + O
(
α3

)
.

The difference between time- and space-like anomalous dimensions,
1
2

[
P(T ) − P(S)

]
= α2 · P1Ṗ1 + O

(
α3

)
,

in the x -space corresponds to the convolution

1
2

[
P

(2),T
qq − P

(2),S
qq

]
=

∫ 1

0

dz

z

{
P

(1)
qq

(x

z

)}

+
· P

(1)
qq (z) ln z ,

responsible for GLR violation in the 2nd loop non-singlet quark anomalous
dimension, as found by Curci, Furmanski & Petronzio (1980)

=⇒ the genuine P2 does not contain σ, is GLR respecting
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=

∫ 1

0
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{
P

(1)
qq
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)}

+
· P

(1)
qq (z) ln z ,

responsible for GLR violation in the 2nd loop non-singlet quark anomalous
dimension, as found by Curci, Furmanski & Petronzio (1980)

More generally, a renormalization scheme transformation as a cure
for/against GLR violation was proposed by Stratmann & Vogelsang (1996)
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Innovative Bookkeeping

RREE applications
large x

Another important aspect of the RREE is the “double nature” of the
perturbative expansion — in αphys and, at the same time, in (1−x):

γ[α] = P + Ṗ ·
(
σγ+β/α

)
+ 1

2 P̈ ·
(
γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ

)
+ . . .

= α ln N + α2 ·
(
1/N

)
+ α3 ·

(
1/N2

)
+ α4 ·

(
1/N3

)
+ . . .
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(
σγ+β/α

)
+ 1

2 P̈ ·
(
γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ

)
+ . . .

= α ln N + α2 ·
(
1/N

)
+ α3 ·

(
1/N2

)
+ α4 ·

(
1/N3

)
+ . . .



Perturbative QCD (17/48)

Innovative Bookkeeping

RREE applications
large x

Another important aspect of the RREE is the “double nature” of the
perturbative expansion — in αphys and, at the same time, in (1−x):

γ[α] = P + Ṗ ·
(
σγ+β/α

)
+ 1

2 P̈ ·
(
γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ

)
+ . . .

= α ln N + α2 ·
(
1/N

)
+ α3 ·

(
1/N2

)
+ α4 ·

(
1/N3

)
+ . . .



Perturbative QCD (17/48)

Innovative Bookkeeping

RREE applications
large x

Another important aspect of the RREE is the “double nature” of the
perturbative expansion — in αphys and, at the same time, in (1−x):

γ[α] = P + Ṗ ·
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A gap between classical radiation (Low–Burnett–Kroll wisdom)
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In the x → 1 limit (large moments N) inherited structures determine first
subleading corrections in all orders !

γ(x)=
A x

(1−x)+
+ Bδ(1−x) + C ln(1−x) + D + O((1−x) logp(1−x))

Generated: D-r, Marchesini & Salam (2005)

C = −σA2 — relation observed by MVV in 3 loops

D = −σA B + O(β) — another all-order relation
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Dynamics can be fully integrated if the system possesses a sufficient
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Innovative Bookkeeping

RREE verification
Space-Time bookkeeping

Maximally super-symmetric N =4 YM allows for a compact analytic
solution of the GLR problem in 3 loops (∀N) D-r & Marchesini (2006)

Moreover, the most resent result : in N =4
✗ GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about N =4 SYM ?

This QFT has a good chance to be solvable — “integrable”.
Dynamics can be fully integrated if the system possesses a sufficient
(infinite!) number of conservation laws, — integrals of motion.

Recall an old hint from QCD ...
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RREE verification
Relating parton splittings

z

1−z
= CF ·

1 + z2

1 − z

z

= CF ·
1 + (1−z)2

z
z

= TR ·
[
z2 + (1−z)2

]

z

= Nc ·
1 + z4 + (1−z)4

z(1 − z)

Four “parton splitting functions”

q[g ]
q (z) ,

g [q]
q (z) ,

q[q̄]
g (z) ,

g [g ]
g (z)
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I Exchange the decay products : z → 1 − z
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Three (QED) “kernels” are inter-related; gluon self-interaction stays put :
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q (z) ,
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q (z) ,

q[q̄]
g (z) ;

g [g ]
g (z)
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= TR ·
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z2 + (1−z)2

]

z

= Nc ·
1 + z4 + (1−z)4

z(1 − z)

I Exchange the decay products : z → 1 − z
I Exchange the parent and the offspring : z → 1/z (GLR)
I The story continues, however : CF = TR = Nc : Super-Symmetry

All four are related ! ≡ infinite number of conservation laws !

wq(z) =
q[g ]
q (z) +

g [q]
q (z) =

q[q̄]
g (z) +

g [g ]
g (z) = wg (z)
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Innovative Bookkeeping

RREE verification
from Bookkeeping to Solving

The integrability feature manifests itself already in certain sectors of QCD,
in specific problems where one can identify QCD with SUSY-QCD :

✓ the Regge behaviour (large Nc )
Lipatov

Faddeev & Korchemsky (1994)

✓ baryon wave function
Braun, Derkachov,Korchemsky,

Manashov; Belitsky (1999)

✓ maximal helicity multi-gluon operators

Lipatov (1997)

Minahan & Zarembo

Beisert & Staudacher (2003)
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WHY and WHAT FOR ?
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The integrability feature manifests itself already in certain sectors of QCD,
in specific problems where one can identify QCD with SUSY-QCD :

✓ the Regge behaviour (large Nc )
Lipatov

Faddeev & Korchemsky (1994)

✓ baryon wave function
Braun, Derkachov,Korchemsky,

Manashov; Belitsky (1999)

✓ maximal helicity multi-gluon operators

Lipatov (1997)

Minahan & Zarembo

Beisert & Staudacher (2003)

The higher the symmetry, the deeper integrability. N =4 — the extreme:

✗ Conformal theory β(α) ≡ 0

✗ All order expansion for αphys Beisert, Eden, Staudacher (2006)

✗ Full integrability via AdS/CFT
Maldacena; Witten,

Gubser, Klebanov, Polyakov (1998)

And here we arrive at the second — Divide and Conquer — issue
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Divide and Conquer

Low-Burnett-Kroll wisdom
LBK wisdom

Recall the diagonal first loop anomalous dimensions:

γ̃q→q(x)+g =
CFαs

π

[
x

1 − x
+ (1 − x) ·

1

2

]
,

γ̃g→g(x)+g =
CAαs

π

[
x

1 − x
+ (1 − x) ·

(
x + x−1

)]
.
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Recall the diagonal first loop anomalous dimensions:

γ̃q→q(x)+g =
CFαs

π

[
x

1 − x
+ (1 − x) ·

1

2

]
,

γ̃g→g(x)+g =
CAαs

π

[
x

1 − x
+ (1 − x) ·

(
x + x−1

)]
.

The first component is independent of the nature of the radiating particle
— the Low–Burnett–Kroll classical radiation =⇒ “clagons”.
The second — “quagons” — is relatively suppressed as O

(
(1 − x)2

)
.

Classical and quantum contributions respect the GL relation, individually:

−xf (1/x) = f (x)

Let us look at the rôles these animals play on the QCD stage



Perturbative QCD (23/48)

Divide and Conquer

Low-Burnett-Kroll wisdom
Gluenatomy

Clagons :

✗ Classical Field

✓ infrared singular, dω/ω

✓ define the physical coupling

✓ responsible for

➥ DL radiative effects,

➥ reggeization,

➥ QCD/Lund string (gluers)

✓ play the major rôle in evolution

Quagons :

✗ Quantum d.o.f.s (constituents)

✓ infrared irrelevant, dω · ω

✓ make the coupling run

✓ responsible for conservation of
➥ P-parity,

➥ C -parity,

➥ colour

}
in

decays,
production

✓ minor rôle
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}
in
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production
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In addition,

✗ Tree multi-clagon (Parke–Taylor) amplitudes are known exactly

✗ It is clagons which dominate in all the integrability cases
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·
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I β(α) ≡ 0 in all orders ! =⇒ γ ⇒
x
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+ no quagons !

. . . makes one think of a classical nature (?) of the SYM-4 dynamics
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In spite of having many states (s = 0, 1
2 , 1), the SYM-4 parton dynamics is

built of a single “universal” anomalous dimension:
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as well as multiple indices — nested sums

Sm,~ρ (N) =
∑N

k=1
S~ρ (k)
km (~ρ = (m1,m2, . . . ,mi )),
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2a2 + . . .
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,
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2 Ŷ−3 + B2;

P3 = − 1
2 Ŝ5 + 3

2 Ŷ−5 + B3 + ζ2 ·
1
2 Ŝ3

+ S1 ·
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Ŷ−4 − 1
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1
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−2

)
+ ζ2 ·

1
2 Ŝ−2
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In terms of the perturbative expansion in the physical coupling,

aph = a
(
1 − 1
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20ζ

2
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)
,

P1 = − S1;

P2 = 1
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2 Ŷ−3 + B2;

P3 = − 1
2 Ŝ5 + 3

2 Ŷ−5 + B3 + ζ2 ·
1
2 Ŝ3
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Ŝ−4 + Ŝ2

−2

)
+ ζ2 ·

1
2 Ŝ−2

]

Notation:

Ŷ−m(N) = (−1)N M

[
x

1 + x
φm−1(x)

]
,

φm(x) =
1

Γ(m)

∫ 1

x

dz

z
lnm−1

(
(1 + x)2 z

x (1 + z)2

)
.
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N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3

The sl(2) sector of planar N =4 SYM contains single trace states which
are linear combinations of the basic operators

Tr {(Ds1 Z ) · · · (DsL Z )} , s1 + · · · + sL = N,

where Z is one of the three complex scalar fields and D is a light-cone
covariant derivative. The numbers {si} are non-negative integers and N is
the total spin. The number L of Z fields is the twist of the operator, i.e.
the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues γL(N; g) of
the dilatation operator — integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz
equations (BAE), order by order in g2, and guessing the answer in terms
of harmonic sums of transcedentality τ = 2n−1, at n loops.
Since wrapping problems, delayed by supersymmetry, appear at L+2 loop
order for twist-L operators, the BAE for twist-3 are reliable up to four
loops (including, at the fourth loop, the dressing factor).
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N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3 : Answer

γ
(1)
3 = 4S1

γ
(2)
3 = −2 (S3 + 2S1S2)

γ
(3)
3 = 5S5 + 6S2 S3 − 8S3,1,1 + 4S4,1 − 4S2,3 + S1(4S2

2 + 2S4 + 8S3,1)

γ
(4)
3 = 1

2 S7 + 7S1,6 + 15S2,5 − 5S3,4 − 29S4,3 − 21S5,2 − 5S6,1

−40S1,1,5 − 32S1,2,4 + 24S1,3,3 + 32S1,4,2 − 32S2,1,4 + 20S2,2,3

+40S2,3,2 + 4S2,4,1 + 24S3,1,3 + 44S3,2,2 + 24S3,3,1 + 36S4,1,2

+36S4,2,1 + 24S5,1,1 + 80S1,1,1,4 − 16S1,1,3,2 + 32S1,1,4,1

−24S1,2,2,2 + 16S1,2,3,1 − 24S1,3,1,2 − 24S1,3,2,1 − 24S1,4,1,1

−24S2,1,2,2 + 16S2,1,3,1 − 24S2,2,1,2 − 24S2,2,2,1 − 24S2,3,1,1

−24S3,1,1,2 − 24S3,1,2,1 − 24S3,2,1,1 − 24S4,1,1,1 − 64S1,1,1,3,1

−8β S1 S3 .

The last term, with β = ζ3, is the contribution from the dressing factor
that appears in the BAE at the fourth loop.



Perturbative QCD (31/48)

N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3 : features

The twist-3 anomalous dimension has two characteristic features:

1. All harmonic functions S~a are evaluated at half the spin, Sa ≡ Sa (N/2).
On the integrability side, this does not look unwarranted, since only
even N belong to the non-degenerate ground state of the magnet.

2. No negative indices appear at twist-3, while in the case of twist-2
negative index sums were present starting from the second loop.

At the N → ∞ limit, the minimal anomalous dimension γ (corresponding
to the ground state) must exhibit the universal (LBK-classical) lnN
behaviour which depends neither on the twist, nor on the nature of fields
under consideration. Computing analytically the large N asymptotics yields

γ3(N)

lnN
= 4 g2 −

2π2

3
g4 +

11π4

45
g6 −

(
4ζ2

3 +
73π6

630

)
g8 + O

(
g10

)
,

which matches the four-loop cusp anomalous dimension — the physical
coupling. This is a non-trivial check, since the derivation was based on
experimenting with finite values of the spin N.
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N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3 : Evolution Kernel (rough)

After processing thru γ = P(N + 1
2γ) , in series in g2 = Ncα

2π
,

P(1) = 4S1,

P(2) = −2S3 − 4 ζ2 S1,

P(3) = S5 + 2 ζ2 S3 + 4 (S3,2 + S4,1 − 2S3,1,1)

+ 4S1 (2S3,1 − S4 + 4 ζ4) − 4S2
1 (S3 − ζ3).

The fourth loop kernel we split into two terms: P(4) = P
(4)
S + P

(4)
ζ .

P
(4)
S = −8

[
S3,3 + S1,5 + 2S2,4 − 4(S2,1,3 + S1,2,3 + S1,1,4) + 8S1,1,1,3

]
S1

+ 3
2 S7 − 16

(
S1,6 + S4,3

)
− 24

(
S2,5 + S3,4

)

+ 48
(
S1,1,5 + S1,3,3 + S3,1,3

)
+ 64

(
S2,2,3 + S2,1,4 + S1,2,4

)

− 128
(
S1,1,1,4 + S2,1,1,3 + S1,2,1,3 + S1,1,2,3

)
+ 256S1,1,1,1,3 ,

P
(4)
ζ = 8ζ4 S

3
1 − 4

[
ζ2ζ3 + 8ζ5

]
S2

1 −
[
4(ζ3 + 2β)S3 + 49ζ6

]
S1

+ (8S1,1,3 − 4S1,4 − 4S2,3 − S5) ζ2 − 8S3 ζ4.
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N = 4 Super–Yang–Mills

Beyond leading Twist
RR harmonic functions

Let ~m = {m1,m2, . . . ,m`}, and examine the recurrence relation

Φ̃b,~m(x) = −[Γ(b)]−1 x

x − 1

∫ 1

x

dz (z + 1)

z2
lnb−1 z

x
· Φ̃~m(z),

where the single index function coincides with the image of the standard
harmonic sum,

Φ̃a(x) = [Γ(a)]−1 x

x − 1
lna−1 1

x
= S̃a(x).
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− x Φ̃a(x

−1)
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An iteration increases transcedentality τ =
∑`

i=1 |mi | of the function by b,
and the length ` of the index vector by one, so that

w [~m] + b − 1 = w [b, ~m].
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x − 1
lna−1 1

x
= S̃a(x).

For an arbitrary index vector (the weight w ≡ τ − ` )

Φ̃~m(x) =

(
− x Φ̃~m(x−1)

)
· (−1)w [~m]

An iteration increases transcedentality τ =
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i=1 |mi | of the function by b,
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N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3 : Evolution Kernel (beautified)

Then, in terms of the physical coupling,

g2
ph ≡

Nc αph
2π

= g2 − ζ2 g4 + 11
5 ζ

2
2 g6 −

(
73
10ζ

3
2 + ζ2

3

)
g8 + . . . ,

the perturbative series for the kernel, P =
∑

n=1 g2n
ph P

(n)
ph , becomes

P
(1)
ph = 4S1,

P
(2)
ph = −2S3,

P
(3)
ph = 3S5 − 2Φ1,1,3 + ζ2 · (−2S3),

P
(4)
ph = 4S1 · Â4 + B4 + 2 ζ2 ·

(
3S5 − 2Φ1,1,3

)
,

where

Â4 = 2 Φ̂1,1,1,3 − (Φ̂1,5 + Φ̂3,3) − ζ3 Ŝ3,

B4 = 16Φ1,1,1,1,3 − 4
(
Φ3,1,3 + Φ1,3,3 + Φ1,1,5

)
− 5

2 S7.

Since all harmonic functions involved have even weights w ,
the evolution kernel is Reciprocity Respecting.
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N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3 vis a vis Twist-2

This result can be compared with the evolution kernel that generates the
twist-2 universal anomalous dimension :

P
(1)
ph = 4S1;

P
(2)
ph = −4S3 + 4Φ1,−2;

P
(3)
ph = 8S5 − 24Φ1,1,1,−2 − 8 ζ2 S3

−8S1 ·
[
2 Φ̂1,1,−2 + Φ̂−2,−2 − Ŝ−4 + ζ2 Ŝ−2

]
.

similar pattern of the single log N enhancement.
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This result can be compared with the evolution kernel that generates the
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P
(1)
ph = 4S1;

P
(2)
ph = −4S3 + 4Φ1,−2;

P
(3)
ph = 8S5 − 24Φ1,1,1,−2 − 8 ζ2 S3

−8S1 ·
[
2 Φ̂1,1,−2 + Φ̂−2,−2 − Ŝ−4 + ζ2 Ŝ−2

]
.

similar pattern of the single log N enhancement.
Remark : in general, the GL parity is

Φ̃~m(x) =

(
− x Φ̃~m(x−1)

)
· (−1)w [~m] · (−1)# of negative indices

since
x

x − 1
=⇒

x

x + 1
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N = 4 Super–Yang–Mills

Beyond leading Twist
Logs in γ and P

General structure of the RR Evolution Kernel

P(N) = S1 ·
(
αph + Â

)
+ B, Â = O

(
1/N2

)
.

This feature is in a marked contrast with the anomalous dimension per se,
whose large N expansion includes growing powers of log N:

γ(N) = a lnN +

∞∑

k=0

1

Nk

k∑

m=0

ak,m lnm N.

Easy to see from

γσ = P(N + σγ) =⇒ γσ(N) =
∞∑

k=1

1

k!

(
σ

d

dN

)k−1 [
P(N)

]k
,

Physically, the reduction of singularity of the large N expansion shows that
the tower of subleading logarithmic singularities in the anomalous
dimension is actually inherited from the first loop — the LBK-classical
γ(1) = P(1) ∝ S1, and the RREE generates them automatically !
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)
+ B, Â = O
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N = 4 Super–Yang–Mills

Recent progress
Fresh results

I RRE as a natural consequence of the conformal invariance
“Anomalous dimensions of high-spin operators beyond the leading order”

Benjamin Basso & Gregory Korchemsky
Nucl.Phys. B775 (07) 1 [hep-th/0612247]

I “N =4 SUSY Yang–Mills: three loops made simple(r)”

D-r & Pino Marchesini Phys.Lett. B 646 (07) 189 [hep-th/0612248]

I “Anomalous dimensions at twist-3 in the sl(2) sector of N =4 SYM”

Matteo Beccaria JHEP 0706 (07) 044 [0704.3570]

I Bethe Ansatz fails (“maximally”) at 4 loops for twist-2
“Dressing and Wrapping”

Kotikov, Lipatov, Rej, Staudacher & Velizhanin
J.Stat.Mech. 0710 (07) P10003 [0704.3586]

I twist-3 gaugino = twist-2 “universal”
“Universality of three gaugino anomalous dimensions in N =4 SYM”

Beccaria JHEP 0706 (07) 054 [0705.0663]

I “Twist 3 of the sl(2) sector of N =4 SYM and reciprocity respecting evolution”

Beccaria, D-r & Marchesini Phys.Lett. B652 (07) 194 [0705.2639]
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N = 4 Super–Yang–Mills

Serving QCD
N=4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.

A deeper understanding of the s → u crossing (x → −x symmetry)
should turn the “viability of” into the “power of”

N =4 SYM dynamics is classical, in certain sense.
If so, the final goal — to derive γ from γ(1), in all orders !

QCD and SUSY-QCD share the gluons.

clever 2nd loop

clever 1st loop
< 2%

(
Heavy quark fragmentation

D-r, Khoze & Troyan , PRD 1996

)
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N = 4 Super–Yang–Mills

Serving QCD
N=4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.

A deeper understanding of the s → u crossing (x → −x symmetry)
should turn the “viability of” into the “power of”

N =4 SYM dynamics is classical, in certain sense.
If so, the final goal — to derive γ from γ(1), in all orders !

QCD and SUSY-QCD share the gluons.

Importantly, the maximal transcedentality (clagon) structures
constitute the bulk of the QCD anomalous dimensions.

Employ N =4 SYM to simplify the essential part of the QCD dynamics
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N = 4 Super–Yang–Mills

Serving QCD
Conclusions

I A steady progress in high order perturbative QCD calculations is worth
accompanying by reflections upon the origin and the structure of higher
loop correction effects

I Reformulation of parton cascades in terms of Gribov–Lipatov reciprocity
respecting evolution equations (RREE)
I reduces complexity by (at leat) an order of magnitude
I improves perturbative series (less singular, better “converging”)
I links interesting phenomena in the DIS and e+e− annihilation channels

I The Low theorem should be part of theor.phys. curriculum, worldwide

I Complete solution of the N =4 SYM QFT should provide us with a
one-line-all-orders description of the major part of QCD parton
dynamics

I Long live QFT !
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RREE and small x puzzles
small x : 2 puzzles

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, N � 1
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+ 0 ·
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+ 0 ·
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+
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e+e− annihilation (time-like cascades) — a similar story:

1 → 1 + 2 =⇒ Exact Angular Ordering still intact !

1 → 1 + 2 + 3 =⇒ (1 → 1 + 2) ⊗ (2 → 2 + 3)

1 → 1 + 2 + 3 + 4 =⇒ (1 → 1 + 2) ⊗ (2 → 2 + 3) ⊗ (3 → 3 + 4)

so-called “Malaza puzzle”
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RREE and small x puzzles
small x chart

α 3/2

α 1/2

α 2
α 5/2

α 3

1 2 3 4 5 6

0

1

2

3

4

5

BFKL

N−BFKL6

7

1 k

N
( )

αp

α

Solid – BFKL (black)
and N-BFKL (green)
known in all orders.

Dashed blue –
γ+ terms generated by
α/N and α.

Yellow – unknown.
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= universal magnitude of double-log enhanced contributions.

Enters in :

large-N asymptotics of anomalous dimensions and coefficient functions,

Sudakov quark and gluon form factors,

quark and gluon Regge trajectories,

threshold resummation,

singular (x → 1) part of the Drell–Yan K -factor,

distributions of jet event shapes in the near-to-two-jet kinematics,

heavy quark fragmentation functions,

non-perturbative power suppressed effects in jet shapes and elsewhere,
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RREE in off-diagonal transitions
non-diagonal transitions

Second loop G → G [quark box] (nf TR CF )

P
(S)
G = 8x − 16 +

20

3
x2 +

4

3
x−1 − (6 + 10x) ln x − 2(1 + x) ln2 x ,

P
(T )
G = 12x−4−

164

9
x2+

92

9
x−1+(10+14x+

16

3
[x2+x−1]) ln x+2(1+x) ln2 x ;

Non-singlet F → F [via 2 gluons] (nf TR CF )

P
(S)
F = 12x − 4−
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9
x2 +

40

9
x−1 + (2 + 10x +

16

3
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Non-singlet F → F [via 2 gluons] (nf TR CF )

P
(S)
F = 12x − 4−

112

9
x2 +

40

9
x−1 + (2 + 10x +

16

3
x2) ln x − 2(1 + x) ln2 x ,

P
(T )
F = 8x − 16+

112

9
x2 −

40

9
x−1 − (10+18x +

16

3
x2) ln x +2(1+ x) ln2 x

Cross-differences :

1
2 [P

(T )
F − P

(S)
G ] = PG

F ṖF
G , 1

2 [P
(T )
G − P

(S)
F ] = PF

G ṖG
F
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RREE in off-diagonal transitions
non-diagonal transitions

Second loop G → G [quark box] (nf TR CF )
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Gluons at large angles
gluons in-between-jets

2- and 3-prong colour antennae are sort of ”trivial”: coherence being taken
care of, the answers turned out to be essentially additive

The case of 2 → 2 hard parton scattering is more involved (4 emitters),
especially so for gluon–gluon scattering.
Here one encounters 6 (5 for SU(3)) colour channels that mix with each
other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in
(αs log Q)n was set up and solved by George Sterman and collaborators.

Recent (fall 2005) addition to the problem (G.Marchesini & YLD)
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Gluons at large angles
Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

∂

∂ lnQ
M ∝

{
−Nc ln

(t u

s2

)
· Γ̂

}
· M, Γ̂Vi = EiVi .

6=3+3. Three eigenvalues are ”simple”.
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Gluons at large angles
Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

∂

∂ lnQ
M ∝

{
−Nc ln

(t u

s2

)
· Γ̂

}
· M, Γ̂Vi = EiVi .

6=3+3. Three eigenvalues are ”simple”.
Three ”ain’t-so-simple” ones were found to satisfy the cubic equation:

[
Ei −

4

3

]3

−
(1 + 3b2)(1 + 3x2)

3

[
Ei −

4

3

]
−

2(1 − 9b2)(1 − 9x2)

27
= 0,

where

x =
1

N
, b ≡

ln(t/s) − ln(u/s)

ln(t/s) + ln(u/s)
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Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

∂

∂ lnQ
M ∝

{
−Nc ln

(t u

s2

)
· Γ̂

}
· M, Γ̂Vi = EiVi .

6=3+3. Three eigenvalues are ”simple”.
Three ”ain’t-so-simple” ones were found to satisfy the cubic equation:

[
Ei −

4

3

]3

−
(1 + 3b2)(1 + 3x2)

3

[
Ei −

4

3

]
−

2(1 − 9b2)(1 − 9x2)

27
= 0,

where

x =
1

N
, b ≡

ln(t/s) − ln(u/s)

ln(t/s) + ln(u/s)

Mark the mysterious symmetry w.r.t. to x → b: interchanging internal
(group rank) and external (scattering angle) variables of the problem . . .
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Integrability
Integrability

1. anomalous dimensions ⇒ eigenvalues of the dilatation operator

2. subset of composite operators su(2) = trace(XXXYYXYXXXYYY) can
be mapped onto a spin 1/2 system (X = spin up, Y = spin down)

3. At one loop, it is the Hamiltonian of the integrable XXX spin 1/2 chain

4. At higher loops, a more complicated spin chain, but with spins
interacting at neighbouring sites (up to a certain distance)

5. At all loops, there are conjectures for the all loop spin Hamiltonian,
exploiting the string results, assuming AdS/CFT duality.

6. Integrability = an infinite number of invariants (conserved quantities).
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