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Prologue

Our modern understanding of the high energy behavior of strong interactions
was conceived with the idea of the parton model in the late 1960’s and was
born with the appearance of asymptotic freedom in the early 1970’s. Partons
arose out of a necessity to explain the scaling observed in deep inelastic elec-
tron scattering experiments at SLAC. This phenomenological understanding
of SLAC scaling was soon extended to other hard scattering processes includ-
ing e+e− annihilation into hadrons and inclusive high p⊥ hadron production
in hadron–hadron collisions. However, the idea of what exactly a parton was
remained elusive and the phenomenological successes of the parton model
remained qualitative rather than quantitative.

With the coming of asymptotic freedom in nonabelian gauge theories in
the 1970’s it became apparent that partons were nothing other than the
quanta which occur in the theory of quark and gluons interacting by means
of the gluon couplings to color charge, QCD. Asymptotic freedom allows one
to consider quarks as free quanta at short distances and over short times thus
making contact with the idea of a parton as a noninteracting constituent of
a hadron. It soon became clear that for many, if not all, high energy pro-
cesses involving a large momentum transfer one could separate (factorize)
the process into one part which involves only hard interactions and which is
calculable using perturbative QCD and into a second part which requires de-
tailed nonperturbative information as to how hadrons are built out of quarks
and gluons. The parts of hard processes involving nonperturbative physics
are not energy dependent and can be used in one process after having been
measured in another process.

Our understanding of partons in QCD has progressed rapidly since the
1970’s and now QCD partons are used both quantitatively and qualitatively
to explain diverse phenomena in both inclusive and exclusive high energy re-
actions. Sometimes their applications are rather simple conceptually as for
example in calculations involving higher order corrections to the electron-
positron annihilation cross section into hadrons. Sometimes techniques far

vii



viii Prologue

beyond traditional renormalization group methods are required as for exam-
ple in our description of inclusive hadron production in jets. Sometimes it
requires great care in deciding what exactly counts as a parton and when a
parton counts as a quark and when it counts as a gluon as for example in
our discussion of spin-dependent deep inelastic scattering. Sometimes it is
not yet clear what are the limits of the usefulness of the parton picture as for
example in very small x phenomena.

In this book our approach is completely perturbative. We make no at-
tempt to describe hadron wavefunctions in terms of quarks and gluons. Much
of this book is concerned with distributions and correlations of particles pro-
duced in, or in association with, jets. However, phenomenologically distri-
butions of hadrons and of partons seem remarkably similar. This has led to
hypothesis of local parton hadron duality (LPHD). LPHD has made it possi-
ble to apply the predictions of perturbative QCD at much lower energies than
would have been the case had the relationship between partons and hadrons
not been so close.

If there is a main focus to this book it is obtaining high energy predictions
of QCD in circumstances where coherence is important. Little of our discus-
sion is untouched by the idea that gluons couple to quarks and other gluons
by means of a conserved color charge. Some of the predictions discussed in
this book are at first sight anti-intuitive as for example the look of a central
plateau in jets. Indeed the emergence of the “hump-backed” plateau shape of
the inclusive hadron spectrum in jets, recently definitely confirmed at LEP, is
perhaps the most striking example of a highly nontrivial prediction of QCD
where coherence plays a predominant role. It is coherence, also, which allows
the evolution of a jet from a single parton into a multiparton system to be
described, in most of its aspects, in terms of a classical branching process,
which description has been so important for understanding the global struc-
ture of events in e+e− and hadron-hadron collisions. Color coherence can be
used practically as a valuable tool for studying manifestations of new physics.
For example, reconstruction of the QCD radiation pattern determinig distri-
butions of accompanying hadrons may help to explore the production of new
heavy objects: the Higgs bosons, new quarks, supersymmetric particles, etc.

In describing particle distributions and correlations in jets for that region
of phase space where most of the particles are produced an unusual circum-
stance arises. The perturbation theory does not just consist of a few Feynman
graphs giving a few powers of αs, rather both single and double logarithms
occur for each power of αs. This necessitates a resummation of the perturba-
tion series. The summation of all double logarithmic terms, [αs ln2]n, which
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we refer to as DLA gives a good qualitative description of inclusive distribu-
tions in jets, however, for a quantitative description it is necessary to include
single logarithmic terms leading to the modified leading logarithmic approxi-
mation, MLLA. In MLLA distributions are generally down by

√
αs compared

to DLA. The appearance of
√
αs corrections is one of the surprising features

of much of the physics we discuss in this book.
√
αs terms arise because in

the process of summing leading double logs we neglect quantities which have
summed up decreasing exponentials exp(−√

αs ln) while we keep increasing
exponentials of

√
αs ln. Dropping these decreasing exponentials leads to an

expansion in
√
αs an expansion which has now been reasonably well tested

at LEP.
This book is aimed at two rather different audiences. Much of our dis-

cussion is descriptive and large parts of the book can be read without going
through the details of the derivations of the final results. Thus one of our
objectives is to make the book accessible to high energy experimental physi-
cists. We have tried to explain the various phenomena in physical terms and
we have stated results often in a directly usable way. On the other hand
we have tried to be complete enough in our technical discussions so that the
derivations can be followed by an advanced graduate student. Little of what
we cover is available in book from elsewhere.

Experimental results are coming in at a very rapid rate, especially from
LEP. In order that this book should not age too rapidly we have kept com-
parisons with experiment to a minimum. We have tried to concentrate on
the ideas and on the precise predictions of QCD. Most of the topics we have
covered are reasonably mature from a theoretical perspective, though often
definitive experimental tests are yet to come.

In the long course of preparing this book we benefited a lot from collabo-
ration with many of our colleagues belonging to the QCD community.

We are especially indebted to B. Andersson, Ya.I. Azimov, S. Bethke,
G. Cowan, V.S. Fadin, V.N. Gribov, G. Gustafson, G. Marchesini, P. Mättig,
C. Peterson, T. Sjöstrand and B. Webber for fruitful discussions.

This work was completed during the visit of three of us (TDK) at Lund
University in the framework of the Nordita Perturbative QCD Workshop. It
is a pleasure for us to thank the Theory Group of Lund University for having
arranged a nice time for physics there.
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2 Hard Processes and Jets

Perturbative (hereafter — PT) QCD aims to describe quantitatively the
structure of multipartonic systems produced by QCD cascades for gaining
some actual knowledge about confinement from comparing the calculable
characteristics of quark-gluon ensembles with measurable characteristics of
final hadronic states in hard processes.

It has become a matter of folklore to say that QCD has taken over from
the old Parton Model. This is however only a half truth. Indeed, if one is
thinking of the Hard Processes such as e+e− → hadrons or deeply inelastic
lepton-hadron scattering (DIS) this is just the case: it was QCD that supplied
the heuristic parton picture with the dynamical basis. At the same time it
would be wasteful to forget that the main advantage of the Parton Model [1]

was just a universal approach to both “hard” and “soft” physics. The parton
idea has explained the phenomenon of scaling in structure functions (hard
DIS and e+e− processes) and in the inclusive particle distributions in hadron
collisions at the same time. It was the parton picture which predicted a
jet-like structure of final states of hard interactions and, on the other hand,
which gave a clear explanation of Regge asymptotics [2].

Modern QCD is far from reaching such a universality, the impassable
infrared gulf still lies between soft and hard processes. A characteristic of the
QCD burst of the last 15 years — certain coolness to a class of problems of
Reggistics, does not mean a nonurgency of the topic. Simply it remains to be
too hard a nut to crack for the modern theory.

Meanwhile the need of an integrated approach to the description of both
hard and soft hadroproduction processes becomes imminent. It is the ex-
perimentally observed universality of quark distributions and jets, similar
particle content in the hard lepton-hadron and soft hadron-hadron collisions
etc. which point to this need.

To elaborate such an integrated approach one has to gain better under-
standing of the confinement mechanism, to search for more detailed qualita-
tive and quantitative information about the region of really strong interaction
where the quark-gluon language becomes inapplicable and starting from the
QCD field Lagrangian we are unable to keep track of the happenings. To
enter the problem we should start with portraying the space-time picture of
the hadroproduction in hard processes i.e. drawing the picture of “blanching”
of colored partons — quarks and gluons.
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1.1 Space–Time Picture of

QCD Bremsstrahlung

Now we proceed to the consideration of the basic hard interaction, namely the
creation and propagation of a quark q and an antiquark q in the annihilation
process e+e− → qq.

The key problem here is how to organize a color neutral final system
of “white” hadrons from the initial pair of colored quarks flying apart with
relativistic velocities from the annihilation point. At first sight it seems to
be rather difficult (if not even impossible) to reconcile the fast spreading of
color with the final color neutrality needed. How to let quarks know that
they should not take away color (and fractional electric charges by the way)?!
Here we’ll concentrate on this puzzle which furnishes the very core of the
hadronization problem.

Firstly let us remind the reader a standard answer to the above question:
“there exists the non-perturbative “gluon string” or the “flux tube” of strong
chromomagnetic field between quarks (color charges) which starts to stretch
and breaks producing new qq pairs to form hadrons subsequently. This incan-
tation however has little to do with the problem under interest. Why so? Let
us catch sight of this point.

The concept of the string (the “area law” in the Wilson loop, the lin-
early rising potential and all that) could in principal explain “why do quarks
form a white hadron” but not “how does this confinement occur in the fast
non-adiabatic process”. The reason for this is that relativistic quantum me-
chanics (together with asymptotic freedom) protects the fast quark from being
involved in any non-PT interaction during a long time. The original q and q
come out of the PT jurisdiction and can enter the “hadronization game” only
after macroscopically large time interval from the start of the process, which
is proportional to the quark energy: thadr ∝ E.

1.1.1 Field Regeneration Time and Hadronization

The essence of a “hard process“ is that the quark is knocked out from the
vacuum (or from a hadron as in DIS process) as a bare particle or, more
accurately, as a half-dressed one. This means that the charge, when be-
ing accelerated, appears to have a truncated proper field (either electro- or
chromo-magnetic). Its field has no Fourier components with k⊥ <

√
Q2

where Q2 denotes the characteristic momentum transfer squared measuring
the “hardness” of the hard process.
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Subsequently two closely correlated processes start: the bremsstrahlung is
developing whose quanta in time leave the parent radiating quark as offspring
partons — gluons, and the private gluonic field of the quark is regenerated.
The phenomenon of regeneration of a stationary field surrounding a charge
has been understood in QED. The regeneration time of the proper field or,
to be more precise, of its Fourier component with momentum ~k is given by

Tregen.(k) ∼
k||
k2
⊥
, (1.1)

where longitudinal and transverse components of photon momentum are de-
fined with respect to the outgoing electron. For photons with relatively small
transverse momenta k⊥ � k|| ∼ p ≈ E where p and E stand for electron
momentum and energy, the regeneration time may become macroscopically
large. The finiteness of the regeneration time leads to substantial effects for
relativistic electrons.
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Figure 1.1: Photon bremsstrahlung accompanying electron scattering.

When the fast electron is scattered at large angle, two cones of brems-
strahlung photon radiation are well known to be formed (see Fig. 1.1a). The
quanta from the first cone centered around the direction of an initial electron
momentum can be treated as splinters of an electromagnetic surrounding
shaken off by the accelerated electron. An appearance of the second cone is
the back of the regeneration of a new field coat i.e. the disk of the Lorentz
contracted Coulomb field fitting the final electron.

Next, for a double scattering process depicted in Fig. 1.1b it might seem
natural to expect an appearance of the four photon cones. However if the re-
generation length cTregen. (1.1) exceeds the distance between the scattering
points, only two of them actually emerge (Fig. 1.1c).

The regeneration physics shows up in a number of QED phenomena con-
nected with relativistic electrons, such as the Landau-Pomeranchuk damping
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of soft bremsstrahlung due to multiple rescatterings of electron in a medium,
in transmission radiation, electron radiation in crystals etc.

Classical considerations alone give evidence of a truncated field. Let
us take the classical charge which is moving along z axis with velocity v≈1
after being accelerated (say, from a v= 0 state) at t= 0. At asymptotically
large time it will be surrounded by a disk of Lorentz contracted e.m. field. It
is clear however that such a state could not emerge instantly. In the reference
frame accompanying the charge the field spreads out inside the sphere

r′ ≤ t′.

This means that in the laboratory frame where the time is slowered by the
factor γ = E/m, the field at distances r from apart the z axis will appear not
earlier then at

t = γt′ =
E

m
r. (1.2)

Applied to a quark this results in a rather serious consequence: an energetic
“bare” quark prepared by a hard interaction will be able to hadronize (i.e.
to become a hadron constituent) only after the time (1.2), where r measures
typical value of interquark distances inside a hadron (hadronic size R) and
m should be treated as its constituent mass. For a light quark (q = u, d, s)
these two parameters are closely linked to each other and to the value of mean
transverse momenta characteristic for soft hadron physics:

mconstituent ∼
√

〈k2
⊥〉 ∼ R−1 ≈ few hundred MeV (1.3)

Thus for light and heavy (Q = c, b, . . .) quarks one arrives at the following
estimates of hadronization time:

thadr
q ≈ ER2 , (1.4)

thadr
Q ≈ E

mQ

R . (1.5)

The same conclusions could be drawn from

Quantum-Mechanical arguments. Indeed, in the rest frame of a
hadron the confining forces stem from “long-wave” gluonic field with mo-
mentum components

k′⊥ ∼ k′|| ∼ k′ ∼ R−1 .
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Moving back to the Lab. system one gets

k⊥ = k′⊥ ∼ R−1, k|| = γk′|| =
E

mR
,

and the time (1.2) one needs for such a field to be regenerated reads:

Tregen.(k) =
k||
k2
⊥
≈ E

mR
R2 =

E

m
R ,

which coincides with the classical formula (1.5).
Thus a quark with energy E ∼ 200 GeV starting from the annihilation

time tann. ∼ 1/E ∼ 10−3 fm/c and up to hadronization time thadr ∼ ER2 ∼
103 fm/c should behave as a true color particle radiating gluons perturbatively
without any care taken about its future confinement. An instructive lesson
comes from considering an ultraheavy quark Q heavier than the mass of the
weak boson W : mQ > 100 GeV. Due to the semiweak decay (Q→ W + q)
its lifetime τQ

τQ ≈ 1 fm/c

(
MW

mQ

)3
EQ

mQ

< thadr ≈ 1 fm/c
EQ

mQ

is shorter than the hadronization time so that for all its life it remains under
the jurisdiction of PT QCD. One can say that such a quark in all aspects
behaves as if it were a free colored object.

1.1.2 QCD Bremsstrahlung

Now, after touching upon the field regeneration physics we turn to brems-
strahlung gluon radiation. The differential spectrum of gluon radiation off a
quark differs from the ordinary spectrum of a photon emitted by an electron
only by the color factor CF = (N2

C − 1)/2Nc = 4/3 and, of course, by the
substitution α→ αs = g2

s/4π:

dw q→qg =
αs(k

2
⊥)

4π
2CF

[
1 +

(
1 − k

E

)2
]
dk

k

dk2
⊥

k2
⊥
, (1.6)

where kµ is the 4-momentum of the gluon. The effective coupling here runs
with the gluon transverse momentum k⊥ , which comes from higher order
corrections to the Born probability.

Let us notice two important properties of the spectrum (1.6). They are:
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• broad logarithmic distribution over transverse momentum which is
typical for a field theory with dimensionless coupling (high probability
of quasicollinear qg configurations) and

• broad logarithmic energy distribution specific for theories with mass-
less vector bosons 1.

Key words which one meets with in connection with these basic properties of
the QCD bremsstrahlung phenomena are

• transverse logs, collinear divergency, mass singularity etc.,

• longitudinal logs, soft divergency, infrared singularity etc.

Picking up a gluon with large emission angle and large energy one would get
an extra gluon jet with a small probability

Multi-Jet Events: k⊥ ∼ k ∼ E → w ∼ αs

π
� 1 .

In the same time the bulk of radiation (quasicollinear and/or soft gluons)
will not lead to the appearance of additional visible jets in an event but will
instead populate the original quark jet with secondary partons influencing
the particle multiplicity and other jet properties

Intrajet Activity: k⊥ � k � E → w ∼ αs

π
log2E ∼ 1 .

Properties of the expression (1.6) for q → qg emission together with similar
formulae for two other basic parton splittings g → gg radiation and g → qq
decay will be discussed in details below in Section 1.3.3.

1.1.3 Parton Formation Time and PT Boundary

To answer the question as how do offspring partons influence the hadronic
yield, one has to realize first what is the condition for a gluon to behave as an
independent colored object and thus as an additional source of new particles.
It takes some time to emit a gluon. This time (so called formation time)
can be simply estimated as a life-time of a virtual (p + k) quark state in
Fig. 1.2. Making use of the Heisenberg uncertainty principle with account of

1Massive vector particles such as W and Z will also exhibit logarithmic bremsstrahlung
spectra at very high energies far above the weak mass scale.



8 Hard Processes and Jets

p+ k p

k

Figure 1.2: Kinematics of gluon emission.

the Lorentz contraction effect one arrives at

tform
g ∼ 1

Mvirt.

E

Mvirt.
=

E

(p+ k)2
≈ E

kEΘ2
≈ k

k2
⊥
. (1.7)

Comparing this expression with that for the hadronization time of a gluon k
(cf. (1.4))

thadr
g ≈ kR2 , (1.8)

one concludes that it is the transverse momentum restriction

k⊥ > R−1 = a few hundred MeV (1.9)

which guarantees the gluon’s being since it seems reasonable to be born before
ones death:

tform
g ∼ k

k2
⊥

< thadr
g ∼ kR2 . (1.10)

The same reasonings can be applied to any parton splitting process, so that
the basic restriction (1.9) represents the condition of the very applicability of
quark-gluon language or, in other words, of the PT QCD.

Notice that there exists another way of argumentation which approves this
restriction as a natural limit for the PT approach. Namely, at finite values of
k⊥ the running coupling αs in the expression (1.6) for the emission probability
approaches the infrared pole, thus endangering PT considerations.

The boundary condition (1.9), being physically very important, leaves at
the same time rather broad room for PT analysis. In collisions with large
characteristic momentum transfer Q the bulk of phase space where basic
partonic amplitudes appear to be large (logarithmic; cf. (1.6))

R−1 � k⊥ <∼ k <∼
√
Q2 (1.11)

remains in the regime of PT QCD.
The parameter (k⊥R) can be said to regulate the “lifetime” of a secondary

parton. Gluons with momenta satisfying the strong inequality

k⊥R � 1 , (1.12)
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which are the main characters of the PT play, will live for a long time radi-
ating, in their turn, new offspring thus starting the cascade multiplication of
partons.

To gain a large total emission probability in spite of αs being small, one
has to pick up at least one logarithmic integration out of the PT phase space
(1.11). The list of possible orderings of items in (1.11) each of which reveals
itself in definite physical phenomena look as follows.

• R−1 � k⊥ � k ∼
√
Q2

That is quasicollinear hard parton splittings leading to the known scal-
ing violation effects in DIS cross section and e+e− inclusive particle
distributions.

• R−1 � k⊥ ∼ k �
√
Q2

Large angle soft gluon emission responsible for drag effects in interjet
multiplicity flows manifesting QCD Coherence.

• R−1 � k⊥ � k �
√
Q2

Double-Logarithmic (soft & collinear) gluon bremsstrahlung off quarks
and gluons causing jet multiplicity growth with energy and determining
QCD Form Factors of partons.

Before turning to the comprehensive study of different aspects of compli-
cated multiparton states we’ll make first a short stop for some “handwaving”
discussion of the nature of blanching and hadronization phenomena.

1.1.4 “Gluers” and their Role in Color Blanching

Though disregarding parton pairs with small relative transverse momenta
k⊥ < R−1 which definitely lie beyond the scope of PT, let us concentrate for
a moment on a role played by the gluons radiated at the lower edge of PT
phase space (1.9) in the process of Fig. 1.2. To be serious, nothing can be
said about the fate of these guys quantitatively in the PT framework. They
are radiated strongly, αs(k

2
⊥) ∼ 1, and can be hardly treated as gluons even,

since due to relation (1.10) they are forced to hadronize just immediately
after being formed. For the sake of definiteness let us call such an object

gluer : k⊥R ∼ 1 ,

stressing the point that it is the prerogative of Gluers and not of Gluons to
glue.
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Blanching qq Jets. An appearance of gluers is a signal of switching on
the real strong interaction in a system of color charges. According to (1.7)
first gluers are formed at t ≈ R with k∼ k⊥∼R−1. It is the moment when
the distance between the outgoing q and q starts to exceed 1 fm.

What non-PT phenomenon has to happen at this moment ? The answer
should be the separation of two jets as globally blanched subsystems. Such
a blanching is needed pragmatically to restrain the gluer radiation probability
which otherwise should grow manifesting the infrared instability of the theory
via the catastrophic increase of PT interaction strength αs.

Though up to now one has no quantitative description of blanching pro-
cess, the plausible picture of what is going on can be extracted from the
Gribov confinement scenario [3], where the strong external field created by
outgoing quarks causes the crucial restructuring of the light quark Dirac sea
resulting in a phenomenon which is similar to the known QED physics of
“supercharged ions” with Z > 137.

Gluers and Hadron Plateau. With increasing time gluers with larger
and larger energies k ∼ t/R2 are formed. If there were no PT gluon radi-
ation at all, the resulting hadronic spectrum could be simply related to the
integrated probability of emission of gluers which according to (1.6) gives the
following qualitative estimate:

dN =

[ ∫

k⊥∼R−1

dk2
⊥

k2
⊥

4CF
αs(k

2
⊥)

4π

]
dk

k
= const · dk

k
. (1.13)

Notice that what we got is nothing but the famous hadronic plateau of the
old parton picture. It appears due to sequential acts of blanching color fields
in the spreading qq system.

Blanching Secondary Partons. How will additional PT gluons con-
tribute to the hadron yield? We met already two characteristic time scales
(1.7) and (1.8) , namely formation and hadronization times of a secondary
gluon. Now let us introduce one more important point tsepar when the sepa-
ration in the transverse plane ∆ρ⊥ ≈ t · cΘ between the bremsstrahlung
particle (with emission angle Θ) and its parent will reach critical confinement
distance R. Note that our three time scales characterizing the gluon’s being
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are parametrically ordered with the PT parameter (1.12):

tform ≈ k

k⊥
2 = tform ∗ 1 ,

tsepar ≈ R

Θ
= tform ∗ (k⊥R) ,

thadr ≈ kR2 = tform ∗ (k⊥R)2 .

At the same time all three are of the same order for gluers.
At tsepar some new specific non-PT interaction must take place to screen

the total color charge of the outgoing gluon (e.g., with a help of light qq
pairs created from the vacuum in an octet state). Our qualitative estimates
do support this need. Exactly in time appropriate gluers are formed which
follow the gluon:

Θgluer ≈ Θ, (k⊥)gluer ∼ R−1, =⇒ kgluer ≈
1

RΘ
;

(
tform ∼ tsepar ∼ thadr

)
gluer

≈ R

Θ
= (tsepar)qg .

Starting from t = tsepar the gluon becomes an independent source of hadrons
with energies from kgluer and up to k. This additional plateau, from the PT
point of view, should be roughly twice as large as the quark induced spectrum
(1.13) since the gluon radiates gluons (and gluers?) Nc/CF = 9/4 times more
intensely than the quark does. It looks like a jet produced in an interaction
with effective hardness Q2 ∼ k2

⊥ but boosted with the Lorentz-factor γ = 1/Θ.
At first glance it might seem strange that the new subjet did not con-

tribute to the yield of softest hadrons:

R−1 <∼ ωhadr <∼ R−1/Θ . (1.14)

This is, in fact, an interesting phenomenon which stems from the very nature
of QCD as a gauge theory. The reason for that is the conservation of color
current: soft hadrons with energies in the interval (1.14) are formed too early
(t < tsepar) when q and g appear to be so close to each other that they act
with respect to gluers as a single emitter with total color charge equal to that
of the original quark.

If the hard gluon of Fig. 1.2 contributed to the hadron yield with a “full”
plateau built up of hadrons with energies

R−1 <∼ ωhadr <∼ k ,
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one would expect2 the final spectrum resulting from the multiple cascade par-
ton emissions to be strongly populated with softest hadrons: ωhadr ∼ mhadr.
This common wisdom however was proved to be wrong in the beginning of
eighties when the Quantum-Mechanical Coherence was rediscovered in the
QCD context.

1.2 Partons in Field Theory

Despite the smallness of the effective coupling at small space-time intervals,
the PT description of hard processes does not result, in general, in a trivial
power series over αs. The partonic structure of hard processes, whether one
deals with the content of jets produced in e+e− annihilation or with space-
time fluctuations caught by a snapshot of DIS, appears to be rather rich.

Studying various characteristics of strong interactions at high energies,
we face, in one way or another, consequences of the fact that specific QCD
parton multiplication processes happen to have large probabilities. We have
seen this already considering typical process of gluon bremsstrahlung, (1.6),
where the total probability of a gluon emission turned out to be large due to
broad logarithmic integrations over k and k2

⊥.
Multiple QCD bremsstrahlung demandes a basic new approach for the de-

scription of the structure of partonic systems determining the basic properties
of hard processes of lepton-hadron and hadron-hadron interactions.

1.2.1 Leading Logarithmic Approximation

Historically this approach was first tried in attempts to reach a profound
level of understanding Bjorken scaling in lepton-hadron scattering with large
momentum transfer

Q2 = −q2 �M2 , ν =
(p · q)
M

� M .

Approximate Bjorken scaling has been found to hold in Quantum Field The-
ory in the pioneering works by Gribov and Lipatov of 1972 [4]. It was shown
that in a field theory with dimensionless coupling constant g DIS structure
functions can be represented as a sum of Rutherford cross sections of the lep-
ton scattering off a pointlike charged particle weighted with parton densities

2and this is inherent to so called Independent Fragmentation schemes of hadronization
modelling
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Df
i (x), where x is the fraction of the longitudinal momentum p of the fast

projectile (i) carried by the parton (f) .
Instead of fixed, Q2-independent, parton distributions which would cor-

respond to exact scaling, logarithmic deviations from the true scaling behav-
ior had been predicted, revealing the internal structure of parton densities
Df

i (x, lnQ2). The Q2-dependence comes from summing the leading loga-
rithmic corrections and physically represents the fact that a deep inelastic
scattering involving a photon of virtuality Q2 corresponds to the scattering
of that virtual photon off a quark of transverse size 1/Q.

The point is that the large momentum transfer Q2 sets an upper bound
for transverse momenta of partons logarithmically distributed over the broad
range

dw ∝ g2

∫ Q2

dk2
⊥

k2
⊥
,

which makes the total probability of extra parton production large:

w ∝ g2 · lnQ2 ∼ 1 ; g2 � 1 ,

in spite of the smallness of the field coupling g2 which is required for the
perturbative calculations to be applicable. This observation formed the base
of the so called Leading Logarithmic Approximation (hereafter LLA).

In the LLA framework one keeps trace of contributions to structure func-
tions of the order

W (x,Q2) ∝ Df
i (x, lnQ2) =

∞∑

n=0

fn(x)
(αs

π
lnQ2

)n

(1.15)

while neglecting systematically corrections of the relative order αs , not ac-
companied by a large log. In a field theory with asymptotic freedom such an
approximation proves to be asymptotically exact , i.e.

W true(x,Q2) = WLLA(x,Q2)

[
1 +O

(
αs(Q

2)

π

)]
Q2→∞→ WLLA(x,Q2) .

Gribov and Lipatov have analyzed Feynman diagrams contributing to the dis-
continuity of the forward lepton-“parton” scattering amplitudes determining
DIS structure functions in field theories wherein fermions are coupled with
pseudoscalar and Abelian vector bosons:

Lint = ψγ5ψ · φ , Lint = ψγµψ · Aµ .
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The same LLA program was realized also for inclusive x-distributions of “par-
tons” produced in e+e− annihilation.

It is important to emphasize, that in spite of rather complicated charac-
ter of the original Feynman diagrams contributing to LLA, the final answer
proved to be very transparent, allowing a simple probabilistic interpretation
of basic processes that determine the internal structure of partonic systems
and resulting parton densities.

Explicit partonic interpretation of the structure of DIS in logarithmic field
theories was given in Refs. [5,6] where the probabilistic Evolution Equations
determining the Q2 dependence of parton densities Df

i (x) have been inter-
preted in terms of the kinetic equilibrium of partons inside a hadron under
the variation of the ultraviolet transverse momentum cut-off Λ = Q.

The LLA parton wavefunction of a projectile can be built up iterating el-
ementary parton splitting processes 1 → 2 with successively increasing trans-
verse momenta

µ2 � k2
⊥1 � k2

⊥2 � · · · � k2
⊥n−1 � k2

⊥n � Q2. (1.16)

Formally the strong transverse momentum ordering (1.16) is necessary to
gain the maximal logarithmic contribution to (1.15) in the nth PT-order.
Physically this means that partons of the (logarithmic) field theory are not
point-like particles: an attempt to localize the parton of the ith generation,
which has typical transverse size ∆ρ

(i)
⊥ ∼ 1/k⊥i, reveals its substructure at

smaller distances ∆ρ⊥∼1/k⊥i+1 � ∆ρ
(i)
⊥ . With respect to the small-distance

probe our parton behaves basically as a real particle in the spirit of the well-
known Weitzsäcker-Williams method of equivalent photons in QED, which
has been generalized in Ref. [7] to embedd quasireal electrons and successfully
applied for derivation of the QCD parton evolution picture by Altarelli and
Parisi [8]. The Feynman diagram LLA-technique was implemented for QCD
case in Ref. [9].

The second approach invented by Christ, Hasslacher and Mueller [10] was
based on the Wilson operator product expansion (OPE) and exploited the
renormalization group (RG) properties of scattering amplitudes. The mo-
ments of the DIS structure functions are factorized here in two parts: matrix
elements of local operators and their coefficient functions which appear in the
light-cone expansion for the T -product of two electromagnetic currents. For
large Q2, the dominant contribution comes from the operators of minimal
twist t = d−m = 2 with d the canonical dimension of the operator and m its
Lorentz spin. Higher twist operators with t = 4, 6 . . . give power suppressed
contributions ∼ Q2−t which may be significant at moderately high Q2.



Partons in Field Theory 15

The RG technique was developed for QCD applications by Gross &
Wilczek and Georgi & Politzer [11].

Combined with the operator product expansion a satisfying picture
emerged. One can express the structure functions either in terms of the par-
ton model where the leptons scatter off the quark constituents of the hadronic
target, say a proton, or in terms of a bilocal product of quark operators. Thus
in the parton model

1

M
νW2(x,Q

2) =
∑

f

e2f
(
xqf (x,Q

2) + xqf (x,Q
2)
)

(1.17)

where qf (qf) gives the number density of quarks (antiquarks) of flavor f
and having a fraction x of the proton’s momentum in a frame where the
proton’s momentum is large. ef is the electric charge of the quark of flavor
f , in units of the electron charge. In terms of the OPE the mth moment of
q(x,Q2) + q(x,Q2) is given by

1∫

0

dx
[
qf (x,Q

2) + qf(x,Q
2)
]
xm =

1

2pm+1
+

〈p| q̃fγ+

(
i
←→
D+

2

)m

qf |p〉 (1.18)

where Dµ is the covariant derivative, and the renormalization of the quark
operator whose proton matrix element is on the right hand side of (1.18) is at
a scale Q2. Thus matrix elements of gauge invariant local quark operators are
related to moments of the parton distributions in the QCD improved (LLA)
parton model which in turn are related to the measured data by (1.17). An
entirely satisfactory situation.

However, the parton model interpretation of the OPE can be justified only
at the twist-two level. Beyond the leading twist more general quantities —
parton correlation functions — emerge, which are governed by the multipar-
ticle Faddeev type evolution equations with pairwise particle interaction [12].
In the next Chapter we shall discuss in detail the very concept of partons
in connection with a subtlety in the partonic interpretation which appears
in spin dependent DIS. In this Chapter we restrict ourselves to the Basics of
LLA which can be learned with the help of many review papers (see, e.g.,
Refs. [13-15]). Here we give a brief overview of the main ingredients of the
subject which will be of use in what follows. They are:

• basic structure of the “parton ladder”,

• parton splitting functions ,
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• running coupling in parton cascades and

• double logarithmic parton form factors.

1.2.2 Notations and Kinematics

Recall the relationship between the cross section for deep inelastic polarized
electron (or muon) scattering off a polarized nucleon [16] as illustrated in
Fig. 1.3.

dσ =
α2

π

1

Q4
Lµλ(ζ)Wµλ(s)

d3k′

(p·k)E ′ (1.19)

where q2 = −Q2 with q the momentum transfer from the leptons to the
nucleon, p. The lepton tensor Lµλ is given by

Lµλ(ζ) =
∑

ζ′

[ũ (k′, ζ ′) γµu (k, ζ)]
∗
[ũ (k′, ζ ′) γλu (k, ζ)] (1.20)

where the spin vector, ζµ, of the initially polarized electron is determined by

(with ~ζ a unit vector)

ζµ =

(
~k·~ζ
m
, ~ζ +

~k (~k·~ζ)
m (E+m)

)
.

q

p, s

k k′

Figure 1.3: Kinematics of deep inelastic lepton–hadron scattering.

For example an electron having momentum k and helicity +1 has a corre-

sponding ~ζ vector given by ~ζ = ~k/
∣∣∣~k
∣∣∣. The sum over ζ ′ in (1.20) is to be

taken over the two independent spins of the final electron of momentum k′.
From (1.20) one finds

Lµλ(ζ) = 2
(
kµk

′
λ + kλk

′
µ − (k ·k′)gµλ

)
− 2im εµλρσqρζσ (1.21)
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in the approximation of neglecting m2 compared to k·k′. The hadronic tensor
Wµλ is given by

Wµλ(s) =
1

4

∑

n

〈ps| Jµ(0) |n〉 〈n| Jλ(0) |ps〉 (2π)4δ4(q + p− pn) (1.22)

with the four-vector sµ specifying the spin of the nucleon. Jµ(x) is the
electromagnetic current. In our normalization ũ(p, s)u(p, s) = 2M and
ũ(p, s)γµγ5u(p, s) = 2Msµ with sµ defined for nucleons exactly as ζµ was for
leptons. Due to conservation of the electromagnetic current, tensor Wµλ(s) is
orthogonal to the photon momentum qµ (qλ) and has the structure function
decomposition

Wµλ(s) = Wµλ + i W a
µλ (1.23)

with

1

π
Wµλ = −

(
gµλ−

qµqλ
q2

)
W1 +

1

M2

(
pµ−

p·q
q2
qµ

)(
pλ−

p·q
q2
qλ

)
W2 (1.24)

and
1

π
W a

µλ =
1

M
εµλρσqρ

[
sσ

(
G1 +

p·q
M2

G2

)
− pσ

s·q
M2

G2

]
. (1.25)

The structure functions W1, W2, G1 and G2 are functions of the two inde-
pendent invariants ν = (p · q)/M and Q2 or, equivalently, of the variables
x = Q2/2(p·q) and Q2.

W1 and W2 are measured in spin independent DIS according to

dσ

dΩdE ′
=

4α2E ′2

Q4M

[
W2 cos2 Θ

2
+ 2W1 sin2 Θ

2

]
(1.26)

with Θ the angle of scattering between the final and initial leptons in the
nucleon rest system.

Analogously in spin dependent lepton nucleon scattering

dσ↑↓

dΩdE ′
− dσ↑↑

dΩdE ′
=

4α2E ′

Q2M3E

[
MG1(E + E ′ cos Θ) −Q2G2

]
(1.27)

where (↑↑) refers to initial electron and nucleon spins parallel to the initial

electron momentum ~k while (↑↓) refers to the initial electron spin parallel
to its direction of motion while the target nucleon spin is opposite to the
direction of ~k. There are also expressions for transversely polarized electrons
which will not concern us here.
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The structure functions are related to scaling functions according to

W1 = F1 ,
1

M
νW2 = F2 ; (1.28a)

( ν
M

)
G1 = g1 ,

( ν
M

)2

G2 = g2 (1.28b)

where F1, F2, g1, g2 have only logarithmic dependence on Q2 when they are
considered as functions of x and Q2.

Referring to (1.27) we see that a DIS measurement using longitudinally
polarized electrons or muons is capable of giving a determination of g1 but
a determination of g2 is difficult because g2 appears in (1.27) multiplied by
an additional power of 1/Q2 as compared to g1. We shall return to the
experimental situation later on in the next Chapter.

1.2.3 Parton Ladder Building

DIS cross section can be obtained via the discontinuity of the amplitude of
forward virtual photon scattering off the nucleon. In the case of an unpo-
larized target there are only two structures (1.24) connected with inelastic
“form factors” W1 and W2 of the target particle that contribute.

Sudakov variables

In hard interactions, in general, symmetry among the 3 space directions is
strongly broken. In DIS, where a large momentum q is transferred from the
scattered lepton to “heat” the hadron, it is the direction of the “colliding”
virtual photon and nucleon which induces such anisotropy. It proves to be
very useful to exploit this fact and represent all particle momenta in terms of
the Sudakov decomposition:

kµ = α · q′µ + β · p′µ + k⊥µ (1.29a)

(kµ)
2 = α·β ·s− k2

⊥ (k2
⊥ ≡ ~k⊥

2
> 0) (1.29b)

d4k =
s

2
dα dβ d2 ~k⊥ (1.29c)

where q′ and p′ are the light-like vectors defining the interaction hyperplane:

qµ = q′µ − x · p′µ , pµ = p′µ +
M2

s
· q′µ ≈ pµ , (1.30)

p′2 = q′2 = 0 , s ≡ 2(p′ · q′) ≈ 2(p · q) .
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Hereafter we shall neglect effects of a finite proton mass M2 � Q2 identifying
p′µ ≈ pµ.

Born approximation

Imagine that it is some point-like fermion with momentum p which takes an
impact. In this case the discontinuity of the forward scattering amplitude
averaged over initial parton polarizations reads simply

1

π
Wµλ = e2 δ((p+q)2)

1

2
Tr {p̂ γµ (p̂+q̂) γλ} . (1.31)

Invoking (1.30) we have

(p+q) = (0+1)q′+(1−x)p+(~0+~0)⊥ , (p+q)2 = (1−x)s , δ((p+q)2) =
1

s
δ(1−x)

and the Born amplitude takes the form

1

π
W

(0)
µλ (x) = e2 δ(1−x) 1

2s
Tr
{
p̂ γµq̂′ γλ

}
= e2 δ(1−x) (−g⊥µλ) (1.32)

with g⊥ the 4-tensor orthogonal to the scattering hyperplane:

g⊥µλ = gµλ −
pµq

′
λ + q′µpλ

(p·q′) . (1.33)

This means that only transversally polarized photons can be absorbed by a
fermion-parton. Comparing (1.24), (1.28a) to (1.32) one obtains immediately

1

x
F1 = F2 = e2 δ(1 − x). (1.34)

One-loop approximation

x = 1 corresponds to elastic photon–parton interaction. Now let us turn on
parton interactions to open the inelastic channel. The simplest first order
diagram is shown in Fig. 1.4. To start with, let us choose for simplicity the
wavy line in Fig. 1.4 to stand for a scalar boson (“gluon”) mediating the
interaction between fermions (“quarks”).

Then the imaginary part of the forward scattering amplitude will read

1

π
Wµλ = e2 g2

∫
d4k

(2π)4
δ((k+q)2)

1

2
Tr
[
p̂ k̂ γµ

(
k̂+q̂

)
γλk̂
] 1

k4
(2π)δ((p−k)2)

(1.35)
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Figure 1.4: First order ladder (a) and interference (b) diagrams for in-
elastic lepton-parton scattering.

with g the “quark”–“gluon” coupling. Now we have to integrate over virtual
quark momentum kµ. In terms of Sudakov variables (1.29) δ-functions take
the form

δ
(
(k+q)2

)
δ
(
(p−k)2

)
= δ

(
(1+α)(β−x)s− k2

⊥
)
δ
(
−α(1−β)s− k2

⊥
)

=
1

s2

1

(1−β)−k2
⊥/s

δ

(
β−x− k2

⊥
1−k2

⊥/(1−β)s

)
δ

(
−α− k2

⊥
(1−β)s

)

and can be used to take away integrations over the α and β components of
k. Noticing that the dominant contribution to (1.51) comes from kinematical
region

β ≈ x ∼ 1 , −α ∼ k2
⊥/s� 1 (1.36)

we may extract the zero-order structure (1.32) to obtain (see Problem 1.1)

1

π
W

(1)
µλ =

∫
dk2
⊥

k2
⊥

g2

16π2

1∫

0

dβ

β
·(1−β)·

[
1

π
W

(0)
µλ

(
x

β

) ]
(1.37)

The main lesson we should deduce from this exercise is the large contribution
arising from logarithmically distributed transverse momenta of the parton
which takes the impact. In the LLA kinematics (1.36) its momentum k can be
said to be quasi-collinear to the direction of the incoming particle: kµ ≈ β·pµ.
Moreover, with respect to the hard photon-parton interaction k behaves as
quasi-real , since one is forced to neglect its finite virtuality

−k2 = −αβ s + k2
⊥ =

k2
⊥

(1−β)s
β s+ k2

⊥ =
k2
⊥

1−β � Q2 (1.38)
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in the upper part of the amplitude of Fig. 1.4a to keep the large log.
Operationally, the origin of the collinear log is quite simple: extra particle

emission has added two quasi-real propagators which had been only partially
compensated by the numerator of the Feynman amplitude:

W ∝ dk2
⊥

1

(k2)2
Tr
{
p̂ k̂ . . . k̂

}
∼ dk2

⊥
1

(k2
⊥)

2
k2
⊥Tr {p̂ . . .} . (1.39)

Now it becomes clear that the non-ladder diagrams in our toy model with
scalar gluons will not contribute to the LLA. Indeed, for the interference
diagram of Fig. 1.4b, e.g., one has the estimate

W ∝ dk2
⊥

1

(k2)
Tr
{
p̂ . . . k̂

}
∼ dk2

⊥
1

(k2
⊥)

{
p̂ . . . k̂⊥

}
(1.40)

which is no longer logarithimic in k⊥.

Multi-parton ladders

Following the same logic, we can build up the ladder of successive parton
decays shown in Fig. 1.5a. Generalization of the lowest order calculation is
straightforward. In order to obtain a large log from the second cell one has
to restrict the region of integration over k⊥2 by inequality k2

⊥2 � k2
⊥1, and

so on. Integrations over q′-components of “gluon” momenta αi one performs
using the δ-functions of ladder rungs

δ((ki−ki−1)
2) = δ((αi−αi−1)(βi−βi−1)s− ( ~k⊥i − ~k⊥i−1)

2) (1.41a)

−αi−1 � −αi ≈
k2
⊥i

s
(βi−1 − βi) � 1 , βi ∼ 1 (1.41b)

in the region of strongly ordered transverse momenta of emitted “gluons”
according to (1.16).
This results in the nth order contribution to the LLA:

(
g2

16π2

)n
Q2∫

µ2

dk2
⊥n

k2
⊥n

k2
⊥n∫

µ2

dk2
⊥n−1

k2
⊥n−1

. . .

k2
⊥2∫

µ2

dk2
⊥1

k2
⊥1

=
1

n!

(
g2

16π2
ln
Q2

µ2

)n

. (1.42)

β-components of fermion momenta decrease when one moves “up” along the
ladder:

1 ≥ β1 ≥ β2 ≥ . . . ≥ βn−1 ≥ βn ≥ x . (1.43)
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Figure 1.5: Examples of multi-cell LLA ladder diagrams: valence quark
propagation (a), sea-quark–gluon mixing (b), with gluon self-interactions (c).

Corresponding x-dependence will be given then by the convolution

1∫

0

dβn

βn
δ

(
1− x

βn

) 1∫

βn

dβn−1
βn−1

. . .

1∫

β2

dβ1

β1
ΦF

F

(
βn

βn−1

)
ΦF

F

(
βn−1
βn−2

)
. . .ΦF

F

(
βn

1

)

(1.44)
where ΦF

F (z) = (1−z) is the β-kernel of (1.37) describing the fermion-to-
fermion transition with momentum fraction z carried by the offspring parton
with larger transverse momentum (virtuality). It is important to emphasize,
that this kernel does not depend on the location of the decay cell in the ladder.

Similar LLA contributions arise from ladders of Fig. 1.5a,b where
fermionic and bosonic states mix with each other in t-channel.

Vector “gluons”

The LLA analysis appears to be slightly more complicated for the case of
vector bosons as “gluons”. The expression for a single ladder cell of Fig. 1.4a
now reads

Wµλ = e2g2

∫
d4k

(2π)4
δ((k+q)2)

1

2
Tr
{
p̂ γρk̂ γµ

(
k̂+q̂
)
γλk̂ γσ

}−gρσ

k4
2πδ((p−k)2)

(1.45)
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where we used the Feynman gauge polarization tensor gρσ to sum up over
“gluon” spin states. The following chain of transformations

Tr
{
p̂γρk̂ . . . k̂γσ

}
· (−gρσ) = 2 Tr

{
p̂k̂ . . . k̂

}
≈ 2k2

⊥ Tr {p̂ . . .}

leads to the kernel similar to that for the scalar case (1.37):

{
ΦF

F (z)
}

ladder
= 2(1 − z) . (1.46)

This is however not the whole story. Indeed, coming back to non-ladder
amplitude of Fig. 1.4b, one obtains now the logarithmic contribution with
only one quasi-real fermion propagator:

W ∝ dk2
⊥

1

(k2)
Tr
{
p̂ . . . k̂ γµ

}
∼ dk2

⊥
1

(k2
⊥)

{p̂ . . .}·2β pµ . (1.47)

Thus, because of vector bosons with polarizations in the scattering plane3,
locality of parton decays in the LLA is lost and the general high order anal-
ysis seems to be a mess. However, these interference contributions can be
effectively summed up [4].

The key idea is to replace, within the LLA accuracy, the vertex factor pµ

in (1.47) by the “gluon” momentum

pµ =
1

1 − β
(p− k)µ +O(k⊥)

and then to make use of the conservation of current to reduce the sum of
interference diagrams (with the line p−k attached to any place above the

emission cell) to the local integral [4]

1

π
Wµλ =

∫
dk2
⊥

k2
⊥

g2

16π2

1∫

0

dβ

β
· 2β

1 − β
·
[

1

π
W

(UP )
µλ

(
x

β

)]
(1.48)

where we denoted by W (UP ) the “upper block” of the scattering amplitude.
Equation (1.48) gives rise to the second part of the parton splitting kernel Φ
which finally takes the form

ΦF
F (z) =

{
ΦF

F (z)
}

ladder
+2·

{
ΦF

F (z)
}

interf.
= 2(1−z)+ 2· 2z

(1−z) = 2
1+z2

1−z (1.49)

3notice that the “ladder gluons” in (1.45) had effectively only transverse polarizations
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where we took into account an additional factor 2 for the number of interfer-
ence graphs.

For the real quark-gluon interaction the splitting function (1.49) has to
be supplied with the color factor CF originating from summation (averaging)
over color states of final (initial) partons:

1

Nc

∑

a

Tr (ta ·ta) =
N2

c − 1

2Nc
≡ CF .

“Physical” gauges

Instead of dealing separately with transversally and longitudinally polarized
bosons one can get the same result by a special choice of the gauge used to
describe vector fields. The most physically transparent way to build up the
LLA is provided by so called physical gauges, where only ladder diagrams
contribute as it was in the case of scalar bosons considered above. The axial
gauge is an example of such a choice [5], when one takes the vector potential
to be orthogonal to q′:

Aµ ·q′µ = 0 . (1.50)

The propagator of the vector field with momentum k now reads

Dµλ =
dµλ

k2 + iε

dµλ = gµλ −
kµq

′
λ + kλq

′
µ

(k ·q′) . (1.51)

As compared to the Feynman gauge with dµλ = gµλ, Tr gµλ = 4, now only 2
physical polarizations propagate on mass shell:

dµµ(k) = 2 ; kµdµν(k) = −k2 q′ν
(kq′)

= 0 at k2 = 0. (1.52)

Notice, that in the quasi-collinear limit kµ ≈ βpµ the polarization tensor
(1.51) becomes simply

dµν(k) = g⊥µν +O(k⊥) (1.53)

Now the non-ladder amplitudes of the type of Fig. 1.4b will no longer con-
tribute to the LLA, since the corresponding structure (1.47) proves to be
suppressed:

W ∝ dk2
⊥

1

(k2
⊥)

{p̂ . . .}·β2pµ ·dµλ(p−k) ;
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pµ ·dµλ(p−k) = O(k⊥) . (1.54)

Consequently, it is the ladder contribution of Fig. 1.4a alone which generates
the quark→quark+gluon splitting kernel (1.49) (see Problem 1.2).

The advantages of such a “physical” gauge are manifested most clearly in
the Yang-Mills theory [9]. In QCD the gluon, like the quark, has a color charge
and therefore can itself emit nonladder gluons (see Fig. 1.6). Additional
complications arise also from the 4-gluon coupling and ghosts. Therefore
selection of the (ghostless) gauge (1.50) which makes it possible to reduce the
set of contributing Feynman diagrams to the ladders presented in Fig. 1.5
proves to be very efficient.

Figure 1.6: Examples of interference QCD diagrams contributing to DIS
structure functions in the Feynman gauge.

The field “wavefunction” of a dressed quark has a parton structure with
colored quasi-real quarks and gluons of two physical polarizations acting as
partons.

Following the same logic three other elementary parton decay kernels can
be derived which are responsible for the q → g(z) , g → q(z) and g → g(z)
transitions. When calculating these kernels one sums over the colors and po-
larizations of the final partons and, generally speaking, various polarization
states contribute. However, after one averages over the parent parton polar-
izations (and colors) the polarization matrix for the partons entering the next
cell appears to be again that of the unpolarized target, and one can repeat
the same procedure for the next cell, and so forth (see Problems at the end
of the Chapter).
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1.2.4 Renormalization of the Ladder and QCD Form

Factors

An attentive reader might notice that owing to the singularity of the kernel
ΦF

F at z = 1 (as well as of ΦG
G, see below) the ladder β-integrals diverge loga-

rithmically, cf. (1.44). This corresponds to the fact that the total probability
of soft gluon emission is infinite. However, the probability that such a gluon
will be absorbed by the same parton that has emitted it, diverges similarly.
The final result for the structure functions should be finite.

It is worthwhile to mention that, e.g., the total e+e− annihilation cross
section contains no logs at all, neither “soft” nor “collinear”, and can be ex-
pressed in terms of a PT–series in powers of αs. Such a complete cancellation
of real and virtual large logarithmic contributions in the total sum of separate
exclusive channels is in line with the well-known Kinoshita–Lee–Nauenberg
theorem [18].

The statement of this general theorem is no longer valid formally when
one turns to inclusive particle distributions from e+e− annihilation or to the
DIS cross section. However, soft gluon singularities are still canceled.

The physical explanation of this phenomenon is clear: soft radiation does
not influence the kinematics of the radiating quark, and if one makes no
arrangement to register the emitted g or to restrict significantly its phase
space, then the probability of such an inclusive process must be independent
of the quark ability to emit such an “invisible” gluon. Thus the double log
divergences cancel in the total sum of all possible exclusive channels (with
and without soft gluon emissions). Only collinear logs (mass singularities)
survive, that describe the recoil effects produced on the radiating quark by
hard gluon emissions, giving rise to the scaling violation.

Soft gluon reabsorption processes must be included in the virtual correc-
tions to parton propagators and interaction vertices. Thus we come to the
problem of renormalization of the LLA ladder. With account of virtual cor-
rections to the ladder elements, propagators and interaction vertices acquire
renormalization factors depending on parton virtualities. This dependence
turns out to be logarithmic, so that virtual effects must be taken into full
account on equal footing with the ladder cells describing elementary parton
decays.

It is complexity of the renormalization program, which one has to pay
with for the transparent probabilistic structure of contributing Feynman di-
agrams in a physical gauge. An auxiliary vector q′, used to define the axial
gauge (1.50), induces a dependence of the renormalization functions on the
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product (k · q′), in addition to the usual dependence on the square of the
virtual momentum k2. Thus the formal realization of the program becomes
cumbersome [13]. The result, however, proves to be very simple and natural:
after having suppressed interference graphs one gets the possibility to inter-
pret in a probabilistic manner not only successive parton branchings but the
reabsorption effects as well.

1.2.5 Running Coupling in Parton Cascades

In the LLA we are looking for all sources of logarithmic Q2 dependence. One
standard source is well known: ultraviolet divergences inherent to a field the-
ory with dimensionless coupling force the finite renormalized coupling “con-
stant” to run logarithmically with Q2. Since it is the virtuality of the photon
that sets momentum scale of the DIS problem, one could get rid of ultraviolet
renormalization by choosing αs(Q

2) as the PT expansion parameter. How-
ever, due to strong transverse momentum ordering (1.16), (1.42) inside the
multiparton LLA-ladder characteristic distances are large compared to 1/Q
and one might expect smaller momentum scales to enter the game resulting
in larger effective strength of parton-parton interaction.

Field theory textbooks relate the effective coupling to the renormalized
vertex of particle interaction with (large) space-like momenta of the same
order of magnitude. For the qqg vertex, e.g., one has

αs(µ
2) = α(0)

s ·
√
Zq(k1)

√
Zq(k2)

√
Zg(k3) · Γqqg(k1, k2, k3)

k2
1 ∼ k2

2 ∼ k2
3 ∼ −µ2 (1.55)

with Z, Γ the wavefunction and vertex renormalization functions, α
(0)
s the

bare coupling.
However, the parton kinematics we have inside a DIS parton ladder look very
different from (1.55) since two of the partons (incoming k1 and outgoing k2

vertical lines) have space-like strongly ordered virtualities, and the third one
(horizontal ladder rung k3) we dealt with as an on-mass-shell particle:

k2
1 , k

2
2 < 0 ,

∣∣k2
2

∣∣ ∼ k2
⊥2 �

∣∣k2
1

∣∣ ∼ k2
⊥1 ; k2

3
>∼ 0 .

To understand how the running coupling emerges in such a specific situation
it is worthwhile to step back to a simpler QED example.
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Wavefunction renormalization and parton form factors

Since the QED coupling is numerically small, one can hardly see in reality
any manifestation of its running behavior. Imagine, however, QED with two
charged fermions: an electron and a parametrically heavy “muon” to look for
signs of α(m2

µ) > α0 ≈ 1
137

in hard processes involving such muons.
Let us consider the QED decay of “muonium” bound states M = µ+µ−

and ask the question, what is the momentum scale which determines the
argument of α entering expressions for decay widths

ΓM = C · α2 (?) (1.56)

of C-odd (M−→ e+e−) and C-even (M+ → 2γ) states shown in Fig. 1.7. To
answer the question about the argument of α means to keep track of higher
order logarithmic corrections ∼ (α0 logm2

µ)n to the Born width Γ ∝ α2
0.
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Figure 1.7: Born amplitudes of C-odd (a) and C-even (b) “muonium” decays.

Neglecting for the sake of simplicity α logα effects one can relate the
characteristic size of the bound state to the Compton wave length 1/mµ of a
massive lepton and to expect thus α(m2

µ) to appear in (1.56).

M−→e+e− decay and the running coupling. It is straightforward to
approve this expectation for the case of M− decay of Fig. 1.7a. The total
decay width here can be obtained directly by calculating discontinuity of the
photon renormalization function Z3 at positive virtuality M2≈(2mµ)2

ΓM−→e+e− ∝ α0 ImZ3(M
2) ≈ α0 · Z3(M

2) Im Σ(M2) Z∗3(M
2) . (1.57)

ImZ3 =
∑

loops

∑
cuts

C
CO

����
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Extracting the α0 factor from the imaginary part of the photon self-energy Σ
and replacing (in the logarithmic approximation) Z3(M

2) by the renormal-
ization function at Eucledean momentum

Z3(M
2) Z∗3(M

2) ≈ Z2
3 (−M2) , (1.58)
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one obtains

ΓM−→e+e− ∝
(
α0Z3(−M2)

)2 · Φγ ∝ α2(m2
µ) (1.59)

with Φγ the constant connected to the total probability of γ∗ → e+e− splitting
(cf. (1.87c) and Problem1.4 below):

Im Σ =
1

4
α0 · Φγ ; (1.60a)

Φγ =

∫ 1

0

dz 2
[
z2 + (1 − z)2

]
=

4

3
. (1.60b)

The quantity Φγ itself determines the logarithmic behavior of Z3 and thus the
running QED coupling. Indeed, let us consider the dispersion relation with
one subtraction for the photon propagator (choosing standard normalization
Z3(0) = 1 for the real photon)

Z3(k
2) = 1 +

k2

π

∫ ∞

(2me)2

dm2 ImZ3(m
2)

m2 (m2 − k2 − iε)
. (1.61)

Then for large negative k2 = −κ2 the dominant contribution to (1.61) will
come from logarithmic integration over the region of virtual photon masses
m2

e � m2 � κ2 and making use of (1.58), (1.60a) one arrives at

α(κ2)

α0
≡ Z3(−κ2) ≈

∫ κ2

4m2
e

dm2

m2
Z3(−m2) · α(m2)

4π
Φγ (1.62)

which leads immediately to the well known result for the first loop QED
β-function

∂

∂ lnκ2

α(κ2)

4π
= Φγ ·

(
α(κ2)

4π

)2

, Φγ =
4

3
· nf (1.63)

with nf the number of light fermion generations (nf = 1 in our toy model).
Thus for large negative virtualities the photon renormalization function can
be related directly to the elementary “parton” splitting as

Z3(−κ2) = exp

{∫ κ2

dm2

m2

α(m2)

4π
Φγ

}
. (1.64)
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M+→γγ decay and the photon “form factor”. Now we turn to the
second process of the M+ state decay displayed in Fig. 1.7. Here however
expectation similar to (1.59) seems to fail: the two photon decay probability
does not acquire α0 logm2

µ corrections we are looking for: the large value of
mµ affects the µµγ vertices and virtual µ propagators which effects cancel
because of the Ward identity (Z−1

1 Z2 =1) and the width remains unchanged:

ΓM+→γγ = C+ · α2
0 . (1.65)

Then what about an intuitive connection between the effective interaction
strength and characteristic distances? It is recovered when one considers the
total decay width of which the two-γ channel appears to be a small fraction at
large muon masses. Additional decay channels are those with light electrons
in the final state. To take them into account one has to integrate the product
of discontinuities of the two photons over virtual photon masses mγ that are
kinematically allowed in the decay process. These integrals are logarithmic up
to m2

γ
<∼ m2

µ and end up with replacement of each of two α0 in the expression
for the width by α(m2

µ) due to (1.62).
This result can be interpreted in terms of cascading picture. Since it is m2

µ

to set a natural momentum scale of our problem let us define our “partons”,
photons and electrons, to be pointlike at this scale. This means redefining
the field wavefunction renormalization factors Z3 ≡ Zγ and Z2 ≡ Ze to be
unity at that virtuality level:

Zγ(−m2
µ) = Ze(−m2

µ) = 1 .

Then for an arbitrary momentum scale κ2<m2
µ we have according to (1.64)

Zγ(−κ2) = exp

{
−
∫ µ2

κ2

dm2

m2

α(m2)

4π
Φγ

}
. (1.66)

In field theory any particle is a mixture of Fock state components consisting
of a different number of bare particles (partons). Zγ(−κ2) physically gives the
probability to find a single bare photon inside the photon field wavefuction
when probed with spatial resolution ∆ρ ∼ 1/κ. So when looking for the
exclusive channel of production of two real photons one has to multiply the
total decay width by two photon “form factors” Zγ(0) to ensure that photons
emitted in a hard process of characteristic scale m2

µ did not decay afterwards
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producing e+e− pairs, secondary photons etc.

Γtot
M+

= C+ α
2(m2

µ) , (1.67a)

Γexcl
M+→γγ = Γtot

M+
Z2

γ(0) = C+α
2(m2

µ)

[
α(m2

µ)

α0

]−2

= C+ α
2
0 . (1.67b)

The same holds true for the first process with the e+e− pair produced after
the decay of M− “muonium”. Here to obtain the probability of exclusive pair
production cross section we have to multiply the modified Born probability
by the product of two electron form factors

Ze(−κ2) = exp

{
−
∫ µ2

κ2

dm2

m2

α(m2)

4π
Φe

}
(1.68)

where Φe, similarly to (1.60b), is related to the e→eγ emission probability

Φe =

∫ 1

0

dz 2
1 + z2

1 − z
. (1.69)

The result would be zero, of course, because of famous infrared “catastrophe”:
(1.69) diverges to produce an infinite suppression of the exclusive cross section
since it is impossible to get charged particles in the final states not being
accompanied by soft photons.

Γtot
M−

= C−Φγ α
2(m2

µ) , (1.70a)

Γexcl
M−→e+e− = Γtot

M−
· Z2

e (0) = 0 . (1.70b)

1.2.6 Virtual and Inclusive corrections to a ladder cell

Now let us come back to a DIS ladder cell with parton A splitting into B+C
where C has a time-like momentum (horizontal ladder rung). It is the virtual-
ity of the space-like B momentum −k2

B ∼ k2
⊥ that determine the characteristic

“hardness” of the parton splitting process.
As far as structure functions are concerned, parton C is allowed to evolve

in the final state producing its own subjet. This evolution is restricted by
the condition k2

C < k2
⊥ to preserve the main logarithmic integration over k⊥
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in the cell. Integrating over the virtual mass of C we obtain similarly to the
QED example

1

π

∫ k2
⊥ dk2

C

k2
C

Im
{
ΓABC(k2

A, k
2
B, k

2
C) dC(k2

C) ΓABC(k2
A, k

2
B, k

2
C)
}

≈ Γ2
ABC(k2

A,−k2
⊥,−k2

⊥) dC(−k2
⊥) . (1.71)

In general one has to consider as well logarithmic contributions coming from
virtual gluon lines embracing a few ladder cells. In physical gauges, however,
those are absent (for the same reason as non-ladder interference diagrams
discussed above), so that one is left with local virtual corrections to par-
ton propagators d(k2) and interaction vertices Γ(k2

A, k
2
B, k

2
C) only. It is in a

physical gauge therefore where renormalization functions dA(k2) acquire clear
meaning of parton form factors.

The last important property to be mentioned [13] is the independence
of vertex functions Γ in (1.71) of the smallest virtuality k2

A (no log(|k2
A| /k2

⊥)
terms singular at k2

A→0). For this reason, replacing k2
A by −k2

⊥ in the vertex,
one can construct the product that determines in a usual way the running
coupling (cf. (1.55)):

α2
s dA(k2

A) dB(k2
B) dC(k2

C) Γ2
ABC(k2

A, k
2
B, k

2
C)
∣∣
k2

A
∼k2

B
∼k2

C
∼−k2

⊥

= α2
s(k

2
⊥) . (1.72)

Each new interaction in the parton ladder introduces two “B”-lines, one “C”
and two Γ factors. Extracting from the product of corresponding renormaliza-
tion functions the combination (1.72) one finally obtains for the renormalized
cell

dw
B (+C)
A =

dz

z
ΦB

A(z)
dk2
⊥

k2
⊥

αs(k
2
⊥)

4π
dB(−k2

⊥)
(
dA(−k2

⊥)
)−1

. (1.73)

Building up a ladder one starts from a parton A with finite virtuality k2
0 < 0

and one has to multiply the forward scattering amplitude by the wavefunc-

tion renormalization factors of the incoming parton
(√

dA(k2
0)
)2

. The first

splitting k0 → k1, according to (1.73), induces the ratio of renormalization
functions dB(−k2

⊥1)/dA(−k2
⊥1).

In what follows we shall attribute the dB(−k2
⊥i) factors to the upper part

of the ladder, ascribing the ratio dA(−k2
⊥i−1)/dA(−k2

⊥i) to the ladder cell #i
itself. (To simplify notations we shall ommit the minus sign in the argument
of d hereafter.)
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1.3 DGLAP Evolution Equations

In this Section we derive the Evolution Equations governing the development
of partonic systems in the LLA. We shall present analytic formulae for inclu-
sive parton distributions and discuss their features in some practically impor-
tant and physically interesting limits. Separate subsection will be devoted to
displaying the nice symmetry properties of parton splitting functions.

1.3.1 Evolution Equations in an Integral Form

Let us take as a target particle a parton A of typical transverse size ∼1/k0 (or
characteristic virtuality |k2|∼k2

0) and denote by DB
A(x,Q2, k2

0) the probability
to find inside the parton cloud of the “dressed” particleA a parton of species B
with longitudinal momentum fraction x and arbitrary transverse momentum
(virtuality) up to Q2. Summation (averaging) over polarizations and colors
of the field B (A) is assumed. We consider on equal footing distributions of
quarks, antiquarks and gluons as partons in the dressed quarks, antiquarks
and gluons, so that A,B = q, q, g or A, B = F, G.

Ladder-type diagrams can be easily summed up with the help of the Bethe-
Salpeter–type technique, treating single ladder cells (two-particle irreducible
blocks) as kernels of an integral equation. This can be done in two ways,
iterating the ladder rungs of Fig. 1.5 either from “above” or from “below”.

The Bethe-Salpeter equations, one obtains applying the latter method,
have the following analytic form:

DB
A(x, q2, k2

0) = δB
A δ(1 − x) dA(k2

0) + dA(k2
0)
∑

C

Q2∫

k2
0

dk2
⊥

k2
⊥

1∫

0

dz

z

αs(k
2
⊥)

4π
d−1

A (k2
⊥) ΦC

A(z)DB
C

(x
z
,Q2, k2

⊥

)
. (1.74)

The first term in the right hand side is the Born term which corresponds to
“measuring” the target parton A without any other particles present in the
partonic wavefunction. The probability of finding such an unnatural fluctu-
ation is suppressed by the Sudakov factor dA(k2

0). This suppression should
become stronger with increase of the gap between Q2 and k2

0. The integral
term displays the first parton splitting A → C(z) followed by subsequent
evolution which now looks like the DIS off the new target particle C with
characteristic transverse size ∼ 1/k⊥ � 1/k0. To make it sure that the par-
ton splitting we single out is really the very first one we have to forbid any
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possible branching of A in between the two scales 1/k0 and 1/k⊥. It is the
ratio of the two d-factors, dA(k2

0)/dA(k2
⊥), that accounts for this form factor

suppression in the integral term of (1.74). The Bethe-Salpeter equations de-
termine both unknown quantities dF,G and DB

A which are closely related to
each other.

We start with extracting the dA-functions. To do this, let us invoke the
energy-momentum conservation sum rule, i.e. the condition that all partons
inside a dressed particle carry, in the aggregate, the total momentum of the
target (see, e.g., Ref. [19]):

∑

B

1∫

0

DB
A(x,Q2, k2

0) x dx = 1 . (1.75)

Multiplying (1.74) by x and integrating, we arrive at the following equation
for the parton renormalization functions:

1 = dA(k2
0) + dA(k2

0)
∑

C

Q2∫

k2
0

dk2
⊥

k2
⊥

1∫

0

z dz
αs(k

2
⊥)

4π
ΦC

A(z) d−1
A

(
k2
⊥
)
. (1.76)

Differentiating with respect to ln k2
0 we get

∂

∂ ln k2
0

d−1
A (k2

0) = −αs(k
2
0)

4π

∑

C

1∫

0

z dz ΦC
A(z)·d−1

A (k2
0) . (1.77)

The z-integrals in (1.76) and (1.77) formally diverge at z = 1, showing thus
that it is the quark and gluon form factors that contain double logarithmic
singularities.

1.3.2 Cancellation of Soft Divergences in

Differential Evolution Equations

Now we multiply (1.74) by d−1
A (k2

0) and differentiate it to obtain

d−1
A (k2

0)
∂

∂ ln k2
0

DB
A(x,Q2, k2

0) +DB
A(x,Q2, k2

0)
∂

∂ ln k2
0

d−1
A (k2

0)

= −d−1
A (k2

0)
αs(k

2
0)

4π

∑

C

1∫

0

z dz ΦC
A(z)DB

C

(x
z
,Q2, k2

0

)
. (1.78)
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Combining with (1.77) we arrive at the Master Equation for parton distribu-
tions:

∂

∂ ln k2
0

DB
A(x,Q2, k2

0) = −αs(k
2
0)

4π

∑

C

1∫

0

dz

z
ΦC

A(z)

·
[
DB

C (
x

z
,Q2, k2

0) − z2DB
A(x,Q2, k2

0)
]

(1.79)

which is now free from soft divergencies. Indeed, the singular kernels are only
those with C =A (which correspond to a gluon emission in the s-channel),
and the D-functions in square brackets cancel at z→1 damping the singular-
ity. Thus, as we expected, no soft gluons show up in the measurable parton
distributions DB

A .
Similar system of Bethe-Salpeter equations can be derived by iterating the

ladder from above. Picking up the very last cell where the parton B interacts
with the external Q2-probe (“partonometer”), we proceed in full analogy with
the derivation of (1.79) to get an alternative form of the Evolution Equations:

∂

∂ lnQ2
DB

A(x,Q2, k2
0) =

αs(Q
2)

4π

∑

C

1∫

0

dz

z
ΦB

C(z)

·
[
DC

A(
x

z
,Q2, k2

0) − z2DB
A(x,Q2, k2

0)
]

(1.80)

As one can easily see, the LLA parton distributions prove to depend not on
k2

0 and Q2 separately, but rather on a definite combination of virtualities.

Introducing a new variable [4] according to

dξ(k2) ≡ αs(k
2)

4π

dk2

k2
, ξ(Q2) =

Q2∫

µ2

dk2

k2

αs(k
2)

4π
, (1.81)

we note, that DB
A -functions actually depend on the difference ∆ξ. Thus

DB
A

(
x,Q2, k2

0

)
= DB

A (x,∆ξ) ,

∆ξ = ξ(Q2) − ξ(k2
0) ≈ 1

b
ln
αs(k

2
0)

αs(Q2)
=

1

b
ln

ln(Q2/Λ2)

ln(k2
0/Λ

2)
(1.82)

where we used the one-loop expression for the running coupling to derive the
analytic form of ∆ξ. In terms of this variable (1.79) and (1.80) in fact coincide.
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Variable ξ can be treated as the “evolution time” with the matrix Φ playing
the role of the “Hamiltonian” of the system. We shall come back to this
analogy a little later, but now let us present the resulting Evolution Equation
in the integral form, which incorporates (1.79), (1.80) and satisfies appropriate
initial conditions following from the original Bethe-Salpeter equation (1.74)

DB
A(x, ξ) = δB

A δ(1−x) +
∑

C

ξ∫

0

dξ′
1∫

0

dz

z
ΦB

C(z)
[
DC

A(
x

z
, ξ′)−z2DB

A(x, ξ′)
]

=
∑

C

ξ∫

0

dξ′
1∫

0

dz

z
ΦC

A(z)
[
DB

C (
x

z
, ξ′) − z2DB

A(x, ξ′)
]
. (1.83)

1.3.3 Splitting Functions and Relations between them

The elementary parton splitting functions we are considering here describe
decay probabilities averaged (summed up) over colors and polarizations4 of
parent (offspring) partons, which play the role of kernels of evolution equa-
tions (1.83) for the LLA parton distributions. Let us recall that the decay
phase space for the space-like parton wavefunction evolution determining the
DIS structure functions is

dwA→B+C =
dk2
⊥

k2
⊥

αs(k
2
⊥)

4π

dz

z
ΦBC

A (z) (1.84)

with z the longitudinal momentum fraction carried by the parton B.
Notice, that the same functions ΦBC

A are responsible also for decays of
partons with positive momenta squared, i.e. the time-like evolution that de-
termine internal structure of QCD jets produced, e.g., in e+e− annihilation.
In this case the longitudinal phase space turns out to be symmetric and the
differential decay probability reads

dwA→B+C =
dk2
⊥

k2
⊥

αs(k
2
⊥)

4π
dz ΦBC

A (z) . (1.85)

It is convenient for discussion of the relations between kernels to extract

4corresponding functions for fixed polarization states and discussion of their symmetry
properties can be found in Refs. [8,12]
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color factors

taij t
a
jk = CF δik , taik t

b
ki = TR δ

ab =
1

2
δab , fade fbde = Nc δab ; (1.86)

ΦF
F (z) = CF V

F
F (z) , ΦG

F (z) = CF V
G
F (z) ,

ΦF
G(z) = TR V

F
G (z) , ΦG

G(z) = Nc V
G
G (z) .

The splitting functions then take the form [8,9]:

6

t6� �� �� �� �� �
1

z 1−z
V F

F (z) = 2
1 + z2

1 − z

(1.87a)

6

t��
��

��
��

��
-

1

z 1−z
V G

F (z) = 2
1 + (1−z)2

z

(1.87b)

��
��

��
��

��t
6 �

1

z 1−z
V F

G (z) = 2
[
z2 + (1−z)2

]

(1.87c)

��
��

��
��

��t
��
��

��
��

��
� �� �� �� �� �

1

z 1−z
V G

G (z) = 4

[
z(1−z) +

1−z
z

+
z

1−z

]
.

(1.87d)

Here we list the most important symmetry properties of parton splitting
functions.

Parton Exchange results in an obvious relation between probabilities to
find decay products with complementary momenta fractions:

V BC
A (z) = V CB

A (1 − z) . (1.88)
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A Crossing Relation [6] emerges when one links together two splitting
processes corresponding to opposite evolution “time” sequences:

V B
A

(
1

z

)
= (−1)2sA+2sB−1 1

z
V A

B (z) (1.89)

with sA the spin of the particle A.
The Super-Symmetry Relation [9] exploits the existence of the super-
symmetric field theory closely related to real QCD:

V F
F (z) + V G

F (z) = V F
G (z) + V G

G (z) . (1.90)

Conformal Invariance [12] of the leading twist approximation leads to a
number of relations between splitting functions, the simplest of which reads

(
z
d

dz
− 2

)
V F

G (z) =

(
z
d

dz
+ 1

)
V G

F (z) . (1.91)

As we see, these relations leave not much freedom for splitting functions. In
fact, one could borrow V F

F from QED text books (cf. (1.6)) and reconstruct
successively V G

F (with use of (1.88)), V F
G (1.89), and then even the gluon

selfinteraction V G
G from (1.90).

The general character of the symmetry properties makes them practically
useful when studying next-to-leading corrections to anomalous dimensions
and coefficient functions where one faces technically difficult calculations. For
example, the super-symmetric QCD analog had been used to choose between
two contradictory calculations for the two-loop anomalous dimensions (see,
e.g., Ref. [15]). We illustrate the idea by another example of the next-to-
leading result, i.e. the ratio of parton multiplicities in gluon and quark jets
which reads [17]

R
Ng

Nq

= 1−γ0

6
{1+T (1−2R)}+

1

8

(γ0

6

)2{
−25(58R−19)T+ (6−4R−16R2)T 2

}

(1.92)
with γ0 =

√
2Ncαs/π the typical PT parameter which we shall meet many

times below considering soft parton multiplication. R and T in (1.92) are the
following numbers:

R ≡ CF

Nc
, T ≡ 2nfTR

Nc
.

In susy-QCD “quark” and “gluon” belong to the same (adjoint) represen-
tation of the color group, so that all color factors (1.86) become equal:
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CF = Nc = TR. Moreover, the “quark” here is the Majorana fermion (identi-
cal to the “antiquark”), so that the total number of qq flavor states becomes
2nf = 1. Then, as one can easily check, all corrections to multiplicity ratio
Ng/Nq = 1 vanish at R = T = 1.

1.3.4 Solution of Evolution Equations

The very nature of parton cascading makes it useful to express parton distri-
butions in terms of the Laplace-Mellin tranformation which converts multiple
energy-fraction convolutions into the product of independent successive decay
probabilities.

Introducing parton distributions DB
A(j) in the moment representation,

DB
A(j, ξ) ≡

1∫

0

dx xj−1 DB
A(x, ξ) , (1.93)

one arrives at the algebraic equation for the Mellin-transformed distributions:

∂

∂ξ
DB

A(j, ξ) =
∑

C

(
ΦC

A(j)−δC
AφC

)
DB

C (j, ξ) =
∑

C

(
ΦB

C(j)−δB
CφC

)
DC

A(j, ξ) ,

(1.94)
where the following notations have been used:

ΦC
A(j) ≡

1∫

0

dz zj−1 ΦC
A(z) , (1.95)

φF ≡
1∫

0

dz z
[
ΦF

F (z) + ΦG
F (z)

]
=

1∫

0

dz ΦF
F (z) (1.96a)

φG ≡
1∫

0

dz z
[
ΦG

G(z)+2nfΦ
F
G(z)

]
=

1∫

0

dz
[
zΦG

G(z)+nfΦ
F
G(z)

]
(1.96b)

The solution of this equation, satisfying the initial condition

DB
A(j, ξ = 0) = δB

A , (1.97)
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which follows from the integral Bethe-Salpeter equation, (1.83), will give us
x-distributions with help of the inverse Mellin transformation

DB
A(x, ξ) =

∫

(Γ)

dj

2πi
x−j DB

A(j, ξ) , (1.98)

where the integration contour Γ runs along the imaginary axis to the right
from all singularities of D(j) in the j-plane (Re j > 1). It is convenient to
represent parton distributions DB

A in a symbolic matrix form as

DB
A(j, ξ) =

(
eĤξ

)B

A

, (1.99)

with the “Hamiltonian” of the system

ĤB
A (j) = ΦB

A(j) − δB
AφA . (1.100)

In this representation the evolving parton state will form a vector

(FNS, FS, G). (1.101)

with the first component describing the valence quark (non-singlet distribu-
tion with respect to the flavor group), the second one — the singlet com-
bination of flavors (sea quarks and antiquarks), and the third component
corresponding to the gluon propagation. In this basis our Hamiltonian takes
the form

νF (j) 0 0

Ĥ = 0 νF (j) 2nfΦ
F
G(j)

0 ΦG
F (j) νG(j)

, (1.102)

where we have introduced the regularized quark and gluon trajectories:

νF (j) ≡
1∫

0

dz
(
zj−1−1

)
ΦF

F (z) , (1.103a)

νG(j) ≡
1∫

0

dz
[(
zj−1−z

)
ΦG

G(z)−nfΦ
F
G(z)

]
, (1.103b)

Explicit formulae for (1.103) can be written in terms of standard ψ-function:

ψ(j) =
d

dj
ln Γ(j) ; ψ(j + 1) = ψ(j) +

1

j
, ψ(1) = −γE
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with γE ≈0.5772 the Euler constant. Together with Mellin-transformed F→
G and G→F kernels this gives

νF (j) = −CF

[
4ψ(j+1) + 4γE − 3 − 2

j(j + 1)

]
, (1.104a)

νG(j) =−4Nc [ψ(j+1)+γE] +
11Nc

3
− 2nf

3
+

8Nc(j
2+j+1)

j(j2−1)(j+2)
, (1.104b)

ΦG
F (j) = 2CF

j2 + j + 2

j(j2 − 1)
, (1.104c)

ΦF
G(j) =

j2 + j + 2

j(j + 1)(j + 2)
. (1.104d)

As we see from (1.102), the valence quark “propagates” along the trajectory
νF (j), while sea-quarks mix with the gluon state. Diagonalization of the
Hamiltonian results in the following “eigenfrequencies”:

ν± =
1

2

{
νF (j)+νG(j) ±

√
[νF (j)−νG(j)]2 + 8nfΦG

F (j)ΦF
G(j)

}
. (1.105)

The same results for integer values of j can be obtained by means of the
OPE-RG technique [11,19].

Solving (1.94) one obtains trajectories ν(j) (anomalous dimensions) de-
termining the ξ-evolution together with the preexponential factors CB

A (j) de-
scribing their weights (coefficient functions). Let us list the resulting expres-

sions for parton distributions [9,20].

1. Valence (non-singlet) quark distribution

Dval(j, ξ) = eνF ξ . (1.106)

2. Sea quarks + antiquarks in a quark:

Dsea
F (j, ξ) =

νF (j) − ν−(j)

ν+(j) − ν−(j)
eν+ξ +

ν+(j) − νF (j)

ν+(j) − ν−(j)
eν−ξ − eνF ξ . (1.107)

3. Distribution of a gluon in a quark:

DG
F (j, ξ) =

ΦG
F (j)

ν+(j) − ν−(j)

(
eν+ξ − eν−ξ

)
. (1.108)
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4. Distribution of quarks + antiquarks in a gluon:

DF
G(j, ξ) =

2nf ΦF
G(j)

ν+(j) − ν−(j)

(
eν+ξ − eν−ξ

)
. (1.109)

5. Gluon distribution in a gluon :

DG
G(j, ξ) =

ν+(j) − νF (j)

ν+(j) − ν−(j)
eν+ξ +

νF (j) − ν−(j)

ν+(j) − ν−(j)
eν−ξ . (1.110)

Coefficient functions factorize with respect to types of initial and final par-
tons. This can be checked, e.g., by constructing the ratios of C± with fixed
“signature” ±

CF
A(+)

CG
A(+)

and
CF

A(−)

CG
A(−)

(1.111)

which prove to be independent of A — the type of target. This means that
one can factorize the coefficient functions entering (1.107)–(1.110) in the sea–
gluon sector into the product of residues determining the coupling of the
initial parton A and the final parton B to a given trajectory νσ with signature
σ = ±:

DB
A(j, ξ) =

∑

σ=+,−
RA(σ, j)RB(σ, j)eνσ(j)ξ . (1.112)

This nice and important property that is to be related to the renormalizability
of the theory, reminds one of the factorization property which one meets in
Regge theory. There is in fact a close analogy between LLA parton distribu-
tions and Regge poles, so that the Regge-terminology, we are using here (i.e.
“trajectories”,“residues” and “signature”), is not accidential (for more details
see Ref. [13]). The residues introduced by (1.112) satisfy the normalization

and completeness conditions [6,9]

∑

A=G,F

RA(σ1, j)R
A(σ2, j) = δσ1,σ2

, (σ1,2 = ±) (1.113)

∑

σ=±
RA(σ, j)RB(σ, j) = δB

A . (1.114)
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Problem 1.1 Derive the “quark”→“quark”+scalar “gluon” splitting func-
tion (1.37) and reconstruct, with use of the Parton Exchange and Crossing
relations (1.88) and (1.89) two remaining kernels. Check, whether there is a
Super-Symmetry Relation between fermion and scalar decays.

Answer: ΦF
F (z) = 1 − z , ΦG

F (z) = z , ΦF
G(z) = 1 .

Problem 1.2 Derive the F → F (z) splitting function (1.87a) from a single
ladder cell in the axial gauge (1.51).

Solution: The basic structure of the decay cell is

dk2
⊥
dφ

2π
dβ ·
(

1 − β

k2
⊥

)2

· 1

(1 − β)
·M , (1.115)

where the first factor originates from denominators of virtual propagators

k2 = 2(pk) = α s = − k2
⊥

1 − β
, (1.116)

and the second comes from the α-residue of the horizontal (“real”) line. The
last factor M stands for the numerator of the amplitude and depends on the
process under consideration.

For the case of F → F splitting (1.87a) it reads

M =
1

2
Tr
{
p̂ γσk̂ . . . k̂ γρ

}
[ −dρσ(p−k) ]

After the cyclic permutation of matrices under the Tr we get

M =
1

2
Tr
{
k̂ γρp̂ γσk̂ . . .

} [
−gρσ +

(p−k)ρq
′
σ + q′ρ(p−k)σ

(1 − β)s/2

]

=
1

2
Tr

{
2k̂p̂k̂ − 2k2 p̂q̂

′k̂ + k̂q̂′p̂

(1 − β)s
. . .

}
.

To extract the LLA contribution we are allowed to get no more than the
square of k⊥ from the numerator M not to loose logarithmic integration over
k2
⊥ in (1.115). Therefore we replace

k̂p̂k̂ ≈ k̂⊥p̂k̂⊥ = k2
⊥ ·p̂ , p̂q̂′k̂ = k̂q̂′p̂ ≈ βs·p̂
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(the main components k ≈ βp do not contribute here because of neighboring
light-like vectors: p̂p̂ = p2 = 0). Then, making use of expression (1.116) for
the parton virtuality we finally arrive at

M = k2
⊥ ·
[
2 +

4β

(1 − β)2

]
· 1
2

Tr {p̂ . . .}

which, taken together with (1.115) results in

dβ

β

dk2
⊥

k2
⊥

· 1
2

Tr {βp̂ . . .}·
[

2
1 + β2

1 − β

]
. (1.117)

The Tr-structure takes care of the spin-average for the quark k≈βp̂, quasi-real
and quasi-collinear to initial momentum pµ with respect to future evolution
(upper part of the ladder). The last β-dependent factor in brackets is nothing
but the desired splitting function.

Problem 1.3 Derive the F → G(z) splitting function (1.87b).

Solution: The main steps of the derivation are the following:

1. In analogy with the previous Problem 1.2, we have for the numerator
of the cell

6

s - s
?

��
��

��
��

��
��

��
��

��
��

p

k

p−k p

ρ′ σ′

ρ σ

M =
1

2
Tr
{
p̂ γσ(p̂−k̂) γρ

}
dσσ′(k) dρρ′(k)

2. Neglecting non-logarithmic corrections we estimate

pσ ·dσσ′(k) =
kσ − (k⊥)σ − αq′σ

β
dσσ′(k) ≈ −(k⊥)σ

β

3. Then the average over quark spin states gives

1

2
Tr
{
p̂ γσ(p̂−k̂) γρ

}
= 4pσpρ + 2(pk) gσρ = 4

k⊥σk⊥ρ

β2
− k2

⊥
1 − β

·gσρ
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4. Now we are forced to replace gluon polarization state matrices d(k) by
g⊥ tensors according to (1.53), since the numerator contains already k2

⊥
to provide us with the transverse log.

5. After averaging over azimuth
〈
k⊥σk⊥ρ

〉
= −1

2
g⊥σρ ·k2

⊥ one comes to the
final result:

dβ

β

dk2
⊥

k2
⊥

·
(
−1

2
g⊥σ′ρ′

)
·
[

2
1 + (1−β)2

β

]
(1.118)

Notice, that the gluon-parton produced in the LLA decay has two polariza-
tions transverse to the scattering plane (−1

2
g⊥σ′ρ′ stands for the average over

gluon spin states).

Problem 1.4 Derive the G→ F (z) splitting function (1.87c).

Solution:
For the amplitude averaged over incoming gluon polarizations one has

M =
1

2

(
−g⊥ρσ

)
Tr
{
k̂ γρ (p̂−k̂) γσk̂ . . .

}

1. −1
2
g⊥ρσ

(
γρ Â γσ

)
= −1

2

(
γρ 2A⊥ρ − Â γργρ

)
= −Â⊥ + Â = Â‖

2. M = k̂ [(1 − β)p̂− αq̂′] k̂ = (1 − β)k2
⊥·p̂+

k2
⊥

(1−β)s
β2 ·p̂q̂′p̂

3. The whole expression for the ladder cell (1.115) now reads

dβ

β

dk2
⊥

k2
⊥

· 1
2

Tr {βp̂ . . .}·
[
2
(
β2 + (1 − β)2

) ]
(1.119)

Problem 1.5 From the LLA parton distribution (1.107)–(1.110) derive ex-
plicit expressions for the residues RA(σ) and RB(σ) defined by (1.112)

Answer:
RG(σ, j) = RG(σ, j) = [νσ(j) − ν0(j)]C

−1/2
σ (j) ;

RF (σ, j) = ΦG
F (j)C−1/2

σ (j) , RF (σ, j) = ΦF
G(j)C−1/2

σ (j) ;

with Cσ(j) = [ν+(j) − ν−(j)] · |νσ(j) − ν0(j)| .
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The parton model was developed primarily in order to explain the results
found in spin independent deep inelastic electron scattering.

The new element which we wish to focus on in this Chapter is the fact
that due to the axial anomaly [1,2] the relationship between matrix elements

47
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of local gauge invariant quark operators and moments of quark parton dis-
tributions is partially lost. We shall explain in some detail how the matrix
elements of the flavor singlet axial vector current are determined not solely by
the first moment of a quark distribution but also, partly, by the first moment
of a spin-dependent gluon distribution.

2.1 The Box Graph, the Triangle Graph and

the Operator Product Expansion

In this section we shall consider the essentially new element which appears
in spin dependent DIS [3−7] as compared to spin independent scattering. We
begin our discussion with an analysis of the fermion box graph contribution
to the structure function g1 defined by (1.28b).

In our discussion we shall find it convenient to use a light-cone momentum
notation where a vector

vµ = (v−, v+, v⊥) with v± =
v0 ± v3√

2
.

Then for the DIS process we choose a frame where pµ = (p−, p+, 0, 0) and
qµ = (q−, q+, 0, 0) and with x = −q2/2q ·p = −q+/p+(1 + O(M2/Q2)). That
is we choose p+q− � p−q+. Then we may extract g1 from the decomposition
(1.23) for Wµν(s) by considering

2∑

i,j=1

εijWij(s) where ε12 =1=−ε21 and ε11 =ε22 =0 .

Then, using (1.23–1.25) and the relation s± = ± (s3/M)p± for ~s = s3~e3, one
finds

i

2π

2∑

i,j=1

εijWij(s) = s3
ν

M2
G1 = g1s3. (2.1)

(2.1) is the equation we shall use in order to extract g1 in the calculations to
be carried out in the following sections of this Chapter.

2.1.1 The Box Graph

Consider the contribution to Wµν(s) of the graph illustrated in Fig. 2.1 where
the wiggly internal lines are gluons, the line q is a virtual photon having vector
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indices i, j = 1, 2 and where the photons and gluons connect to a quark loop,
the quark having mass m. We work in light-cone gauge where the propagator
of the l-line on the left hand side of the graph of Fig. 2.1 is

Dαα′(l) =
−i
l2

[
gαα′ − lαηα′ + lα′ηα

η ·l

]
(2.2)

with η ·v = v+ for any four-vector v. It is convenient to write

−
(
gαα′ − lαηα′ + lα′ηα

η ·l

)
= −

(
gαα′ − l̄αηα′ + l̄α′ηα

η ·l

)
+
ηαηα′ l2

(η ·l)2
(2.3)

where lα = l̄α + l2

2η·lηα and l̄ is a light-like momentum.

p, s

kk

γ(q)

p, s

γ(q)

α

µ
k

β

λ
k

γ(q)

p, s

γ(q)

` `′
α′ β ′

` `′

p, s

Figure 2.1: Box graph contributions to deep inelastic scattering.

So long as l2⊥/Q
2 � 1 and l2/Q2 � 1 we may drop the final term on the

right hand side of (2.3) and, in evaluating the fermion loop part of the graph
of Fig. 2.1 we may take l⊥ = 0 for fixed l+ and fixed l2. (The argument for
the assertion made goes as follows: According to (2.1) we always understand
the projection εij on the photon indices of the fermion loop shown in Fig. 2.1.
Then for the first of the two graphs in that figure we replace γjγ ·(q+ k)γiεij
by q−εijγjγ+γi = −2iq−γ+γ5 a replacement clearly valid when |k2| � Q2, the
case when |k2| ∼ Q2 to be considered later. But the trace in the fermion
loop now is Tr γ+γ5γ ·kγαγ ·(k − l)γβγ ·k which, after performing the loop
integral over k, can only lead to a tensor structure ε+αβλlλ. But for this
tensor structure it is easy to check that only transverse components of αβ are
effective when multiplied by the propagator given in (2.3) and that there is
no deApendence on l⊥.

Now it remains to consider the remaining part of Bγjγ ·(q + k)γiεij along
with the second graph, the crossed box graph, of Fig. 2.1. But here the loop
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momentum k⊥ must be on the order of Q in order to get a contribution which
is not higher twist. But when k⊥ ∼ Q we clearly may set l⊥ = 0, for fixed l2

and fixed l+, and we may clearly neglect the ηαηα′ l2/(η ·l)2 term in (2.3) since
the l2 must appear in the final form l2/Q2 or l2/(q·l), terms of higher twist.)

Thus instead of the propagator (2.2) we may use

D̄αα′(l) =
−i

l2 + iε

∑

λ=±
ελα(l̄) ελα′

∗
(l̄) (2.4)

where ελα(l̄) obeys
l̄·ελ = η ·ελ = 0 (2.5)

the conditions for physical polarizations in light-cone quantization in light-
cone gauge. Using (2.5) one can write ελα more explicitely as

ελα(l̄) = (ελ−, ε
λ
+, ε

λ
⊥) =

(
l⊥ ·ελ⊥
η ·l , 0, ε

λ
⊥

)
(2.6)

and we note that l·ελα(l̄) = 0.
In order to extract g1 we use (2.1). Note that

−iεij = ε+i (q) ε+j (q)
∗ − ε−i (q) ε−j (q)

∗
(2.7)

so that the εij projection in (2.1) represents the difference of (+)−(−) helicity
amplitudes for the virtual photon. Thus we may write

g1(x,Q
2) =

〈e2〉
2

∫
d4l

(2π)4
B(p, l) A(l, q).B (2.8)

A and B are illustrated in Fig. 2.2 and are given by the expressions

A =
1

2π

2TNfg
2
s

(2π)4

∫
d4k

2πδ ((k−l)2 −m2) 2πδ ((q+k)2 −m2)

[k2 −m2]2
Tr{} (2.9)

with

Tr{} =
εijεuv

4
Tr{γv [γ·k+m] γj[γ·(q+k)+m] γi [γ·k+m] γu [γ·(l−k)+m]}

(2.10)
and

B(p, l) =
∑

a

∫
d4x eilx (2.11)
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−i
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
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

+ kk

` `

q q

` ` u

i j

kk

q

v

j

u

i q

v



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Figure 2.2: Pictorial definitions of A and B as given in (2.9) and (2.11).

· 〈ps|
[
Aa(x)·ε+(l̄)Aa(0)·ε+(l̄)

∗−Aa(x)·ε−(l̄)Aa(0)·ε−(l̄)∗
]
|ps〉

∣∣
~s=~ez

with a the color index of the gluon field Aa
µ(x). For A we have only written

down the contribution of the first graph on the left hand side of the equation
illustrated in Fig. 2.2b. The εuv in (2.10) comes from using an equation iden-
tical to (2.7) but for the (ελ⊥)i’s. Only diagonal gluon polarization elements
appear in (2.11) because a forward matrix element is being considered. Also
〈e2〉 in (2.8) is the average electric charge squared for the quark loops appear-
ing in Fig. 2.2b. Finally, as discussed earlier we may take l⊥=0, for fixed l+
and for fixed l2, in (2.9) and (2.10), but l⊥ cannot be set to zero in (2.11).
The resulting d2l⊥ integral in (2.8) will be logarithmically divergent so that
a cutoff, ϑ(Q2−l2⊥), must be understood. This cutoff is what will give the Q2

dependence of the polarized gluon distribution at leading logarithmic level.
Now it is straightforward to evaluate A as

A = −αsNf

2π

K2∫

0

dk2
⊥√

1−k2
⊥/K

2

(
(1−2z)(k2

⊥+m2) − 2m2(1−z)
[k2
⊥+m2+L2z(1−z)]2 − 2z(1−2z)

Q2(1−z)

)

(2.12)
with L2 = −l2, K2 = [(1 − x)/4x]Q2 and z = Q2/2(q ·l). Writing

d4l =
π

2
dl2⊥ dL2 dz

z
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one finds

g1(x,Q
2) =

〈e2〉
2

∫
dl2⊥dL

2dz

32π3z
B(L2, dl2⊥, x/z)A(L2, z, Q2) ϑ(Q2 − l2⊥) (2.13)

The spin dependent gluon distribution for the nucleon is given in terms of B
by

∆g(x,Q2) =

∫
ϑ(Q2 − l2⊥)

dl2⊥ dL
2

32π3
B(L2, dl2⊥, x) (2.14)

where our normalization is such that ∆g(Q2) =
∫ 1

0
dx ∆g(x,Q2) represents

the amount of helicity carried by gluons in the nucleon. In what follows we
shall be mainly concerned with

M1(Q
2) =

∫ 1

0

dx g1(x,Q
2), (2.15)

the first moment of g1.
In order to understand, and interpret, spin dependent DIS it is important

to investigate in some detail the final states contributing to (2.15). To that
end consider

A1(k
2
⊥) =

∫ 1

0

dz A(k2
⊥, z, Q

2) (2.16)

where A(k2
⊥, z, Q

2) is the integrand on the right hand side of (2.12). It is
straightforward to see from (2.12) that when m2/k2

⊥, L2/k2
⊥, k⊥

2/Q2 � 1
then A1(k

2
⊥) is small. Also one can see from (2.12) that if m2/L2 � 1 then

A1 is small if k⊥
2/Q2 � 1. Finally if L2/m2 � 1,

∫
dk2
⊥A1(k

2
⊥) = 0 which

result will become clear from our discussion of the triangle graph a little
farther on.

Thus when one considers the first moment of the deep inelastic photon–
gluon spin dependent cross section the fermion loop gives one contribution
at k⊥ ∼ Q and another contribution at k⊥ ∼ m, so long as m2/L2 is not too
small. The region m2 � k2

⊥ � Q2, the usual logarithmic domain of DIS does
not contribute here.

If we break up the dk2
⊥ integral in (2.12) into a (low) region 0 ≤ k2

⊥ ≤
(1/ε)m2 and a (high) region εQ2B ≤ k2

⊥ <∞ for a fixed small ε then we may
verify that ∫ 1

0

dxAhigh = Ahigh
1 = −αsNf

2π
. (2.17)
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Now taking the first moment one gets

2

〈e2〉M1(Q
2) =

∫
dl2⊥dL

2

32π3
B1(L

2, l2⊥) Alow
1 (L2) ϑ(Q2 − l2⊥) − αsNf

2π
∆g(Q2).

(2.18)

2.1.2 The Triangle Graph

In order to check the operator product expansion [8] and to understand the
role of the axial anomaly it is important to investigate the triangle graph
contribution to

1

2p+

Γ5µ = 〈ps| j5µ(0) |ps〉|~s=~ez
(2.19)

with j5µ =
∑

f q̃fγµγ5qf the flavor singlet axial vector current. The relevant
graph is the one illustrated in Fig. 2.3. As in (2.8) we may write

p, s

α β

p, s

α′

`

k

`′
β ′

k

Figure 2.3: Kinematics of the triangle graph.

1

2p+

Γ5µ =

∫
dl2⊥dL

2dx

32π3
B(L2, l2⊥, x)

1

2l+
Γg

5+ ϑ(Q2 − l2⊥) (2.20)

where z = l+/p+ and where

Γg
5+ = lim

n→4

2TNfg
2

(2π)4

∫
dn−2k⊥dk+dk−

2πδ ((l−k)2 −m2)

[k2 −m2]2
Tr{} (2.21)

with

Tr{} = Tr {γ ·ε∗ [γ ·k +m] γ+γ5 [γ ·k +m] γ ·ε [γ ·(l−k) −m]} . (2.22)

We have continued the transverse integrations to n − 2 dimensions for the
gluonic matrix element of the axial vector current given in (2.21) and we
have taken γ5 = iγ0γ1γ2γ3 which choice of γ5 is known to give the correct



54 Spin Dependent DIS and the Axial Anomaly

axial anomaly when using dimensional regularization [9,10]. In (2.22) ε =
1√
2
(0, 0, 1, i).

The trace in (2.22) is straightforward to do. One finds

1

2l+
Γg

5+ = lim
n→4

−αsNf

2π2

∫
dz

∫
dn−2k⊥

·
(k2
⊥+m2)(1−2z) − 2m2(1−z) − 2n−4

n−2k
2
⊥(1−x)

[k2
⊥+m2+L2z(1−z)]2 (2.23)

The n−4 term arises because γ5 is not Lorentz invariant in n dimensions.
This produces a term which is proportional to k̂2 where k̂ is the projection of
k onto the n−4 regulator dimensions. After an azimuth average k̂2 = k2

⊥
n−4
n−2

.

One finds [5]

1

2l+
Γg

5 = −αsNf

2π

(
1 −

∫ 1

0

2m2(1 − z) dz

m2 + L2 z(1 − z)

)
. (2.24)

It is easy to check that

lim
m2/L2→0

1

2l+
Γg

5 = −αsNf

2π
(2.25a)

lim
m2/L2→∞

1

2l+
Γg

5 = 0. (2.25b)

2.1.3 The Operator Product Expansion

Taking the first moment of g1(x,Q
2), as given by (2.18) and comparing the

result with (2.20) one sees that the operator product expansion will be valid
so long as the first moment of A, as given by (2.12) agrees with 1

2l+
Γg

5+, as

given by (2.23). The low k2
⊥ regions of (2.12) and (2.23) are clearly the same

once the first moment of A is taken. As for the high k2
⊥ regions both the first

moment of A and 1
2l+

Γg
5+ have the value −αsNf

2π
as evaluated in (2.17) and

(2.25a). Thus the operator product expansion works and serves to connect
the first moment of the graphs shown in Fig. 2.1 with the graph given in
Fig. 2.3.



The Partonic Interpretation 55

2.2 The Partonic Interpretation of Spin

Dependent Deep Inelastic Scattering

In this section we shall interpret the results found in the previous section.
We shall restrict ourselves to the fermion box and triangle graphs, connected
by gluons to the nucleon, shown in Fig. 2.1 and 2.3 since it is only for these
graphs that any subtlety arises in the partonic interpretation.

2.2.1 Phenomenological Definitions of Quarks
and Gluons

It is important to have a clear understanding of what exactly is meant by
a partonic (quark or gluon) component of a hadron, in order to be able to
identify correctly the amount of spin carried by the various partons. There
are two ways to do this. The first way, a phenomenological procedure [5,7],
is to identify the final state jets produced in a hard reaction. From the final
state jets one infers a hard scattering subprocess of which the initial states
are either leptons or partonic components of an initial state hadron. In the
case of deep inelastic lepton–nucleon scattering we will reconstruct the hard
scattering from observations of the outgoing lepton and of the jets produced
at large transverse momentum.

1. Suppose that one and only one jet is produced at large transverse mo-
mentum, as illustrated in Fig. 2.4.

jet
x p

µ

p

µ′

γ(q)

Figure 2.4: Single jet production in deep inelastic scattering.

(In addition there is always a beam jet at low transverse momentum.) In
QCD such events can only come from the subprocess γ(q)+quark(xp) →
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quark jet(q+xp). By measuring the momentum of the jet and the prob-
ability of production of such jets one determines the number density of
quarks, having longitudinal momentum fraction x, in the initial nucleon.
In terms of our discussion in the previous section these one jet events
correspond to the region of low k⊥ in Fig. 2.1. Such events are contained
in the first term on the right hand side of (2.18), after integrating over
all x-values of the produced jets.

2. Suppose one measures events with two distinct high transverse momen-
tum jets as illustrated in Fig. 2.5 where two quark jets are produced.

jet 1

jet 2

p

x p

µ µ′

γ(q)

Figure 2.5: Two jet production in deep inelastic scattering.

Here one infers the hard subprocess γ(q) + gluon(xp) → jet1 + jet2
and so the two jet process can be used as a method of determining the
gluon distribution of the nucleon. (In general 2-jet production in DIS
may consist of two jets, coming from a gluon distribution in the nucleon,
or of a quark jet and a gluon jet coming from a quark distribution in
the nucleon. In the present spin dependent scattering the two quark jet
production dominates by a power of αs(Q

2), after the first moment in x
is taken.) In terms of our earlier discussion the two jet events correspond
to the region k⊥ ∼ Q in Fig. 2.1, and such events are included in the
second term on the right hand side of (2.18), the −αsNf

2π
∆g(Q2) term.

Thus we reach the surprising conclusion that a part of the first moment
of g1(x,Q

2), the second term on the right hand side of (2.18), should be
identical with a gluonic parton distribution. This is true even though the
operator product expansion gives this contribution in terms of the high–k⊥
components of the matrix elements of the fermionic operator j5µ, that is the
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high–k⊥ part of (2.23) given by (2.25a). It is important to realize the high–k⊥
part of (2.18) corresponds to the final term in the integrand in (2.23), a term
which exists only because we must go outside of physical four-dimensional
space–time in order to define matrix elements of j5µ.

2.2.2 Light-Cone Wave Function Definition of
Partons

Intuitively partons are supposed to be the objects, measured over short times
and over short distances, that make up hadrons. This is given a precise
formulation by writing, say, the proton’s wavefunction, in light-cone quanti-
zation and in light-cone gauge, in terms of Fock space components consisting
of gluons, quarks and anti-quarks with renormalization being carried out at
some scale µ which is much greater than the fundamental QCD scale Λ [11].
The quark and gluon number densities are then just the expectations of the
number density operator in light-cone quantization. For example

xG(x,Q2) =〈∫
d2k⊥ϑ(Q2 − k2

⊥)dk+xδ

(
x− k+

p+

)∑

λ=±
a+

λ (k⊥, k+)aλ(k⊥, k+)

〉

(2.26)

with the 〈 〉 referring to the expectation in the state of a proton having
momentum p so long as p2

⊥ � Q2. aλ refers to the annihilation operator
of a gluon having polarization λ with color indices being suppressed in (2.26).

Now let us try to understand (2.23) in terms of a quark–anti-quark pair
arising from a virtual gluon in the proton, an interpretation suggested by
(2.14) and (2.15). To that end consider

1

2l+
Γ̃g

5 = TNf

∑

r,r′

∫
d2k⊥

∫ l+

0

dk+ |ψr,r′(l − k, k)|2

(
ũr(k) γ+γ5ur(k)

2k+
+
ṽr′(l−k) γ+γ5vr′(l−k)

2(l − k)+

)
(2.27)

with the light-cone wavefunction for the quark–anti-quark pair in the virtual
gluon given as

ψr,r′(l−k, k) = g
ũr(k) γ ·ε vr′(l−k)√

(2π)32k+ 2(l−k)+

[
l− − k2

⊥
+m2

2 k+
− k2

⊥
+m2

2 (l−k)+

] . (2.28)
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Now we can check that (2.28) agrees with (2.23) if one drops the n−4
n−2

factor
in the numerator of (2.23). In particular for m = 0

ũr(k)γ ·εvr′(l − k) =
k1 + ik2√
2z(1 − z)

δrr′ [ r(1−2x) − 1 ] (2.29)

while
ũr(k)γ+γ5ur(k) = ṽr(k)γ+γ5vr(k) = 2rk+ (2.30)

with r = ±1 and r = +1 corresponding to positive helicity for a quark and
negative helicity for an anti-quark. It is straightforward to see that (2.28)–
(2.30) used in (2.27) give the zero mass limit of (2.23) when the n−4

n−2
factor is

dropped in the integrand of (2.23). The δrr′ in (2.29) requires that the quark
and anti-quark coming from the virtual photon carry opposite helicity if the
quarks have zero mass.

Thus one can obtain the low–k⊥ part of Γg
5+ in terms of a Fock space

calculation of quark–anti-quark pair production. Referring to (2.18) it is
clear that by using a light-cone wavefunction to calculate the first moment
of g1 we will correctly obtain the first term on the right hand side of that
equation but the second term, the −αsNf

2π
∆g, will be missing. We are thus

led to write

2

〈e2〉M1(Q
2) =

∑

f

(
e2f
〈e2〉∆qf (Q

2) − αs(Q
2)

2π
∆g(Q2)

)
(2.31)

with the two terms on the right hand side of (2.31) corresponding to the
two terms on the right hand side of (2.18) and where f should be summed

over all flavors for which m2
f/Q

2 � 1. In order to obtain the −αsNf

2π
∆g term

in light-cone quantization we may do a light-cone wavefunction calculation
using (n−2) transverse dimensions and then let n→ 4. Such a calculation
reproduces (2.23) and hence (2.18) and (2.31) exactly.

In (2.31) ∆qf clearly represents the fraction of the proton’s spin carried by
quarks and anti-quarks of flavor f . However, the −αs

2π
factor in (2.31) resides

in the k̂→∞ region of the quark Fock space, where k̂ is the projection of k
onto the n−4 unphysical degrees of freedom. Thus it is difficult to associate
the −αsNf

2π
with physical degrees of freedom.

However, since k̂→∞ means that the quark loop has shrunk to a point
(The physical k⊥ → ∞ in this limit also.) it becomes natural to associate

the −αsNf

2π
directly with the gluonic component of the Fock space. Thus we

are led to identify the −αsNf

2π
∆g(Q2) contribution in (2.18) and (2.31) as a
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gluonic component in agreement with the definition of partonic components
in terms of jets discussed previously.

2.3 Relationship Between the Parton

Description of a Hadron and the

Constituent Quark Description

In our previous discussion we have described a nucleon as being composed of
quarks and gluons. These quark and gluon distributions carry a momentum
scale describing how locally one measures the partons in the nucleon. Thus
qf (x,Q

2) is the number density of quarks of flavor f having a longitudinal
momentum fraction x and whose transverse size is 1/Q. In the light-cone
quantization formalizm the scale Q enters as the scale at which renormaliza-
tion is done. In an experimental situation 1/Q is the resolution, in transverse
coordinate space, of the measurer of the quark or gluon.

There is also another picture of the nucleon to which we have become
accustomed and which has been extremely important for our understanding of
the spectrum of low lying hadrons. This picture is, of course, the constituent
quark model of the nucleon.

In the constituent quark model one pictures the proton as made of two
up quarks and a down quark with the spin of the proton being given by the
resulting spin of the three quarks in their ground state wavefunction. We shall
consider here only the simplest of the constituent quark models in which the
constituent up and down quarks have a mass equal to one third the nucleon
mass with binding energy being neglected completely. At first sight the parton
picture of the proton and the constituent quark picture appear at odds. The
constituent quark picture has no room for qluonic degrees of freedom while
one knows from studies of deep inelastic lepton-nucleon scattering that gluons
carry about one-half of the longitudinal momentum of a fast proton.

In order to sharpen the question consider the energy-momentum tensor
Θµν . In QCD one can write

Θµν(x) = Θq
µν(x) + Θg

µν(x) (2.32)

giving Θµν in terms of a piece Θq
µν written in terms of quark fields and a

piece Θg
µν written in terms of gluon fields. Because of operator mixing the

separation given by (2.32) depends on µ, the scale at which the quark and
gluon pieces are renormalized. The first moment of F2 gives information as
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to how much of the light cone momentum of the proton is contained in the
quark components. To see this we use

1

2p2
+

〈p|Θ++ |p〉 = 1 (2.33)

and we define

1

2p2
+

〈p|Θq
++ |p〉 = xq

1

2p2
+

〈p|Θg
++ |p〉 = xg .

xq and xg are the fractions of the proton’s momentum contained by quarks
and gluons respectively. But, using (1.17), (2.13) and charge symmetry

5

9
x
[
qu(x,Q

2)+qu(x,Q
2)+qd(x,Q

2)+qd(x,Q
2)
]

= F P
2 (x,Q2)+FN

2 (x,Q2)

(2.34)
with the P and N superscripts referring to proton and neutron, respectively.
The operator product expansion relates the integral of the second moment of
q + q to the matrix element of Θq

++ so that one obtains

xq =
9

5

∫ 1

0

dx
(
F P

2 (x,Q2) + FN
2 (x,Q2)

)
≈ 0.45. (2.35)

That is, quarks only carry about one-half the momentum of the proton at
least when the renormalization scale µ2 ≈ Q2 is above a few ( GeV)2.

We can reconcile the constituent quark model and the parton model if we
understand that the constituent quark model must refer to static or nearly
static properties of the nucleon. The constituent quark itself consists of bare
quarks and gluons (partons) which are revealed in hard interaction like deeply
inelastic scattering. Thus the momentum sum rule tells us that a constituent
quark consists of a bare quark core, which may carry about half of the light-
cone momentum, along with a quark–antiquark sea and gluons. Thus if we
try to evaluate the local quark operator Θq

++ in terms of constituent quarks
we only get the correct answer to within factor of two.

What about vector current jf
µ(x) = q̃f (x)γµqf(x) ? Can we get reliable

results by evaluating forward or nearly forward matrix element of jf
µ in terms

of constituent quarks? That is does

jf
µ ≡ q̃fγµqf ≈ Q̃fγµQf = Jf

µ
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with Qf a constituent quark of flavor f and with baryonic matrix elements
of Jf

µ evaluated in terms of a simple three quark bound state model?
Here the experimental situation is more encouraging. Magnetic moments

of baryons are well given in terms of the Dirac moments of the constituent
quarks. Theoretically the situation is also more favorable. A constituent
quark consists a bare core along with a bare quark–anti-quark sea and gluons.
However, gluons carry no flavor quantum numbers and the sea cancels out in
single current matrix elements of jµ. Thus in this case evaluation of matrix
elements of jf

µ in terms of Jf
µ should be, and is, much more reliable.

Finally we come to the case of axial vector current jf
5µ = q̃fγµγ5qf . Let us

suppose the bare mass of the u, d and s quarks is zero, a not unreasonable
approximation. Then ∂µj

f
5µ =0. Nevertheless, even though the bare currents

are conserved, there is no conserved axial charge. When a bare quark prop-
agates in the vacuum it may interact with the condensate, qq, representing
spontaneous chiral symmetry breaking, and through this interaction the bare
quark obtains a mass and undergoes changes in helicity. But, the axial charge
is helicity so that the axial charge is not really conserved. Thus we would
expect the necessity of a renormalization between j5µ and J5µ since the axial
charge given by the two cannot be expected to be the same. Indeed we expect
an independent renormalization for the flavor singlet and flavor octet parts
of j5µ

j
0
5µ = Z0J

0
5µ , j

8
5µ = Z8J

8
5µ

with 0 and 8 referring to singlet and octet, respectively. Z8 can be determined
from GA/GV in the non-relativistic quark model and one gets Z8 ≈ 3/4. (If
relativistic corrections in the quark model are taken into account Z8 may

be somewhat larger than 3/4.) Thus the “naive” identification j8
5µ = J8

5µ is
not too bad for static baryonic matrix elements and a small renormalization,
Z8 ≈ 3/4, bring all octet static matrix elements into excellent agreement with
the non-relativistic quark model.

Thus we have seen that even though constituent quarks and partonic
quarks are quite different objects the evaluation of baryonic matrix elements
of bare (partonic) quark operators in terms of constituent quark operators
gives reasonable results. The mismatch of a factor of two in relating bare and
constituent quark energy-momentum tensors was the worst case we have met.
So far, however, we have not discussed j0

5µ, perhaps the most interesting case
of all.

Much of our discussion in the early part of this chapter was aimed at
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showing that nucleonic matrix elements of j0
5µ are not directly related to bare

quark quantities, but involve a gluonic component also. Thus

〈ps| j0
5µ |ps〉 = 2Msµ

(
∆q − αsNf

2π
∆g

)
(2.36)

corresponds to (2.31) where ∆q represents the fraction of the proton’s helicity
carried by quarks while ∆g is the amount of helicity carried by gluons. The
−αsNf

2π
∆g term comes about from the flavor singlet axial vector anomaly as

we have shown earlier.
Now the question is whether we should try to identify j0

5µ with J0
5µ or

whether we should only identify the quark partonic part of j0
5µ with J0

5µ.

Since J0
5µ is imagined to be the axial current due to a bare quark core, along

with its gluons and its sea, it seems most natural to try and identify J
0
5µ with

the ∆q part of the right hand side of (2.36). After all it is ∆q which could
be the bare quark core around which the constituent quark may be built
while the −αsNf

2π
∆g has no bare quark part at all. After briefly discussing

the experimental situation with respect to the singlet axial current matrix
elements we shall conclude our discussing of spin and the axial anomaly.

2.4 The Experimental Situation

The new ingredient which so much stimulated the field of spin dependence in
high energy reactions was the EMC experiment [12] on spin dependent DIS.
The result of that experiment is that

∫ 1

0

g1(x,Q
2) = 0.126 ± 0.010 ± 0.015, (2.37)

with g1 the spin dependent structure function of the proton. For the EMC
experiment 〈Q2〉 ≈ 11 GeV2. Using (2.37) with (2.31) one obtains

1

18
[4∆u+ ∆d+ ∆s] − αsNf

12π
∆g = 0.126 ± 0.010 ± 0.015. (2.38)

There are two other pieces of information in hand. Semileptonic hyperon
decay is well fit using flavor SU(3) symmetry [13]. In the analysis of such de-
cays one determines, after doing an SU(3) flavor rotation, the proton matrix
element of the eighth component of the octet axial vector current. Expressed
in parton language

3F −D = ∆u+ ∆d− 2∆s. (2.39)
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In addition neutron β-decay along with an isospin rotation determines the
proton matrix element of the third component of the axial vector current as

∆u− ∆d = GA = F +D. (2.40)

Using F = 0.47 ± 0.04 and D = 0.81 ± 0.03 one obtains from (2.37)–(2.40)

∆u− αs∆g

2π
= 0.78 ± 0.08 (2.41a)

∆d− αs∆g

2π
= −0.50 ± 0.08 (2.41b)

∆s− αs∆g

2π
= −0.16 ± 0.08. (2.41c)

Adding the above one gets

∆u+ ∆d+ ∆s− 3αs

2π
∆g = 0.13 ± 0.19. (2.42)

If we were to neglect the αs∆g
2π

terms in (2.41) and (2.42) then (2.41c) would
tell us that strange quarks carry about 16% of the proton’s spin but with an
opposite sign while (2.42) would say that all quarks and anti-quarks only carry
about 13% of the spin. Each of these would be rather striking conclusions. We
might have guessed, based on our discussion of the last section, that quarks
should carry at least 50% of the proton’s spin, and we probably would have
guessed that strange quarks should carry less than about 5% of the proton’s
spin. Of course the errors in (2.41) and (2.42) are large, so that it is very
important to bear in mind that even with a neglect of ∆g there may not be
a real conflict with the intuition we have gained from the constituent quark
model.

If the central values in (2.41) and (2.42) are in fact the correct values, then
either ∆g is moderately large, or the constituent quark model simply fails.
∆g ≈ 3 would reduce the central value of ∆s from −0.16 to a value close to
−0.06 and it would increase the central value of ∆u+ ∆d+ ∆s from 0.13 to
about 0.45. Each of these numbers is marginally acceptable in the constituent
quark model. If it should turn out that ∆g is very small and that the central
values given in (2.41) and (2.42) are accurate, then the constituent quark
model will have suffered a real defeat and it may be reasonable to search for
the smallness of ∆u+ ∆d+ ∆s in terms of a Skyrme-type model [14].

Finally, it is important to emphasize that ∆g is a measurable quantity. In
spin dependent deep inelastic scattering the ∆g term given in (2.18) should
be the main source of two jet events after the first moment, in terms of the
Bjorken-x-variable, is taken.
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Exclusive hadronic reactions have been intensively studied in the context
of QCD since the late 1970’s [1]. Although the formalism for dealing with such
reactions as elastic electron-nucleon scattering and high energy elastic hadron-
hadron scattering is still under active development and improvement the basic
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ingredients are now well understood. In particular the space time picture
of high energy exclusive reactions is understood and it is really the testing
of that picture which is our concern in this Chapter. Indeed quantitative
predictions for exclusive reactions will never be comparable in accuracy to
those for inclusive hard reactions. It may well be that the best one can ever
hope for is a qualitative and perhaps a semi-quantitative testing of the QCD
predictions for exclusive reactions.

3.1 Review of Exclusive Reactions

In this section the basic picture underlying exclusive reactions will be dis-
cussed in a qualitative way. We begin by considering high energy wide angle
elastic pion-pion scattering after which we shall derive the counting rules for
a general high energy elastic scattering.

3.1.1 The Hard Scattering and Landshoff Pictures

There are two competing physical pictures of π–π wide angle elastic scat-
tering [3−5]. Let us refer to them as the hard scattering picture and the
Landshoff picture respectively. The process is illustrated in Fig. 3.1 where
the incoming momenta are p1 and p2 and the outgoing momenta are p1

′ and
p2
′. In the center of mass we may write

p1 = (E, 0, 0, p) = (E,~ezp) , p2 = (E, 0, 0,−p) = (E,−~ezp) ;

p1
′ = (E,~ep) , p2

′ = (E,−~ep)

where ~e~ez = cos Θ gives the angle of scattering and s = (p1 + p2)
2.

p′2

p1 p2

p′1

Figure 3.1: The kinematics of wide angle elastic scattering.

Suppose t ≈ 0 is the time at which the scattering takes place. We shall
soon see that in both the hard scattering and in the Landshoff pictures an
elastic event can only occur if the incoming pions consist solely of a valence
quark and antiquark at the time of the scattering. That is, only a particular
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part of the wave function of the pion is capable of carrying out an elastic
scattering. Then in the hard scattering picture the scattering proceeds as
illustrated in Fig. 3.2. Before the collision takes place the valence quark and
antiquark of each pion come close together so that during the time of collision,
∆t ∼ 1/

√
s, the two quarks and the two antiquarks from the initial pions

are within region |∆~x| <∼ 1/
√
s. The collision then serves to rearrange the

momenta of the quarks and antiquarks so that the outgoing quark–antiquark
systems have the momenta p1

′ and p2
′ respectively.

time

π′1

π2

π′2

π1

Figure 3.2: Collapse and later expansion of the pion wavefunctions in wide
angle elastic scattering.

Thus in the hard scattering picture we may write

dσ = Pr(1) Pr(2) Pr(1
′) Pr(2

′) σHS dΩ

where Pr(1) is the probability that the quark and antiquark in the pion having
p1 are within a spatial distance |∆ ~x1| = 1/

√
s. Now having |∆z1| <∼ 1/

√
s

is automatic because the pion wavefunction is Lorentz contracted due to
the high momentum of the pion. Neglecting the QCD logarithms due to
evolution, the probability that the transverse components of the quark and
antiquark be found in a region |∆x⊥| <∼ 1/

√
s is just geometric, Pr(1) ∝(

1√
s

)2

/1 fm2 ∝ 1/s. Similarly Pr(1
′), Pr(2) and Pr(2

′), the probabilities to

find the valence quark and antiquark of the pions π1
′, π2 and π2

′ each within a
size |∆~x| <∼ 1/

√
s are of magnitude 1/s also. σHS is the hard scattering cross

section. Since σHS refers to the scattering of compact quark antiquark pairs
it must scale according to the energy of the reaction since there is no other
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scale available. Thus σHS ∼ 1/s. Using dΩ = (4π)/sdt, with t= (p1 − p1
′)2

one finds
dσ

dt
∝ 1

s6
, (3.1)

the dimensional counting rule derived some time ago [2,3].
If, instead of considering π1+π2 → π1

′+π2
′ one considers a general elastic

reaction h1 + h2 → h3 + h4 where the minimum number of constituents of hi

is ni then clearly

dσ

dt
∝ Pr(h1) Pr(h2) Pr(h3) Pr(h4)

1

s2

in the hard scattering picture. But Pr(hi) is just determined geometrically by
the probability to find ni constituents in a transverse region |∆x⊥| ∼ 1/

√
s.

Thus Pr(hi) ∝ s−ni+1 so that

dσ

dt
∝ s−(n1+n2+n3+n4)+2 (3.2)

in the hard scattering picture. For elastic nucleon-nucleon scattering the
dimensional counting rule becomes dσ/dt ∝ s10.

In the hard scattering picture the essential part of that picture is that over
a time ∆t ∼ 1/

√
s all the constituents making up the initial, or final, state be

found in the some small, |∆~x| ∼ 1/
√
s, region of space. On the other hand

in the Landshoff picture different constituents carry out hard scatterings in
different regions of space, but again over a short interval, ∆t ∼ 1/

√
s, of time.

To begin consider the case of π–π elastic scattering. Suppose the scattering
takes place in the x–z plane. Then in order that an elastic reaction take place
it is necessary that all the quarks and antiquarks of the initial pions be found
in the region |∆x| <∼ 1/

√
s, |∆z| <∼ 1/

√
s, but it is not kinematically necessary

that ∆y be smaller than the normal extent of the pion wavefunction. Thus
in the Landshoff picture we suppose that the quarks and anti-qarks carry
out hard collisions near t=0, with |xi − xj | and |zi − zj | being of size 1/

√
s

during the collision for all quarks and antiquarks i and j. However, we suppose
that in the y-direction there are two separate collision points where, at each
collision point, one quark (or antiquark) from each initial pion carries out a
hard elastic reaction. In this case we may write

dσ ∝ P̄r(1) P̄r(2) P̄r(1
′) P̄r(2

′) σ̄
(x)
HS σ̄

(y)
HS dΩ(1) dΘ(2)

y (3.3)

where now P̄r ∼ 1/
√
s since one need only require that the x coordinates of

the valence quark and antiquark be within a size 1/
√
s. σ̄

(x)
HS is the scattering
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“cross section” for the x coordinates of the two quarks in one incoming pion to
overlap the two quarks in the other incoming pion. This is given geometrically
as σ̄

(x)
HS ∼ 1/

√
s since the quark–antiquark pair in a given pion are within a

distance ∆x∼1/
√
s. σ̄

(y)
HS is the overlap probability in the y-direction. Here

the quark–antiquark pairs for the two initial pions are not compact so there is
a geometrical factor for each of the two quark-quark collisions, each collision
involving a quark (antiquark) from one of the incoming pions with a quark

(antiquark) from the other incoming pion. Thus σ̄
(y)
HS ∝ 1/s. dΩ(1) is the

element of solid angle for one of the quark (or antiquark) collisions. dΘ
(2)
y is

the small angular region allowed, in a direction out of the x-z plane, for the
second hard quark (or antiquark) collision dΘ

(2)
y <∼ 1/

√
s in order that the

hard scatterings give outgoing quarks having ∆y ∼ 1fm and ∆py <∼ 1/fm.
Using dΩ(1) ∝ dt/s one finds from (3.3)

dσ

dt
∼ 1

s5
. (3.4)

In general for h1 +h2 → h′1 +h′2 with h1 and h′1 having n1 valence quarks and
antiquarks and h2 and h′2 having n2 valence quarks and antiquarks a formula
similar to (3.3) can be written. Suppose n1 ≤ n2 then there can be n1 distinct
quark (or anti- quark) scatterings located at n1 points along the y-axis. Then

dσ

dt
= P̄r(1) P̄r(2) P̄r(1

′) P̄r(2
′) σ̄

(x)
HS σ̄

(y)
HS [dΘy]

n1−1

where now P̄r(1
′), P̄r(1) ∝ (1/

√
s)n1−1

and P̄r(2), P̄r(2
′) ∝ (1/

√
s)n1−1(1/

√
s)n2−n1 .

The factor (1/
√
s)n2−n1 in P̄r(2) and P̄r(2

′) reflects the fact that there can
only be n1 distinct scattering points on the y-axis so that n2 − n1 quarks (or
antiquarks) in h2 and h′2 must be close, ∆y <∼ 1/

√
s, to some other quark (or

antiquark) in h2 and h′2. σ̄
(x)
HS ∼ 1/

√
s as before while now σ̄

(y)
HS ∼ (1/

√
s)n1 .

Thus
dσ

dt
∝
(

1

s

)2n1+n2−1

(3.5)

for h1 +h2 → h′1 +h′2 with n1≤n2 and n1 and n2 being the minimum number
of constituents in hadrons 1 and 2 respectively. Thus for elastic nucleon-
nucleon scattering the Landshoff process leads to dσ/dt ∝ (1/s)8 while for
pion-nucleon scattering it leads to (1/s)6.
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From the discussion above and from the resulting behaviour for wide angle
elastic scattering in the hard scattering picture and in the Landshoff picture,
equations (3.2), (3.5) respectively, it should be clear that wide angle alas-
tic scattering proceeds through the Fock space component of the hadrons
wavefunction containing the minimum number of quanta. Higher numbers of
quanta partaking in the scattering will simple raise the various ni appearing
in (3.2) and (3.5).

3.1.2 The Sudakov Factor

From our disscusion in the previous section it would appear that high energy
wide angle elastic scattering is dominated by a set of essentially independent
hard partonic scatterings, the independent scatterings separated spatially by
about one fermi. This is the Landshoff picture. Before discussing the role
of the Sudakov form factor in the present circumstance let’s go back for a
moment to π–π scattering and relate the Feynman diagram calculation to
the hard scattering and Landshoff pictures we have just described.

In Fig. 3.3 a particular Feynman diagram contribution to π–π scattering
is shown.

p′1 − k′1

k2 p2 − k2

k2−k′2
p′2 − k′2k′2k′1

π(p′1)

π(p1)

k1p1 − k1

k1 − k′1

p1−p′1−k1+k
′
1

π(p′2)

π(p2)

Figure 3.3: The kinematics of wide angle elastic scattering.

In the hard scattering picture the gluon lines k1 − k′1, p1 − p′1 − k1 + k′1
and k2 − k′2 as well as the quark lines k1 + k2 − k′1, p

′
2 − k2 have virtuality

on the order of s. That is (k1 − k′1)
2 ∝ s, etc. This large virtuality is what
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requires the coordinate positions of the quarks involved in the scattering to
be close together. This is a general result. If a QCD hard scattering analysis
is to be applicable there must be a connected set of Feynman lines, each of
virtuality s, to which the external particles attach through exclusive QCD
wavefunctions. In the π–π scattering case that connected set of Feynman
lines is the set k1 − k′1, etc. enumerated above.

Now in wide angle, π–π elastic scattering the kinematics of the process
does not require that all of the above enumerated lines be of large virtuality.
The two fermion lines k1+k2−k′1 and p′2−k2 along with the gluon line k2−k′2
need not have large virtuality. In this case the resulting hard scattering lines
k1 −k′1 and p1 −p′1−k1 +k′1 are disconnected and so the hard scattering does
not occur within a small region of space-time. Indeed, in the graph shown in
Fig. 3.3 the virtuality of the lines k1 + k2 − k′1, p

′
1 − k2 and k2 − k′2 can vary

from 1/r2
0 to s, where r0 is the radius of the pion. Thus the hard scattering

and Landshoff regions are smoothly connected.
We have said that additional quanta in the wavefunction of the incoming

pions at the time of scattering will lead to power behaviors more strongly
suppressed than those given by (3.2) and (3.5). In the hard scattering picture
it is natural not to have additional gluons present at the time of scattering
since the pion wavefunctions are very compact and thus color neutral down
to distances of size |∆~x|∼1/

√
s. However, in the Landshoff picture the quark

and antiquark in each of the incoming pions are separated by an amount
|∆y| ∼ 1 fm so that the pion is globally color neutral but not locally color
neutral. Thus it is natural that the individual quarks and antiquarks in the
incoming pions have their usual cloud of virtual gluons at the time of the
hard scattering.

In order that the hard scattering take place with the power behavior given
by (3.5) it is necessary to pick out that part of the pion wavefunction con-
sisting only of a valence quark–antiquark pair. However, the probability of
finding a part of the wavefunction of a high energy pion consisting only of a
quark and an antiquark with no gluons is very small so that the power law
(3.5) cannot be maintained at very high energy. This is the Sudakov suppres-
sion (see Chapter 1). It can also be understood classically since independent,
and spatially separated, wide angle scatterings of charged particles are always
accompanyied by a significant amount of radiation. But this radiation would
mean that the process was not truly elastic. In the hard scattering picture,
on the other hand, there is no large change in color currents at the hard
scattering since the incoming, and outgoing, pions are color neutral down to
distances of size |∆~x| ∼ 1/

√
s.
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Thus at very high energy the Sudakov suppression brings one very close
to the hard scattering picture. A careful treatment of the hard scattering and
Landshoff regions leads to [5,6]

dσ

dt
∝ s−5−2c ln(1+ 1

2c) (3.6)

for π–π scattering and
dσ

dt
∝ s−8−3c ln(1+ 2

3c) (3.7)

for nucleon–nucleon scattering with c = 8CF/(11 − 2
3
Nf), results very close

to the hard scattering picture.

3.1.3 The Elastic Form Factor [1]

The elastic electromagnetic form factor is somewhat simpler to study in QCD
than elastic hadron–hadron scattering because there is no region analogous
to the Landshoff region. In order to describe the physical picture underlying
our understanding of the form factor it is convenient to use a frame where,
for the pion form factor, the incoming and outgoing momenta take the form

p =

(
p+

m2

2p
, 0, 0, p

)
, p′ =

(
p+

m2

2p
, 0, 0,−p

)
(3.8)

with the process indicated in Fig. 3.4, where the virtual photon is the line
having momentum q. In that figure we have shown how the process proceeds
in QCD.

k′

p

p′−k′
p′

k

p−k

q

k−k′

Figure 3.4: The elastic form factor of the pion.

Only the minimum valence quark–antiquark portion of the pion wavefunc-
tion is important in evaluating the form factor. The argument is the following:
In the frame indicated in (3.8) the separation in the z-direction of the quark
and antiquark in the incoming pion is ∆z ∼ 1/p = 2/Q. The virtual photon
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is absorbed over a period of time, ∆t, given by ∆t ∼ 1/Q. Suppose the pho-
ton is absorbed by the quark. Then the direction of the quark is immediately
changed from moving in the +z to moving in the −z direction. But, if the
quark and antiquark separate by an amount |∆z| � 1/Q they will not be
able to get together to form the outgoing pion. In order that the quark and
antiquark be able to communicate before δz becomes grater than 1/Q they
must be within the transverse size ∆x⊥ <∼ 1/Q as information cannot travel
faster than the velocity of light. Thus at the time of the absorption of the
photon the lines p− k and k must be within a distance |∆~x| <∼ 1/Q, exactly
the hard scattering configuration we discussed earlier in our consideration of
elastic scattering.

Technically the exchange of the gluon, k − k′, between the quark and
antiquark is what turns the antiquark around. The fact that (k−k′)2 ∼ Q2 is
the region of momentum which dominates the Feynman diagram calculation
of the graph in Fig. 3.4 also indicates that the quark and antiquark must be
close together at the time of absorption of the virtual photon.

For the elastic form factor it is possible to give rather compact form for
the asymptotic behavior [1]. For the pion form factor the answer is

Fπ(Q2) → 16πf 2
π

αs(Q
2)

Q2

[
1 +

∞∑

N=2,4,6

CN

(
ln
Q2

µ2

)−γN

]
+O

(
1

Q4

)
, (3.9)

where the γN are known positive numbers. However, the CN depend on
the wavefunction of the pion in a non-perturbative way and can only be
determined either through a model calculation or through fits to the data.

In the nucleon case much work has gone into trying to restrict the CN by
using QCD sum rules [7,aL2.08]. How successful this will ultimately be is not
yet clear. It may be that large order 1/Q4 terms in Fπ and 1/Q6 terms in the
nucleon form factor will ultimately make quantitative comparison between
theory and experiment extremely difficult [9].

3.2 Almost Exclusive Reactions in Nuclei

One way to test the QCD picture of hard scattering described in the previ-
ous section would be to make quantitative comparisons between theory and
experiment. This is very difficult to do with our present lack of knowledge
of both the Q2 ’s necessary to apply the asymptotic formulas [9] and of the
non-perturbative aspects of the hadronic wavefunctions which are necessary
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to do precise calculations. It does, however, seem possible to test the QCD
picture of exclusive reactions by considering quasielastic reactions on nuclei.

3.2.1 Quasielastic Proton Scattering on Nuclei

Consider the reaction [10−12]

p1 + A→ p′1 + p′2 + (A−1)∗ (3.10)

with p1, p
′
1 and p′2 protons and (A−1)∗ a nucleus, possibly in an excited state.

The reaction indicated in (3.10) can occur only if the initial proton, p1, can
penetrate into the nucleus, interact with a proton, p2, of the nucleus and carry
out a hard elastic reaction. p′1 and p′2 must then leave the nucleus without
having any inelastic reaction with other nucleons in the nucleus. At first sight
the reaction seems very unlikely as one might expect the protons p1, p

′
1 and p′2

to have many inelastic reactions while passing through the nucleus. However,
on closer reflection one begins to see that (3.10) may not be so difficult to
achieve. After all the QCD picture of wide angle elastic scattering demands
that the incoming proton, p1, be composed of three quarks having spatial
separation ∆~x very small just before the collision. But if ∆~x is very small
then the proton is nearly color neutral, in a local manner, just before the
elastic scattering. But a nearly locally color neutral system interacts very
weakly with nucleons and thus should be able to pass through the nucleus.
Similar considerations apply to the outgoing protons p′1 and p′2. Thus the
QCD picture of wide angle elastic scattering suggests that the quasielastic
reaction (3.10) may be surprisingly large. Let’s try to make this a little more
precise. Define a transparency, T , according to

T =

dσ

dΩ
(p1 + A→ p′1+p

′
2 + (A−1)∗)

Z
dσ

dΩ
(p1 + p2 → p′1+p

′
2)

, (3.11)

where the reaction indicated in the denominator of (3.11) is elastic proton–
proton scattering. Both reactions in (3.11) are assumed to be at high energy
and at wide angle. If the incoming proton, p1, or the outgoing protons, p′1
and p′2, are strongly absorbed while passing through the nucleus then T will
be much less than 1. QCD predicts T ≈ 1 at high energy, at least after
fermi motion corrections are made to the numerator on the right hand side
of (3.11).
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We can get an estimate of the energies necessary to obtain a reasonable
T from the following qualitative argument: If the three quark system making
up the proton p1 has a transverse radius r⊥ then one may expect that this
system has an inelastic cross section with a normal nucleon equal to πr2

⊥.
Thus for p1, p

′
1 and p′2 to interact weakly with the nucleons in the nucleus

we need the momentum transfer of the reaction
√

−(p1 − p′1)
2 =

√−t to be
much greater than (1 fm−1). In order that r⊥ stay small while the incoming
and outgoing protons pass through the nucleus one needs p1/M , p′1/M , p′2/M
all to be much greater than one. (The rate of expansion of r⊥ as the protons
leave the center of the collision is slowed down by Lorentz time dilatation
so that we must require p/M be large enough so that r⊥ be small over the
complete traversal of the nucleus. The expansion of the three quark system
as it leaves the collision point will be dealt with in more detail in the next
section.) Thus for

√−t a few GeVand for p1, p
′
1 and p′2 greater than a few

GeV we might expect to see some signs of color transparency, though in order
to get T near 1 it may be necessary have

√−t values which are difficult to
achieve in present experiments.

There has been one experiment [13] performed which shows an increase
of T between p1 = 3 GeV and p1 = 9 GeV and then a decrease of T between
p1 = 9 GeV and p1 = 12 GeV. This variation of T seems mostly due to the
variation of the denominator on the right hand side of (3.11) rather than
due to the numerator. This is clearly an indication that the asymptotic be-
havior for wide angle elastic proton–proton scattering has not been achieved
yet at Brookhaven energies. The fact that elastic proton–proton scattering
shows oscillations with energy at fixed angle while no such oscillations are
apparent in the p-Nucleus data have led Ralston and Pire [14] to suggest
that at present energies both the hard scattering and Landshhoff parts of the
proton wavefunction are important. The oscillations in the proton–proton
data would be due to an energy dependent phase relating the hard scatter-
ing and Landshoff amplitudes. In proton–nucleus quasielastic scattering the
Landshoff part of the wavefunction would be filtered out by inelastic nuclear
collisions so that only the hard scattering part of the wavefunction is effective.
Thus no oscillation appear in proton–nucleus quasielastic scattering. This is
a very interesting idea and is likely correct. However, it is important to un-
derstand the source of the energy dependent phase before the Ralston–Pire
explanation can be considered convincing.
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3.2.2 Quasielastic Electron Scattering on Nuclei

Now consider the reaction

e+ A→ e′ + p′ + (A−1)∗ ,

where p′ is a proton and (A−1)∗ is a (possibly) excited nuclear state, the
possible excitations being summed over. Again one defines a transparency

Tγ =
F (γ(g) + A→ p′ + (A−1)∗)

ZF (γ(g) + p→ p′)
, (3.12)

where as in (3.11) we neglect fermi motion effects for simplicity of discussion.
The idea here is exactly the same as in the previous section. Naively one
might expect Tγ to be very small. However, if the hard scattering picture is
correct Tγ should approach one at very large Q2. Even at not so large Q2 one
might hope to see T increase with Q2.

Let us briefly review the kinematics of the reaction γ(g) + p → p′ where
in the laboratory system

p = (M, 0, 0, 0) , (3.13a)

q =

(
Q2

2M
, 0, 0, Q

√
Q2

4M2
+ 1

)
, (3.13b)

p′ =

(
Q2

2M
+M, 0, 0, Q

√
Q2

4M2
+ 1

)
. (3.13c)

Thus the outgoing proton has a momentum equal to Q2/2M when Q2/M2 �
1. Thus for Q >∼ 2–3 GeV the outgoing proton is reasonably relativistic.
Ideally one would like Q very large in order to test the hard scattering picture
of QCD by finding T = 1, at least after corrections due to fermi motion are
taken into account. However, even at lower Q’s one should be able to see the
hard scattering picture emerge by observing an increase in T as Q2 grows.
The advantage of quasielastic electron scattering compared to quasielastic
proton–nucleus scattering is that the denominator in (3.12) is known to be
smoothly varying while the denominator in (3.11) oscillates with energy.

If experiments do find an increase of T with Q2 then it may be possible to
measure (3 quark)–nucleus cross sections, with the three quarks in a compact
state, by studying the variation of T with atomic number A. This could give
information on the way the newly born three quark system evolves into a
proton, which topic is the subject of the next section of this Chapter.
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3.3 Evolution of Compact Quark Systems

into Hadrons

For expliciteness let us consider quasielastic electron–nucleus scattering. Our
physical picture of how the reaction should occur at high Q2 is as follows. The
virtual photon (q) is absorbed by a quark in a proton (p) at rest except for
fermi motion which we ignore in this discussion. In the laboratory system the
proton (p) need not be in a compact three valence configuration as the hard
part of the process takes place over time scales on the order of one fermi. After
a time ∆t∼ 1 fm the three quark system is compact ∆x⊥∼ 1/Q,∆z∼ 1/Q2

and has momentum p′ as given by (3.13c). The three quark system then
expands in the transverse direction as it moves through the nucleus and finally,
after a time t∼Q2/M3, can be identified as a proton. What we wish to study
here is exactly how the expansion from a compact three quark system to a
physical proton takes place [12].

3.3.1 Classical Expansion

We begin by considering a model where the compact quark system expands
to a size of one fermi by free motion. In order to simplify the discussion we
shall consider the expansion of a quark–antiquark system having ∆~x≈ 0 to
its final configuration ∆x⊥ ∼ 1 fm,∆z = 1/p. The situation is illustrated in
Fig. 3.5. At the final configuration, ∆x⊥ ∼ 1 fm, the quark–antiquark fit a
normal pion wavefunction and the expansion ceases.

time

p

p−k

k

Figure 3.5: The expansion from a point-like configuration to a physical pion.

We choose pµ = (Ep, 0, 0, p) and we suppose that k⊥ ≈ κ =
√

〈k2
⊥〉 the

average transverse momentum of a pion while kz = xp with 0<x< 1 and x
taking on a typical value away from the endpoints at 0 and 1. We choose
time t= 0 as the starting time of the expansion. Let us call the quark (or
antiquark) k the 1 particle and the quark (p−k) the 2 particle. The transverse
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velocity of the two particles are

v1⊥ =
k⊥
kz

=
κ

xp
(3.14a)

and v2⊥ =
−k⊥

(p− k)z
= − κ

(1 − x)p
. (3.14b)

Then the relative transverse velocity is

v⊥ = |v1⊥ − v2⊥| =
κ

px(1 − x)
.

After a time t the transverse separation of the quark–antiquark pair is

∆x⊥ = v⊥t =
κt

px(1 − x)
.

When ∆x⊥= 2r0, the radius of the pion, the expansion should stop, and at
that time a normal pion can be said to be formed. This formation time, tF ,
is given by

tF ≈ 1

2

r0p

κ
, (3.15)

where we have set x = 1/2 to get a typical time. If r0 ≈ 1 fm and κ ≈ 350 MeV
then

tF ≈ 3

4
p

with tF expressed in fermis and p in GeV. A similar result holds for a three
quark system expanding to form a proton. If one assumes that three quarks
share the longitudinal momentum equally then

tF =
1

3

r0p

κ
(3.16)

with p the momentum of the proton, κ the typical transverse momentum of
a quark in the proton and r0 the radius of the proton.

As an expanding proton moves through the nucleus it should interact with
the nucleons of the nucleus with a cross section proportional to πr2

⊥(t) where
r⊥ is the transverse radius of the three quark system. Since r⊥(t) is linear in
t the three quark system should have a cross section with nucleons

σ(t) = σ

(
t

tF

)2

(3.17)
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which cross section can be used to calculate the rate at which inelastic reac-
tions occur. σ0 in (3.17) is a normal nucleon–nucleon cross section. Thus in
order for quasielastic reactions to be likely it is necessary that σ0(R/tF )2 be
small with R the radius of the nucleus. Of course at sufficiently high energy
tF is very large and the above condition can, in principle, be satisfied.

3.3.2 Quantum Expansion

The picture of expansion from a compact quark state to a normal part of a
wavefunction of a hadron that we presented in the last section is intuitively
appealing, but it cannot really be correct. The uncertainty principle in quan-
tum mechanics requires that a compact state have high transverse momentum
components while we have assumed that k⊥ could be replaced by a parameter
κ fixed in terms of the normal wavefunction of th hadron. In this section we
shall derive a quantum expansion formula based on the evolution of the quark
system in QCD. For simplicity we shall again deal with a quark–antiquark
expanding towards a normal configuration of the wavefunction of the pion.

The evolution of a quark–antiquark pair from a radius ri to a final radius
r0, with ri/r0 � 1 and r0 the radius of the pion, is governed by the QCD
graphs shown in Fig. 3.6, where k2

1⊥ ≈ 1/r2
i is the starting point for the

evolution. The graphs in Fig. 3.6, when evaluated in light-cone gauge, give
the expansion correctly at the leading logarithmic level of approximation.

... ... p

p−kn

k3

k1

p−k2p−k1

k4
kn

p−k3
p−k4

k2

Figure 3.6: The dynamics of the expansion of the pion’s wavefunction.

The lifetime of the k1–(p− k1) quark–antiquark pair is given by

τ−1
1 =

k2
1⊥

2(p− k1)z
+
k2

1⊥
2k1z

=
k2

1⊥
2px(1 − x)

, (3.18)

where k1z = x1p1. Over the time τ1 the quark–antiquark pair separate a
distance

∆x1⊥ = v1⊥τ1.
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Using

v1⊥ =
k1⊥

px1(1 − x1)

one obtains

∆x1⊥ =
2

k1⊥
(3.19)

a result which agrees with uncertainty principle. Similarly the lifetime of the
state kn − (p − kn) and the separation during that period of time are given
by

τ−1
n =

k2
n⊥

2pxn(1 − xn)
(3.20)

and

∆xn⊥ =
2

kn⊥
. (3.21)

Because of the weakness of the coupling in QCD the ki⊥ obey k2
1⊥ � k2

2⊥ �
. . .� k2

n⊥ � . . . Thus after n gluon exchanges t and ∆x⊥ are given by (3.20)
and (3.21) to a good approximation. Using (3.21) in(3.20) one obtains

r2
⊥(t) =

[
∆x⊥(t)

2

]2

≈ 2t

p
, (3.22)

where we have set x(1−x) = 1/4 to get an average value of r2
⊥(t). This leads

to a cross section with nucleons in the nucleus of

σ(t) = σ0(t/tF ) (3.23)

in contrast to (3.17). Thus in the quantum expansion picture σ(t) grows
linearly with t whereas in a classical expansion it grows quadratically. (3.17)
is a result corresponding to the naive parton model while (3.23) is the correct
QCD formula for the expansion of a newly born quark system as it moves
to a more normal hadronic configuration. For ri very small and for p very
large (3.23) is clearly the correct expression. However, for exclusive reactions
which are not at truly asymptotic energies it is difficult to say that (3.23) is a
more accurate formula than (3.17). A good, complete experimental program
studying almost exclusive reactions in nuclei should be able to tell us which
is the better formula at a given momentum transfer.
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During recent years lots of discussions has been provoked by the theoreti-
cal prediction of coherent color emission and its experimental study. Moreover
the experimental confirmation of the bright coherence phenomena has played
an important role in the recognition of the whole of the perturbative approach
to jet physics. Our aim in this Chapter is to provide the reader with Finger-
spitzgefühl of the basic coherence phenomena (see Refs. [1,2]). We hope that
this Chapter will be useful for anyone who wants to understand the origin
and the essence of color coherence effects.

Coherence problems are basic to any gauge theory. Roughly speaking
there are two types of coherence phenomena which occur in QCD jet dynam-
ics: intRAjet and intERjet coherence.

83
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The first manifestation of intrajet coherence is the angular ordering (AO)
of the sequential parton decays. AO accounts for the appropriate dependence
of the soft gluon radiation on the prehistory of parton jet development.

Interjet coherence deals with the angular structure of soft particle flows
when three or more energetic partons are involved in a hard process. Here the
particle angular distributions depend on the geometry and color topology of
the whole jet ensemble giving rise to QCD radiophysics of jets (see Chapter 9).

4.1 Angular Ordered Parton Cascades

To elucidate the physical origin of AO let us consider a simple model of the
jet cascade, namely, the radiation pattern of soft photons produced by a
relativistic e+e− pair in a QED shower (see Fig. 4.1).

e+

p2

p1

k γ
γ

e−

Figure 4.1: Bremsstrahlung radiation of a photon k after e+e− pair pro-
duction.

The question is to what extent the e+ and e− independently emit γ’s.
To answer this question let us estimate the formation time, the time interval
needed for the γ–quantum to be radiated from, say, the e− leg. Using the
uncertainty relation to estimate the “lifetime” of the electron (cf. (1.7)) one
finds

tform ≈ 1

Mvirt

pe

Mvirt
≈ 1

kΘ2
γe

, (4.1)

where Θγe is the angle between the emitted photon and the electron. Now
kΘγe− = k⊥ = λ−1

⊥ with λ⊥ standing for the transverse wavelength of the
radiated photon. So one can rewrite (4.1) as

tform ≈ λ⊥/Θγe−.
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During this period of time the e+e− pair separates, transversely, a distance

ρe+e−

⊥ ≈ Θe+e−tform ≈ λ⊥
Θe+e−

Θγe
. (4.2)

One concludes that for large angle photon emissions,

Θγe− ≈ Θγe+ � Θe+e−,

the separation of two emitters, e+ and e−, proves to be smaller than λ⊥.
In this case the emitted photon cannot resolve the internal structure of the
e+e− pair and probes only its total electric charge, which is zero. Thus for
Θγe− � Θe+e− we expect γ to be strongly suppressed. 1 The e+ and e− can

be said to emit photons independently only at ρe+e−

⊥ > λ⊥, that is when

Θγe− < Θe+e− or Θγe+ < Θe+e−.

A similar physical picture can be drawn for QCD cascades where soft gluon
radiation is governed by the conserved color currents. The only difference is
that the coherent radiation of soft gluons by an unresolved pair of quarks is
no longer zero but the radiation acts as if it were emitted from the parent
gluon imagined to be on shell, as is illustrated in Fig. 4.2.

=

qk

g
q

k

g
q

q
q

g
q

k

+

Figure 4.2: Wide-angle emission of soft gluon k, off q and q, acts as if
the emission came off the parent gluon g imagined to be on shell.

This property is universal and holds true for the soft radiation accompa-
nying q → qg and g → gg splittings as well. The remarkable fact is that
one gets not only all leading double logarithmic but (as we shall see later
in Chapter 6) also nonleading single logarithmic effects correctly, for angular

averaged observables [4], by allowing the gluon emission, independently,

1This phenomenon has been well known in cosmic ray physics from the middle of fifties
— the so called “Chudakov effect” [3].
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off line q when Θkq ≤ Θqq,
off line q when Θkq ≤ Θqq,
and off the parent, line g, when Θkg ≥ Θqq.

This observation furnishes the core idea of the Marchesini-Webber model [5]

the first Monte Carlo simulation that included intrajet coherence effects. At
the moment this strict AO prescription is incorporated into the main Monte
Carlo shower algorithmic models (for reviews see Ref. [6]).

The yield of soft, wider-angle gluons remains unchanged when the number
of particles inside the multipartonic bunch increases, since such gluons are
unable to resolve separate color sources inside the parton jet. The soft gluon
behaves as a classical probe testing the color charge of the jet as a whole,
i.e. that of the original parton, initiating the jet. In this sense QCD color
coherence can be said to suppress soft radiation at large angles. As a result, to
describe the jet evolution in terms of independent sequential parton splittings
one has to impose the AO condition — a uniform decrease of successive
opening angles in the cascade (Fig. 4.3).

Θ′
2

Θ1

Θ2

Θ3

Figure 4.3: Angular Ordering in the cascade : Θ1 > Θ2 > Θ3 . . ., Θ1 > Θ′2 . . .

4.2 Angular Ordering in Initial State

Radiation

Bremsstrahlung originating from the space-like cascades is usually called ini-
tial state radiation due to the fact that it is the presence of incoming color
fields which causes the partonic wave function of the target nucleon to be
formed long before the instant of the hard interaction. Space-like devel-
opment of partonic systems determines the target fragmentation in deeply
inelastic lepton-hadron scattering (DIS), structure of final hadron states in
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Drell–Yan and high-p⊥ scattering processes etc., see Refs. [7 -9]. Gluon ra-
diation off initial (space-like) and final (time-like) partons can be separated,
provided that interference between emission amplitudes has been taken into
account, and a probabilistic scheme constructed. It proves to be AO that
provides such a probabilistic interpretation.

(c)
1 2 1 2

k

k

1 2

k

(a) (b)

g(γ∗) g(γ∗) g

Figure 4.4: Soft gluon radiation in the parton scattering process with (and
without) color transfer in t–channel.

Consider, firstly, the soft gluon radiation in the case of an energetic parton
scattering at finite angle Θs, when in the t–channel color is not transferred
(e.g., electroweak quark scattering). As well known one should observe here
two bremsstrahlung cones with opening angles ∆Θ ≈ Θs centered in the
directions of incoming and scattered partons (Θ1k<Θs,Θ2k<Θs, with Θs ≡
Θ12 the scattering angle, see Figs.4.4a,b).

Soft emission at large angles Θ≡Θ1k ∼Θ2k > Θs is absent since during
the time tform = λ⊥/Θ the transverse displacement of the charge proves to be
small: ρ⊥≈Θstform < λ⊥, and the situation looks like there were no change
of the current at all.

For scattering with color transfer in t–channel the additional bremsstrah-
lung contribution appears, which corresponds effectively to the emission off
the t-channel gluon, when Θ1k≈Θ2k > Θs, see Fig. 4.4c. In spite of negligible
transverse displacement, the color current of the quark has been affected here
by the gluon exchange.

Accompanying particle distribution in the heavy Higgs production
should be mentioned as an instructive pedagogical example [10]. Here the ra-
diation pattern should be quite different depending on the production mech-
anism of a Higgs boson, see Fig. 4.5. In the case of the W–W production
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mechanism of Fig. 4.5a the central region in rapidity distribution correspond-
ing to large angles (Θ>Θs ∼ MH/E) is depopulated with particles and the
process looks like the quasi-diffractive one (the gluon emission by initial and
final partons at large angles cancel coherently). Meanwhile, for H boson pro-
duction via g–g fusion of Fig. 4.5b the standard uniform rapidity plateau with
the particle density corresponding to the “gluon jet” emerges in the hadronic
spectrum, see Chapter 9.

(a) (b)

W

W
H

p

p

p

p

H
g

g

Figure 4.5: Hadronic Higgs boson production via (a) WW fusion and (b)
gluon–gluon fusion.

Heavy quark production gives another interesting example of initial
state coherence. It is the large quark mass mQ �Λ that determines specific
features of jets induced by Q. With account of the Q mass and width 2 the
probability of gluon radiation offQ with momentum p = (E, ~p) is proportional
to the square of the virtual quark propagator shown by a thick line in Fig. 4.6a

dw ∝
∣∣∣∣∣

1

(p+ k)2 − (mQ − i
ΓQ

2
)2

∣∣∣∣∣

2

(4.3)

and for the case of soft quasi-collinear gluon k = (ω,~k), k⊥�ω�E, takes
the form

dw ≈ αs

π
CF

k2
⊥ dk

2
⊥[

k2
⊥ + (ωmQ/E)2]2 + (ωmQΓQ/E)2

dω

ω
. (4.4)

2ΓQ can well happen to be an extra large parameter for the sufficiently heavy top-quark
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(b)
W

q
Q

W

q
Q

W

q
Q

g g g

(a) (c)

Figure 4.6: Soft gluon emission accompanying heavy quark production.

The usual double logarithmic radiative pattern is obtained from (4.4) only
for sufficiently large transverse momenta:

k2
⊥ >

(ω
E
mQ

)2

, (4.5a)

or Θ2 > Θ2
0 , Θ0 ≡

mQ

E
. (4.5b)

Moreover, with gluon energy ω taken small enough, additional restriction of
forward emission emerges due to finite value of ΓQ, so that

k2
⊥ >

ω

E
mq ΓQ for ω <

E

mQ

ΓQ , (4.6a)

or Θ2 >
mQΓQ

Eω
. (4.6b)

The last condition could be easily understood in terms of the gluon formation
time which has to be less than the Q-lifetime in the laboratory frame.

Looking at (4.5), (4.6) one might naively expect that the measured brems-
strahlung particle distributions are sensitive to the heavy quark parameters, in
particular, to ΓQ. This possibility, however, proves to be illusive just because
of QCD coherence. When studying the inclusive radiation pattern one has to
take into account gluon emissions off the final state, depicted in Fig. 4.6b,c.
With the color of Q being transferred to the light (lighter) quark q after the
weak Q-decay, the whole radiation pattern appears to be insensitive to quark
parameters mQ and ΓQ. Indeed, the weak decay producing a relativistic q
is accompanied by QCD bremsstrahlung that corresponds to a hard process
with effective hardness ∼m2

Q. In the laboratory frame these particles fill in
precisely the “Dead Cone” Θ <∼ Θ0 (see (4.5b)) thus “screening” the mass
dependence. There are no particles emitted off the final quark at angles larger
than Θ0 because of destructive interference between amplitudes of Fig. 4.6b
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and 4.6c. This cancellation works exactly as in the case of quark scattering
without color transfer discussed above (with colorless W playing the role of
“scattering potential” from Fig. 4.4a).

Additional suppression of soft quasi-collinear emissions given by (4.6) has
two consequences. First of all, it makes the “Dead Cone” increasing with de-
crease of gluon energy according to (4.6b). But at the same time it destroys
the complete cancellation between (b) and (c) amplitudes since the ”real” Q-
quark in Fig. 4.6b simply has no appropriate gluon field components to inter-
fere with the radiation off the q-line at ω<ΓQE/mQ, Θ0<Θ<

√
EmQ/ωΓQ.

This enlarges the yield of bremsstrahlung particles produced along with the
Q-decay process by an amount which is necessary to compensate exactly the
lack of particles from the Q-production stage of Fig. 4.4a. Thus, no sign of
either ΓQ or mQ effects is left in the structure of QCD bremsstrahlung itself.

4.3 The Origin of Hump-Backed QCD

Plateau

The depletion of soft emission leads to the “hump-backed plateau” in the
inclusive energy spectrum of particles inside jet, which is one of the most
striking predictions of perturbative QCD. This phenomenon can be under-
stood on kinematical grounds as the result of two conflicting tendencies: on
one hand, owing to the restriction k⊥ > 1/R a soft particle is “forced out”
at large emission angles Θ > 1/kR , on the other hand, the allowed decaying
angle is shrunk to small values after a few successive AO parton branching.

E

k
Θ′

ε
Θ0

Figure 4.7: First order “toy”-model for illustrating the origin of hump-backed
plateau.

Let us illustrate the influence of the color coherence on particle spec-
tra with the help of the toy model [11] for parton branching, based on the
first order QCD, as shown in Fig. 4.7. We start with an old-fashioned
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plateau ρ(k) ≡ dn/d ln k = const of hadrons with limited transverse mo-
menta kΘ = k⊥ ∼ R−1 for a quark jet with energy E (see shaded area in

ρ(k)

ln kR

Figure 4.8: The effect of color coherence on particle energy spectrum
ρ(k) = dn/d ln k. Dotted area corresponds to the contribution which is re-
moved when turning from the incoherent model (dashed) to the coherent one
(solid). Shaded area shows the old-fashioned plateau (without taking account
of bremsstrahlung).

Fig. 4.8). Accounting for a gluon with energy ε and emission angle Θ0, let us
use the double-logarithmic expression for the radiation probability

dwg ∝ αs
dε

ε

dΘ0

Θ0

ϑ (εΘ0 − R−1). (4.7)

The step function ϑ restricts here the transverse momentum p⊥ ≈ εΘ0 > R−1

to ensure the gluon’s being:

tform ≈ ε

p2
⊥
< thadr ≈ εR2.

How does the gluon contribute to the particle yield? From the standpoint of
the orthodox parton model one might expect the gluon to give rise to its own
plateau of particles with energies

R−1 < k < ε

and limited transverse momenta with respect to the gluon: kΘ′ ∼ R−1 (see
Fig. 4.7).

Now let us verify that the QCD coherence leads to the following reduction
of this additional plateau:

(RΘ0)
−1 < k < ε. (4.8)



92 Guide to Color Coherence

The plateau distribution of particles from the gluon jet can be represented
symbolically as

dN =
dk

k

dΘ′

Θ′
δ(kΘ′ −R−1). (4.9)

This expression can be thought of as a double logarithmic spectrum of brems-
strahlung from a gluon (ε,Θ0) “projected” onto the domain of the most in-
tensive radiation (αs(kΘ

′)/π ∼ 1). As it follows from the AO in cascade, the
offspring particles are independently emitted by the gluon only inside the
cone with the opening angle Θ′ < Θ0. Applying this inequality to (4.9), one
obtains restriction (4.8) at once.

The condition (4.8) reflects the fact that the bremsstrahlung particle yield
depends rather on p⊥ ≈ εΘ0 of a parent gluon than on its energy ε. Finally,
our toy model gives us the following particle multiplicity:

N =

∫ E dk

k

∫ 1 dΘ

Θ
δ(kΘ − R−1)

+ αs

∫ E dε

ε

∫ 1 dΘ0

Θ0

ϑ(εΘ0 − R−1)

∫ ε dk

k

∫ Θmax dΘ′

Θ′
δ(kΘ′ −R−1).

(4.10)

The first term of this schematic expression stands for the background quark
plateau, the second one is constructed from the gluon emission (4.7) and
fragmentation (4.9). The parameter Θmax encodes the difference between the
coherent and incoherent cases:

Θincoh.
max = 1,

Θcoh.
max = Θ0.

Using (4.10) one obtains for the particle energy spectrum ρ(k)

ρincoh = 1 +
αs

2
(ln2ER− ln2 kR) , (4.11a)

ρcoh = 1 + αs ln
E

k
ln kR . (4.11b)

The additional gluon-initiated multiplicity
∫
d ln k(ρ(k)−1) appears to be

twice as large for the incoherent case (this factor 2 exponentiates with account
of multiple branching, see Chapter 5).

Expressions (4.11) illustrate qualitatively the bright fact that the coher-
ence substantially depletes the soft part of the energy spectrum giving rise
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to a hump (see Fig. 4.8). The height of the hump is increasing with en-
ergy and peaks at k ∼

√
E. It is noteworthy that the incoherent monotonic

spectrum (4.11a) would also have a peak due to kinematical mass effects
(ρ(k) ∝

√
k2 −m2 at small energies k ≈ m) but placed near the phase space

limit k ∼ m ∼ R−1.

4.4 Radiation pattern for the qq Antenna

Here we shall examine soft gluon emission associated with qq pair produced
in a color-singlet state in some hard process (see Refs. [12,13]). This radiation
pattern is interesting in its own right, e.g., in connection with two-jet physics
in the process e+e− → qq. Furthermore, neglecting the terms of the order
1/N2

c , one can represent the radiation pattern in the case of an arbitrary
complex hard partonic system as a sum of terms in which each external
quark line is uniquely connected to an external antiquark line of the same
color (colorless “qq –antennae”).

i

Θij

q

q̄
Θ,Φj

Θij

Θ,Φi
q

q̄ j j

i

Figure 4.9: Soft gluon emission off a hard colorless qq pair.

In lowest order the soft gluon distribution takes the familiar form (for
notations see Fig. 4.9)

dwqq = − d3k

(2π)2k
αsCF

(
pi

(pi · k)
− pj

(pj · k)

)2

=
dk

k
dΩ~n

αs

(2π)2
W qq(~n). (4.12)

Here

W qq(~n) = 2CF (̂ij) , (̂ij) =
aij

aiaj
; aij = (1 − ~ni~nj) , ai = (1 − ~n~ni),

(4.13)
~ni, ~nj denote the directions of q, q momenta respectively; ~n is the direction of
the emitted gluon.
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Let us call the distribution (̂ij), describing the radiation pattern of the

colorless qq pair, the “qq -antenna”. The antenna (̂ij) may be represented in
the form

(̂ij) = Pij + Pji, (4.14a)

Pij =
1

2

[
1

ai
+
aij − ai

aiaj

]
. (4.14b)

One can refer to the two terms in the square bracket in (4.14b) as the
incoherent and the interference terms. At fixed Θi, the incoherent term is
independent of the azimuthal angle φi. The interference term depends on φi

through the angle Θj . If the soft gluon lies within the cone, determined by
i and j, the interference is positive. If the gluon lies outside this cone the
interference is negative. This term is largest when the soft gluon lies in the
plane defined by i and j, φi = φj. The point about splitting the radiation
pattern into two terms Pij and Pji is that only the former (latter) has the
pole at Θi = 0 (Θj = 0), so this term can be treated as “belonging to” quark
i (j).

After integration over φi the contributions of the incoherent and interfer-
ence terms turn out to be equal in magnitude having opposite signs outside
the parent cone, so that

〈Pij〉φi
≡
∫
dφi

2π
Pij(~n) =

1

ai

ϑ(cos Θi − cos Θij). (4.15)

In other words, 〈Pij〉φi
is just the incoherent radiation P incoh

i off a quark i,
effectively confined to the cone

cos Θi ≥ cos Θij, Θi ≤ Θij . (4.16)

This result allows one to incorporate soft gluon interference effects in the
Monte Carlo simulations of partonic cascades in a probabilistic way. For the
case of multiparton system with n hard emitters (i = 1 . . . n) the full soft
radiation pattern P (Ω) may be replaced by

P (Ω) =⇒ PAO ≡
n∑

i

P incoh.
i ϑ(−Θi + Θij), (4.17)

which looks as a sum of independent emission probabilities.
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4.5 Wave Nature of Drag Effects

The drag (or string) effect in the qqg events of e+e− annihilation is one of the
best examples of QCD coherence of the second kind. In Chapter 9 we shall
have much more to say about this phenomenon, however, our purpose here
is simply to explain the basic idea. So far, the most striking experimental
test of drag effects is the comparison of associated hadron production in qqg
three jet events with that of qqγ events with the g and γ having similar
kinematics. In the plane of the three jets, counting the photon as a jet, one
finds a suppression of associated hadrons in the region between the q and q
in qqg events as compared to qqγ events.

It might seem strange at the first sight that inclusion of an additional
“emitter” (colored gluon replacing colorless photon) results in less QCD radi-
ation in some direction. This is typical quantum-mechanical interference ef-
fect and one can illustrate its physical origin with a help of a “QED” model [1]

where quarks are replaced by electrons and the gluon — by a collinear e+e+

pair as shown in Fig. 4.10a. The qqγ event is illustrated in this model by
Fig. 4.10b. The corresponding radiation patterns are:

dwqqγ =
dk

k
dΩ~n

α

2π2
(̂12), (4.18)

dw
qq“g” = −dk

k
dΩ~n

α

(2π)2

(
p1

(p1 · k)
+

p2

(p2 · k)
− 2 p3

(p3 · k)

)2

=
dk

k
dΩ~n

α

π2

(
(̂13) + (̂23) − 1

2
(̂12)

)
. (4.19)

3

1 2

3

1 2

e− e−

“g”=(e+e+)

e− e+

“γ”=(e+e−)

Figure 4.10: A “QED” model for illustrating drag effect. The gluon is repre-
sented as having double electric charge. The photon is replaced by collinear
e+e− pair.
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For notation see (4.13). Note that this pattern mimics the QCD qqg sample
at Nc =

√
2, cf. (9.34).

For qualitative analysis it is convenient to rewrite the radiation pattern,
given by (4.19), using the expression for the classical intensity of emission in
terms of three-dimensional quantities (see, e.g., Ref. [14]):

W qq“g”(~n) = −
(

p1

(p1 · k)
+

p2

(p2 · k)
− 2 p3

(p3 · k)

)2

=
(
~A× ~n

)2

; (4.20a)

~A =

(
~n1

a1
+
~n2

a2
− 2 ~n3

a3

)
. (4.20b)

One can easily see that for a symmetric configuration (a13 = a23) there

is no radiation emitted directly opposite to the double charge: ~A || ~n. This
can be understood as the vanishing of the electric field midway between the
equal charges (see Fig. 4.10a).

For the QCD case, soft-gluon radiation in this direction is non-zero but
appears to be suppressed owing to the same physical reason: replacing γ by a
qluon “recharges” q and q to almost opposite color charges. Discussing “QCD
Radiophysics” in Chapter 9 we shall derive the resulting ratio of multiplicity
flows in symmetric qqγ and qqg events to be

dNγ/d~n

dNg/d~n
=

2(N2
c − 1)

N2
c − 2

=
16

7
. (4.21)

Note that the destructive interference is strong enough to make even the
most kinematically unfavorable direction transverse to the event plane better
populated as compared to the qq valley. In the case of the threefold symmetric
(Mercedes-like) qqg events the ratio of particle flows reads

(
dN⊥/d~n

dNqq/d~n

)

g

=
Nc + 2CF

2(4CF −Nc)
=

17

14
. (4.22)

Let us notice that in the case of qqγ events this ratio is
(
dN⊥/d~n

dNqq/d~n

)

γ

=
1

4
. (4.23)

Owing to the constructive interference there is a surplus of radiation in the
qg and gq valleys: for the Mercedes qqg configuration midway between the
jet directions one gets

dNqg

dNqq
=

5N2
c − 1

2N2
c − 4

=
22

7
. (4.24)
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For hadron states associated with multijet events the ratios of particle flows
given by (4.21)–(4.24) should remain correct, since non-PT hadronization
effects should cancel, at least at high energies.

Studying the coherent phenomena one gets a plenty of infrared stable
predictions deeply rooted in the basic structure of nonabelian gauge theory.
The experimental observations of such phenomena can be said to test very
detailed features of QCD color flows.

4.6 Two-particle Correlations

The energy-multiplicity correlations prove to be especially sensitive to color-
flow structure in jet formation [1,10]. In the case of e+e− annihilation an
interesting quantity is the gluon-gluon correlation function characterizing the
emission of two soft gluons by a hard qq antenna [15]:

Cqq(~n3, ~n4) =
W qq(~n3, ~n4)

W qq(~n3)W qq(~n4)
. (4.25)

Here W qq(~ni) describes the radiation pattern for the qq antenna (i = 3, 4)
according to (4.13) and W qq(~n3, ~n4) represents the angular distribution of
two soft gluons with E4 � E3 � E2 ≈ E1 with E1(E2) the quark (antiquark)
energy, and ~n1 ≈ −~n2.

To illustrate the specific features of the correlation function Cqq let us
invoke once again the “QED” model used in the previous section, see Fig. 4.11.
Consider, for example, the configuration when the gluons are emitted at the
same polar angles relative to the direction ~n1(Θ3 =Θ4) but in the back-to-back
azimuthal directions (φ=π). Using the three-dimensional representation for
the qq“g” radiation pattern given by (4.20) one can easily check that in this

case ~A(~n3) ||~n≡~n4 and the correlation function Cqq vanishes. This is a result
of destructive interference, which is of the same magnitude as the drag effect
in a symmetric qq“g” configuration.

In orthogonal azimuthal directions (φ=π/2) the gluons become uncorre-
lated, Cqq = 1. Thus the gluon-gluon correlations in the orthogonal and back-
to-back azimuthal directions demonstrate the same interference phenomena
as the drag effect.

The correlation function Cqq in the “QED” model can be presented in the
form

Cqq(η34, φ) = 1 + 2
cosφ

cosh η34 − cosφ
, (4.26)
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2

4 3

1

“g”=(e+e+)

e−e−

Figure 4.11: A “QED” model illustrating two-soft-gluon emission in e+e− →
qq.

where η34 = η3 − η4 with η3 and η4 gluon pseudorapidities, and φ = φ3 − φ4

relative azimuthal angle to the direction ~n1 ≈ −~n2:

cosh η34 sin Θ3 sin Θ4 = 1 − cos Θ3 cos Θ4. (4.27)

Equation (4.26) demonstrates explicitly the qualitative features of the corre-
lation function discussed above. Corresponding correlation function for the
real QCD case, very similar to (4.26), will be discussed in Section 4.6. In
the solution to Problem 4.4 below one can find a description of simple and
practically useful technique for deriving radiation patterns.

4.7 Feynman–Gribov Puzzle and QCD

Coherence

Let us discuss some manifestations of coherent phenomena in DIS, see Ref. [8]
for details. As it has been mentioned in Section 4.2, QCD coherence here,
as in the case of a timelike cascade, leads to a picture with AO of soft gluon
emissions.

When discussing the structure of the final state of a DIS process with
momentum transfer −Q2 � Λ2 and a fixed value of Bjorken variable x,
one must take two phenomena into account: the dissociation of the initial
parton fluctuation, the coherence of which was destroyed by the “removal” of
a virtual quark (target fragmentation), and the evolution of the struck quark
(current fragmentation).

As well known, these two fragmentation regions are best separated kine-
matically in the Breit frame (Q0 = 0, 2x~p = −~Q). Here the process looks like
the abrupt spatial spreading of two color states: 3 (the struck quark q) and
3̄ (the disturbed proton), moving in the opposite directions.
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(a) (b)

P

xP

Q

P

xP

Q

y

dN/dy dN/dy

− lnQ lnPlnQ− lnQ lnP

y

Figure 4.12: Structure of the hadron plateau in DIS process according to
Feynman (a) and Gribov (b) (shaded area shows the target fragmentation
region), y = lnω.
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Not the least role in the justification of the celebrated Feynman hypothesis
about an universal hadronic plateau in DIS (see Fig. 4.12a) has been assigned
to the argument that the continuously distributed hadrons connecting the two
fragmentation regions are necessary to compensate the fractional charges of
quarks-partons. At the same time, some serious doubts have been expressed
about the possibility to organize dynamically such a state if one proceeds
from the natural idea to consider successive decays of outgoing partons as an
only source of multiple production of final particles. The problem has been
formulated most clearly by Gribov in 1973 [16]. It was shown that in a DIS
process the offsprings of the fragmentation of an initially prepared fluctuation
had to leave the rapidity interval 0 < lnω < lnQ depopulated as shown in
Fig. 4.12b (ω being the energy of registered hadron h).

At the basis of this conclusion an analysis lays of the space-time picture of
the process development in the framework of a field-theoretical approach to
the description of the wave function of the target hadron as a coherent system
of partons. The absence of hadrons with momenta ω � Q in the target
fragmentation in the Gribov picture can be simply explained by noticing that
the coherence of the partonic wave function in this region remains, in fact,
not destroyed by hard knocking out a parton with momentum xP ≈ Q/2,
as a consequence of which the upper (low momenta) part of the partonic
fluctuation in Fig. 4.12b “collapses” as if there were no scattering at all.

The experimental observation of an uniform flat plateau (Fig. 4.12a),
which was interpreted as a proof of the correctness of the identification of
partons with quarks, did not eliminate the Feynman-Gribov puzzle 3 but
only sharpened it in fact, since it required one to point out a clear physical
mechanism responsible for the filling of the “Gribov’s gap”, that would not
come into conflict with quantum mechanics.

From the present-day standpoints the foundations for the Gribov phe-
nomenon have only been strengthened, since QCD indeed corroborated the
treatment of the structure of a relativistic hadron in terms of field fluctuations
composed of quasi-real quarks and gluons — the partons of QCD.

The way in which this puzzle is resolved in the QCD context [8] appears
to be eclectic in a certain sense. On the one hand, here the Gribov phe-
nomenon does occur indeed: the energy spectrum of the offsprings of the
parton dissociation — elements of the “ladder” fluctuations determining the
DIS cross-section — proves to be concentrated mainly in the region of large
energies Q < ω < P . On the other hand, there is a specific mechanism re-

3we are not sure that Feynman himself ever heard of such a term



Feynman-Gribov Puzzle and QCD Coherence 101

sponsible for bridging the regions of target and current fragmentation in the
spirit of the Feynman picture. This role is taken on by coherent bremsstrah-
lung of soft gluons which is insensitive to details of the structure of partonic
wave function of the target hadron, being governed exclusively by the value
of the total color charge transferred in the scattering process (see Fig. 4.4c).

The fact that at small x’s where the “sea” contribution dominates, the
scattering amplitude corresponding to the gluon color transfer in the t–
channel makes the accompanying radiation in the target fragmentation region
approximately twice as intensive as that in the fragmentation of current.
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Problem 4.1 Using (4.10) find the angular distribution of particles for co-
herent and incoherent cases.

Answer:

ρcoh(Θ) = 1 +
αs

2
ln2(EΘR) (4.28a)

ρincoh = 1 + αs ln2(EΘR) (4.28b)

Notice, that here there is no qualitative difference between two approaches
contrary to the energy spectra (4.11).

Problem 4.2 Derive the classical representation of radiation pattern (4.20).

Problem 4.3 Using the expression (4.12) for qq antenna pattern derive the
relation (4.23).

Problem 4.4 Derive the expression (4.26) for the correlation function Cqq

in the “QED” model.

Solution:
Rewrite W qq“g”(~n4) from (4.20) in a standard form

W qq“g” =
∑

i=1,2

(
~A · ~ei

)2

(4.29)

with ~ei the physical polarizations of a gluon g4: ~e
2
i = 1 , (~ei · ~n4) = 0.

We can choose vector ~e1 laying in the plane formed by vectors ~n1, ~n4

and ~e2 being orthogonal to this plane. According to (4.20b) ~A · ~e2 = 0 at
φ ≡ φ3 − φ4 = 0, π.

Using (4.29) one can present Cqq(η34, φ) as a sum of two contributions Cqq
i

corresponding to the polarizations ~ei:

Cqq(η, φ) = Cqq
1 (η, φ) + Cqq

2 (η, φ) (4.30)

Cqq
1 =

cosh2 η − 1

(cosh η − cosφ)2
(4.31a)

Cqq
2 =

sin2 φ

(cosh η − cosφ)2
. (4.31b)

C1 vanishes when Θ3 = Θ4 (η34 = 0), as C2 does at φ = π.
At φ = π/2 one gets Cqq

1 + Cqq
2 = 1 and there are no correlations.
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With this Chapter we begin to study properties of soft particle distri-
butions in jets. Following the historical line of development of PT technique
as well as for pedagogical reasons we start with an analysis of pure gluonic
systems in a rough approximation which accounts for only leading double
logarithmic contributions to multiparton cross sections (DLA)

αs

π
� 1 ,

αs

π
logQ2 � 1 ,

αs

π
log2Q2 ∼ 1. (5.1)

DLA analysis will exhibit the main physical ingredients of the problem,
namely, the structure of intrajet parton cascades and the role of QCD co-
herence effects in soft gluon multiplication processes. After constructing the
multigluon amplitudes MN corresponding to the most probable bremsstrah-
lung patterns, we shall see how the strong angular ordering (AO) helps to
present the cross section |MN |2 in terms of a classical shower picture with
the successive g → gg emissions forming the Markov chains of independent
elementary radiation events, observe an interesting property of multiplicity
fluctuations in QCD (KNO scaling) and make a list of DLA predictions for
parton spectra and correlations which may serve as a useful qualitative guide
to jet physics. The first formal part of the DLA analysis splits into three
problems: construction of tree N -gluon amplitudes, proof of AO and account
of virtual (loop) corrections.

5.1 Tree Multigluon Amplitudes for e+e− →
qq +Ng

As a field for studying jet evolution it is natural to choose the simplest QCD
process, namely, e+e− → qq.

Notation has to be fixed first. Hereafter we shall denote by

p+ = (E+, ~p+) — 4-momentum of the quark q ,
p− = (E−, ~p−) — 4-momentum of the antiquark q ,

ki = (ωi, ~ki) — 4-momentum of the i-th soft gluon gi ,

e
(λ)
i µ — its polarization vector (λ = 0, . . . , 3) ,
ai — the color index of the gluon i.
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Strong Energy Ordering. In the DLA we are looking for the N -gluon
production cross section as large as

σN ∝
∫

|MN |2
N∏

i=1

d3ki

2ωi
∝
(
g2

s log2
)N

. (5.2)

In order to gain such a contribution each gluon must contribute two big
logarithms: energy and collinear ones. This means that we have to consider
gluons strongly ordered in their energies

E+(−) � ω1 � ω2 � . . .� ωN (5.3)

since the kinematical region where any two of them have energies of the same
order of magnitude, ωi ∼ ωk, would result in a loss of at least one energy log.

Gauge Choice. To simplify the analysis of the angular logs it is useful to
choose a specific (“physical”) gauge, where the gluon emission vertex, either
q → qg or q → gg vanishes at collinear momenta. Making use of the LLA
experience (see Chapter 1) we choose the planar gauge where the gluon
propagator reads

Gab
µν(k) = δab dµν(k)

k2 + iε
,

dµν(k) = gµν −
kµcν + cµkν

(kc)
. (5.4)

It is convenient to take the gauge vector cµ proportional to the total 4–
momentum of the e+e− pair:

cµ = (1,~c ) ; ~c = 0 in the e+e− cms .

In this gauge q and q emit soft gluons independently since the interference
between two emission amplitudes vanishes due to the property

pµ
+ dµν(k) p

ν
− = 0 .

In calculating the cross section (5.2) one has to sum the amplitudes squared

for production of two “physical” polarizations e
(1)
µ and e

(2)
µ of N “real” gluons:

(
e
(1,2)
i (ki) · ki

)
= 0 ,

(
e
(1,2)
i · c

)
= 0 , (e)2 = −1 .
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Analyzing Feynman diagrams we’ll be faced also with a plenty of virtual
lines propagating all the four possible polarizations of vector gluon fields.
However, an advantage of the gauge (5.4) (and this explains the reason to
call it physical) is that it diminishes the contributions coming from the two

nonphysical polarizations e
(0)
µ , e

(3)
µ in the virtual gluon propagators:

dµν(k) = −
3∑

λ=0

e(λ)
µ (k) e(λ)

ν (k) ,

e(0,3)
µ (k) =

kµ ±
√
k2 cµ[

2ω (ω ±
√
k2)
]1/2

,

where ω = (kc) is the gluon energy.

5.1.1 Two Gluon Emission off a Quark

Feynman amplitudes corresponding to the graphs of Fig. 5.1 can be written
as

-r��
����

�

r��
����

�k1 k2

��
��

a

-r��
����

�

r��
����

�k2 k1

��
��

b

-r� �� �r �� ������
��k1

k2

��
��

c

Figure 5.1: Feynman amplitudes for e+e− → qqg1g2.

Ma = g2
s

e2p+

k2p+

e1p+

(k1 + k2)p+
∗ ta2ta1 , (5.5a)

Mb = g2
s

e1p+

k1p+

e2p+

(k2 + k1)p+
∗ ta1ta2 , (5.5b)

Mc = g2
s e

µ
1e

ν
2γµνρ(k1, k2,−k)

dρσ(k)

k2

p+σ

k p+

∗ i fa1a2c t
c , (5.5c)

where k = k1 + k2 stands for the virtual gluon momentum and

γµνρ(k1, k2, k3) = gµν(k2 − k1)ρ + gρµ(k1 − k3)ν + gνρ(k3 − k2)µ (5.6)
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is the three–gluon QCD vertex. Singular behavior with respect to the di-
rections of gluon momenta ~ni may come only from Feynman denominators
(notice, that dρσ(k) contains no angular dependence in its denominator, see
(5.4)). Therefore the kinematical regions where both ~n1 and ~n2 integrations
are logarithmic can be shown to be the following:

Θ2
1 � ω2

ω1

Θ2
2 , (5.7a)

Θ2
2 � ω1

ω2
Θ2

1 , (5.7b)

ω1

ω2
Θ2

1 � Θ2
2

>∼ Θ2
1 (5.7c)

for the amplitudes of Fig. 5.1a–c respectively. Diagrams (a) and (b) are of
QED type, so let us concentrate on the third amplitude Fig. 5.1c :

2(kp+) ≈ E+(ω1Θ
2
1 + ω2Θ

2
2) , k2 ≈ ω1ω2Θ

2
12 .

In the above Θ1 (Θ2) is the angle between ~p+ and ~k1 (~k2); Θ12 is the angle

between ~k1 and ~k2. Making use of (5.7c) one has as an estimate of the different
polarization states of the virtual gluon k:

eµ
1e

ν
2γµνρ(k1,k2,−k)e(1,2)

ρ (k)∼ω1Θ12�
√
ω1ω2Θ2

12≈
√
k2∼eµ

1e
ν
2γµνρe

(0,3)
ρ (k),

e(1,2)
σ (k)pσ

+ ∼ E+

ω1
(ω1Θ1 + ω2Θ2) �

E+

ω1
(ω1Θ

2
1 + ω2Θ

2
2 ±

√
ω1ω2Θ2

12) ∼
(p+k) ±

√
k2 (p+c)

ω
∼ e(0,3)

σ pσ
+.

These inequalities apparently show that nonphysical polarizations e(0,3)(k)
prove to be negligible indeed. Therefore, the dρσ(k) factor in (5.5c) can be
approximated by the transverse tensor

g⊥ρσ(k) ≡ −
∑

λ=1,2

e(λ)
ρ (k) e(λ)

σ (k) , (5.8)

gρ0 = g0σ = g00 = 0 ,

gij = δij −
kikj

~k2
(i, j = 1 . . . 3) , (5.9)

and the gluon vertex (5.6) by the dominant term

γµνσ(k1, k2,−k) ≈ gµρ (2k1 + k2)ν , (5.10)

eµ
1e

ν
2γµνρ(k1, k2,−k)dρσp

σ
+ ≈ 2(e2k1)e

µ
1g
⊥
µσ(k)pσ

+ . (5.11)
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Finally, using (5.7c) to estimate

~e1~p+ ∼ E+Θ1 � (~e1~k)(~k~p+)

~k2
∼ E+

ω2

ω1
Θ12 ,

one verifies the possibility to replace g⊥µσ in (5.11) by the unit tensor gµσ:

eµ
1 g
⊥
µσ(k) pσ

+ = −(~e1~p+) +
(~e1~k)(~k~p+)

~k2
≈ −(~e1~p+) = eµ

1 gµσ p
σ
+ .

The resulting DL expression for the gluonic amplitude (5.7c) of Fig. 5.1c looks
very much alike (5.5a) and (5.5b):

Mc = g2
s

e2k1

k2k1

e1p+

(k1 + k2)p+

∗ i fa1a2c t
c . (5.12)

5.1.2 Angular Ordering for N = 2

A further simplification of the DL amplitudes (5.5a) , (5.5b) and (5.12) is
connected with the formulation of a shower picture. From the kinematical
restrictions (5.7) one concludes that the DL regions (a) and (c) overlap, and,
thus, the corresponding amplitudes interfere. It proves to be possible, how-
ever, to avoid an examination of the interference contribution. To see this let
us consider three non–overlapping angular regions, namely

I. Θ1 � Θ2

II. Θ2 � Θ1 (5.13)

III. Θ12 � Θ1 ≈ Θ2

and show that the matrix element in each of these regions takes the form of
a product of trivial independent radiation factors.

In the region I the only contribution comes from the amplitude of Fig. 5.1a
which takes the form (k1p+ � k2p+)

MI = g2
s

e2p+

k2p+

e1p+

k1p+
∗ ta2ta1 . (5.14)

The kinematical inequality II splits into two subregions:

Θ2
2 � ω1

ω2
Θ2

1
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and
ω1

ω2
Θ2

1 � Θ2
2 � Θ2

1 .

In the first case (cf. (5.7b)) only the graph of Fig. 5.1b contributes as (k2p+ �
k1p+)

MII = g2
s

e1p+

k1p+

e2p+

k2p+
∗ ta1ta2 . (5.15)

In the second subregion one has to account for both Figs. 5.1a and 5.1c. Here,
however,

Θ12 ≈ Θ2 ,
e2k1

k2k1
≈ e2p+

k2p+

and summing (5.5a) and (5.12), with account of the commutation relation

[ta2 ta1 ] = i fa1a2ct
c

and the inequality (5.7a), one easily arrives at (5.15). Thus, the matrix
element (5.15) proves to be correct all over the kinematical region II of (5.13).

Finally, the diagram of Fig. 5.1 dominates in the region III of a quasi–
collinear g1g2 pair. Here k1p+ � k2p+ and the matrix element reads

MIII = g2
s

e2k1

k2k1

e1p+

k1p+
∗ i fa1a2ct

c . (5.16)

To make the future generalization transparent let us formulate the answer in
terms of a classical chain of sequential branching processes.

• Fig. 5.1a(b): the quark with momentum p+ emits first the gluon k1 (k2)
and then k2 (k1); we attribute the angular region I (II) to this graph.

• Fig. 5.1c: the quark emits the gluon k1 which, in turn, emits the softer
gluon k2; the region III.

• Elementary radiation contributes to the matrix element by the classical
bremsstrahlung factor.

• Emission angles strongly decrease along each chain.

• The color factor corresponds directly to the classical graph describing
the genealogy of the given process.
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5.2 Angular Ordering in All Orders

Construction Rules for getting the whole set of N -gluon amplitudes in
DLA. An interested reader, who has walked through the previous subsection
with a pencil and paper, is ready now to formulate these with us. Here they
are.

Draw a tree Feynman diagram D without 4–gluon vertices.

Group gluon propagators into N “gluon lines” — sets of virtual g states with
approximately the same energies (this is possible due to strong energy
ordering (5.3)) which are depicted by straight lines in Fig. 5.2

Call i the parent and j the offspring for each vertex i→ i+ j (i > j).

Define the region ΓD in the space of emission angles, corresponding to D: angles
decrease along each path in the tree, starting from the γ∗ → qq vertex.

Build the color factor G for D according to the usual Feynman rules:

→ ta ≡ λa/2 for any q(q) → q(q) + g vertex,

→ i fabc for a 3-g vertex, where a (b) mark the gluon with the lowest
(highest) energy.

Attribute to the diagram D in the angular region ΓD the matrix element

MN = gN
s (−1)m

N∏

i=1

(eiPi)

(kiPi)
∗G , (5.17)

where m is the number of gluons emitted by q, Pi the 4-momentum
of the parent of the gluon i.

Noteworthy to mention, Pi is the momentum of one of the final (“real”)
partons and not that of any virtual state. Equation (5.17) represents the
so-called “soft insertion” rules (for review see, e.g., Ref. [1]).

Formal Proof of AO in DLA follows, in fact, the logic elaborated for the
N = 2 case. The detailed proof has been given by Fadin in Ref. [2]. Let
us enumerate and discuss briefly the main steps of the proof and leave the
details to the reader.
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Figure 5.2: Scheme of a gluon cascade.

1. Simplify the denominators of virtual propagators:

q2
i = (

∑

t

kt)
2 ≈ 2 ki

∑

t6=i

kt , (5.18)

where the sum runs over all the final products kt of a given virtual
particle i , ki being the most energetic among them. Equation (5.18)
follows from the chain of estimates:

ki(kj + kl) ∼ ωi(ωjΘ
2
ij + ωlΘ

2
il) � ωjωl(Θ

2
ij + Θ2

il) >∼ ωjωlΘ
2
jl ∼ kjkl

( remind that ωi � ωj , ωl ).

2. For each vertex V in the tree (see Fig. 5.2) impose the angular restric-
tions, necessary to pick up all the angular logs:

ωfΘ
2
fg � ωsΘ

2
sf , (5.19a)

ωfΘ
2
fg � ωuΘ

2
ug , (5.19b)

where “s” marks the eldest son of “f”, “u” — its uncle, the eldest
among younger brothers of “f” (see Fig. 5.2).

3. Show that due to (5.19) virtual propagators of “elder generations”, e.g.,
all those between V and the qq creation point prove to be independent
of ks and ku.

4. Prove that the DLA contribution may come only from the angular re-
gion where the inequalities (5.19) are fulfilled for each vertex, showing
that the violation of this restriction somewhere in the tree would lead
to a loss of at least one Θ–logarithm.
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5. Simplify the numerators using the planar gauge and physical polar-
izations for the final gluons. Here one has to prove the dominance of
two physical polarizations λi = 1, 2 for virtual gluon propagators sur-
rounding each vertex V :

V = eλ1

µ (q1)e
λ2

ν (q2)e
λ3

ρ (q3) γ
µνρ(−q1, q2, q3)

≈ 2
(
eλ3

µ (q3) k
µ
g

) (
eλ1(q1)e

λ2(q2)
)
,

where q10 ≈ q20 ≈ ωg ; q30 ≈ ωf .

6. Consider then the chain of vertices along the line f and check, similarly
to the N = 2 case, the validity of the substitutions

dµν(qi) =⇒ −
∑

λ=1,2

eλ
µ(qi)e

λ
ν(qi) = g⊥µν =⇒ gµν

and you will arrive finally at the desired (5.17).

7. The last step is to check the possibility to replace the DL angular re-
gions (5.19), which may coincide partially for different diagrams, by the
nonoverlapping AO regions ΓD. This can be proved by induction.

Cross Section. To obtain N -gluon production cross sections we havo to
sum up the amplitudes squared of (5.17) for all the graphs D. Performing a
sum over the physical polarizations λ = 1, 2 of each soft gluon produced, one
gets with the help of (5.8)

dσN = dσ0

N∏

i=1

g2
s

(2π)3
C
d3ki

2ωi

~P2
i sin2 Θki

(kiPi)2
, (5.20)

where dσ0 denotes the Born annihilation cross section and C is the color
charge of the parent of a given gluon i: CF ≡ (N2

c − 1)/2Nc = 4/3 for
emission off a quark or CV ≡ Nc = 3 for g → gg cascades.

Since we are interested in the region of parametrically small angles, the
radiation factors can be simplified as

~P2
i sin2 Θki

(kiPi)2
=

1

ω2

sin2 Θki

(1 − cos Θki
)2

≈ 4

ω2Θ2
ki

≈ 4

k2
i⊥

so that after implementing αs ≡ g2
s/4π we rewrite the differential cross sec-

tions of single gluon emission from (5.20) in the form which shows most
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transparently the DL–character of gluon radiation:

dK(~k) ≡ dω

ω

d2k⊥
2πk2

⊥

2Cαs

π
. (5.21)

With account of the DLA virtual corrections to the tree amplitude D (see
below), the cross section takes finally the form

dσ = dσ0

∑

D
F2
∏

i

dK(~ki). (5.22)

It is important to remember that for each tree graph D in (5.22) the produced
gluons k1 . . . kN are ordered with respect to their emission angles according
to ΓD condition:

Γ(P,Θ) :
{
k0 ≡ ω<P0 ; Θc~k ~P

≡ Θk<Θ ; k⊥ ≈ ωΘk>Q0

}
, (5.23)

where P is the momentum of the parent of a given parton k, Θ the angle of
the previous parton splitting on the P–line.

5.3 Virtual Corrections

Taking into account virtual corrections results in the multiplication of the
matrix element (5.17) by the factor

F = exp−1

2

[
wF (p+, 1) + wF (p−, 1) +

N∑

i=1

wG(ki,Θi)

]
, (5.24)

where Θi is the angle between gluon i and its parent:

~ki
~Pi =

∣∣∣~ki

∣∣∣
∣∣∣ ~Pi

∣∣∣ cos Θi.

This factor, depending on the topology of D, is closely connected with the
radiation cross section (5.21). Namely, function wG(F ) describes the total
probability of soft gluon emission off a gluon (quark) inside a cone of half-
angle Θ:

wG(p,Θ) =

∫

Γ(p,Θ)

g2
s

(2π)3
Nc

d3k

2ω

~p 2 sin2 Θk

(k p)2
≈
∫

Γ(p,Θ)

dK(~k). (5.25)
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The total probability of a quark (F ) decay inside the restricted angular cone
wF in (5.24) is proportional in DLA to wG:

wF (p,Θ) ≈ CF

Nc
wG(p,Θ). (5.26)

The multiplicand F2 appearing in the cross section is nothing but the prod-
uct of two quark and N gluonic QCD Form Factors (see Section 1.2.4). The
variables Θi in (5.24) can be said to represent the “jet opening angles”, the
angular phase space available for subsequent development of independent sub-
jets generated by partons i = 1 . . . N . For two primary quarks this evolution
parameter is the largest and was taken to be unity in (5.24) since a more
accurate fixing of its value (e.g., π or so) would be outside DLA accuracy.

The ansatz (5.24) for the account of virtual contributions to the tree

multigluon amplitudes (5.17) made in early papers on the subject [2,3] was
based on the low order PT calculations and ones physical intuition. The
formal proof was given later in Ref. [4] where the Gribov Bremsstrahlung

theorem [5] based on the dispersion considerations and the Kirshner–Lipatov
method of constructing the Bethe-Salpeter-type equations for PT ampli-
tudes [6] had been exploited. Similar structure appears in the framework
of general approach of asymptotic dynamics to coherent QCD states (see [7]
and references therein).

5.4 Method of Generating Functionals

Generating Functionals (GF), first applied to a description of QCD partonic

systems in Jet Calculus by Konishi, Ukawa and Veneziano in 1979 [8], is a
direct generalization of the well known mathematical object, namely Gen-
erating Functions. The notion of Generating Function have being exploited
since Euler times to replace the study of the important numerical series by
an analysis of functions “generating” them.

For example, the Taylor expansion for G(u) = exp(u) can be said to
“generate” an = 1 series according to the expansion

an ≡
(
d

du

)n

G(u)

∣∣∣∣
{u=0}

G(u) = u exp(u) =⇒ 0, 1, 2 . . . n . . . natural numbers,
u/(eu − 1) =⇒ Bn Bernulli series,

G(u; x) = exp(2xu− u2) =⇒ Hn(x) Hermite polinomials,
etc., etc.
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Following the same logic one can consider our N -gluon production cross sec-
tion as the N -th term in a series expansion of some “generating” object which
accumulates the overall QCD cascade picture. This object now must be not
a function but a functional since the series, it has to generate, consists of
functions (i.e. depending on N 3-dimensional gluon momenta) and not of
numbers any more.

5.4.1 Exclusive and Inclusive Cross Sections in GF
Technique

We are now going to replace the exclusive N -gluon cross section of (5.20)
(with (5.22) standing for its symbolic expression) by the functional dσ{u}
which will generate dσN as the “coefficients” in the Taylor expansion of σ{u}
with respect to the “probing functions” u(k):

dσexcl
N =

(
N∏

i=1

d3ki
δ

δu(ki)

)
dσ{u}

∣∣∣∣∣
{u=0}

. (5.27)

To obtain this functional we must simply sum up all tree contributions
weighted with the arbitrary functions u(ki) and integrated over final gluon
momenta ki :

dσ{u} = dσ0

∑

N=0,1...∞
F2
∏∫

Γ(P(k),Θ(P))

dK(~k) ∗ u(k) . (5.28)

Equation (5.27) comes immediately from the construction of (5.28) after mak-
ing use of the definition of the variational derivative:

(
δ

δu(ki)

)
u(k) ≡ δ3(~ki − ~k).

The notion of GF appears to be very convenient for studying inclusive particle
distributions. To get the N -parton inclusive cross section one has to apply
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to dσ{u} the operator

dσincl
N =

(
N∏

i=1

d3ki
δ

δu(ki)

) ∞∑

m=0

1

m!

(
m∏

j=1

d3kj
δ

δu(kj)

)
dσ{u}

∣∣∣∣∣
{u=0}

=

(
N∏

i=1

d3ki
δ

δu(ki)

)
exp

{∫
d3k

δ

δu(k)

}
dσ{u}

∣∣∣∣∣
{u=0}

(5.29)

=

(
N∏

i=1

d3ki
δ

δu(ki)

)
dσ{u}

∣∣∣∣∣
{u=1}

which proves to be equivalent to the functional expansion near the “point”
u(k) ≡ 1. The last thing to be mentioned in this paragraph is that due to
independent evolution of the primary q and q one can represent (5.28) as a
product of two GFs responsible for the development of a quark jet:

dσe+e−{u} = dσ0 ZF (p+, 1; {u}) ZF (p−, 1; {u}) . (5.30)

5.4.2 Generating Functional (GF)s for g and q Jets

Now it is time to invoke our knowledge of the structure of AO tree graphs
to derive the expression for jet GFs. A good way is to guess the answer first
and then give the formal proof.

Constructing GF. Take a lone gluon l which itself produces no softer
radiation and is always there in any nonempty tree (N>0). Its personal GF
is trivial and describes a subjet consisting of a single primary particle :

Z(l,Θl; {u}) = u(l)e−wG(l,Θl) = u(l) exp

{∫

Γ(l,Θl)

dK·[ −1]

}
. (5.31)

Θl here is the emission angle of l which plays the role of the opening angle
of the l-jet. The Form Factor wG which our gluon brings to the cross section
according to (5.22)–(5.25) is represented in (5.31) in a somewhat peculiar
form for future use.

Now we proceed with a gluon which radiates a few “lonely” gluons. Let
its momentum be k, production angle Θ and those of its sequential offsprings



Method of Generating Functionals 119

— l1, . . . lm and Θ1 > Θ2 > . . . > Θm.

Z(k,Θ; {u}) = u(k)e−wG(k,Θ)

∫

Γ(k,Θ)

dK(~l1) u(l1)e
−wG(l1,Θ1)×

×
∫

Γ(k,Θ1)

dK(~l2) u(l2)e
−wG(l2,Θ2) . . .

∫

Γ(k,Θm−1)

dK(~lm) u(lm)e−wG(lm,Θm).

All the integrands here are identical (no energy ordering among li !) so one
can take off the angular restrictions replacing (5.32) by

Z(k,Θ; {u}) = u(k)e−wG(k,Θ) 1

m!

[∫

Θ>Θl

dK(~l ) Z(l,Θl; {u})
]m

where we substituted the product u(l) exp(−wG(l)) by the GF (5.31) for the
“lonely” gluon. Now, after summation over m= 0 . . .∞ and making use of
the tricky representation of the exp(−wG) factor we have demonstrated above
in (5.31), one finally arrives at the following construction:

Z(k,Θ; {u}) = u(k) exp

(∫

Γ(k,Θ)

dK(~̀) [Z(`,Θ`; {u}) − 1]

)

≡ u(k) exp

(∫

Γ(k,Θ)

d`

`

d2~̀⊥
2π`2⊥

2Ncαs

π
[Z(`,Θ`; {u}) − 1]

)
. (5.32)

The Z–functional in the exponent represented till now the primitive “empty”
jets, however (5.32) looks too nice not to hold in general. But instead of
following the line of consecutive complications (i.e. considering jets built up
of jets consisting of “lonely” gluons etc.) we should feel ourselves educated
enough at the moment to be able to prove that (5.32) is indeed the Master
Equation for the GF of gluon jet in DLA.

Bethe-Salpeter Equation for ZG and ZF . The main property of a tree
which may serve as the definition of this object (and it does in mathematics)
is that it consists of a node and two more trees 1. In our problem such a
recursive definition means that to describe the jet it is enough, in fact, to
describe its first decay:

ZA(k,Θ; {u}) = u(k) e−wA(k,Θ) +

1To be precise, this saying defines a binary tree
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∫

Γ(k,Θ)

dω′

ω′
d2k′⊥
k′2⊥

2CAαs

π
e−wA(k,Θ)+wA(k,Θ′) ZA (k,Θ′; {u})ZG(k′,Θ′; {u}) .

(5.33)
A few comments are to be made.

• We have introduced a new subscript A to match both g and q jet GFs
(A = G,F ).

• We are already familiar with the first term on the r.h.s. describing the
“bare” jet (cf. (5.31)).

• The integral term displays emission of a soft gluon k′ = (ω′, ~k′) off A
(proportional to corresponding color factor CA), which is followed by
subsequent evolution of two jets G and A with momenta k′ and k (recoil
effect neglected in DLA!) and, by virtue of the AO rules, opening angles
Θ′.

• DLA integration condition Γ of (5.23) states

ω′ < k0 =
∣∣∣~k
∣∣∣ , Θ′ < Θ

where Θ is an external parameter of the primary jet (emission angle of
A = G or Θ ∼ 1 for initial quark A = F ).

• The exponential factor under the integral ensures that the decay we are
considering is the first one: it is the probability for parton A to stay as
a bare particle in the interval of radiation angles between Θ′ and Θ.

Making iterations of the integral equation (5.32), i.e. substituting consec-
utively the Born term under the integral, one can check that it reproduces
indeed all AO trees. The evolution parameter Θ is present only in the external
jet Form Factor and as an upper limit of the Θ′ integration.

∫

Γ(k,Θ)

dω′

ω′
d2k′⊥
k′2⊥

=

Θ∫

Q0/k

dΘ′

Θ′

k∫

Q0/Θ′

dω′

ω′

2π∫

0

dφ′

2π

This observation allows one to solve (5.32) by taking Θ-derivative of the
product Z exp(−w) :

∂

∂ ln Θ

[
e−wA(k,Θ)ZA(k,Θ)

]
=e−wA(k,Θ)

k∫

Q0/Θ

dω′

ω′

2π∫

0

dφ′

2π

2CAαs

π
ZA(k,Θ)ZG(k′,Θ).
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Now, making use of (5.25), (5.26) for gluon emission probabilities to get the
Θ-derivative of the parton Form Factors on the l.h.s., one obtains

∂

∂ ln Θ
ZA(k,Θ) = ZA(k,Θ)

k∫

Q0/Θ

dω′

ω′

2π∫

0

dφ′

2π

2CAαs

π
[ZG(k′,Θ) − 1].

Integrating the expression for ∂
∂ lnΘ

lnZA with an obvious initial condition for
the very start of PT jet evolution

ZA(k,Θ; {u})|kΘ=Q0
= u(k) , (5.34)

one immediately arrives at the generalized Master Equation (5.32) which we
guessed in the previous subsection for the gluon jet:

ZA(p,Θ; {u}) = u(p) exp

(∫

Γ(p,Θ)

dω

ω

d2k⊥
2πk2

⊥

CA

Nc
γ2

0 [ZG(k,Θk; {u}) − 1]

)
.

(5.35)
Here we have introduced a shorthand notation for the color charge factor
depending on k⊥ of the parton:

γ2
0 = 4Nc

αs(k
2
⊥)

2π
=

4Nc

b ln(k⊥/Λ)
, b =

11

3
Nc −

2

3
nf . (5.36)

Notice, that at u(k) ≡ 1, which is an important point in the functional space
for deriving inclusive jet characteristics, (5.35) gives

ZA(p,Θ; {u})|{u=1} ≡ 1 . (5.37)

This property makes the total cross section free of logarithmic PT divergencies
and thus of Q0-dependence. Indeed, according to (5.29), (5.30) the total
inclusive e+e− annihilation cross section (N = 0 registered particles) reads

dσe+e−

tot = dσe+e−{u}
∣∣∣
{u=1}

= dσ0 ZF(p+, 1; {u})ZF(p−, 1 {u})|{u=1} = dσ0.

Note, that the GFs similar to (5.30) can be easily constructed (by means of
the basic GF for a gluon jet) for any other initial partonic state (ρ) consisting
of nq quarks and ng gluons with energies of the same order pi ∼ p and large
relative angles Θij ∼ 1

dσ(ρ){u} = dσ0 [ZG(p, 1; {u})] ρ , ρ =
CF

Nc
nq + ng : (5.38)

e+e− → qq ρ = 2CF/Nc = 8/9 ,
e+e− → qqg ρ = 2CF/Nc + 1 = 17/9 ,
Υ → ggg ρ = 3 , etc.
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5.5 Multiplicity Distributions in QCD Jets

In this section we apply the GF technique to consider the mean parton
multiplicity and character of multiplicity fluctuations in QCD jets following
Refs. [9,10]. There are two complementary ways of dealing with multiplic-
ity fluctuations: studying the distribution Pn = σ(n)/σ of events over the
number of produced particles and/or measuring inclusive multiplicity cor-
relators nk ≡ 〈n(n− 1) . . . (n− k + 1)〉. According to (5.27) which defines
the exclusive characteristics of parton distributions in terms of GF, the total
probability of n-particle production reads

Pn =
1

n!

n∏

i=1

(∫
d3ki

δ

δu(ki)

)
Z({u})

∣∣∣∣∣
{u=0}

.

A variational derivative over the probing functions u(k) followed by an inte-
gration over the whole phase space of particle momenta proves to be equiva-
lent to simple differentiation of the function Z(u), u(k)≡u :

Pn(y) =
1

n!

(
d

du

)n

Z(y; u)

∣∣∣∣
{u=0}

.

Z(y; u) =
∞∑

n=0

Pn(y) un. (5.39)

Replacing u(k) by a constant in the Master Equation (5.35), one can simply
check that its solution appears to depend not on the jet energy and its opening
angle separately, but on their product, i.e. on the characteristic transverse
momentum of the jet

Z(p,Θ; u) = Z(y; u), y = ln
pΘ

Q0
≡ ln

Q

Q0
.

Performing a partial integration in (5.35) with use of the following chain of
transformations

∫

Γ(p,Θ)

dω

ω

d2k⊥
2π k2

⊥
=

∫ pdω

ω

∫ ΘdΘk

Θk
ϑ(ωΘk −Q0)

=

∫ p

Q0/Θ

dω

ω

∫ ωΘ

Q0

d(ωΘk)

ωΘk
=

∫ ln(pΘ)

ln Q0

d ln(ωΘ)

∫ ln(ωΘ)

ln Q0

d ln k⊥
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one arrives at the simplified Master Equation for GF of gluon jet:

Z(y;u) = u exp




y∫

0

dy′(y−y′) γ2
0(y
′)[Z(y′;u) − 1]


 , y′≡ ln

k⊥
Q0

. (5.40)

The initial and normalization conditions, (5.34) and (5.37), now read

Z(0; u) = u, (5.41)

Z(y; 1) = 1. (5.42)

Notice, that due to (5.42) the multiplicity distribution is normalized to unity:

∞∑

n=0

Pn =
∞∑

n=0

1

n!

(
d

du

)n

Z(u)

∣∣∣∣
{u=0}

= ed/du Z(u)

∣∣∣∣∣
{u=0}

= Z(u)

∣∣∣∣∣∣
{u=1}

= 1. (5.43)

Multiplicity Correlators can be calculated by means of the Pn distri-
bution as follows:

nk(y) ≡
∞∑

n=k

n(n− 1) . . . (n− k + 1)Pn(y) .

This procedure is equivalent to calculating the kth term of the Taylor expan-
sion for Z at u = 1

nk(y) =

[(
d

du

)k ∞∑

n=0

unPn(y)

]∣∣∣∣∣
{u=1}

=

(
d

du

)k

Z(y; u)

∣∣∣∣∣∣
{u=1}

(5.44)

Therefore an alternative expansion series for GF near u = 1 could be written
in terms of multiplicity correlators:

Z(y; u) =
∞∑

k=0

(u− 1)k

k!
nk(y) , (n0 ≡ 0 ; cf. (5.43)). (5.45)

Mean Multiplicity of partons corresponds to k = 1 in (5.44): 〈n〉 =
n1 ≡ n̄. Differentiating (5.40) over u and putting u = 1, Z = 1, one gets the
DLA equation for n̄(y)

n̄(y) = 1 +

∫ y

0

dy′(y − y′) γ2
0(y
′) n̄(y′) . (5.46)
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Differentiating over y one has

n̄′(y) =

∫ y

0

dy′ γ2
0(y
′) n̄(y′) (5.47)

n̄′′(y) = γ2
0(y) n̄(y) (5.48)

with initial conditions

n̄(0) = 1 , n̄′(0) = 0 . (5.49)

The solution for constant color coupling would be simply

n̄(y) = cosh(γ0y) ≈ 1

2
eγ0y =

(
Q

Q0

)√2Ncαs/π

. (5.50)

With an account of running αs , (5.48) can be reduced to the differential
equation for modified Bessel functions, the solution of which satisfying initial
conditions (5.49) reads

n̄(y) = A
√
Y
{
I1(A

√
Y )K0(A

√
λ) +K1(A

√
Y )I0(A

√
λ)
}

; (5.51)

Y ≡ y + λ = ln(pΘ/Λ) , A ≡
√

16Nc

b
.

The PT approach implies αs(Q0)/π � 1, i.e. λ � 1, therefore one can use

asymptotic expressions for modified Bessel functions [11]

Iν(z) ≈
1√
2πz

ez , Kν(z) ≈
√

π

2z
e−z (5.52)

to obtain

n̄(y) ≈
(
Y

λ

)1/4

cosh
(
A(

√
Y −

√
λ)
)

∼ exp

√
16Nc

b
ln
Q

Λ
. (5.53)

The preexponential factor here should not be taken seriously, since, as we
shall see in the next Chapter, a number of subleading effects, such as an
account of sea-quark contribution to gluonic cascades, recoil effect etc., will
modify the power of αs(Q0)/αs(Q) ratio.

Notice the peculiar energy behavior of the mean multiplicity of partons
in QCD jet given by (5.53): it grows slower than a power of energy Q, but
faster than any power of lnQ.
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Both constant (5.50) and running coupling (5.53) cases are matched within
the DLA accuracy by the common expression

n̄(y) = exp

{∫ y

dy′ γ0(y
′)

}
(5.54)

which is nothing but the WKB approximation to (5.48). The quantity
γ0 = γ0(αs) defined by (5.36) thus can be said to represent the anomalous
dimension determining the rate of multiplicity growth with energy.

5.6 KNO Phenomenon

As it is well known, the KNO phenomenon [12] means the dependence of
the multiplicity distribution on the total energy y = lnQ only via the ratio
x = n/n̄(y). This kind of scaling behavior in hard processes was discovered in
field theory by Polyakov in 1971 [13]. To be more precise, the KNO distribution
is defined as

n̄(y)Pn(y) = f(x) , x ≡ n/n̄(y). (5.55)

QCD jets exhibit exact KNO scaling in the asymptotics y→∞. To prove
this statement we must express it in terms of GF. Since typical values of n
grow with y, one can approximate the sum in (5.39) by an integral:

Z(y; u) =
∞∑

n=0

Pn u
n ≈

∫ ∞

0

dn

n̄
[n̄Pn] un =

∫ ∞

0

dx f(x) (un̄)
x
.

To make the r.h.s. depend on x alone, one must choose un̄ to be constant.
For that let us take

u = exp(−β
n̄

) , β = const .

Φ(β) ≡
∫ ∞

0

dx f(x) e−βx (5.56)

Thus, the asymptotic KNO scaling in QCD exists with the limit

lim
y→∞

Z
(
y; e−β/n̄(y)

)
= Φ(β) . (5.57)

Constructing Φ(β) with a help of alternative series of (5.45), one obtains

Φ(β) = lim
y→∞

∞∑

k=0

1

k!

(
e−β/n̄ − 1

)k
nk =

∞∑

k=0

(−β)k

k!
lim
y→∞

[
nk(y)

(n̄(y))k

]
. (5.58)
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Expanding the exponent in (5.56) we have

Φ(β) =

∫ ∞

0

dx f(x)
∞∑

k=0

(−βx)k

k!
=
∞∑

k=0

(−β)k

k!
fk . (5.59)

Comparing (5.58) with (5.59) one concludes that the normalized multiplicity
correlators are nothing but the moments of the KNO function of (5.56):

fk ≡
∫ ∞

0

dx xk f(x) = lim
y→∞

[
nk(y)

(n̄(y))k

]
(5.60)

The first two coefficients in the power series (5.59) for Φ are fixed:

f0 =

∫ ∞

0

dx f(x) = 1 , f1 =

∫ ∞

0

dx x f(x) = 1 .

Having in hand the Φ(β) function one can reconstruct the KNO function with
use of an inverse Mellin transformation:

f(x) =

∫
dβ

2πi
Φ(β) eβx (5.61)

where the integral runs parallel to the imaginary axis to the right of the
singularities of Φ in the complex β-plane.

To find the function Φ(β) one has either to calculate fk, k = 2, . . .∞ or
invoke the Evolution Equation (5.40) for the direct search for the y → ∞
limit in (5.57). We shall trace both ways to obtain recurrency relations for
multiplicity moments and to derive analytical properties of Φ(β) for getting
knowledge about asymptotic behavior of KNO distribution (x→0 and x�1).

5.6.1 Recurrency Relations for Multiplicity

Moments

Let us differentiate (5.40) over y to obtain

Z ′(y; u) = Z(y; u)

y∫

0

dy′ γ2
0(y
′) [Z(y′; u) − 1] . (5.62)
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Then substituting expansion (5.45) for Z and making the ansatz nk(y) =
(n̄(y))k ·fk, collect terms proportional to (u−1)k. The result will be

dn̄(y)

dy
=

∞∫

0

dy′ γ2
0(y
′) n̄(y′) for k = 1 , (5.63a)

kfk

k!
n̄(y)k−1dn̄(y)

dy
=

k∑

m=1

fk−mfm

(k−m)!m!
n̄(y)k−m

y∫

0

dy′γ2
0(y
′)n̄(y′)m . (5.63b)

Equation (5.63a) is equivalent to (5.47) and reproduces once again the en-
ergy behavior of the total multiplicity (5.54). It certainly depends on the
coupling γ2

0 . This, however, is not the case for the KNO distribution. Indeed,
estimating the integral term in (5.63b) as

∫ y

0

dy′ γ2
0 ·(n̄(y′))m =

1

m
(n̄(y))m−1

∫ y

0

dy′ γ2
0 ·n̄(y′)

[
1 +O

(
1

ln n̄

)]

and making use of (5.63a) we come to the recurrency relations

k

k!
fk =

k∑

m=1

fk−mfm

(k−m)!m!

1

m
=

1

k k!
fk +

k−1∑

m=1

fk−mfm

(k−m)!m!

1

m
,

fk =
k

k2−1

k−1∑

m=1

Cm
k

fmfk−m
m

=
k2

2(k2−1)

k−1∑

m=1

Cm
k

fmfk−m
m (k−m)

, (5.64)

where

Cm
k ≡ k!

m!(k −m)!
, f0 = f1 = 1 .

Following the same lines for a general case ρ 6= 1 one obtains

f
(ρ)
k =

ρ1−k

k2
fk +

1

k

k−1∑

m=1

Cm
k

ρ1−m

m
fm f

(ρ)
k−m, (5.65)

f
(ρ)
0 = f

(ρ)
1 = 1.

These relations contain no memory about the coupling at all. This means
that the QCD KNO function f(x) remains the same for αs being running or
fixed, γ2

0 being smaller or larger.
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This amusing phenomenon which had been noticed by Bassetto, Ciafaloni
and Marchesini in Ref. [14] means that the distribution of multiplicity fluc-
tuations (measured in units of the mean multiplicity n̄(y)) are determined
totally by the very character of 1 → 2 parton cascading, being insensitive to
“details” of QCD branching, such as the value and the energy behavior of αs

, the number of colors Nc etc.
The recurrency relations (5.64), (5.65) could be converted to compact

nonlinear integral equations for KNO functions [10]:

xf(x) =

∫ x

0

dy f(x− y)

∫ ∞

y

dt f(t) ln
t

y
, (5.66a)

xf (ρ)(x) =

∫ ρx

0

dy f (ρ)

(
x− y

ρ

)∫ ∞

y

dt f(t) ln
t

y
. (5.66b)

Let us remind the reader that f(x) describes the asymptotic KNO distribu-
tion in a single gluon jet and f (ρ)(x) corresponds to an arbitrary jet ensemble
according to (5.38).

5.6.2 Analytic Solution of the KNO Problem

Turning back to the definition of the Mellin transformed KNO function (5.56),
(5.57) we can now simplify the problem keeping γ0 fixed (αs(y

′) = const).
Differentiating (5.62) over y once more one has

(lnZ(y))′′ = γ2
0(Z(y) − 1) ; Z(0) = u , Z ′(0) = 0. (5.67)

The first integral of this differential equation reads

1

2
(lnZ)′

2
= γ2

0

Z∫
dZ ′

Z

′
(Z ′ − 1) = γ2

0(Z − lnZ + const).

The initial conditions of (5.67) determine the constant of integration to be
equal to −u+ ln u:

±(lnZ)′ = γ0

√
2(Z − u− ln

Z

u
). (5.68)
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Introducing x = Z/u one gets the solution of (5.68)

γ0 ·y =

1∫

Z/u

dx

x
√

2[u(x− 1) − ln x]
, u ≤ 1, (5.69a)

γ0 ·y =

Z/u∫

1

dx

x
√

2[u(x− 1) − ln x]
, u ≥ 1 . (5.69b)

The upper (lower) limit x = 1 here comes out from the initial condition
Z = u at y = 0. Now we have to substitute u = exp(−β/n̄(y)) and consider
the limit y → ∞. The integral diverges logarithmically when u → 1. For
u ≤ 1, e.g., one has

1∫

1−ε

dx

x
√

2[u(x−1)−lnx]
≈
∫

dx

(1−x)
√

1+2 (1−u)
(1−x)

≈ ln
ε

2(1−u) , 1−u�ε�1,

so before taking the limit we must pick up the singular contribution rewriting
(5.69a) in the form

γ0y =

∫ 1

Z

dx

x

(
1√

2(x− 1 − ln x)
− 1

1 − x

)
+ ln

[
(1 − Z)

Z

1

2(1 − u)

]

where u = 1 is taken everywhere except the singular term. Making use of the
asymptotic expression (5.50) n̄(y) ≈ 1

2
eγ0y one finally obtains the following

indirect representations for Φ(β)

∫ 1

2

Φ

dx

x
√

2(x− 1 − lnx)
= ln

β

β1
, β > 0; (5.70a)

∫ ∞

Φ

dx

x
√

2(x− 1 − lnx)
= ln

β0

−β , β < 0. (5.70b)

Here we denoted by β1 and β0 the positive numbers

ln β1 ≡
∫ 1

1

2

dx

x

(
1√

2(x− 1 − ln x)
− 1

1 − x

)
≈ −0.251 ,

ln β0 ≡
∫ ∞

1

dx

x

(
1√

2(x− 1 − ln x)
− 1

x− 1

)
≈ 0.937 .
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Expressions (5.70) solve the differential equation [14], which looks very much
alike the original equation (5.67):

(
β
d

dβ

)2

ln Φ(β) = Φ(β)−1 ; Φ

∣∣∣∣∣
β=0

= 1 , β
d

dβ
Φ

∣∣∣∣∣∣
β=0

= 0 . (5.71)

High multiplicity fluctuations

Behavior of the asymptotic KNO distribution f(x) at large values of x = n/n̄
is determined, according to (5.61), by the rightmost singularity of Φ(β) in the
β-plane. As it is clearly seen from (5.70b), Φ → ∞ when β → −β0 ≈ −2.552.
Expanding Φ(β) near the singularity one obtains

Φ(β) =
2

z2
+

1

3
ln

2

z2
+

5

9
+O

(
z2(ln z)2

)
≈ 2β2

0

(β+β0)2
− 2β0

β+β0
− 2

3
ln
β+β0

β0
+O(1)

(5.72)
where z ≡ ln−β0/β. Substituting this expansion into the Mellin integral
(5.61), we derive the asymptotic formula for the “tail” of the KNO distribu-
tion f(x) at x� 1:

f(x) = 2β0

(
β0x− 1 +

1

3β0x
+ . . .

)
e−β0x , β0x� 1. (5.73)

The probability of high multiplicity fluctuations decreases with x exponen-
tially. The rate of this fall off does not depend on the type of a hard event
under consideration. Indeed, for an arbitrary jet ensemble characterized by
the parameter ρ (see (5.38)) the corresponding KNO function, according to
(5.57), would be

f (ρ) (x) =

∫
dβ

2πi
[Φ(β)] ρ eβx. (5.74)

This relation preserves the position β = −β0 of the singularity. The only
change is in its character , which will lead to modification of the preexponen-
tial factor for f (ρ) in (5.73).

Low x limit of KNO distribution

In the opposite limit, when the number of particles produced happens to be
much less than the mean multiplicity value (x� 1), large β dominate where
due to (5.70a)

Φ(β) ≈ exp

(
−1

2
ln2 β

c

)
, |β| � 1.
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Evaluating Mellin integral (5.61) one has roughly

f(x) ∼ 1

x
exp

(
−1

2
ln2 x

)
. (5.75)

This behavior reminds the form of the DL Form Factor. Though there is
no direct correspondence (e.g., (5.75) contains no αs dependence), such a
similarity looks physically natural since low multiplicity events originate from
undeveloped bremsstrahlung cascades the probability of which is damped by
QCD jet Form Factors.

5.7 Particle Distributions and Correlations

In the previous Section we made use of the Generating Functional technique to
describe asymptotic behavior of multiplicity fluctuations. This device proves
to be very useful for the derivation of inclusive energy and angular spectra
and correlations of particles as well.

Later we shall study in details the particle spectra in the framework of a
more realistic approach which accounts for essential single-log contributions
to parton evolution and makes it possible to predict jet characteristics with
controllable accuracy.

DLA provides us with a polygon for learning GF technique. Being too
crude for quantitative predictions, DLA, in the same time, can be used for
getting rather simple and physically transparent results to demonstrate the
main qualitative features of the physics of parton cascades.

In what follows we shall restrict ourselves, for the sake of simplicity, to
the case of fixed coupling αs =const.

5.7.1 Energy Spectrum of Particles in Jet

Applying the variational derivative to the Master Equation (5.35) one gets
the integral equation for the inclusive distribution of partons

D
p

A(x) ≡ Ep
δ

δu(kp)
ZA(EA,Θ; {u})

∣∣∣∣
{u=1}

,

which reads

D
p

A(`, yΘ) = δp
Aδ(`) +

`∫

0

d`′
yΘ∫

0

dy′
CA

Nc

γ2
0 ·D

p

A(`′, y′). (5.76)
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Here we introduced the convenient notation:

yΘ = ln(kpΘ/Q0) , ` = ln(EA/kp) ≡ ln 1/x ,

y′ = ln(ω′Θ′/Q0) , `′ = ln(EA/ω
′) ,

with ω′,Θ′ the energy of the intermediate gluon G and its angle with respect
to the parent parton. Θ in (5.76) plays the role of evolution parameter. To
obtain the energy distribution of particles in a jet with the total energy EA

and the opening angle Θ one needs to fix the sum

YΘ ≡ `+ yΘ = ln
EAΘ

Q0

.

Equation (5.76) can be easily solved iteratively:

D
p

A(`, yΘ) = δp
Aδ(`) +

CA

Nc

· γ0

√
yΘ

`
· I1
(
2γ0

√
yΘ`
)
, (5.78)

where Iν denotes the standard modified Bessel function.
In particular, for the inclusive energy distribution of particles produced

in e+e− annihilation (two q-jets with Θ ∼ 1) we have

dn

d ln(1/x)
=

2CF

Nc
· γ0

(
ln(Ex/Q0)

ln(1/x)

) 1

2

· I1
(

2γ0

√
ln
Ex

Q0
· ln 1

x

)
. (5.79)

Spectrum (5.79) exhibits an interesting behavior: it has a maximum at
ln(1/x) = ` = 1

2
Y (so called “hump-backed plateau”). From the point of

view of a naive probabilistic picture of parton multiplication one might ex-
pect the particle distribution to increase monotonically with x decreasing,
since there is more possibilities to get a softer particle from the branching
tree.

However, this expectation proves to be wrong: as we discussed in previous
Chapter (see Section 4.3) it is the color coherence which prevents multiplica-
tion of the softest gluons.

At large values of Y = ln(E/Q0) the Bessel finction in (5.79) can be
replaced by its asymptotic expression (5.52) to give

dn

d`
∝ exp

{
2γ0

√
y `
}
. (5.80)

The double-differential distribution of particles is obtained by taking the angle
of the registered particle as the jet opening angle Θ and differentiating (5.78)
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with respect to it:

d2n

d ln(1/x) d lnΘ
=
CA

Nc
· γ2

0 · I0
(

2γ0

√
(YΘ−ln

1

x
) ln

1

x

)
. (5.81)

5.7.2 Correlations Between Particles in Jet

Applying a variational derivative twice with respect to the probing functions
u(k1) and u(k2) one obtains the double differential inclusive distribution of
particles in a jet A:

1

σ

ω1 ω2 d
2σ

dω1 dω2

≡ D
(2)
A (E,Θ;ω1, ω2) . (5.82)

All the angular integrations are taken here, and only the energies of two
particles ωi are fixed. The equation for this quantity following directly from
(5.35) reads

D
(2)
A (E,Θ;ω1, ω2) =

CA

Nc

∫
dz

z

∫
dΘ′

Θ′
γ2

0

{
D

(2)
G (zE,Θ′;ω1, ω2)

+DG(zE,Θ′;ω1)DA(E,Θ′;ω2) +DA(E,Θ′;ω1)DG(zE,Θ′;ω2)

}
. (5.83)

Invoking the DLA equation (5.76) for the one-particle inclusive spectrum one
obtains

D
(2)
A (E,Θ)−DA(E,Θ;ω1)DA(E,Θ;ω2) =

CA

Nc

∫
dz

z

∫
dΘ′

Θ′
γ2

0D
(2)
G (zE,Θ′) .

(5.84)
The combination we have on the left hand side of (5.84) is nothing but the

correlation function D̃ which we are aiming at. Equation (5.84) now takes
the form

D̃A(E,Θ;ω1, ω2) =
CA

Nc

∫
dz

z

∫
dΘ′

Θ′
γ2

0

[
D̃G(zE,Θ′;ω1, ω2) +DG(zE,Θ′;ω1)DG(zE,Θ′;ω2)

]
. (5.85)

To be definite, let us take ω1>ω2 and denote by η positive quantity

η ≡ ln
ω1

ω2
> 0 .
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It is implied that the integrations in (5.83)–(5.85) are limited by the natural
restrictions

ω2Θ
′ > Q0 , zE > ω1 .

Now, introducing

`1 = ln
E

ω1
and y2 = ln

ω2Θ

Q0

as independent variables, we arrive at the following convenient form of (5.85):

D̃A(`1, y2, η)=
CA

Nc

`1∫

0

d`′1

y2∫

0

dy′2 γ
2
0

[
D̃G(̀ ′1,y

′
2,η) +DG(̀ ′1,y

′
2+η)DG(̀ ′1+η,y

′
2)
]
.

(5.86)
It is worthwhile to notice that `1 and y2 are less than `2 = `1+η and y1 = y2+η
respectively due to the definition of η.

Let us derive approximately the correlation function D̃. Noticing that
D(`, y) (5.78) is a monotonically rising function of both its arguments, and
using its asymptotic expression (see (5.80))

D(`, y) ∝ exp
(
2γ0

√
`y
)
, (5.87)

one can iterate (5.86), evaluating the integrals in (5.86) near the upper limits.
Making use of asymptotics (5.87) for the spectra DG(`′1, y

′
2 + η) and DG(`′1 +

η, y′2), we then expand them near the maxima to get

g−1(̀ 1,y2,η)≡
1

DG(̀ 1,y1)DG(̀ 2,y2)

`1∫

0

d`′1

y2∫

0

dy′2 γ
2
0 DG(̀ ′1,y

′
2+η)DG(̀ ′1+η,y

′
2)

≈
(√

y1

`1
+

√
y2

`2

)−1
(√

`1
y1

+

√
`2
y2

)−1

=
1

2 [1 + cosh(µ1 − µ2)]
,

where we have introduced variables

µi =
1

2
ln
`i
yi

i = 1, 2 ,

“measuring” particle energies with respect to the hump (µ=0 corresponds to
the maximum of the inclusive spectrum). The function g(`1, y2, η) describes
the first iteration of (5.86):

D̃A(`1, y2, η) ≈
CA

Nc
DG(`1, y1)DG(`2, y2) · g−1(`1, y2, η) .
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Substituting this estimate in the right hand side of (5.86) and neglecting slow
(logarithmic) variations of the g−1-factor, we can write down the answer,
summing up all successive iterations:

D̃A(`1, y2, η)≈
CA

Nc

DG(`1, y1)DG(`2, y2)
∞∑

k=1

g−k =
Nc

CA

DA(̀ 1,y1)DA(̀ 2,y2)

g − 1
.

(5.88)
Finally, for the double inclusive cross section (5.82) we obtain

ω1ω2

σ

d2σ

dω1 dω2
≈ ω1 dσ

σ dω1

ω2 dσ

σ dω2

[
1 +

Nc

3CA

1

1 + 4
3
sinh2 µ1−µ2

2

]
. (5.89)

This result can be applyed to the general case of an arbitrary jet ensemble with
CA = ρ standing for its total “color charge”, e.g., CA = 2CF for e+e−→ qq,
cf. (5.38). According to (5.89) the correlation is maximal for particles with
energies of the same order (“equal” energies in the logarithmic scale).
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Problem 5.1 Using the double-differential parton spectrum (5.81) derive in-
clusive angular distribution of particles.

Answer:
Inclusive angular distribution of particles one gets integrating (5.81) over
energies. Invoking power series for the modified Bessel function I0

I0(z) =
∞∑

n=0

1

(n!)2

(z
2

)2n

one obtains after integrating over ` = ln(1/x)

∫ YΘ

0

d`

(
γ0

√
(YΘ − `)`

)2n

(n!)2
= Y (γ0YΘ)2n 1

(2n+ 1)!

dn

d lnΘ
=
CA

Nc
· γ0 · sinh(γ0YΘ) . (5.90)

Integral over angles of (5.90) reproduces, in turn, the total particle multiplic-
ity (cf. (5.50) for the gluon jet):

n̄ =
CA

Nc
· {cosh(γ0Y ) − 1} + 1 . (5.91)

(The last unity we added here to account for the leading particle originating
the jet).

Problem 5.2 Using recurrency relations (5.64), (5.65) derive the second

multiplicity moment f
(ρ)
2 and the normalized dispersion of the multiplicity

distribution D2/ 〈n〉2 ≡ f
(ρ)
2 − 1

Answer:
Keep trying until you reach the value which coincides with the maximum of
the two-particle correlation function D̃ρ/D

2
ρ = Nc/3CA, see (5.89).
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This Chapter is devoted to the description of the PT technique which
has been designed in the middle of 1980’s for quantitative description of the
properties of particles with relatively small momenta (x = k/Ejet � 1),
produced in hard interactions. The practical importance of the subject stems
simply from the fact that such soft particles, which take away a negligible
portion of the jet energy , form, at the same time, the bulk of multiplicity.

We shall follow the logic of the Leading Log Approximation approach to
DIS and e+e− structure functions in hard momenta region (x∼1) described
in Chapter 5, which maintains a clear probabilistic picture of the jet develop-
ment.

139
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6.1 Single Logarithmic Corrections to DLA

Cascades

As we know from the previous Chapter, strong AO was proved to provide
the basis for the probabilistic interpretation of soft gluonic cascades in the
Double Logarithmic Approximation :

ks � kf � kg , Θsf � Θfg , (6.1)

where subscripts denote the cascade genealogy: “grandpa”, “father” and
“son”.

The DLA happens to be too crude however for making reasonable predic-
tions even for asymptotically high energies. On the qualitative level, DLA
can be thought to overestimate cascading processes, ignoring completely the
energy-momentum balance since the energy of the radiating particle remains
unchanged (in the soft limit) after a gluon emission. Therefore it seemingly
overestimates gluon multiplicities, the characteristic energy of partons that
multiplicate most actively (i.e. position of the “hump”) etc. Quantitatively,
DLA keeps trace of ∼ √

αs term in the anomalous dimension γ disregarding
contributions of the order of ∆γ ∼ αs which give rise to significant preex-
ponential energy-dependent factors. Thus to make a first step towards the
quantitative control over parton generation processes one is forced to take
into full account nonleading Single Logarithmic (SL) effects.

Constructing a Probabilistic Scheme with account of both DL and
essential SL effects one has to pay for better accuracy of the approximation by
a tremendous growth of the number of interference contributions which must
be analyzed and interpreted. The interference graphs contain soft gluon lines
connecting harder partons of quite different generations. Meanwhile, the very
idea of the classical shower picture implies that the structure of elementary
parton decays, i.e. the “blocks” for building up the partonic cascade, should
depend on just the nearest “forefathers” of a considered parton. Thus the
possibility to absorb all essential interference terms into the local probabilistic
scheme looks far from being obvious.

The more striking, therefore, is the fact that such a scheme not only exists
but appears to be a posteriori a simple almost trivial generalization of the
standard LLA scheme described in Chapter 1. That is the reason to refer to
this approximation to soft particle physics [1,2] as the Modified LLA (MLLA).
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To Understand and Evaluate subleading corrections to DLA asymp-
totics it is helpful to invoke the notion of Generating Functional (GF) which
has been exploited in Chapter 5. GF technique is perfectly suited for describ-
ing intrajet cascades. Its structure can be expressed symbolically as

Z = C(αs(t)) ∗ exp

{∫ t

γ(αs(t
′)) dt′

}
. (6.2)

This representation incorporates the fact that independent sequential (with
respect to the “evolution-time” parameter, t) elementary processes expo-
nentiate. It exhibits the property of locality inherent to the probabilistic
shower picture. Namely, the “time” derivative of (6.2) produces the factor
γ(αs(t)) showing that the rate of the“time” change of Z (and, thus, of the
particle content of the shower) is determined by the quantity γ(t) depending
exclusively on the value of the coupling at this “time” scale1 without any
remembrance of prehistory.

Comparing this observation with the notation introduced in Chapter 1,
where we have studied the LLA evolution equations, it is natural to call our
symbolic quantities γ and C, respectively, the Anomalous Dimension and
Coefficient Function. Due to AO, the “evolution time” t of (6.2) has to
be related to the jet opening angle dt = dΘ/Θ. This means that all the
contributions which are singular in the relative angle between partons should
be attributed to the intrajet evolution and must be absorbed into the
exponential factor of (6.2). Thus, the exponent of the integrated anomalous
dimension γ incorporates the Markov chains of sequential angular ordered
partonic decays. Meantime, the regular coefficient factor C, being free of
collinear (or mass) singularities, could be said to describe wide-angle partonic
configurations, i.e., multijet contributions to the evolution of the system.

Successive terms of symbolic PT series for γ(αs)

γ =
√
αs + αs + α3/2

s + α2
s + . . . (6.3)

correspond to the increasing accuracy in description of elementary partonic
decays at parametrically small angles Θij � 1 and thus of the jet evolution.
Keeping trace of subleading corrections to the coefficient function

C = 1 +
√
αs + αs + . . . (6.4)

one will account for the ensembles of increasing number of such jets with large
relative angles Θij ∼ 1.

1The derivative of C(αs) produces subleading terms preserving the locality in t also.
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An Estimate of γ(αs) comes from a simple DLA Evolution Equation for
parton multiplicity depending on the product of the energy and the opening
angle of a jet

N(pΘ) ≈
Θ∫
dΘ′

Θ′




1∫

0

dz

z
4Nc

αs

2π


·N(zpΘ′). (6.5)

Comparing with (6.2) one can easily see that the expression in square brackets
in (6.5) represents the anomalous dimension. Since both l.h.s. and r.h.s. of
(6.5) contain multiplicity factors of the same order of magnitude, the two
logarithmic integrations have to compensate αs :

∫
dt′
∫
dz

z
αs ∼ 1 .

Therefore γ can be estimated as (cf. (5.36))

γDLA(αs) =

∫
dz

z
αs = αs` ∼

√
αs . (6.6)

The logarithmic integral over longitudinal gluon momentum ( we denoted by
` ) contributes effectively as

∫
dz

z
=

∫
dk

k
≡ ` ∼ α−1/2

s .

Integrating γ(αs) estimated by (6.6) in (6.2) one arrives at the characteristic
exponent exp(c

√
lnE) which describes the rate of the multiplicity growth in

DLA, cf. (5.53).
The next subleading term from the PT series (6.3) for γ(αs), i.e. ∆γ ∼

αs , causes significant energy dependence exp(c1 ln ln(E/Λ)) ∝ αs(E)−c1

as well.
To describe it correctly one has to analyze the following subleading effects:

1. Exact αs(?) Prescription i.e. possible influence of the ln(1/z) de-
pendence of the running coupling argument in a soft g emission

∆γ =

∫
(∆αs)

dz

z
=

∫
(α2

s`)
dz

z
= α2

s`
2 ∼ αs , (6.7)

2. Hard Parton Decays i.e. g → qq and q → qg , g → gg splitting
with hard momenta z ∼ 1

∆γ =

∫
αsdz ∼ αs , (6.8)
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3. Exact Angular Integration i.e. the kinematical region of the angles
of the same order of magnitude Θsf ∼ Θfg ∼ Θsg in the g → ggg (or
q → qgg) “double-soft” emission of a gluon pair

∆γ =

∫
α2

s

dz1
z1

dz2
z2

= α2
s`

2 ∼ αs . (6.9)

With account of these effects in the MLLA one gets symbolically

γMLLA(αs) =
√
αs + αs . (6.10)

Two Alternative Approaches had been used to calculate SL effects.
The standard renormalization group approach [1] and the probabilistic ap-
proach [2] based on the parton shower picture. The main idea of the shower
picture is to reorganize the perturbative expansion in such a way that its
zero-order approximation is systematic and involves an arbitrary number of
produced particles. This zero-order approximation can be achieved through
an iteration of basic A → B + C parton branchings. In principle, it should
be possible to include higher corrections to the basic branching along with
higher point branching vertices A → B + C +D . . . in order to improve the
accuracy of a calculation. It is important to mention that the choice of an ap-
propriate evolution parameter (i.e. the jet opening angle) makes it possible to
incorporate all substantial subleading SL terms without such a complication.
As compared to the shower approach, the renormalization group technique,
being much better formalized for systematic study of higher order corrections,
happens to be less transparent since the branchings are not so visible here.

MLLA Parton Decay Probabilities look as follows:

dwBC
A =

αs(k
2
⊥)

2π
ΦBC

A (z) dz V (~n)
dΩ

8π
, (6.11)

V s
f (g)(~n) =

asg + afg − asf

asfasg
, (6.12)

where subscripts refer to the “soft gluon family” as before.
Hereafter we denote by aik the angular factor

aik = q2 (pi ·pk)

(piq)(pkq)
= 1 − ~ni~nk = 1 − cos Θik . (6.13)

Equation (6.11) takes into full account the SL effects (6.7)–(6.9):
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• k⊥-prescription solves the problem of running coupling,

• DGLAP nonregularized (sic!) splitting functions ΦBC
A include both

soft gluon emission and terms corresponding to a loss of energy logs in
A→ B + C decays,

• the exact angular kernel V (~n) depending on the directions of momenta
of partons of three sequential generations replaces the rough strong
AO (6.1).

To see that the angular factor (6.12) leads to nothing but the strict AO, the
reader is advised to check the nice property of the V -kernel:

〈
V s

f(g) (~n)
〉

azimuth average
=

2π∫

0

dφ

2π
V s

f (g) (~n) =
2

asf
ϑ(afg−asf) , (6.14)

with ϑ the step function. This means that the decay probability integrated
over the azimuth of “son” around “father” results in the logarithmic Θ-
distribution inside the parent cone Θsf ≤ Θfg and vanishes outside.

It is important to emphasize in advance that the “V -scheme” (6.11) proves
to eliminate from the Evolution Equations both the second and the third loop
corrections, that might originate from the local in t 2- and 3-gluon radiation
processes

A→ A + g′ + g′′ , ∆γ = αs ;

A→ A + g′ + g′′ + g′′′ , ∆γ = α
3/2
s

with k′′′ � k′′ � k′ � kA. These processes do not enter the Evolution
Equations as new elementary splittings, since the V -scheme factorizes them
completely into chains of two-parton decays.

The first specific soft contribution arises only in the 4th loop because of
subtle interferences between a parent parton and its four offspring gluons
with strongly ordered energies and emission angles of the same order. It
contributes to the anomalous dimension as ∆γ <∼ α4

s`
4 ∼ α2

s , happens
to have 1/N2

c -suppressed color factor (“color monsters”) and could be inter-
preted physically in terms of the “color polarizability” of a jet (see below).
Detailed discussion of these topics can be found in the review [3].



Evolution Equations for Intrajet Cascades 145

6.2 MLLA Evolution Equations for

Intrajet Cascades

When studying angular insensitive characteristics of partonic systems, such
as mean multiplicities and multiplicity fluctuations, energy particle spectra
and correlations etc., one is allowed to replace the full angular kernel V (~n)
in (6.11) by its azimuth averaged analog (6.14). In this case the strict AO
makes it possible to construct simple Evolution Equations for GFs.

The system of two coupled equations for functionals ZF and ZG describing
parton content of quark and gluon jets with initial momentum p and the
opening angle Θ reads (A,B,C = F,G):

ZA(p,Θ; u(k)) = e−wA(pΘ)uA(k=p) +
1

2

∑

B,C

Θ∫
dΘ′

Θ′

1∫

0

dz e−wA(pΘ)+wA(pΘ′)

×αs(k
2
⊥)

2π
ΦBC

A (z) ZB(zp,Θ′; u) ZC((1−z)p,Θ′; u). (6.15)

The first term in the r.h.s. corresponds to the form factor damped situation
when the A-jet consists of the parent parton only. The integral term describes
the first splitting A → B + C with angle Θ′ between the products. The
exponential factor provides this decay being the first one indeed: it is the
probability to emit nothing in the angular interval between Θ′ and Θ. The
two last factors account for the further evolution of the produced subjets B
and C having smaller energies and smaller Θ′ as the opening angle.

MLLA Form Factors look as follows (cf. (1.96)):

wF =

Θ∫
dΘ′

Θ′

1∫

0

dz
αs(k

2
⊥)

2π
ΦF

F (z) , (F = q, q) ; (6.16a)

wG =

Θ∫
dΘ′

Θ′

1∫

0

dz
αs(k

2
⊥)

2π

[
1

2
ΦG

G(z) + nfΦ
F
G(z)

]
. (6.16b)

Collinear and soft singularities which are present in (6.15)–(6.16b) may be
regularized by imposing usual for PT restriction on relative transverse mo-
mentum of produced partons, which we shall write here in the following form:

k⊥ ≈ p z (1 − z) Θ′ > Q0 . (6.17)
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The Master Equation which we shall exploit actively for studying prop-
erties of QCD jets in the next Chapter can be derived from (6.15) by differ-
entiating the product

ZA(Θ) ewA(pΘ)

over Θ. Then, making use of (6.16) one arrives at the system of two coupled
differential equations for GFs, which are free from the DL form factors:

d

d lnΘ
ZA(p,Θ) =

1

2

∑

B,C

∫ 1

0

dz ΦBC
A (z) · αs(k

2
⊥)

2π

×
[
ZB(zp,Θ)ZC((1−z)p,Θ) − ZA(p,Θ)

]
.

(6.18)

Equations (6.18) accumulate information about azimuth averaged jet charac-
teristics in the MLLA and look similar to the GLAP regularized equations
for single-inclusive parton distributions (see Chapter 1). Taking the nth vari-
ational derivative of ZA with respect to the probing functions u(ki) near the
“point” u=0 one gets the exclusive n-parton cross sections. An expansion of
ZA at the “point” u=1 generates inclusive parton distributions and correla-
tions. In a close analogy with Section 5.4.2 where GFs for gluon and quark
jets have been constructed in the DLA, the MLLA jet functionals have two
important properties:

The Initial condition for solving the system (6.18) reads (cf. (5.34))

ZA(p,Θ; {u})|pΘ=Q0
= uA(k = p). (6.19)

The A-jet with the hardness parameter pΘ which is set to the boundary value
Q0 where the PT-evolution starts, consists of the only parent parton A. This
natural condition is clearly seen from the integral Evolution Equation (6.15)
where the second term disappears at pΘ = Q0 together with the form factor
in the Born term:

wA(Q0) = 0 .

The Normalization property of GF, known from our DLA experience
(cf. (5.37)), is the second condition

ZA(p,Θ; {u})|u(k)≡1 = 1
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which can be also easily checked. Indeed, putting Z ≡ 1 and u ≡ 1 in (6.15),
one obtains integral equations for quark and gluon form factors

ewA(pΘ) = 1 +
1

2

∑

B,C

Θ∫
dΘ′

Θ′

1∫

0

dz
αs(k

2
⊥)

2π
ΦBC

A (z) ewA(pΘ′) (6.20)

which lead directly to the MLLA expressions (6.16) for the total parton decay
probabilities.

All the properties 2 of a system of jets produced in some hard interaction
can be derived (within the MLLA accuracy) by applying variational deriva-
tives to the proper product of GFs. For example, for e+e− annihilation to
hadrons at energy W = 2E, which is dominated (provided no special event
selection is imposed) by two-jet configuration, one has

Ze+e−(W ; {u}) = [ZF (E,Θ=π; {u})] 2 . (6.21)

6.3 Angular Pattern of Multiple Gluon

Bremsstrahlung

In this Section we intend to provide a reader with a brief description of the
analysis of Feynman diagrams for multiple soft gluon production,

e+e− → qq + g1 + g2 + . . .+ gN , (6.22)

which has lead to the probabilistic Evolution Equations (6.18) for the intrajet
parton cascades, based on the notion of strict AO.

In the LLA for DIS structure functions and e+e− inclusive particle pro-
duction (Chapter 1) we dealt with collinear logs, and substantial partonic
fluctuations consisted of partons with arbitrary energies of the same order
of magnitude (x ∼ 1). Turning to the problem of soft particle production,
we were faced in Chapter 5 with the Double Logarithmic regime, when both
collinear and infrared logs acted on the same ground. Now, in attempts to
improve the DLA description of soft particle multiplication processes, we have
to study the “anti-LLA” kinematics, where N gluons are strongly ordered in
energies but, in the same time, have arbitrary emission angles. This is the
study of the leading infrared singularities.

2angular correlations excluded !
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6.3.1 The BCM Ansatz and the Dipole Scheme

An important step was made by Bassetto, Ciafaloni and Marchesini who
proposed the general answer for exclusive cross sections of soft multi-gluon
production by the color-singlet gg current

“e+e−” → g+g− + g1 + g2 + . . .+ gN .

The corresponding nice expression was suggested in Ref. [4]:

1

σ
dσ(N) =

(
αsNc

π

)N N∏

i=1

dΩi

4π

dωi

ωi

·W ({~ni}) , (6.23)

with W ({~ni}) = a2
+−
∑

perm

(
ai1i2ai2i3 . . . aiN+2i1

)−1
(6.24)

where summations runs over all possible permutations of N+2 indices ik =
+,−, 1, 2 . . .N yielding inequivalent factors. The “relative angles” functions
aik were defined in (6.13). As an example, the angular pattern for the two
soft gluon production reads

W (~n1, ~n2) = a2
+−

[
1

a+1a1−a−2a2+
+

1

a+−a−1a12a2+
+

1

a+−a−2a21a1+

]
.

(6.25)
Equation (6.24) had been checked for N ≤ 3. In higher orders, however,

this ansatz breaks down [2], representing the true result only in the large-Nc

approximation [5].
Meanwhile, within this accuracy, the cross sections (6.24) can be used

to formulate the picture of gluonic cascades, accounting for major coherence
effects. To illustrate the idea of corresponding Monte Carlo algorithm (the
so called “Lund-dipole-scheme”, see Ref. [6]) let us present the cross section
for N=2 in explicitly Lorentz-invariant form as

1

σ
dσ(2) =

(
αsNc

π

)2 2∏

i=1

d3ki

πωi
·
[

(p+p−)

2(p+k1)(k1p−)

(p+p−)

2(p+k2)(k2p−)

+
(p+p−)

4(p−k1)(k1k2)(k2p+)
+

(p+p−)

4(p−k2)(k1k2)(k1p+)

]
. (6.26)

The first term in square brackets is the easiest one to interpret. It is the
product of the two bremsstrahlung factors for independent gluon radiation
by the (+−) current:

1

k2
⊥1

1

k2
⊥2

;
2(kp+)(kp−)

(p+p−)
= ω2(1 − cos Θ)(1 + cos Θ) = k2

⊥ , (6.27)
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where we have taken into account that ~n+ = −~n− in the c.m.s. of the hard
emitters, k⊥ being the transverse component of the gluon momentum ~k with
respect to this axis. Two other terms of (6.26) we can rearrange as follows:

(p+p−)

2(k1p+)(k1p−)

[
(k1p+)

2(k2k1)(k2p+)
+

(k1p−)

2(k2k1)(k2p−)

]
=

(
1

k2
⊥1

)

(+−)

[(
1

k2
⊥2

)

(1+)

+

(
1

k2
⊥2

)

(1−)

]
. (6.28)

Now we can treat this result as an independent emission of g1, followed by
the radiation of softer g2 by two newly formed color dipoles (1+) and (1−).
Bremsstrahlung factors are once again the inverse squared transverse momen-
tum of g2 but evaluated in the c.m.s. frames of corresponding emitters. The
N = 2 system will act as an ensemble of (N+2)(N+1)/2 = 6 dipoles with
respect to subsequent radiation of g3 etc. We will come back to the dipole
picture later in Chapter 9.

6.3.2 Construction of the Probabilistic Scheme

Placing no restrictions upon the angular pattern of multi-gluon ensembles,
one gets in the N th-order the whole series of subleading corrections to the
DLA, which we can display symbolically as:

σ(N) = αN
s `N

(
tN + tN−1 + . . .+ t+ const

)
. (6.29)

where ` and t denote the energy and angle logs as before.
How to deal with this structure? Increasing N order by order, we shall

analyze the leading infrared contributions to the Anomalous Dimension (6.3),
describing elementary parton decays responsible for the internal structure
of a jet according to (6.2). As we shall show, by an appropriate choice of
the evolution parameter, the PT-series (6.29) corresponding to a single jet
development can be written as

∑

N

σ(N) = exp





t∫
γ(αs(t

′)) dt′





with γ(αs) = αs`+ (αs`)
4 + . . . ≈ √

αs + α2
s + . . . (6.30)

To be more precise, this means that essentially all subleading angular logs are
embodied in simple iterations of the elementary one-gluon emission process
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together with the leading DLogs (αs` term of (6.30)). (As we know from our
DLA experience, such iterations correspond to the exponential form of the
GF of a jet.)

Extra term (αs`)
4 in the Anomalous Dimension (6.30) appears in the

4th loop. In the language of the MLLA Evolution Equation, it induces a
new contribution to the r.h.s. of (6.15), in addition to the product of two
Generating Functionals ZB·ZC , which the product of five Z-functionals.

Soft amplitudes and the gauge choice

The starting point is the construction of multi-gluon amplitudes. In the region
of strongly ordered gluon energies with which we are concerned, this can be
done by successive application of the factorization property (5.17) which we
have seen in operation in the previous Chapter:

M (N) =
∑

i

(eN ·ki)

(kN ·ki)
gs Ti ·M (N−1) , i = +,−, 1, 2 . . . (N − 1) . (6.31)

Here Ti is an appropriate color generator for radiation of the softest gluon
gN off the ith particle of the parton system generated in the previous order of
PT. The square of this amplitude determines the N -particle exclusive cross
section (6.23).

In the DLA the angular pattern function W (N)({~ni}) could be interpreted
by means of probabilistic cascade with the strong AO (Θi+1 � Θi). Now we
are going to show, how by replacing the strong ordering by the strict AO
(Θi+1 ≤ Θi) one gets the subleading Θ-logs of the expansion (6.29) accounted
for.

The amplitude generated by the recurrence relation (6.31) is, clearly,
gauge invariant. It proves to be convenient to choose the physical planar
gauge (5.4) with the gauge vector cµ connected to the c.m.s. of the qq pair,
which we exploited in the previous Chapter studying the DLA parton cas-
cades. Let us recall, that such a choice suppresses the interference graphs
connecting (+) and (−) lines and thus reduces the number of Feynman dia-
grams contributing to W (N) ({~ni}).

The number of topologically nonequivalent Feynman diagrams for
W (N) ({~ni}) can be estimated as

`N ≥ 1

2

N∏

m=1

m(m+ 3)

2
= 1, 5, 45,∼ 700, . . . , for N = 1, 2, 3, 4, . . . .
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In the planar gauge the gluon “i” connecting two harder partons “`” and “m”
in the Feynman diagrams for MM∗ introduces the factor

I i
`m = (kin)2k`µdµν(ki)kmν

(k`ki)(kmki)
=
ai` + aim − a`m

ai`aim
(6.32)

for ` 6= m (“interference” terms), and

H i
` ≡ I i

`` =
(kin)2

(k`ki)2
(k`µdµν(ki)k`ν) =

2

ai`

(6.33)

for ` = m (“self-energy” terms). With these elements we start to construct a
desired probabilistic scheme.

Conditional probability and the “dipole” remainder

N = 1 case
W (1) = CF ·

(
H1

+ +H1
−
)

(6.34)

can be naturally interpreted as the sum of probabilities of independent emis-
sion of g1 by the q and q.

N = 2 Let us list the contributions related to g1-radiation off the q:

1

2
+

−

= CFNc H
1
+ H

2
1 (6.35a)

2

+

1

2

−

= CFNc H
1
+ (−I2

1+) (6.35b)
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1

+

2

2

−

= CFNc H
1
+ (−I2

1−) (6.35c)

2

+

1

2

−

+

+

1

−

= C2
F H

1
+ (H2

+ +H2
−).(6.35d)

The other part (emission of g1 off the q) can be obtained via symmetrization
(+) ↔ (−). The graphs (6.35) have essentially different angular behavior.
The item (a) is singular both at a21 → 0 and a1+ → 0.

When g2 is emitted at large angles, a2+ ≈ a21 � a1+, then I2
1+ ≈ H2

1 (see
(6.32)) and items (a) and (b) cancel each other, reproducing thus the strong
AO of the DLA.

Contrary to (a) and (b), the item (c) has no singularity at all. Strictly
speaking, the pole in I2

1− exists when, e.g., a21 → 0:

I2
1− ∝ sin Θ21/a21 ∼ 1/Θ21 .

But it is reasonable to think of this behavior as non-singular , because such
a pole gives no angular log in the integral cross section. Cancellation of the
singularity of the H1

+-factor in (6.35c) at a1+ → 0 can be made transpar-
ent by rewriting −I2

1− = D2
−[+1], where we introduced the difference of two

interference contributions

Di
l [mn] ≡ I i

lm − I i
ln (6.36)

and used the fact that I2
+− = 0 due to the property of the gauge we have

chosen.
The structures of this type, (6.36), we shall rather often meet in what

follows. It seems natural to call them the “angular dipoles”.
Such non-singular dependence on the angles between any pair of particles

(i, j) we call hereafter the “friability” of a given contribution.
Less evident is another property of the item (c) — its global integrability

over directions of all the gluons involved. We shall call this property the
“ideality” of a contribution. It means that the term under consideration
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contains not a single angular log and describes, therefore, configurations with
all the relative angles being large: Θij ∼ 1.

With help of the formula
∫
dΩi

4π
I i
lm = ln

2

alm
(6.37)

one obtains for the item (c)

∫
dΩ2

4π

∫
dΩ1

4π
H1

+ D
2
−[+1] =

1∫

0

dx

1 − x
ln x ≡ −ζ(2) = −π

2

6
. (6.38)

The ideality of the item (6.35c) is a reason to consider this term as the
“remainder” R, excluding it from the definition of conditional probability V
which we then define as

V 2
1 (+) = H2

1 − I2
1+ =

a2+ + a1+ − a21

a21a2+
. (6.39)

Finally, W (2) gets the following representation:

W (2) = P (2) +R (2) , (6.40)

where P (2) corresponds to the probabilistic scheme

P (2) = CF (H1
++H1

−)·CF (H2
+ +H2

−)+CFH
1
+·NcV

2
1 (+) +CFH

1
−·NcV

2
1 (−) (6.41)

and the remainder R(2) reads

2

−

1

+ +

2 1

−

+ = CFH
1
+NcD

2
−[+1] + CFH

1
−NcD

2
+[−1]

(6.42)
Decomposition (6.40) with the “ideal” remainder R means that in the second
order both leading and subleading angular logs in

σ(2) = α2
s `

2 ·
(
t2 + t+ const

)

have been embodied in the iterative scheme with the V -functions as the an-
gular kernels. Let us remark for completeness, that the H-factors, we put
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for the emission off the quark lines, could be easily rewritten in terms of
V -kernels as well:

H1
+ +H1

− = V 1
+ (−) + V 1

− (+)

Thus, no next-to-leading specific “soft” correction to the Anomalous Dimen-
sion γ(αs) (6.3), which might be as large as

∆γ ∼ α2
s`

2 ∼ αs ,

arisen from the second loop.
The role of the remainder R(2) consists of providing the first “soft” cor-

rection to the Coefficient Function C(αs) (6.4). As we shall see a little later
on, this term contributes to inclusive characteristics of a hard process as
∆C = O(αs).

Hereafter we take the conditional probability V s
f (g) defined by (6.39) as the

basic element for constructing parton cascades in higher orders. As it was
mentioned above, with this choice we’ll be able to substitute effectively the
strong AO by the strict one (see Problem 6.1).

N = 3 Now, with the help of the V -kernels let us write down the main
probabilistic part P (3) accounting for all possible independent and cascade
radiation sequences:

P (3) = P
(3)

0 + P
(3)

1 + P
(3)

2 , (6.43)

P
(3)

0 = CFH
1
+

[
CF (H2

+ +H2
−)·CF (H3

+ +H3
−)
]
, (6.44a)

P
(3)

1 = CFH
1
+

[
CF (H2

++H2
−)·NcV

3
1 (+) + CFH

2
+ ·NcV

3
2 (+)

+CFH
2
− ·NcV

3
2 (−) +NcV

2
1 (+) ·CF (H3

++H3
−)
]
, (6.44b)

P
(3)

2 = CFH
1
+

[
NcV

2
1 (+) ·NcV

3
1 (+) +NcV

2
1 (+) ·NcV

3
2 (1)

]
. (6.44c)

Symmetrization (+) ↔ (−) is implied.

Each of P
(3)

i corresponds to a certain sequence of gluon emissions:

P
(3)

0 is independent radiation of g1, g2, g3 by q+ and q−;
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P
(3)

1 describes three similar processes
with two independently emited
gluons, one of which produces
one softer parton starting thus
to form its own subjet (H i

+,− ≡
H i

++H i
−),

CFH
3
+−⊗

2

+

−

1

CFH
2
+− ⊗

3

+

−

1 CFH
1
+− ⊗

3

+

−

2

P
(3)

2 consists of one subjet g1 formed by

1. emissions of g2 and g3,
restricted by the direction
of their common grandpa q+

2. the 3-step cascade with
successively decreasing
opening angles 1→2→3.

1

+

−

32

3+

−

1

2

The remainder R (3) contains contributions of the two different types:

R (3) = R (3)
α +R

(3)
β . (6.45)

Here R
(3)
α =

(
R (2)

)′
represents the cascade development of the partons in-

volved in R (2); the new irreducible interference structures R
(3)
β are listed
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below:

3
+

−

2

1
=

1

2
CF N

2
c H

1
+ V

2
1 (+) D

3
+[12] (6.46a)

33

−

+

1

21

2

+

−

=
1

2
CF N

2
c

{
H1

+ V
2
+ (1) D

3
1[+2]

H2
+ V

1
+ (2) D

3
2 [+1]

(6.46b)

3 3

1

−

1

+

2

−

+

2

=
1

2
CFN

2
c





H1
+H

2
−

(
D3

2 [+1]−D3
−[+1]

)

H1
−H

2
+

(
D3

1[+2]−D3
−[+2]

)

(6.47)

3

+

2

−

1 =
1

2
CF N

2
c H

1
+ V

2
1 (+) D

3
−[12] (6.48a)

33

−

+

1

21

2

+

−

= −1

2
CFN

2
c

{
H1

+ V
2
+ (1)D

3
−[2+]

H2
+ V

1
+ (2)D

3
−[1+]

(6.48b)

This remainder, similar to the N=2 case, proves to have both the properties
of friability and ideality.
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Let us summarize the result for

W (3) ({~ni}) = P (3) +
(
R (2)

)′
+R

(3)
β . (6.49)

The set of Feynman graphs have been split into

P (3) — the probabilistic part, describing independent and cascade emissions
of g1, g2 and g3 (the V -scheme);

(
R (2)

)′
— the first expansion term of the product of evolution exponents
Z2

FZG′ZG′′ describing “4-jet events” with two soft gluon “jets” produced
at large angles with respect to the qq -pair (“renormalization” of the
remainder of the previous order);

R
(3)
β — the new irreducible dipole structure playing the role of the Born

term for “5-jet events” Z2
FZG′ZG′′ZG′′′ (3 additional soft gluons at large

angles).

Now we can repeat the resumé made at the end of the previous paragraph.
Namely, the decomposition (6.49) with the “ideal” remainder R shows that
in the third order all angular logs in

σ(3) = α3
s `

3 ·
(
t3 + t2 + t+ const

)

have been fully accounted by our iterative scheme. Consequently, no next-to-
next-to-leading specific “soft” correction to the Anomalous Dimension γ(αs)
(6.3) arose, which might be of the order of

∆γ ∼ α3
s`

3 ∼ (αs)
3/2.

The remainder R(3) provides the next “soft” correction to the Coefficient
Function ∆C∼(αs)

3/2.

6.3.3 Jet Polarizability and Color Monsters

The V -scheme has been checked for N=4 as well [2]. It is straightforward to
write down all the contributions to P (4). To do that, one has to list all possible
two-parton decay sequences and ascribe to them corresponding probabilities
according to the V -scheme (cf. (6.44) for N=3).

After P (4) has been singled out, one is left with a cumbersome series of
functions depending on the momentum directions of four gluons. The next
step consists of separating out the singular pieces which are divergent when
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one of the relative angles vanishes. It can be easily seen, that such terms
appear only from collinear emissions from the partons that were involved in
building up the remainders of previous PT-orders:

R(4)
α =

(
R(2)

)′′
+
(
R

(3)
β

)′
.

Then comes the time to check the character of the remaining irreducible R
(4)
β

contribution. It clearly satisfies the property of friability (all one-particle
singularities were removed), and the question is about its ideality, i.e. whether
it is completely integrable over angles. This was the case, as we have seen
above, for N=3.

Now, however, the situation changes: R
(4)
β turns out to be non-ideal

owing to specific interference between the quark and four gluons with small
relative angles of the same order

Θ+i ∼ Θik ∼ Θ � 1 i, k = 1, 2, 3, 4 (i 6= k) . (6.50)

It is important to notice, that these peculiar contributions, which spoiled the
ideality for N=4, happen to have nontrivial color factor CF Nc. Such factor
originates from non-planar graphs having color topology of a crossed gluonic
square. Examples of the monster graphs are shown in Fig. 6.1.

33

3 4

4

4

2

−

+

1

−

2

+

2

1

−

+

1

+1
4
CF CV−1

4
CF CV −1

4
CF CV

Figure 6.1: Examples of the monster graphs with corresponding color factors.

To make it clear, that CFNc did not come from an interplay of four color
charges, e.g., as CFN

2
c (Nc−2CF ), it is helpful to replace the outer quark pair

by hard gluons, to arrive at the same conclusion:

{
R

(4)
β

}non−ideal

∝ CA ·Nc

for partons of an arbitrary type A (arbitrary representation of the SU(Nc))
forming the original (+−) loop. Thus, having radiated four extra gluons, we
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are left with only the second power of color charges, which clearly breaks
down the naive expectations based on the picture of independent successive
gluon emissions.

That is the reason, we call these contributions the “color monsters”. The
monsters have supplied us with an extra elementary parton branching pro-
cess, contributing to the Anomalous Dimension (6.30), which corresponds to
radiation by the quark (or by the parton A, in general) of an “unresolvable”,
compact in the angular space (according to (6.50)), group of soft gluons.

Obviously, the total monster contribution to the cross section is gauge
invariant since it has a unique color structure. Therefore one can select, once
again, the most convenient gauge to analyze it.

The axial gauge p−µA
a
µ = 0 where there are only 15 monster diagrams

(much less than in the planar gauge) proves to be suitable for that.
The full monster contribution can be represented in a compact way with

help of the two following graphs:

3
4

−

+

2

1

= CF Nc H
1
+ V

2
1 (+) D

3
+[12] D

4
+[12] (6.51a)

3 4

+

1

2

−

= CFNc

{
H1

+ V
2
+ (1) D

3
1 [+2] D

4
1 [+2]

H2
+ V

1
+ (2) D

3
2 [+1] D

4
2 [+1]

(6.51b)

It is implied, that the expressions for conditional probabilities V and dipoles
D in (6.51) are written in the axial gauge (see Problem 6.2). To single out the
monster contribution to γ we restrict ourselves to small gluon angles (6.50)
with respect to the (+) direction. Then expressions for V and D coincide
(up to negligible powers of Θ) with those in the planar gauge, we are familiar
with. Then taking the integrals over directions ~n3 and ~n4 in (6.51a)

∫
dΩ3

4π
D3

+[12] = ln
a1+

a2+

, (6.52)
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for the divergent piece of the monster contribution we obtain:

dΩ1

4π
H1

+

∫
dΩ2

4π
V 2

1 (+) ln2 a1+

a2+

=
da1+

a1+




1∫

0

dx

1 − x
ln2 x+

1∫

a1+/2

dx

1 − x
ln2 1

x




≈ 4ζ(3)· da1+

a1+
. (6.53)

Two monsters of (6.51b), differing by the energy order of horizontal gluon
lines, give the same contribution each.

Now it becomes transparent, what has happened when we added the
fourth soft gluon. Graphs of (6.51), but with one dipole instead of two,
we have had already at N =3, see (6.46). The reason, why those remainder
contributions were “ideal”, is clear from (6.53): without having squared the
dipole logarithms, the two terms in the integrand canceled at a1+ = 0 thus
preventing the divergency of the last angular integration.

It seems helpful to invoke the following physical analogy. A “dipole”
correction looks like an interaction between the color charge of one jet with
the color dipole moment of the other one. When momenta of the partons
m and n become parallel, the “dipole” structure Di

l[mn] defined by (6.36)
vanishes, as an ordinary dipole moment does when opposite charges come
close to each other.

Following this physical analogy all the terms of the remainders R
(2)
β and

R
(3)
β could be looked upon as various interactions between the color charge of

one jet with the color dipole moment of the other one (only except the term
(6.47) which looks like a dipole-dipole interaction). Integrating over angles

we get vanishing average color dipole momenta
〈
~d
〉

= 0 which ensures the

ideality of remainders.
In terms of our analogy the monsters (6.51) differ substantially: each of

them contains a double interaction of one parton with color dipole of a two-
parton subjet. But now the square of the dipole moment has a finite average

value
〈
~d· ~d
〉
6=0 because the second interaction, mediated by g4, feels a color

moment induced by the first one (g3). Thus it is “color polarizability” of a
jet which gives rise to monster contributions to the Anomalous Dimension.

6.3.4 Magnitude of Dipole Corrections

Let us take the mean multiplicity of e+e− annihilation as a testing ground
for getting estimate of magnitude of the first dipole correction (6.42). The
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contribution arises when the registered particle comes from the softest of
the dipole jets (g2); other cuts are to be canceled by corresponding virtual
corrections.

After integrating over the directions of g1 and g2 (see (6.38)) and taking
into account that the jet 2 has large opening angle Θ2∼1 one gets

∆Ne+e−(E = W/2) = 2CFNc

(
−π

2

6

) E∫
dk1

k1

αs

2π

k1∫
dk2

k2

αs

2π
NG(k2) , (6.54)

where NG(k2) denotes the multiplicity originated from g2. Estimating the
energy integrals as

k∫
dk′

k′
NG(k′) ≈ 1

γ0
·NG(k)

we obtain
∆Ne+e−

Ne+e−
= −N2

c

π2

6

(αs/2π)2

γ2
0

= −Ncαs(E)

2π

π2

24
. (6.55)

Equation (6.55) displays the relative smallness of the dipole contribution.
Since it proves to be the next-to-next-to-leading correction of the expansion
(6.4), the first subleading term in the Coefficient Function, i.e. that of the
order of

√
αs is under the full control of the MLLA Equations (6.18).
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Problem 6.1 Check the main property (6.14) of the conditional probability
function V s

f (g).

Solution:
After averaging over the azimuthal angle of ~ns with respect to ~nf

∫
dφs(f)

2π

1

asg

=
1

|afg − asg|
,

∫
dφs(f)

2π
V s

f (g) =
1

asf

(
1 +

afg − asf

|afg − asf |

)
(6.56)

one gets immediately:

〈
V s

f (g)

〉
=

2

asf

·ϑ (Θfg − Θsf) ,

which means that the MLLA gluon emission probability coincides with the
DLA one inside the bremsstrahlung cone and vanishes outside it.

Problem 6.2 Derive angular functions corresponding to conditional proba-
bilities V and dipoles D in the axial gauge p−µA

a
µ = 0.

Answer:

I2
1+ =

a1−
a21a2−

+
a+−
a2+a2−

− a1+

a21a2+
,

V 2
1 (+) =

a1+

a21a2+
+

a1−
a21a2−

− a+−
a2+a2−

.

To study the anomalous dimension of the (+) jet we should take all the gluon
angles with respect to ~n+ to be small. Then, a1−≈ a2−≈ a+−(= 2) and we
come back to the planar gauge expressions.
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7.1 Evolution Equation for Particle

Spectra

The MLLA Evolution Equation for particle spectra following directly from
(6.18) reads:

d

d lnΘ
xD

B

A(x, lnEΘ) =
∑

C=q,q,g

1∫

0

dz
αs(k

2
⊥)

2π
ΦC

A(z)
[x
z
D

B

C

(x
z
, ln zEΘ

)]
,

(7.1)
where E,Θ are energy and opening angle of a jet A, ΦC

A stand for the regu-
larized DGLAP kernels, k⊥ ≈ z(1 − z)EΘ ≥ Q0. Introducing the notation

` = ln
E

k
= ln

1

x
, y = ln

kΘ

Q0

, Y = ln
EΘ

Q0

= y + ` ,

one arrives at a compact integro-differential equation

d

dY
Dω(Y ) =

∞∫

0

d`e−ω` Φ(`)
αs(Y − `)

2π
Dω(Y − `) (7.2)

for the Mellin-transformed distributions

Dω(Y ) =

1∫

0

dx

x
xω
[
xD(x, Y )

]
. (7.3)

Equation (7.2) generalizes the LLA equation for moderate x’s (ω ∼ 1) over
the region of parametrically small momenta x� 1 (ω ∼ 1/

√
Y � 1).

Indeed, neglecting `� Y in the arguments of αs and D in (7.2) one would
get the standard Evolution Equation

d

dY
Dω(Y ) =

αs(Y )

2π
Φ̂(ω) Dω(Y ) . (7.4)

As we have discussed in Chapter 1, diagonalization of the kernel matrix Φ̂
results in the two “trajectories”

ν±(ω) =
1

2

(
ΦG

G + ΦF
F ±

√
(ΦG

G − ΦF
F )2 + 8nfΦ

G
F ΦF

G

)
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that determine the anomalous dimensions of two operators arising from mix-
ing of g and q states:

γ±LLA(ω, αs) =
d

dY
lnD±(ω, Y ) =

αs(Y )

2π
ν±(ω) .

At x� 1 the trajectory ν+(ω), singular at ω ≡ j−1 = 0,

ν+(ω) =
4Nc

ω
− a+O(ω) , a =

11

3
Nc +

2nf

3N2
c

, (7.5)

gives the main contribution to D(x, Y ).
The following chain of transformations makes it possible to express the

nonlocal, in Y , MLLA equation (7.2) in terms of the known LLA trajectories

with the differential operator Ω̂ = ω + d/dY as an argument of Φ(j) :

d

dY
Dω(Y ) =



∞∫

0

d` Φ(`) e−`(ω+d/dY )


 αs(Y )

2π
Dω(Y ) = Φ(Ω̂)

αs(Y )

2π
Dω(Y )

(7.6)
or after the diagonalization

d

dY
D±ω (Y ) = ν±(Ω̂)

αs(Y )

2π
D±ω (Y ) .

Using expansion (7.5) one obtains for the leading contribution
(
ω +

d

dY

)
d

dY
D+ = 4Nc

αs

2π
D+ − a

(
ω +

d

dY

)
αs

2π
D+ (7.7)

Introducing anomalous dimension as follows

D+
ω (Y ) = D+

ω (Y0) · exp

{∫ Y

Y0

dy γω(αs(y))

}
, (7.8)

one finally arrives at the MLLA equation for γ which clearly possesses the
necessary RG property of locality:

(ω + γω)γω − 4Ncαs

2π
= −β(αs)

d

dαs
γω − a (ω + γω)

αs

2π
, (7.9)

where β(αs) = d
dY
αs(Y ) ≈ −bα2

s/2π , b = 11
3
Nc− 2

3
nf .

The first term in the right hand side of (7.9) proportional to the β-function
keeps trace of the running coupling effects while the second accounts for the
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“hard SL correction” to the DLA soft emission, see (7.5). Both prove to be√
αs corrections to the left hand side which is of the order αs. Within the

DLA accuracy the known anomalous dimension comes immediately:

(ω+γω) γω − γ2
0 = 0 , γDLA

ω (αs) =
1

2

(
−ω +

√
ω2+4γ2

0

)
; (7.10a)

where γ2
0 = γ2

0(αs) ≡ 4Nc
αs

2π
. (7.10b)

This simple algebraic exercise replaces rather serious calculations one is
forced to perform in the framework of conventional RG approach, summing
up the series

∑∞
k=0 ck(αs/ω

2)k, which represented in fact expansion for the
square root (7.10).

The Evolution Equation approach we are discussing proves to be even
more efficient for the derivation of the MLLA result which follows from (7.9)

γ = γDLA +
αs

2π

[
−a

2

(
1 +

ω√
ω2 + 4γ2

0

)
+ b

γ2
0

ω2 + 4γ2
0

]
+O(α3/2

s ) . (7.11)

7.2 Analytic Solution

One can solve the differential equation (7.7) explicitly, reducing it to the con-

fluent hypergeometric equation [1] for the product αs(Y )D(Y ). With account
of initial conditions the solution reads:

D+(ω,Y,λ) =
Γ(A+1)

Γ(B+2)
z1 z

B
2 { Φ(−A+B+1, B+2,−z1) Ψ(A,B+1, z2)

+ez2−z1 (B+1) Ψ(A+1, B+2, z1) Φ(−A+B+1, B+1,−z2)} · Cf
i (7.12)

where we have used the notation

A =
4Nc

bω
, B =

a

b
, λ = ln

Q0

Λ
; (7.13a)

z1 = ω (Y + λ) , z2 = ωλ . (7.13b)

Indices i and f in (7.12) stand for the initial parton generating the jet
(i = q, g) and the final one spectrum which is studied (f = q, g). In the
leading approximation the coefficient functions Cg

i are simply

Cg
g = 1 , Cg

q =
Cf

Nc
=

4

9
.
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Next-to-MLLA corrections to coefficient functions will be discussed below.
Let us now consider (7.12) in more details. To reconstruct the x-distribution
one has to perform the inverse Mellin transformation

[
x D(x, Y )

]
≡ D(`, Y, λ) =

∫ ε+i∞

ε−i∞

dω

2πi
x−ω D+(ω, Y, λ) (7.14)

where the integral runs parallel to the imaginary axis to the right from all
singularities of the integrand in the complex ω-plane (if any). The confluent

hypergeometric functions Φ(z) and Ψ(z) have the following properties [1].

• The differential equation for the confluent hypergeometric functions
reads

z
d2y

dz2
− (z − c)

dy

dz
− ay = 0 . (7.15)

• The solution y1 = Φ, regular in the complex z-plane, is given by power
series

Φ(a, c; z) =
∞∑

n=0

(a)n

(c)n

zn

n!
(7.16)

where (x)n ≡ x(x+ 1) · · · (x+ n− 1) = Γ(x+ n)/Γ(x) .

• Its asymptotic behavior is

Φ(a, c; z) ≈ Γ(c)

Γ(a)
ezza−c , Re z → +∞ (7.17a)

Φ(a, c; z) ≈ Γ(c)

Γ(c−a)(−z)
−a , Re z → −∞ (7.17b)

• The following Kummer relation holds for Φ(z):

Φ(a, c; z) = ez Φ(c− a, c;−z) . (7.18)

• A second solution of (7.15)

y2 = z1−c Φ(a− c+ 1, 2 − c; z)

can be combined with y1 to get the solution regular at infinity:

Ψ(a, c; z) = z1−c Γ(c−1)

Γ(a)
Φ(a−c+1, 2−c; z) +

Γ(1−c)
Γ(a−c+1)

Φ(a, c; z)

(7.19)

Ψ(a, c; z) ∝ z−a ; |z| → +∞ , arg(z) < π . (7.20)
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• Being singular in the origin, Ψ has a cut running along the real axis to
the left from the branching point z = 0.

The expression (7.12) proves to be regular in the finite ω-plane1 in spite
of cuts in each of Ψ(z1) and Ψ(z2) terms. There are no poles due to the
Γ(A+ 1) = Γ(4Nc/bω) factor despite the fact that poles might seem to occur
at first glance. To see this one has to invoke (7.19) to get two equivalent
expressions for D+:

D+(ω, Y, λ) = e−z1

{
z1

A

B(B+1)
Φ(A+1, B+2; z1)Φ(A−B, 1−B; z2)

+

(
z2
z1

)B

Φ(A−B,−B; z1) Φ(A,B+1; z2)

}
(7.21a)

D+(ω, Y, λ) =
Γ(1−A)

Γ(−B)
(−z1)B

{
− 1

B
Ψ(−A,−B,−z1) Φ(A−B, 1−B, z2)

+ ez2−z1Φ(A−B,−B, z1) Ψ(1−A, 1−B,−z2)
}

(7.21b)

As a consequence of analyticity of D+ in the ω-plane which becomes explicit
now with help of (7.21a), the result of ω-integration would vanish when the
integrand of (7.14)

x−ωD+ = eω`D+ (7.22)

decreases either at Re z→ +∞ or Re z→−∞ where the ω-contour can be
moved. This happens indeed in two cases when

` < 0, where for Reω→+∞ according to (7.17), (7.20) we have (pw denotes
the power dependence on ω and the subscripts give references to the
relevant representations for the integrand)

eω`
{

pw
[7.17b]

·pw[7.20] + e−ωY pw[7.20] ·pw
[7.17b]

}
[7.12]

∼e−ω|`|→0

(7.23)

` > Y , for Reω→−∞

eω`
{

pw[7.20] ·pw
[7.17b]

+ e−ωY pw
[7.17b]

·pw[7.20]

}
[7.21b]

∼e−|ω|(`−Y )→0

(7.24)

1This is a natural consequence of the analytical way, ω enters the differential equation
(7.9) for the anomalous dimension
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As one can easily see from (7.23), the second term in D+ in the form of (7.12)
does not contribute to the answer in the whole physical region 0 ≤ ` ≤ Y , so
we are left with

xD
f

i (x, Y, λ)=
4Nc(Y+λ)

bB(B+1)

ε+i∞∫

ε−i∞

dω

2πi
x−ωΦ(−A+B+1, B+2,−ω(Y+λ))·K , (7.25)

where K ≡ K(ω, λ) =
Γ(A)

Γ(B)
(ωλ)BΨ(A,B + 1, ωλ) · Cf

i .

As we shall see below, the restored x-spectrum of partons exhibits the above-
mentioned “hump-backed” structure with a maximum at particle energies
approaching asymptotically

√
Ejet:

ln

(
1

xmax

)
= Y


1

2
+ a

√
αs(Y )

32Ncπ
− a2 αs(Y )

32Ncπ
+ . . .


 . (7.26)

7.3 Developed Cascade and LPHD

Hypothesis

Besides the jet energy E and the QCD parameter Λ the parton spectrum
(7.25) contains one more dimensional quantity Q0 that regularizes collinear
divergences. This quantity represents the minimal value of the relative k⊥ of
decay products in jet evolution. Q0 also bounds parton energies Ep = xE ≥
k⊥/ ≥ Q0, thus playing the role of an “effective mass” of a parton.

The choice of Q0 value sets a formal boundary between two stages of
jet evolution: the one of the parton branching processes, which is controlled
by PT, and then the stage of non-PT transition into hadrons. In essence,
“partons” and “hadrons” are complementary languages. So, if the theory
of hadronization would exist, the result would be independent of the formal
quantity Q0 separating the two stages.

As a matter of fact, for large enough Q0 the number of partons produced
at recent energies is certainly small. So, one is forced to apply for some ad hoc
hadronization model describing the multihadron production as the evolution
“below Q0” of a partonic system with large invariant masses of all parton
pairs. Unfortunately an experimental verification of such results look rather
like a tuning of parameters of a phenomenological model than a test of QCD
predictions.



172 MLLA Hump-Backed Plateau

At the same time, after an intense look at (7.25) an opportunity to make
a model independent prediction may be found. The inclusive distribution of
hadrons can be represented by a similar formula with the K-factor replaced
by the product

Kh(ω) = K(ω, λ) · Ch(ω, λ;Mh, J
PC) ,

where Ch(ω) is a Mellin-transformed parton fragmentation function Ch(z).
In the kinematic region of relatively soft particles which we are interested
in the essential values of ω under the integral in (7.25) are small: ω � 1
(near the maximum — parametrically small: ω ∼

√
αs(Y )). Therefore, to

understand how hadronization affects the spectrum shape one needs to know
the behavior of Kh at ω → 0.

(i) The singular behavior of the “matrix element” Kh, say, Kh(ω)∝1/ω+. . .
corresponds to the physical picture where each colored parton produces
hadrons with a plateau-like energy distribution: Ch(z)∝ 1/z. In such
a case the dip at small x which is characteristic for partonic spectra
would never manifest itself in hadronic distributions.

(ii) The regular behavior K→const corresponds to a local , in phase space,
blanching and hadronization of partons which we have argued for in
Chapter 1. In this case hadron and parton spectra prove to be similar.

It is the choice of the soft confinement scenario (ii) that forms the core idea

of the Local Parton-Hadron Duality hypothesis [2,3] which stemmed from the
preconfinement properties of QCD cascades [4].

It is perhaps surprising to see the x-dependence of xD
h
(x) being given

completely by means of the PT evolution. Non-PT effects could smear parton
distributions over a finite interval ∆ ln(1/x)∼ 1. This is however the higher
order effect from the MLLA point of view. It is important to mention that
one should not expect a one-to-one match between patrons and hadrons event
by event, but only in their average behavior as well as in fluctuations around
the average. Thus, the overall normalization factor remains the only arbitrary
parameter. It may be fixed, e.g., by fitting the average multiplicity at some
energy E0. Whether or not present jet energies are sufficiently large for LPHD
to be applied, is of course a question to experiment. So far, the experimental
evidence suggests that LPHD works rather well.

The parton spectrum (7.25) has an interesting property supporting the
LPHD hypothesis. Namely, at very high energies when the typical value of
the product ωλ∼λ/

√
Y becomes small, the shape of the spectrum becomes
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insensitive to the value of Q0:

K(ω, λ) ≈ 2

Γ(B)

(z0
2

)B

KB(z0) = const at ωλ�1 ; z0≡
√

16Ncλ

b
(7.27)

with KB(z) the Mackdonald function (Modified Bessel function of the third

kind [5]). Therefore one can study the shape of energy spectra of well de-
veloped partonic cascades by use of a simplified version of the main formula
(7.25) where one takes λ = 0. In this limit any influence of the factor (7.27)
disappears,

K(ω, 0) = 1 ,

and, omitting the Cf
i factor, we arrive at the expression which we shall refer

to hereafter as the limiting spectrum D
lim

(`, Y ) ≡ x D
lim

(x, Y ):

D
lim

(`, Y ) =
4Nc Y

bB(B+1)

ε+i∞∫

ε−i∞

dω

2πi
x−ω Φ(−A+B+1, B+2,−ωY )

=
4Nc Y

bB(B+1)

ε+i∞∫

ε−i∞

dω

2πi
x−ωe−ωY Φ(A+1, B+2, ωY ) . (7.28)

These two representations are equivalent because of the Kummer relation
(7.18). As we see, when the bremsstrahlung cascade is developed enough, the
shape of resulting energy distribution of particles becomes insensitive to the
processes occurring at the last steps of PT evolution (at k⊥∼Q0). This ob-
servation may justify an attempt to provide the developed cascade not with
an expensive increase of total energy E but with decrease of Q0, thus enhanc-
ing the responsibility of PT QCD for jet evolution at recent energies [3,6].
In some sense the limiting choice Q0 ≈ Λ can be looked upon as a specific
attempt to model confinement for production of light hadrons.

We are discussing here the simplest model-independent approach to make
analytical predictions for hadron spectra. At the same time the LPHD con-
cept can be quantitatively realized also in framework of various algorithmic
models, see, e.g., Refs. [7–10]. Moreover, there exists a consistent field theo-
retic approach to the physics of color blanching that explicitly exhibits LPHD
properties (the Gribov’s confinement scenario [11]).
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7.4 Mean Parton Multiplicity

Taking the ω = 0 moment in (7.25) one obtains an analytic expression for the
parton multiplicity in terms of modified Bessel functions. The point ω = 0
is a somewhat peculiar one for the integrand of (7.25), where the argument
z of Φ(a, c; z) vanishes while the first parameter a according to (7.13) goes
to infinity. To derive the true limit one has to recall the definition of the
confluent hypergeometric function given by (7.16). Substituting values of
parameters from (7.25) we get

Φ = 1 +

∞∑

n=1

(4NcY/b)
n

(B+2)nn!

(
1−(B+1)

ωb

4Nc

)
· · ·
(

1−(B+n)
ωb

4Nc

)
(7.29)

Then at ω = 0 we arrive at

Φ =
∞∑

n=0

(
4Nc

b
Y

)n

(B + 2)nn!
= Γ(B+2)

(
4Nc

b
Y

)−(B+1)/2

IB+1

(√
16Nc

b
Y

)
, (7.30)

where we have made use of the series expansion for the Modified Bessel func-
tion [5]:

Iν(z) =

∞∑

n=0

(z
2

)2n+ν

Γ(ν + n+ 1)n!
. (7.31)

Finally, the particle multiplicity corresponding to the limiting spectrum (7.28)
reads

N = Γ(B)
(z

2

)−B+1

IB+1(z) , (7.32)

where

z ≡
√

16Nc

b
Y = 2Y

√
4Nc

αs(Y )

2π
= 2Y · γ0(αs) . (7.33)

Following the same lines the general formula for the parton multiplicity at
fixed value of λ can be derived:

N (Y, λ) = x1

(
x2

x1

)B

[IB+1(x1)KB(x2) +KB+1(x1)IB(x2)] , (7.34)

with x1 =
√

16Nc

b
(Y + λ) , x2 =

√
16Nc

b
λ. The first term in square brackets

increases exponentially with
√
Y while the second term decreases. Its role is
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to preserve the initial condition for the jet evolution, namely, N(λ, λ) = 1.
So, at Y > λ it can in fact be neglected. At large values of Y the limiting
multiplicity has asymptotic behavior

N ∝ Y −B/2+1/4 exp

√
16Nc

b
Y

or, in terms of the running coupling,

lnN =

√
32πNc

αs(Y )

1

b
+

(
B

2
− 1

4

)
lnαs(Y ) +O(1). (7.35)

Let us remind the reader that because of the destructive soft gluon interfer-
ence the first term in (7.35) is reduced by a factor 1/

√
2 relative to the case

of incoherent QCD cascades.

7.5 Shape of the Limiting Spectrum

Now we are going to study properties of the limiting spectrum (7.28). Since,
as we have mentioned above, the developed PT cascade itself makes the shape
of particle energy spectra infrared safe, it seems reasonable to start with
comparing observed hadron spectra with the limiting parton distribution.

Equation (7.28) has been derived as asymptotically accurate. However,
even for moderate energies it can be believed to give reasonable quantitative
predictions because it represents the exact solution of the Evolution Equa-
tion (7.1) which accounts for the main physical ingredients of parton mul-
tiplication, namely, color coherence and energy balance in 2-particle QCD
branching.

7.5.1 Gaussian Approximation

As we know from Chapter 5, at asymptotically high energies the inclusive
distribution of partons is predicted to be Gaussian in lnx, with the peak
positioned at ≈ 1

2
lnE and with the width proportional to (lnE)3/4. This

hump-backed plateau is among the fundamental predictions of perturbative
QCD. One may find the asymptotic shape of limiting distribution by the
saddle-point evaluation of the spectrum moment representation treating Y as
a large parameter:

D(`, Y ) ≈ N (Y )

(
36Nc

π2bY 3

)1/4

exp

[
−
√

36Nc

b

(`− ln 1/xmax)
2

Y 3/2

]
. (7.36)
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This Gaussian distribution (7.36) can be written in a compact form

D(`, Y ) ≈ N (Y )

σ
√

2π
exp

[
−1

2
δ2

]
(7.37)

in terms of the dispersion σ and the mean value of ln(1/x), ` (which coinsides
with the peak position in this approximation)

` ≡ 〈`〉 , δ ≡ (`− `)/σ (7.38a)

σ2 ≡
〈
(`− `)2

〉
=
〈
`2
〉
− `

2
. (7.38b)

As we know, the MLLA effects soften the spectrum by shifting the asymptotic
DLA peak prediction ` = 1

2
Y to larger values ` = (1

2
+c

√
αs+· · · )Y . The very

shape of Gaussian is also affected by MLLA corrections. A transparent way
to encode these effects not too far from the peak (δ <∼ 1) has been proposed
in Ref. [12] by means of a distorted Gaussian

D(`, Y ) ≈ N (Y )

σ
√

2π
exp

[
1

8
k − 1

2
sδ − 1

4
(2 + k)δ2 +

1

6
sδ3 +

1

24
kδ4

]
(7.39)

with s and k the skewness and the kurtosis of the distribution [13] defined
as:

s ≡ 〈(`− 〈`〉)3〉
σ3

= κ3 , (7.40a)

k ≡ 〈(`− 〈`〉)4〉
σ4

− 3 = κ4 . (7.40b)

For the Gaussian distribution s and k vanish together with all other higher
reduced cumulants κp which are closely connected with structure of the Mellin-
transformed spectrum:

lnDω(Y ) = lnN − ` ω +
1

2
σ2ω2 +

∞∑

p=3

κp(Y )
(−σ ω)p

p!
. (7.41)

The `-spectrum in terms of δ variable now takes the form

D(`, Y ) =
N
σ

∫
dν

2πi
exp

{
δ · ν +

1

2
ν2 +

∞∑

p=3

κp(Y )
(−ν)p

p!

}

The first two terms of the exponential generate (7.37), while an inclusion of
p = 3, 4 contributions leads directly to the approximate expression (7.39).
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One can estimate κp comparing expansion (7.41) with the general expression
(7.8) for Dω. The cumulants have the following connection to the anomalous
dimension γω:

σ2 =

∫ Y

dy

(
∂

∂ω

)2

γω(αs(y))

∣∣∣∣∣
ω=0

(7.42a)

κp =
1

σp

∫ Y

dy

(
− ∂

∂ω

)p

γω(αs(y))

∣∣∣∣
ω=0

. (7.42b)

To estimate the MLLA γ given by (7.11) we express it as

γω(αs) ∼ Y −1/2 · [f1(ω
2Y ) + ωf2(ω

2Y )] .

Taken together with an extra Y , coming from integration in (7.42), this leads
to an estimate (n ≥ 1)

σ2 ∼ Y · Y −1/2 · Y = Y 3/2, (7.43a)

κ2n+2 ∼ (Y 3/4)−2n−2 · Y · Y −1/2 · Y n+1 =
(√

Y
)−n

, (7.43b)

κ2n+1 ∼ (Y 3/4)−2n−1 · Y · Y −1/2 · Y n =
(√

Y
)−n−1/2

. (7.43c)

From (7.43) we conclude that the higher cumulants appear to be less signif-
icant for the shape of the spectrum in the hump region δ <∼ 1. It is straight-
forward to derive the moments of the limiting spectrum to show that, relative
to the lowest order (DL) Gaussian spectrum, the peak in the `-distribution
is shifted up (i.e. to the lower x), narrowed, skewed towards higher x’s, and
flattened, with tails that fall off more rapidly than a true Gaussian. The
qualitative features of experimental data at present energies appear consis-
tent with the expected properties.

7.5.2 Mean Value of lnx

To evaluate the mean value of ln 1/x one has to integrate by paths the ex-
pression

〈`〉 ≡
〈

ln
1

x

〉
=

1

Φ

∞∫

0

d`

ε+i∞∫

ε−i∞

dω

2πi

{
∂

∂ω
eω`

}
Φ(−A +B + 1, B + 2,−ωY ),
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where Φ stands for the multiplicity factor (7.30). Making use of (7.29) we get

− ∂

∂ω

[(
1−(B + 1)

ωb

4Nc

)
· · ·
(

1−(B + n)
ωb

4Nc

)]

ω=0

=
b

4Nc

n∑

i=1

(B + i) (7.44)

as an extra factor in the series (7.30). Let us represent this sum in the
convenient form

n∑

i=1

(B + i) =
n(n + 1)

2
+ nB =

1

2
n(n +B + 1) +

1

2
Bn . (7.45)

It is easy to see from (7.31) that introducing the factor n(n + B + 1) into
(7.30) results in the same series for IB+1 while the factor n shifts the index
of the Bessel function:

∞∑

n=1

(z/2)2n+ν n(n+ν)

Γ(ν+n+1)n!
=

∞∑

m=0

(z/2)2m+ν+2

Γ(ν+m+1)m!
=
(z

2

)2

Iν(z) , (7.46a)

∞∑

n=1

(z/2)2n+ν n

Γ(ν+n+1)n!
=

∞∑

m=0

(z/2)2m+(ν+1)+1

Γ((ν+1)+m+1)m!
=
z

2
Iν+1(z) . (7.46b)

Finally for the mean ` we obtain the analytical expression

〈`〉 =
1

IB+1

b

4Nc

(z
2

)2 [ 1

2
IB+1 +

2

z

B

2
IB+2

]
= Y

(
1

2
+
B

z

IB+2

IB+1

)
. (7.47)

In terms of the typical PT parameter γ0 defined in (7.10b) (see also (7.33))
our result reads

〈`〉
Y

=
1

2
+ γ0

a

8Nc
· IB+2(z)

IB+1(z)
. (7.48)

Neglecting O(γ0) terms in the large Y limit one would get from (7.47) 〈`〉 =
1
2
Y which is the known DLA result. The first O(γ0 ∼ √

αs) correction one

obtains approximating the ratio of Bessel functions as 1 at z ∝
√
Y � 1. This

next-to-DLA Single Logarithmic correction softens the spectrum significantly.
It takes into full account energy conservation, which affects the rate of particle
multiplication overestimated by the DLA.

7.5.3 Width of the Hump

Following the same lines one can derive analytic expressions for arbitrary mo-
ments 〈`m〉 determining the shape of the limiting spectrum. Let us illustrate
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the general technique with an example of m = 2 which will tell us about
the dispersion of the distribution (7.38b). Now we have to take the second
derivative over ω near ω = 0 of the product (7.44) to get 〈`2〉
(
∂

∂ω

)2 n∏

k=1

(
1−(B + k)

ωb

4Nc

)

ω=0

=

(
b

4Nc

)2

· 2
n∑

k=2

k−1∑

i=1

(B + i)(B + k) .

It is straightforward to calculate this double sum:

2
n∑

k=2

k−1∑

i=1

(B+i)(B+k) =
1

4

n!

(n−4)!
+ (B +

5

3
)

n!

(n−3)!
+ (B+1)(B+2)

n!

(n−2)!
.

Analogously to the case of (7.45) it is convenient to rearrange this quartic
polynomial in n in the following form:

=
1

4
[n(n+B+1) · (n−1)(n+B)] +

B+ 1
3

2
[n(n+B+1) · (n−1)]

+
B(B+ 1

3
)

4
[n(n+B+1)]− B(B+ 1

3
)(B+2)

4
[n] .

According to the “shifting rules” (7.46) we then arrive at

〈
`2
〉

= Y 2

[
1

4
+
B(B+ 1

3
)

z2
+

(B+ 1
3
)

z

(
1 − 2B(B+2)

z2

)
IB+2(z)

IB+1(z)

]
. (7.49)

Now we can calculate the dispersion subtracting from (7.49) the square of 〈`〉
given by (7.47). The leading contribution cancels and one is left with

σ2

Y 2
=

1

3z

IB+2(z)

IB+1(z)
+

B

3z2
+O(

1

z3
) =

1

3z
− 1

2z2
+O(

1

z3
). (7.50)

Here, to obtain the 1/z2 correction, we made use of the asymptotic expan-

sion [5]

Iν(z) =
ez

√
2πz

∞∑

m=0

(
− 1

2z

)m Γ(1
2
+m+ν)

m!Γ(1
2
−m+ν)

≈ ez

√
2πz

[
1 − ν2− 1

4

2z

]
, (7.51)

which gives the difference from unity of the ratio of Bessel functions:

IB+2(z)

IB+1(z)
= 1 − (2B + 3)

2z
+ . . . .
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7.5.4 Skewness and the Peak Position

From the expression (7.39) for distorted Gaussian one can see that the nonzero
value of skewness leads to a noticeable and calculable splitting between `max

and `:

δmax ≈ −s
2

; ln

(
1

xmax

)
= `− 1

2
s · σ = `+O(1) .

Skewness vanishes in DLA, as all higher odd cumulants do, so that only
one SL correction term from the MLLA expansion (7.11) for the anomalous
dimension contributes to (7.42b):

d

dY

(
σ3 s

)
= −a

2

(
− ∂

∂ω

)3
ω√

ω2 + 4γ2
0

∣∣∣∣∣
ω=0

= − 3a

16Nc
· 1

4γ0
.

Integrating over y and making use of (7.50) we arrive at

1

4

∫ Y

0

dy
1

γ0
=

1

4

√
b

4Nc

Y∫

0

dy
√
y = Y 2 1

3z
≈ σ2

s =
1

σ3

(
− 3a

16Nc
· σ2

)
= − 3a

16Nc

1

σ
,

which results in an interesting simply testable QCD prediction revealing the
net subleading MLLA effects in parton cascades:

`max − ` ≈ 1

2

3a

16Nc

≡ 11

32
+

nf

16N3
c

= 0.351 (0.355) for nf = 3 (5). (7.52)

To find the absolute value of the peak position we first invoke expression
(7.47) for the mean `

` = Y

{
1

2
+
B

z
· IB+2(z)

IB+1(z)

}
≈ Y

{
1

2
+
B

z
− B(2B + 3)

2z2
+ · · ·

}
,

which, taken together with skewness-splitting (7.52), gives the asymptotic
expansion (7.26) for the MLLA-improved ln(1/xmax):

ln
1

xmax
= Y

[
1

2
+

√
c

Y
− c

Y
+O(Y −3/2)

]
, (7.53)

with c =
a2

16Ncb
=

11

48

(1+2nf/11N3
c )2

1−2nf/11Nc
= 0.29 (0.35) for nf = 3 (5) .
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7.6 Evaluation of the Limiting Spectrum

Equation (7.25) is badly suited for numerical evaluation. To get practically
useful formulae we exploit the following integral representation for the con-
fluent hypergeometric function Φ:

1

Γ(c)
Φ(a, c, x) = x1−c

∫ γ+i∞

γ−i∞

dt

2πi
ext t−c

(
t

t− 1

)a

, γ0 > 1. (7.54)

The path parallel to the imaginary axis can be replaced by an integration
around the cut 0 ≤ t ≤ 1. Substituting (7.54) for the integrand in the second
form of the representation (7.28) for the limiting spectrum, we change the
order of ω and t integrations. Integral over ω results then in the Modified
Bessel function IB for t > ζ ≡ 1−`/Y . For smaller values of t, as can be easily
seen, the ω−integral vanishes. Finally, introducing the complex variable α
according to

α =
1

2
ln

t

t− 1
; t =

eα

2 sinhα
, dt =

dα

2 sinh2 α
,

we arrive at the following convenient expression [2]

D
lim

=
4Nc

b
Γ(B)

π
2∫

−π
2

dτ

π
e−Bα




coshα + (1−2ζ) sinhα

4Nc

b
Y

α

sinhα




B/2

·IB
(√

16Nc

b
Y

α

sinhα
[coshα + (1−2ζ) sinhα]

)
, (7.55)

where α = α0 + iτ and α0 is determined by

tanhα0 = 2ζ − 1 .

7.7 Preexponential MLLA Corrections

to the Limiting Spectrum

Account of the subleading O
(√

αs

)
MLLA terms in the “preexponential” co-

efficient function factors Cf
i in (7.25), provides a numerically small correction

to the multiplicity ratio and leads also to some controllable change in the
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shape of particle spectra in q and g jets. Indeed, the residues of the leading
“+” trajectory determining the yield of gluons-partons in the quark and gluon
jets read

Cg
q =

ΦG
F

ν+−ν−
≈

4CF

j
− 3CF(

4Nc

j
−a
)
−
(
−2

3
nf

2CF

Nc

) ≈
[
1 + ∆g

q j
] CF

Nc
, (7.56a)

Cg
g =

ν+−ΦF
F

ν+−ν−
≈

4Nc

j
− a

(
4Nc

j
−a
)
−
(
−2

3
nf

2CF

Nc

) ≈
[
1 + ∆g

g j
]
, (7.56b)

where (nf = 3)

∆g
g = −1

3
nf
CF

N2
c

= − 4

27
, (7.57a)

∆g
q = ∆0 + ∆g

g = +
1

27
; (7.57b)

∆0 ≡ a− 3Nc

4Nc

= +
5

27
. (7.57c)

Additional factor ∆·j in the integrand of (7.25) generates the
√
αs correction

which can be taken into account by the following trick using Ω̂ = ω + d
dY

(cf. (7.6)):

D
g

i (`, Y ) =

ε+i∞∫

ε−i∞

dω

2πi
e`ω
[
1 + ∆g

i · Ω̂
]
D

lim
(ω, Y ) =

[
1 + ∆g

i

(
∂

∂`
+

∂

∂Y

)]
D

lim
(`, Y ) ≈ D

lim
(`+∆g

i , Y +∆g
i ) . (7.58)

When calculating the gluon multiplicity, the ∂
∂`

term in (7.58) vanishes and
one is left with

Ng =

[
1 + ∆g

g

∂

∂Y

]
N (Y ) ,

Nq =

[
1 + ∆g

q

∂

∂Y

]
N (Y ) · CF

Nc
.

The derivative of lnN (Y ) is nothing but the value of the anomalous
dimension γω(αs) at ω = 0. Since we are considering now the correction
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term, γ0 should be taken in the DLA according to (7.10). Thus, the ratio of
the parton multiplicities in q and g jets takes the form

Nc

CF
· Nq

Ng
=

[
1 + ∆g

qγ0

]

[1 + ∆g
gγ0]

≈ 1 + ∆0γ0 = 1 +
a−3Nc

4Nc

√
4Nc

αs(Y )

2π
. (7.59)

This next-to-leading correction had been obtained first in Refs. [14,15]. No-
tice, that because of factorization of the LLA residues the ratio (7.59) remains
unchanged when one takes quarks as final partons instead of gluons.

Corrections to the parton spectra can be described according to (7.58)

as a shift of the limiting distribution to a slightly different jet energy [12].
Namely, one gets the spectrum of gluons with fixed energy Eh for a given
jet energy E with account of

√
αs corrections just by taking the distribution

D
lim

(ln(Elim/Eh), ln(Elim/Λ)) given by (7.28), (7.55) at

Elim = E exp(∆q) ≈ 1.04E for q-jet (7.60a)

and Elim = E exp(∆g) ≈ 0.86E for g-jet . (7.60b)

The relative “shift” of q and g jets is determined by the same value ∆0 = 5/27
as the multiplicity ratio. Strictly speaking, only such relative features of q and
g jets are under the quantitative perturbative control at present. To derive
absolute predictions with the accuracy including

√
αs effects, one needs to go

beyond the MLLA scope.
The same remark holds true for the next-to-next-to-leading correction to

the hump position. Scaling the value of Λ by a factor C would shift the
constant term in (7.26), (7.53) by lnC. Therefore, to guarantee the next-to-
next-to-leading terms one has to define precisely the energy scale by fixing
the normalization scheme.

7.8 Spectra of Particles within Restricted Jet

Opening Angles

It is noteworthy that according to (7.26) the energy Emax at the peak grows
rather slowly with the jet energy E; even at E ≈ 1.5 TeV, its value reaches
only Emax ≈ 3 GeV. To explore the coherent origin of the hump-backed
particle spectrum and in an attempt to study the depletion in its soft part
for jets produced in hadronic collisions, it proves to be important to look at
particles restricted to lie within a particular opening angle with respect to the
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jet [16]. For example, one might consider the energy distribution of particles
accompanying the production of an energetic particle and lying within a cone
of half-angle Θ about the direction of the trigger particle momentum.

Parton cascades in these situations will populate mainly the region

mh

sin Θ
< Eh < E

with Eh and mh being the energy and the mass of the observed particle
(mh >∼ Λ). The maximum of the distribution, in Eh, is now forced to larger
energies

ln
Emax

mh

≈ 1

2
ln

E

mh sin Θ
− B

(√
b

16Nc

YΘ −
√

b

16Nc

ln
mh

Λ

)
. (7.61)

If one chooses Θ moderately small and varies E, coherence will give a moving
peak in accordance with the relation

E

Emax

dEmax

dE
=

1

2
− B

√
b

64Nc YΘ
; YΘ = ln

E sin Θ

Λ
. (7.62)

The angular cut Θ is especially useful for jets produced in hadronic collisions,
since one is able to eliminate much of the soft background.

Fig. 7.1 illustrates the energy distribution of charged hadrons in different
cones Θ around the jet axis at E/Λ = 104. The “restricted cone” inclusive
particle distribution DΘ(x,E) could be also defined in terms of the energy–
multiplicity correlation to get rid of the bias effect caused by determination
of the jet axis, see (9.3) below.

7.9 Phenomenology of Hump-Backed Plateau

In this Section we discuss average multiplicities and spectra of hadrons as
they are seen in present day experiments.

7.9.1 Mean Particle Multiplicities

The average multiplicity and multiplicity fluctuations (described by multi-
plicity moments) are among the most characteristic QCD predictions that
depend on the main features of partonic cascades. The average multiplicity
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Figure 7.1: Dependence of the energy spectrum of partons in a gluon jet with
E/Λ = 104 on the aperture of the registered particle flow [17]. The narrower
is the registration cone, the harder are the particles within this cone. The
value of energy, given in brackets, corresponds to Λ = 155 MeV.

of gluons in a gluon jet is given by the MLLA limiting formulae (7.32) with
asymptotic behavior of (7.35).

In the framework of the LPHD concept the MLLA analytical expressions
can be directly applied for a description of the hadron inclusive distributions
with the values of effective parameter Λ and the normalization factors Kh

determined from comparison with the data at present energies. A rather
reasonable phenomenology can be done for hadroproduction in QCD jets
taking

Nh
g = Kh · N g

g ,

with N g
g given by the limiting expression (7.32). The average multiplicity of

charged particles in e+e− annihilation is asymptotically given by

N ch
e+e−(W ) = 2 · 4

9
· Kch N g

g (Y ) , (7.63)

where Y = lnW/2Λ. The first comparison [3,6] of the π± data at
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PETRA/PEP energies with the limiting MLLA formulae has demonstrated
a good agreement with Λ numerically close to mπ. It has also been noticed
that the relative yields of hadrons of various species (p,K, . . .) can be rea-
sonably simulated by cutting the development of partonic cascade, leading to
the production of a hadron h, by the value Q0 increasing with Mh (λ > 0) at
the same value of Λ.

Let us emphasize that the distributions of different hadrons should become
similar to one another and to the theoretical “limiting” patron spectrum
asymptotically at Y →∞. At present energies a number of asymptotically
vanishing effects might influence hadronic spectra, the effect of final hadron
masses among them.

The experimental results on charged particle multiplicity for e+e− col-
lisions (see Refs. [18,–21] and references therein) are well described by the
limiting formulae (7.32), (7.35). Taking this agreement as a testing ground,
one can predict the dynamics of the multiplicity growth.

Contrary to the case of light particles, heavy particle content of QCD
jets can be calculated by means of PT QCD directly without invoking any
(though plausible) conjectures. The heavy quark multiplicity in gluon jet is
given by the following formulae accounting for both first order result rele-
vant at moderate energies (W 2 >∼ m2

Q) and high energy cascading factor (see
Ref. [22]):

N (Q,Q̄)
g =

1

3π

∫ W 2

4m2
Q

dk2

k2
αs(k

2)

[
1+

2m2
Q

k2

]√
1

4
−
m2

Q

k2
N g

g (W 2, k2) , (7.64)

where N g
g (W 2, k2) is the multiplicity of virtual gluons as given by (7.34) with

Y =lnW/Λ, λ=ln
√
k2/Λ.

7.9.2 Inclusive Particle Spectra

Characteristics of an individual jet are best measured in the process e+e− →
hadrons. Thus, the inclusive particle spectrum for e+e− annihilation is the
sum of two q-jet distributions

1

σ

dσ

d
(
ln 1

x

) = 2D
h

q (`, Y ) ≈ 8

9
D

h

g (`, Y ) .

A strong support for the PT scenario of multihadron production in jets came
recently from the LEP data [21,23] on inclusive momentum distribution of
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charged particles at the Z0. To observe the predicted energy evolution these
data were combined with the results at lower energies. Fig. 7.2 shows the
OPAL and TASSO [24] data on the ln 1/xp distribution (xp = 2ph/W ) to-
gether with the prediction of the formulae (7.55). Motivating by LPHD, the
limiting gluon spectrum was multiplied by an overall normalization factor
Kch. An agreement between the data and the MLLA prediction can be easily
improved [25] by taking into account finite hadron mass effects at ph ∼ mh.

Fit to the OPAL data using (7.55) gave the following values of the only
free parameters

Λ = 0.253 ± 0.030 GeV , Kch = 1.28 ± 0.01 . (7.65)

These results confirm the QCD cascading picture of the multiple hadropro-
duction.

Especially spectacular is the energy evolution of the peak position given
by (7.26) and shown in Fig. 7.3, which depends on the value of Λ only, being
independent of the normalization factor. It is interesting to mention that
when fitting the energy evolution of the position of the maximum to (7.26)

even the magnitude of the third constant term −Y a2 αs(Y )
32Ncπ

≈−0.3, is rather
well reproduced by the data.

Let us make a few comment concerning particle spectra. It looks rather
challenging that even in the finite-xp region (xp ∼ 1) the data agree with
formula (7.28) derived as a true solution of the MLLA Evolution Equations
for small particle momenta fractions xp � 1. Such an agreement proves to
be natural, though accidental. This coincidence stems from the fact that in
terms of the Mellin-transformed distribution (7.3) the main contribution to
D(`, Y ) at ` � 1 comes from parametrically small values of ω where the
approximation (7.5) for the leading “trajectory”, namely,

ν+(ω) =
4Nc

ω
− a +O(ω)

(
≈ 12

ω
− 101

9
for nf = 3

)
(7.66)

was made to derive the limiting spectrum (7.28). This approximation, how-
ever, proves to mimic reasonably well the behavior of γω at ω ∼ 1 also,
which region is responsible for x ∼ 1 (` ∼ 1). Indeed, at ω = 1 (7.66) gives
ν = 12−101/9 = 7/9 which is not far from the exact value ν = 0 (following
from the momentum conservation). At larger ω (7.66) becomes negative (as
the true γ does), thus imitating the scaling violation at x→1.

An even more intriguing problem comes from the observed [21] decrease
by 14% (8%) of K(Y ) as the energy is increasing from 14 (22) to 91 GeV.
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Figure 7.2: ln 1/xp distributions of charged hadrons at W = 14, 22, 35, 44
and 91 GeV compared with analytical MLLA formula (7.55) and the distorted
Gaussian (7.39).
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Figure 7.3: Energy evolution of the peak position compared to the formula
(7.26).

Noticing that the systematic error to the absolute normalization for the OPAL
(TASSO) data was ±5% (±7%), one could nevertheless try to take this ob-
servation seriously and discuss its consequences. In the LPHD framework
parton → hadron conversion coefficients have to be Y - and x-independent
if hadronization occurs locally in the phase-space. However, the observed
distribution of charged particles is in fact a mixture of different particles

D
ch

= D
π±

+D
K±

+D
pp̄

+ . . . , (7.67)

spectra of which prove to be not exactly similar: the position of the hump

in D
h

stiffens with mh increasing. This can cause in principal some Kch(Y )
dependence at fixed values of Kπ±

, KK±

, Kp.
Stiffening of massive hadron spectra can be simulated by truncating par-

ton cascades at the value Qeff
0 increasing with mh. Corresponding procedure

together with analytical results for the shape parameters determining the
distorted Gaussian for truncated parton cascades (λ > 0) can be found in
Ref. [26].

Secondly, a theoretical explanation of some preasymptotic K(Y ) decrease
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could be connected with the necessity to supply (7.28) with an extra fac-

tor [25] (
1 +

2nf

3
√
Nc

√
αs(Y )

2π
+O (αs(Y ))

)
(7.68)

accounting for the yield of the soft sea qq pairs which was neglected in the
MLLA formula (7.28) written for the spectrum of gluons-partons exclusively.
To clear up this situation as well as for a more profound study of LPHD
picture conjectures, the measurements of identified hadron spectra are of
substantial importance.

The first step in this direction has been made by L3-Collaboration which
presented the spectra of reconstructed neutral pions [23]. The π0 distribution
proved to be softer when compared to all charged hadrons. In the same time
the recent OPAL data on K0 production [27] demonstrated stiffening of the
massive particle distribution. Numerically

(
ln

1

xmax

)

π0

= 4.11 ± 0.18 (L3) ;

(
ln

1

xmax

)

ch

= 3.603 ± 0.013 (OPAL) ,

(
ln

1

xmax

)

ch

= 3.71 ± 0.05 (L3) ;

(
ln

1

xmax

)

K0

= 2.91 ± 0.04 (OPAL) .

In accordance with theoretical expectations [3,6] the value of Λ for a pure
sample of light hadrons (which is much closer to the “true” scale parameter
determining the value of running αs ) appeared to be essentially smaller than
the “mixed” effective quantity extracted from the charged particle data.

Future increase of statistics for identified particles will make it possible
to check the basic LPHD conjecture on the energy independence of the
conversion coefficients partons → hadrons in the soft confinement regime
and for the first time will open up the problem of the comparative study of
sea-quarks and gluons contributions to hadroproduction in QCD cascades.
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The Physical Picture of
Shadowing in Hard Reactions
in Nuclei

Contents

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 193

8.2 Small x Lepton-Nucleus DIS in the Parton Model 194

8.2.1 The Infinite Momentum Frame . . . . . . . . . . . 195

8.2.2 The Laboratory Frame . . . . . . . . . . . . . . . . 197

8.3 Deeply Inelastic Scattering in QCD . . . . . . . . 198

8.3.1 Infinite Momentum Frame . . . . . . . . . . . . . . 198

8.3.2 The Laboratory System . . . . . . . . . . . . . . . 199

8.4 Dilute Versus Dense Domains of Partons . . . . . 201

8.5 QCD Phenomenology of Shadowing . . . . . . . . 202

8.6 Massive µ-Pairs from Hadron-Nucleus Collisions 203

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.1 Introduction

Since the advent of the parton model there has been considerable theoretical
interest in the question of shadowing in hard processes on nuclei [1]. Most
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interest has centered on the question of shadowing at small values of x in
deeply inelastic lepton scattering on nuclei. The first experiment to show
definite signs of shadowing, at Q2 values in the GeV2 range, was that of
Goodman et al. [2]. Their results have recently been confirmed in a much more
precise experiment by EMC [3,4]. Since the main object here is to explain,
qualitatively, how shadowing naturally emerges in the parton model and in
QCD, let us simply indicate schematically what the experimental situation
appears to be (see Fig. 8.1). In order to emphasize the shadowing regime the
x-range has been shown on a logarithmic scale. The salient features are:

1. For x <∼ 0.1 shadowing begins to set in.

2. Shadowing sets in earlier (xc is larger) for larger nuclei.

3. The Q2-dependence of shadowing is very weak.

4. At the smallest x-values shadowing of real and virtual photons is about
the same.

Though in what follows we shall claim that shadowing, with a weak Q2-
dependence, at small x is natural in QCD there is, unfortunately, no funda-
mental quantitative model for calculating the magnitude of the shadowing
correlations. Though the existance, and the slow Q2-dependence [5], if shad-
owing can be reliably argued in perturbative QCD, the quantitative proper-
ties of shadowing require a good non-perturbative model for high energy soft
hadronic reactions [6]. So far there is no such model that has made funda-
mental contact with QCD. Nevertheless, at present we think we have a good
semi-quantitative understanding of shadowing in hard reactions on nuclei and
it is that understanding which we wish to explain in the sections that follow.

8.2 Deeply Inelastic Lepton Nucleus Scatter-

ing at Small x in the Parton Model

We believe a lot of understanding is obtained by considering inelastic lepton-
nucleus scattering both in the infinite momentum frame and in the laboratory
frame. In the infinite momentum frame one is able to talk of quark and
gluon distributions of the nucleus in a natural way, as part of the infinite
momentum wavefunction of the nucleus. In the laboratory frame shadowing
in inelastic lepton scattering rather closely resembles our picture of shadowing
in soft hadronic interactions [7], although here the idea of quark and gluon
distributions of the nucleus is not manifest.
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Figure 8.1: A schematic picture of the different regions in DIS.

8.2.1 The Infinite Momentum Frame

In the infinite momentum frame the virtual photon measures the quark dis-
tribution in the proton. The situation is illustrated in Fig. 8.2. In this frame

e e

A
P = Ap

k =
xp

γ(q)

Figure 8.2: The parton model contribution to deep inelastic scattering.
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the momenta p and q take the form, p→ ∞,

p ≈
(
p+

m2

2p
, 0, 0, p

)

q ≈
(
Q2

2px
, ~q⊥, 0

)

with Q2 = q2
⊥ and x = Q2/2p·q. The virtual photon interacts with the quark

of momentum k ≈ xp over a time τ ≈ 2px/Q2 which time is short compared
to the normal scale of interaction of the line k which is τk ≈ 2px/µ2 with µ a
soft hadron scale. Thus the photon makes an “instantaneous” measurement of
the quark distribution in the infinite momentum wavefunction of the nucleus.

Where are the quarks and gluons located in the wavefunction of a fast
nucleus ? The valence quarks must be found in a normally contracted nucleus.
Thus

(∆z)valence ≈ 2R
m

p

is the longitudinal spread of the valence quarks while the sea quarks and
gluons have a longitudinal spread determined by the uncertainty relation

(∆z)sea, glue ≈ 1

k z
=

1

x
p . (8.1)

Let R be the nuclear radius and Ri the intranuclear spacing between nucleons
in the nucleus. Suppose that Ri(m/p) <∼ 1/xp or, equivalently, x <∼ 1/(Rim)
for a gluon or sea quark of momentum xp. Then this gluon, or sea quark,
overlaps at least two neighboring nucleons, in the longitudinal direction. At
this value of x the spatial gluon and sea quark densities are larger than in
a proton because the gluons and sea quarks from nucleons which neighbor
longitudinally occupy the same physical space. As x further decreases this
amount of partonic overlap increases until x ≈ 1/(2Rm)∼ 0.01 − 0.02 for a
large nucleus. Here gluon and sea quark overlap is complete.

Thus at small x
dnglue, sea

d(area)
∼ A1/3 (8.2)

in the approximation where the sea quarks and gluons from each nucleon in
the nucleus are added independently. Equation (8.2) follows directly from the
fact that at x<∼1/(2Rm) there is only one layer, longitudinally, of quarks and
gluons. In the naive parton model all partons have ∆x⊥ ∼ 1 fm since all trans-
verse momenta are cut off. Thus the partons actually must reach a density
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proportional to A1/3 at small x. When quarks and gluons overlap it is natural
that they interact and in particular that quarks and antiquarks will annihilate
while gluons will be absorbed by quarks and other gluons when the density
becomes large. In fact as A → ∞ we might expect dn/d area) ∼ constant
rather than the A1/3 growth indicated in (8.2) from the additive approxima-
tion. The limiting of the maximum density of partons in a wavefunction is
called parton saturation [8]. Any such limitation in parton density due to an-
nihilation and absorption of quarks anf gluons will lead to a smaller DIS cross
section; that is, parton saturation is how shadowing appears in the infinite
momentum frame.

8.2.2 The Laboratory Frame

In the laboratory frame small-x DIS appears as the scattering of a quark–
antiquark pair, created by the virtual photon, on the nucleus [7]. The situation
is here illustrated in Fig. 8.3 with the kinematics given by

p = (m, 0, 0, 0) (8.3a)

q = (q −mx, 0, 0, q). (8.3b)

The maximum lifetime of the quark–antiquark pair is the same as the lifetime
of the virtual photon and is given by

τγ =
1

q − (q −mx)
=

1

mx
.

Thus the pair lives over an intranuclear spacing when 1/(mx) >∼Ri and
the pair lives over the whole nucleus when 1/(mx)>∼2R. These are the same
values of x found in the discussion below (8.1).

Now in the parton model the pair must have a transverse separation
∆x⊥ ∼ 1 fm since transverse momenta are cut off. Thus the pair should
have a cross section with the nucleus on the same order of π fm2. If x is large
the pair is created in the nucleus and lives only over a single nucleon. Here one
expects additivity to be a good approximation, except of course for nuclear
physics modifications leading to the ordinary large-x EMC effect. However,
when x<∼1/(Rim) the pair lives over several nucleons. Because the pair has
a cross section about that of normal hadrons one expects to see the start of
shadowing. As x is further decreased the lifetime of the quark–antiquark pair
increases, the pair lives over more and more nucleons, and so the amount
of shadowing increases up to the point where x ≈ 1/(2Rm) at which point
shadowing reaches its maximum. Decreasing x below 1/(2Rm) leads to no
further significant increase in shadowing in the parton model.
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e

e

A
q−k

γ(q)

k

Figure 8.3: Shadowing corrections as viewed in the laboratory frame of the
nucleous.

8.3 Deeply Inelastic Scattering in QCD

The essential difference between the parton model and QCD [1,9] is that
in QCD transverse momenta are not limited. Thus the transverse size of a
quark or gluon can vary from a maximum value of about 1 fm to an arbitrarily
small value. This potentially has a significant effect on the arguments given
in subsections 8.2.1 and 8.2.2. In 8.2.1 we used the fact that quark and gluon
transverse sizes were about 1 fm to argue that significant spatial overlap of
partons must occur when x is small. This is not so obvious in QCD since the
partons might now have a small enough transverse size to keep their overlap
small. In 8.2.2 we argued that the pair cross section with the nucleus was
large since the pair separation was on the order of 1 fm. Now this also is not
so obvious since the pair separation ranges from 1/Q to 1 fm in QCD.

8.3.1 Infinite Momentum Frame

Refer again to Fig. 8.2 where the process is illustrated. Now the d2k⊥ integra-
tion is free (no constraint from the photonic probe) so long as k2

⊥<∼Q2. This
means that all struck quark transverse sizes from 1/Q to 1 fm are important.
In the leading logarithmic approximation we may say that

1/Q� ∆x⊥ � 1 fm ,

with ∆x⊥ the transverse spread of the struck quark. Of course saturation
occurs earlier, at larger x, for large transverse size quarks than for small
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transverse size quarks so when x <∼ 1/(2Rm) saturation will no longer be
complete. In fact the situation is even more complicated. Even if the transvers
momentum of the struck quark is large, and so the struck quark has a small
spread in x⊥, it may be that a gluon, or quark, from which the struck quark
evolved had a small transverse momentum and so suffered saturation. For
example, in the graph in Fig. 8.4 if k⊥ is large but k′⊥ is small it will be the
gluon, k′, which will overlap with many other quarks and gluons and so have a
good chance to produce k. Thus in QCD one must follow the whole history of
the evolution which leads to the struck quark. This will be discussed further
in Sections 8.4 and 8.5 below.

k′

γ(q)

k

P

Figure 8.4: DIS in the infinite momentum frame of P .

8.3.2 The Laboratory System

Refer again to Fig. 8.3. Now, using the same kinematics as given in (8.3), the
∆x⊥ of the quark–antiquark pair depends on k⊥. The energy denominator
which governs the quark–antiquark fluctuations in the virtual photon is

D =
1

Ek + Eq−k − q0
, (8.4)

with Ek and Eq−k being the energies of the quark and antiquark and where
q0 is given in (8.3b). One easily finds

D ≈
[
mx+

k2
⊥q

2k(q − k)

]−1

. (8.5)
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This means that the dominant contribution comes when the slowest of the
pair, the fermion having momentum k, say, has longitudinal momentum

k ≈ k2
⊥

2mx
. (8.6)

That is the longitudinal momentum of the slower member of the pair is cou-
pled to the transverse momentum. The cross section for the pair to interact
with the nucleus is proportional to the area occupied by the pair, and thus
is proportional to 1/k2

⊥. The phase space for the pair is proportional to dk.
(Recal that for a given k the value of k⊥ is fixed by (8.6)). Thus the contri-
bution of the elements of phase space dk to the cross section is proportional
to

αs(k
2
⊥)
dk

k2
⊥
∼ αs(k

2
⊥)
dk2
⊥

k2
⊥
.

There are several points to be made here.

1. Equal regions of d ln k2
⊥ contribute equally, except for the slow variation

given by αs(k
2
⊥).

2. Since large- k⊥ regions have a small cross section one might expect
the large-k⊥ component not to exhibit shadowing while the small-k⊥
component should exhibit strong shadowing just as in the parton model.

3. However, the situation is a little more complicated than the sharp dis-
tinction drawn between high-k⊥ and low-k⊥ components given in 2. In
fact the high-k⊥ component may evolve by emitting an additional gluon,
say, as illustrated in Fig. 8.5. If the gluon has a small transverse mo-
mentum than the quark–antiquark–gluon system will interact strongly
with the nucleus even if the quark–antiquark pair occupy a small area.

A
g

γ

Figure 8.5: Shadowing due to presence of additional gluon emission.
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Thus we have reached the same point about the necessity of considering
evolution as we reached in Sec.8.3.1 a little earlier. We shall return in Sec.8.5
to describe a QCD calculation which, at least partially, takes this evolution
into account, but first we would briefly like to describe the idea of parton
saturation [8] a little more.

8.4 Dilute Versus Dense Domains

of Partons

The usual DGLAP equation of Chapter 1 at small-x takes the form

Q2 ∂

∂Q2
xGA(x,Q2) =

αs(Q
2)

π
CA

∫

x

dx′

x′
x′GA(x′, Q2) (8.7)

written alone for the gluon distribution in the nucleus A. This equation gives
a rapidly growing gluon distribution as x becomes small. When xGA becomes
large enough there are gluon recombination terms which become important.
When corrections to (8.7) become important it is a signal that a dense system
of partons rather than the dilute system described by (8.7) is being reached.
The first corrections to (8.7), in the small-x limit, are known and lead to a

modified evolution which reads [10]

Q2 ∂

∂Q2
xGA(x,Q2) =

αsCA

π

∫

x

dx′

x′
x′GA(x′, Q2)

−
(
αsCA

π

)2
π3

16
9
πR2Q2

∫

x

dx′

x′
[x′GA(x′, Q2)] 2 . (8.8)

This equation is really valid only when the correction term (the second term
on the right-hand side), is small compared to the usual evolution term. When
the correction term is comparable to the usual evolution term, the first term
on the right-hand side of (8.8), in fact there are other important corrections
whose form is not known at present. Thus we really only have a theory for
the non-linear terms in the evolution in the low density regime. Nevertheless
(8.8) is an interesting equation in that the second term stabilizes the growth
of normal evolution and leads to a limiting value for xG(x,Q2) as x→ 0. We
can see roughly where this saturation sets in by finding where the right-hand
side of (8.8) loses its x-dependence. This clearly occurs when

xGA(x,Q2) =
16R2Q2

9αsCA
. (8.9)
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Thus if (8.8) is not too misleading we expect the number of gluons per unit
area dng/d(area) to saturate at a value roughly given by

dng

d(area)
=
xGA(x;Q2)

πR2
≈ 16

9παsCA
Q2 , (8.10)

a value independent of A, in contrast to the additive result given by (8.2).
It must be emphasized, however, that (8.8) is not really valid in the high
density limit and so (8.9) and (8.10) should be taken with some caution. One
of the very important open theoretical problems is to obtain a formalism
which correctly handles, at least qualitatively, the dense parton regime [11].

8.5 QCD Phenomenology of Shadowing

One cannot make absolute predictions for structure functions in QCD. The
DGLAP equation can only be solved once an initial distribution is given. That
is if, for example, xG(x,Q2

0) is given, for all values of x at a given Q2
0, then

xG(x,Q2) may be calculated by (8.7) or (8.8). The situation is illustrated in
Fig. 8.6.

To evaluate, say, xG(x,Q2) at a particular point (x,Q2) we must integrate
(8.8) starting from an initial distribution at Q2

0. Since (8.8) is only valid away
from the dense regime Q2

0 must be chosen to obey Q2
0
>∼ 2 GeV. Trajectories

1 and 2 in Fig. 8.6 indicate schematically examples of different regions of
integration necessary in order to go from the initial distribution to, say, xG
evaluated at (x,Q2). Trajectory “1” shows evolution proceeding to large
values of Q2 while x is still large. From our previous discussions we expect
ordinary evolution, (8.7), to be valid here and the contribution of “1” is a
contribution which should exhibit no shadowing. Trajectory “2” starts from
small values of x when Q2 is still small. Thus we expect the second term on
the right-hand side of (8.8) to be important here and thus shadowing should
occur. However, even more important for “2” is the value assigned to the
parton distributions at Q2

0. One must decide whether to put in shadowed or

non-shadowed initial distributions. This must be done from the data [1,5].
There is no reliable way to get initial distributions from QCD theory alone.

What then does QCD have to say about shadowing in deeply inelastic lep-
ton scattering? Qiu [5] has done detailed calculations taking initial distribu-
tions which exhibit shadowing and are partially constrained by the data. He
finds that if parton distributions exhibit significant shadowing at Q2

0 =4 GeV
then for fixed small-x shadowing goes away very slowly as one increases Q2
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1

2

ln 1
x

(x,Q2)

lnQ2lnQ2
0

Figure 8.6: Different ways of reaching the point (x,Q2) from the initial line
lnQ2 = lnQ2

0.

even up to values of Q2 >∼ 100 GeV2. This is, we think, a solid prediction
of perturbative QCD and is a result not widely believed before the recent
EMC data. Of course if one decreases x as Q2 increases QCD predicts that
shadowing never goes away no matter how large Q2 might be.

8.6 Large Mass µ–Pair Production in

Hadron-Nucleus Collisions

QCD factorization allows one to relate large mass µ-pair production to deeply
inelastic lepton-hadron scattering. Consider the process of proton + A →
µ+µ−(Q) + anything illustrated in Fig. 8.7.

The cross section is given, in leading logarithmic approximation, by

dσ

dQ2dy
=

8πα2
s

9(Q2)2

∑
e2a

·
[
x1P

a(x1, Q
2)x2P

ā
A(x2, Q

2) + x1P
ā(x1, Q

2)x2P
a
A(x2, Q

2)
]
, (8.11)
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k2 = x2p

µ+

µ−

P = Ap

γ(q)

k1 = x1p
′

p′

Figure 8.7: The kinematics of µ–pair production.

where a indicates the quark flavor. P a(x,Q2) is the distribution of quarks of
flavor a in the proton while P a

A(x,Q2) is the distribution of quarks of flavor
a in the nucleus. These distributions should be the same as those observed
in deeply inelastic lepton-proton and lepton-nucleus reactions. In particular
at small values of x2 we should see the same amount of shadowing here as
found by EMC at comparable x and Q2 values. An experiment measuring
this small-x2 region has recently been completed at Fermilab [12] and the
results appear consistent with those obtained from DIS [13].

Though (8.11) is a correct prediction of QCD factorization it does require
high Q2 in order to be valid. How large must Q2 be in order that (8.11) be
valid? Consider the schematic illustration of the process in Fig. 8.8.

A

k1

µ+

µ−

p′

k2

Figure 8.8: Initial state scattering in µ–pair production on a nucleus A.

As the line k1 passes through the nucleus it may interact with nucleons
in the nucleus. After much study we know that such interactions will not
spoil factorization at large Q2, but it is also known that such interactions will
change the q2

⊥ distribution of the µ-pair. In the present circumstance we are
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integrating over the q⊥ distribution so this does not matter, however, x1 is
being held fixed so we must require that the longitudinal energy loss of the
k1-line be much less than its value. That is, we must require

k1 = x1 p
′ � µ ·# of scatterings of k1 , (8.12)

since each soft scattering can stimulate an energy loss, µ. Clearly the number
of scatterings may grow like R, however, it is difficult to estimate the coeffi-
cient of that growth, just as it is difficult to estimate the value of µ in (8.12).
Let us say

x1 p
′ � µ·(µR) (8.13)

with µ some soft hadronic scale, perhaps 300 MeV or so. (This is just a guess
for µ!) Now

2x1 p
′m x2 = Q2 (8.14)

so combining (8.13) and (8.14) one arrives at

Q2/µ2 � 2Rm x2 (8.15)

as the condition for factorization to apply. If R ≈ 7 fm and we want factor-
ization to apply over a wide range of x2 then Q � 6µ, which means that Q
must be greater than a few GeV, at least for a large nucleus.
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The source of multiple hadroproduction in hard processes is gluon brems-
strahlung, so one should expect that in the framework of LPHD the observed
jets of hadrons are a consequence of the color dynamics at small distances.
Therefore, the detailed features of the parton shower system, such as the flow
of color quantum numbers, influence significantly the distribution of color
singlet hadrons in the final state. See Refs. [1–3].

As we discuss below, the collimation of the QCD cascade around the
parent parton becomes stronger as the parton energy increases. If one keeps

207
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the angle between the two jets fixed, then with increase of the total energy
these jets become more and more distinguishable experimentally. Moreover,
the collimation of an energy flux grows much more rapidly as compared to
a multiplicity flow. Shrinkage of the characteristic opening angle permits
one to introduce the notation of the “intRAjet” and the “intERjet” hadron
flows. Therefore, at asymptotically high energies each event should possess
the clear geometry, that reflects the topology of the final hadronic system
in terms of partons which participated directly in the hard interaction. The
inclusive space-energy portrait of events represents a natural partonometer
for registration of the kinematics of the energetic parent partons. While the
hard component of a hadron system (a few hadrons with energy fraction z∼1)
determines the partonic skeleton of an event, the soft component (hadrons
with z�1) forms the bulk of multiplicity.

Closely following the radiation pattern, associated with the partonic skele-
ton, the soft component is concentrated inside the bremsstrahlung cones of
QCD jets. Theoretically, the opening angle of each cone Θ0 is bounded by
the nearest other jet, since at larger angles Θ > Θ0 particles are emitted
coherently by the overall color charge of both jets. As the result, the total
multiplicity is given by the additive sum of the contributions of the bounded
individual jets.

In this Chapter we discuss mainly the QCD portrait of jet ensembles in
hard processes. The emphasis is made on the collective QCD phenomena in
jet dynamics. Such a phenomenon has been first observed in experiments
(see Refs. [4–7]) studying the angular flows of hadrons in three-jet (qqg)

events from e+e− annihilation, the so-called string [8] or drag [9] effect. The
PEP/PETRA data have strongly supported the predicted drag of the interjet
particles in the direction of the gluon jet (net destructive interference in the
region between the q and q ), for details see Section 9.4. Drag effect studies

are also successfully performed at LEP [10,11].
The data demonstrate that wide-angle particles really do not belong to

any particular jet, but have emission properties dependent on the overall jet
ensemble. Surely, it is entirely unremarkable that the quantum mechanical
interference effects should be observed in QCD. Of real importance is that the
experiment demonstrates that these effects survive the hadronization phase.

Detailed studies of string-like phenomena are of importance for the high
energy reactions. These effects are interesting not only in their own right as
test of QCD. They could be valuable in helping to dig out the possible new
physics signals from the conventional QCD backgrounds.
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9.1 On Structure of Particle Flows

in Multijet Events

Traditionally, the final state structure in a hard collision is interpreted in
terms of a certain number of hadron jets having specific angles, energies,
masses etc. This has been a very fruitful procedure especially as regards
three jet events in e+e− collisions, where the gluon was found, and high-
p⊥ jet events in hadron collisions, where the point-like nature of quark and
gluon interactions is measured. However, the separation of an event into
a certain number of jets is inherently ambiguous, especially as one goes to
higher energies. The ambiguity comes from several sources.

1. A QCD jet exhibits fractal structure, consisting of a number of sub-jets,
which makes the jet definition highly artificial.

2. Interjet hadrons which form a sizable part of the total event multiplicity
are distributed according to the color properties of the event as a whole
and, as a matter of principle, cannot be associated with any particular
jet.

Attempting to force particles to belong to some jet in an event may cause
some difficulties. If the jet algorithms do not use infrared safe quantities,
comparison with QCD cannot be carried to higher orders and the whole
procedure, though adequate when only crude data and crude calculations
are available, may have limited quantitative significance. If the jet finding
algorithms are infrared stable, the procedure for assigning particles to jets is
in principle all right, but, as higher energy events become more complicated
this procedure may simply not be efficient.

As higher energies are attained the purely inclusive and calorimetric char-
acteristics for quantitatively dealing with hard collisions become preferable to
organizing the event according to a certain number of jets [12–18]. There is in
general a rather direct correspondence between the jet directions and energy
flux directions, so that one may naturally study the jet shapes and any other
characteristics of the hadronic system by introducing inclusive correlations
among energy fluxes and multiplicity flows [2,16]. In this case one does not
need to apply to event selection procedures or jet finding algorithms. The
calorimetric quantities are free from soft and collinear singularities, and are
therefore well controlled perturbatively.

As the simplest example consider the angular distribution of the multi-
plicity flow in two–jet events of e+e− annihilation. Its study is accessible
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through an (energy)2–multiplicity correlation (E2MC)

dN

dΩ~n
=
∑

a,b

∫
dEa dEb dE~n

EaEb dσ3

σ2 dEa dEb dE~n dΩa dΩb dΩ~n
, (9.1a)

σ2 =
∑

a,b

∫
dEa dEb

EaEb dσ2

dEa dEb dΩa dΩb
, ~nb ≈ −~na , (9.1b)

where the sum goes over all particle types. The energy weighted integrals
over Ea and Eb, at fixed angular directions ~na and ~nb ≈ −~na, specify the “jet
directions” about which one has an associated multiplicity distribution at
variable angular direction ~n(Ω). The cross section (9.1b), describing the cor-
relation between two back-to-back energy fluxes (EEC), contains the known
double logarithmic form factor (see Chapter 1 and Refs. [18,19]) that reflects
the natural disbalance of the jet direction, caused by gluon bremsstrahlung.

The same angular distribution may be discussed in terms of a more simple
double-inclusive correlation between the energy flux and the multiplicity flow
(EMC)

dN2

dΩ~n
=
∑

a

∫
dEa dE~n

Ea dσ2

σ1 dEa dE~n dΩa dΩ~n
, (9.2)

σ1 =
∑

a

∫
dEa

Ea dσ1

dEa dΩa
.

The point is that here the main contribution also comes from the two-jet
sample whose kinematics is practically fixed by the choice of the direction
~na. The difference between the distributions (9.1) and (9.2) occurs only when
the angular direction ~n is taken parametrically close to the backward “jet
axis”, ~n ≈ −~na. In this case the shape of the distribution (9.2) near ~n = −~na

becomes somewhat wider due to the natural “shaking” of the nonregistered jet
in QCD. A typical “shaking angle” can be estimated [20] as Θsh ∼ (Λ/W )χ,
where χ = b/(b+ 4CF )≈0.64 for nf =3 active flavors.

The drag effect physics becomes accessible through a more complicated
example, E3MC, see Section 9.4. Studies of the two-particle angular distri-
butions via the EM2C are discussed there.

Another application of this method is the “restricted cone” inclusive par-
ticle distribution without the need of any specific jet-finding algorithm (see
Subsection 7.8). The distribution of particles which enter into a cone of aper-
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ture Θ around the “jet axis” can be defined in terms of EMC as

D
Θ
(x,E)=

1

E

Θ∫

0

dΘ12

∫
E1dE1

∫
dE2

dσ2

σ dE1dE2 dΘ12

δ

(
x− E2

E

)
. (9.3)

In the general case multiple correlations of the “EαMβC–kind” can be in-
troduced. This means that one should fix #α jet directions with help of
energy fluxes, and then consider correlations between #β multiplicity flows.
The procedure of normalizing to a given energy configuration will ensure that
results are finite and well-behaved.

9.2 QCD Portrait of an “Individual Jet”

Let us consider the general inclusive characteristics which may be called,
in some sense, the characteristics of an isolated jet (neglecting the mutual
influence of jets in their ensemble). One can study the properties of an
individual quark jet by measuring the different inclusive distributions in the
process e+e− →hadrons. The decay into two gluons of the C-even heavy
quarkonium states, χQ = QQ, might define, by analogy, the individual gluon
jets. The notion of the isolated jet makes sense, of course, if one does not deal
with the azimuthal effects but considers only multiplicities, energy spectra
and correlations, etc. In this case all the influence of the jet ensemble on
a given jet may be encoded in a single parameter Θ0, the jet opening angle.
This angle, in essence, is the angle between the considered jet and the nearest
other one.

Multiplicity, energy spectra of particles and other characteristics of the
QCD partonic cascade prove to depend not on the jet’s energy E but on
the hardness of the process producing this jet, i.e. on the largest possible
transverse momentum of particles inside the jet, Q=EΘ0 at Θ0 � 1, which
corresponds, of course, to the transverse momentum of the jet itself.

9.2.1 Collimation of Energy in Jet

Let us consider a single jet with energy E and opening angle Θ0 and try to an-
swer the question, what is the angular size Θz (Q0/E <∼ Θz <∼ Θ0) of the cone,
where the definite fraction z ∼ 1 of the jet energy is deposited (see Fig. 9.1).
The smaller is the angle, where the bulk of the energy is concentrated (i.e.
aperture of the energy flux), the higher is the jet collimation. Experimentally
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it corresponds to the calorimetric measurement of the energy flux deposited
within the given cone.

� � �
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� � �
� � �
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� � �

� � �
� � �
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� � �

h

A B

Θ0
Θ

D̄B
A D̄h

B

Figure 9.1: Production of a subjet B registered by the calorimeter with the
angular aperture Θ.

As we saw above the sequential parton decays in a cascade are ordered
in angles (the “hard” decays due to the LLA kinematics and “soft” ones due
to the QCD coherence). Therefore a calorimeter measures an energy of a
subjet which is initiated by a parton B produced at that stage of the cascade
evolution where the characteristic transverse momenta in the decays, k⊥, are
of order zEΘ. In other words, a calorimeter with an aperture Θ registers
the energy spectrum of the intermediate partons at the certain phase of the
development of the partonic system. Hence the probability that the energy
fraction z is deposited in a cone with the opening angle Θ should be related
to the inclusive spectrum of partons

DA(z;EΘ0, EΘ) =
∑

B=q,g

D
B

A(z;EΘ0, EΘ) ,

where A denotes the incoming parent parton (A = q, g). We assume here
that the type of registered parton B is not identified.

To quantify the energy collimation in a jet let us suppose that the de-
posited share of energy is large, z → 1. Then the valence contribution domi-
nates (see Chapter 1)

D
A

A(z;EΘ0, EΘ) ∝ (1 − z)−1 + 4CA∆ξ ,

where ∆ξ = ξ(EΘ0)−ξ(EΘ) corresponds to the evolution from the incoming
parton A to the parton B = A, decaying inside a given cone with opening
angle Θ.
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At a fixed value of z this formula describes the distribution in Θ, that has a

characteristic maximum at some angle Θ = Θz. Indeed, D
A

A(z,∆ξ)→δ(1−z)
when Θ→Θ0 and the probability D for z 6= 1 should rapidly decrease. On
the contrary, with Θ decreasing (down to Θ >∼ Λ/E) the share of emission
outside the cone grows. The quantity ∆ξ increases, and so the probability D,
that the energy fraction z is deposited in the cone, decreases again (an effect
similar to the Sudakov form factor suppression).

To illustrate the energy dependence of the quantity Θz,

Θz

Θ0
=

(
EΘ0

Λ

)−γ(z)

(9.4)

we present the approximate values of γ(z) at z = 0.9 and z = 0.5 (see
Fig. 9.3):

γq(0.9) ≈ 0.55, γg(0.9) ≈ 0.30

γq(0.5) ≈ 0.83, γg(0.5) ≈ 0.54 .

As one can see, the energy collimation grows as energy increases, being
stronger for a quark jet than for a gluon jet.

9.2.2 Energy Spectrum Within a Given Cone

More subtle is the spectral characteristic of the energy flux registered by a
calorimeter with the angular aperture Θ. Such a quantity represents, strictly
speaking, a correlation between the energy flux and one of the particles within
it. This is the double inclusive quantity: a parton B is registered together
with one of its offspring, a particle h, as shown in Fig. 9.1. The distribution
over x, the energy fraction of the hadron h within the registered energy flux,
may be presented as the convolution

F h
A(x,Θ;E,Θ0) =

∑

B=q,g

∫ 1

x

dz D
B

A(z;EΘ0, zEΘ) D
h

B(
x

z
; zEΘ, Q0) . (9.6)

Here D
B

A determines the probability to find the parton B, initiating the subjet

A, and D
h

B describes the distribution over the energy fraction x/z of hadron
h in a subjet B.

Note that one could obtain this result directly by integrating the appropri-
ate standard expression for the double-inclusive correlation between particles
(see, e.g., [19] and references therein).
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An integration over z in (9.6) corresponds to the simplest case when it is
known that the energy flux is deposited within a given solid angle, but the
corresponding energy share is not measured. If one fixes the value of z, the
integration should be omitted. To estimate the integral one can neglect z in
the arguments of all logs since only the values of z ∼ 1 are essential. This

stems from the behavior of the function D
h

B at x� 1:

D
h

B(x;EΘ0, Q0) =
1

x
· ρ
(

ln
1

x
, ln

EΘ0

Λ
, ln

Q0

Λ

)
, (9.7)

where ρ is a slowly changing function that describes the hump-backed plateau
(see Chapter 7).

For a better understanding of the correlative nature of (9.6) one may
consider the two limits.

(i) Θ → Θ0, D
B

A → δ(1 − z)δB
A , F h

A → D
h

A(x;EΘ0, Q0) .

In this case the whole energy flux of a jet A is deposited in the calorimeter,
and the registered particle spectrum coincides with that in the overall jet.

(ii) Θ → Q0

zE
, D

h

B → δ(1 − x/z)δh
A, F h

A → xD
h

A(x;EΘ0, Q0) .

Here a subjet B is reduced to one hadron h, the energy flux is predetermined
by the value of x. The correlation disappears, and the expression (9.6) fac-

torizes into x, the energy flux, and D
h

A, the probability to find a hadron h
with an energy fraction x inside a jet A.

The correlation, that in a general case (x∼1) is described by (9.6), disap-
pears, in fact, for soft hadrons as well. Emission of such particles proves to
be less sensitive to the energy balance. Substituting (9.7) into (9.6) for x�1
one obtains

F h
A(x,Θ; E,Θ0) ≈

〈C〉A
Nc

·Dh

g (x;EΘ, Q0) , (9.8)

with D
h

g the inclusive spectrum in a gluon jet with energy E and opening
angle Θ0. The quantity 〈C〉A here is the average color current of partons
caught by the calorimeter:

〈C〉A = 〈zg〉A ·Nc + 〈zq〉A · CF , (9.9)

where

〈
zB
〉

A
=

1∫

0

dz z D
B

A(z;EΘ0, EΘ) , 〈zg〉A + 〈zq〉A = 1 . (9.10)
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The integral of (9.6) over x gives the multiplicity of hadrons of type h:

Nh
A(Θ;E,Θ0) =

〈C〉A
Nc

·Nh
g (EΘ) . (9.11)

Thus, the yield of particles in the registered part of A-jet is proportional
to that in an isolated gluon jet with hardness Q = EΘ. The hardness of
a primary jet, EΘ0, affects only the proportionality coefficient, that is the
average color current of the parent parton that produces the registered part
of particle flow.

The value of the mean color current of a parton subjet depends on the
momentum balance between quarks and gluons in evolution of the jet A. The
momenta carried away by quarks 〈zq〉A and gluons 〈zg〉A are calculable in the
LLA (see Problem 9.1). Substituting them into (9.9) one obtains

〈C〉q = 〈C〉∞ − α(Nc−CF )

(
ln(EΘ/Λ)

ln(EΘ0/Λ)

)γ

, (9.12a)

〈C〉g = 〈C〉∞ + β(Nc−CF )

(
ln(EΘ/Λ)

ln(EΘ0/Λ)

)γ

, (9.12b)

〈C〉∞ = αNc + βCF , (9.12c)

where γ =
8

3
CF +

2

3
nf ; α =

8

3

CF

γ
, β =

2

3

nf

γ
, α+ β = 1 . (9.13)

Equations (9.12) describe how a registered parton B looses the memory about
the color charge of a parent parton A, when the aperture Θ decreases. At
E→∞ and Θ→0 one has 〈C〉q =〈C〉g =〈C〉∞=2.4 for nf =3 ( 2.12 for nf =6
). This limiting color current proves to be, naturally, somewhere in between
the gluon and the quark charges. Therefore, for a gluon jet the “color-grasp”
of an emitter decreases with Θ decreasing, and for a quark jet this quantity
increases, as shown in Fig. 9.2.

It is of interest to note that, while the ratio of the total mean multiplicities
in g and q jets asymptotically equals Cg/CF = 9/4, for the case of a narrow
cone of observation this ratio tends to 1.

The dependence of energy distribution on the aperture of the registered
particle flow, as given by (9.6), was presented in Fig. 7.1. The narrower is
the registration cone, the harder are particles within it, x > xmin = Q0/EΘ.
On the other hand, (9.6) describes the average energy flux deposited within
a cone Θ around the registered hadron h carrying an energy fraction x. As
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Figure 9.2: The mean parton color current in q and g jets with hardness
EΘ0 as registered by the calorimeter with angular aperture Θ ;
ξ=ln lnEΘ0/Λ − ln lnEΘ/Λ.

can be seen from the figure, a soft hadron with x � 1 is accompanied by
the energy flux only starting from sufficiently large values of the calorimeter
aperture,

Θ > Θmin = Q0/xE.

9.2.3 Collimation of Multiplicity Inside Jet

By analogy, one can ask what is the angular size Θ of the cone, where the
bulk of jet multiplicity is concentrated, and what is the energy behavior of
this aperture. To answer this question quantitatively one should solve the
equation

Nh
A(Θδ; E,Θ0) = δ ·Nh

A(EΘ0) (9.14)

and find the value of the angle Θδ, where the share δ of the total multiplicity
is concentrated. Then accounting for the DL relation NA(EΘ0) = CA/Nc ·
Ng(EΘ0) one gets from (9.11), (9.14) the equation for δ:

〈C〉ANh
g (EΘδ) = δ · CA N

h
g (EΘ0) .
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Figure 9.3: Shrinkage of the cones, in which the fixed shares of multiplicity
(δ) and energy (ε) of a jet A (A=q, g) are deposited.
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With the help of (9.12) it can be written down in the form
[
aA + bA

(
ln(EΘδ/Λ)

ln(EΘ0/Λ)

) 50

81

]
Nh

g (EΘδ) = δ ·Nh
g (EΘ0) , (9.15)

where aq ≈ 1.8, bq ≈ 0.8 and ag ≈ 0.8, bq ≈ 0.2.
Fig. 9.3 shows how appropriate cones shrink with increasing energy for

two particular values of δ. It can be easily seen that the multiplicity flow in a
q-jet is collimated around the direction of the energy flux much stronger than
in a g-jet. With the increasing of jet energy the collimation of the multiplicity
flows grows more slowly than that of the energy flux.

Let us roughly estimate the multiplicity collimation taking Θ0∼1:

N(EΘδ) = δ ·N(E) , exp

√
16Nc

b
ln
EΘδ

Λ
= δ · exp

√
16Nc

b
ln
E

Λ

which results in

Θδ ∼ [N(E)]
− b

8Nc
ln

1

δ . (9.16)

Thus, the solid angle having half the jet multiplicity decreases with the in-
crease of the hardness (EΘ0 ∼ E) approximately as N−1/4(E), i.e. paramet-
rically much slower than in the case of the collimation of energy.

9.3 Multiplicity Flow Pattern for qqg

Ensemble

Here we shall describe the QCD portrait of the simplest multijet system,
corresponding to the qqg sample of e+e− annihilation. The formulae which
we derive in this Section to describe the total multiplicity in qqg events and the
spatial distribution of particle flow, will include the next-to-leading MLLA-
corrections of the order of

√
αs.

In terms of the inclusive approach a proper characteristic of the spatial
distribution of the multiplicity flow is E3MC:

dN4

dΩ~n
=
∑

a,b,c

∫
dEa dEb dEc dE~n

EaEbEc dσ4

σ2 dEa dEb dEc dE~n dΩa dΩb dΩc dΩ~n
,

σ3 =
∑

a,b,c

∫
dEa dEb dEc

EaEbEc dσ3

dEa dEb dEc dΩa dΩb dΩc

,
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where the sum runs over all particles. This represents an angular correlation
between the three registered hard particles (a,b,c), moving in the directions
~na, ~nb and ~nc and the multiplicity flow around the direction ~n as shown in
Fig. 9.4.

−

+

b

a

n

c

g2

g1

Figure 9.4: Angular inclusive correlation between three energetic (a, b, c) and
one soft particle (~n) in the e+e− annihilation process.

When all three vectors ~na, ~nb and ~nc are in the same plane, the main
contribution to dN4 comes from the qqg configuration of the primary parton
system. In the leading order in αs the parton kinematics is unambiguously
fixed as follows:

~n+ ≈ ~na , ~n− ≈ ~nb , ~n1 ≈ ~nc ;

x+ = 2
sin Θ1−∑

sin Θij

, x− = 2
sin Θ1+∑

sin Θij

, x1 = 2
sin Θ+−∑

sin Θij

, (9.17)

x+ + x− + x1 = 2 ,

with xi = 2Ei/W the normalized parton energies and Θij the angles between
partons i and j (+,− ≡ q, q; 1 ≡ g1). We emphasize here that, owing to
coherence, the radiation of a secondary gluon g2 (k2 �Ei) at angles higher
than the characteristic angular size of each parton jet proves to be insensitive
to its internal structure: g2 is emitted by the color current which is conserved
when the jet splits. That is the reason why one may replace each jet by its
parent parton with p2

i ≈ 0, as it was done when deriving (9.17).
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9.3.1 Radiation Pattern for qqγ-events

Let us turn firstly to the simpler case of two-jet events. Here the particle flow
distribution corresponding to the correlation (9.2) can be written as

8π dNqq

dΩ~n
=

2

a+
N ′q(Y+, Y ) +

2

a−
N ′q(Y−, Y ) . (9.18)

The factor N ′A(Yi, Y ) ≡ (d/dYi)NA(Yi, Y ) takes into account that the final
registered hadron is a part of cascade (cascading factor), where NA(Yi, Y )
stands for the multiplicity in a jet A (A = q, g) of particles concentrated in
the cone with an angular aperture Θi around the jet direction ~ni. In the
above ai ≡ 1 − ~n~ni , ~n+ ≈ ~na , ~n− ≈ ~nb ≈ −~na ,

Yi ≡ ln

(
E
√
ai/2

Λ

)
, Y ≡ ln

E

Λ
,

with E = W/2 the jet energy. To understand the meaning of the quantity
NA(Yi, Y ) it is helpful to represent it as

NA(Yi, Y ) =
∑

B=q,g

∫ 1

0

dz z D
B

A(z,∆ξ)NB

(
Yi

)
, (9.19)

∆ξ =
1

b
ln
(
Y/Yi

)
, Yi = Yi + ln z = ln

(
zE

Λ

√
ai

2

)
.

Here NB

(
Yi

)
is the multiplicity in a jet with the hardness scale Yi, initiated

by a parton B within the cone Θi, and D
B

A denotes the structure function for
parton fragmentation A→B.

Equation (9.19) accounts for the fact that due to coherence the radiation
at small angles Θi�1 is governed not by the overall color current of a jet A,
but by that of a subjet B, developing inside a much narrower cone Θi. This
formula has a correct limit at Θi → π:

Yi → Y , ∆ξ → 0 , D
B

A → δ(1 − z) δB
A , NA(Yi, Y ) → NA(Y ) .

Equation (9.18) looks, formally, as the sum of two contributions, accounting
for the independent evolution of the q and q jets. However, one can see, that
this reflects also the collective character of the soft radiation at large angles.
Indeed, for large angles one obtains, neglecting relative corrections of order
of O(αs):

N ′q(Y+, Y ) ≈ N ′q(Y−, Y ) ≈ N ′q(Y ) ∝ √
αsNq(Y ) .
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Thus, (9.18) can be transformed to

8π
dNqq

dΩ~n
= 2 ̂(+−) N ′q(lnE/Λ) , (9.20)

where the notation of (4.13) is used (a+ + a−=a+−=2).
Equation (9.20) represents the radiation pattern for the interjet gluon

emission by the antenna ̂(+−) described in Section 4.4. The cascading factor
reads

Nc

CF

·N ′q
(

ln
E

Λ

)
≈ N ′g

(
ln
E

Λ

)
=

∫ E dEg

Eg

4Nc
αs(Eg)

2π
Ng

(
ln
Eg

Λ

)
.

For the so called radiative two-jet events (e+e−→qqγ) the emission pattern is
given by the qq sample Lorentz boosted from the quark cms to the lab system
(i.e. the cms of qqγ), and the corresponding particle multiplicity should surely
be equal to that in e+e− → qq at W 2

qq = (pq + pq)
2.

By analogy with (9.18) the formula for the angular distribution of particle
flow in qqγ events can be written as

8πdNqqγ

dΩ~n

=
2

a+

N ′q(Yq+, Yq) +
2

a−
N ′q(Yq̄−, Yq̄) + 2 I+−N

′
q(Y ) , (9.21)

where

Yq(q̄) = ln
Eq (q̄)

Λ
, Yq+ = ln

(
Eq

√
a+/2

Λ

)
, Yq̄− = ln

(
Eq̄

√
a−/2

Λ

)

(9.22)
and

I+− = ̂(+−) − 1

a−
− 1

a+

=
a+− − a+ − a−

a+a−
. (9.23)

For the emission at large angles (a+ ∼ a− ∼ 1) when all the factors N ′ are
approximately the same, (9.21) coincides with (9.20).

9.3.2 Radiation Pattern for qqg-events

We are ready now to deal with the three-jet event sample when a hard photon
is replaced by a gluon g1. For a given qqg1 configuration the particle flow can
be presented, analogously to (9.21)–(9.23), as

8πdNqqg

dΩ~n

=
2

a+

N ′q(Yq+, Yq) +
2

a−
N ′q(Yq̄−, Yq̄) +

2

a1

N ′g(Yg1, Yg)

+2

[
I1+ + I1− −

(
1 − 2CF

Nc

)
I+−

]
N ′g(Y ) , (9.24)
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where, in addition to the definitions in (9.22),

Yg = ln
Eg

Λ
, Yg1 = ln

(
Eg

√
a1/2

Λ

)
.

This formula accounts for both types of coherence: the angular ordering inside
each of the jets and the collective nature of the interjet flows. The first three
terms in (9.24) are collinear singular as Θi → 0 and contain the factors N ′,
describing the evolution of each jet initiated by the hard emitters q, q and
g1. The last term accounts for the interference between these jets. It has no
collinear singularities and contains the common factor N ′g(Y, Y ) independent
of the direction ~n .

Figure 9.5: Particle angular flows in the three-fold symmetric qqg events on
the event plane with respect to the q-jet axis at different values of the scale
parameter E/Λ = 60 (1), 1000 (2).

Fig. 9.5 illustrates the predicted distribution of particle flow projected onto
the event plane for the Mercedes-like qqg events. It seems to be of importance
to observe experimentally the energy dependence of the multiplicity flow, as
demonstrated in Fig. 9.5.
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As follows from (9.21), (9.24) when replacing a hard photon by a gluon
g1, with otherwise identical kinematics, an additional particle flow arises
(

8πdN

dΩ~n

)

g

=
8πdNqqg

dΩ~n
− 8πdNqqγ

dΩ~n
=

2

a1
N ′g(Yg1, Yg)+ [ I1++I1−−I+− ]N ′g(Y ) .

Note that for the case of large radiation angles both cascading factors N ′

become approximately equal and one has
(

8πdN

dΩ~n

)

g

=
[

(̂1+) + (̂1−) − ̂(+−)
]
·N ′g(Y ) . (9.25)

An interesting point is that this expression which seems to look like a “true”
gluon contribution is not positively definite. One can observe the net destruc-
tive interference in the region between the q and q jets. The soft radiation in
this direction proves to be less than that in the absence of the gluon jet g1.

The drag phenomena are clearly seen in the experiments (see
Refs. [4-7,10,21-23]) thus supporting both QCD prediction and the LPHD
concept. The physics of drag effect will be discussed in more details in the
next Section.

9.3.3 Average Multiplicity of 3-jet events

Let us consider now the connection of the average particle multiplicities in the
two-jet and three-jet samples of e+e− annihilation. Recall that the particle
multiplicity in an individual quark jet was formally defined through that in
e+e− → qq → hadrons by (see Section 7.9)

N ch
e+e−(W ) = 2 ·N ch

q (E) ·
[

1 +O

(
αs(W )

π

) ]
, W = 2E. (9.26)

When three or more partons are involved in a hard interaction, say, e+e− →
qqg1, the multiplicity can not be represented simply as a sum of three indepen-
dent parton contributions. The point is that multiplicity becomes dependent
on the geometry of the whole jet ensemble.

So, the problem arises of describing the multiplicity in three-jet events,
Nqqg, in terms of the characteristics of the individual q and g jets discussed
above. The quantity Nqqg should depend on the qqg geometry in a Lorentz-
invariant way and should have a correct limit when the event is transformed
to the two-jet configuration by decreasing either the energy of the gluon g1

or its emission angle.



224 Radiophysics of QCD Jets

Note that to derive the formula for Nqqg accounting for the interjet contri-
bution, one needs to control systematically the relatively small ∼ √

αs terms.
Formally, the MLLA analysis does not provide such an accuracy, since the
change in Λ, or in the scale of W , by a finite factor O(1) would lead to a
correction in multiplicity

∆N

N
∼ O

(√
αs(W )

)
. (9.27)

Such corrections could be formally absorbed into the definition of the scale
parameter Λ, the value of which should be fixed phenomenologically from
comparison of the MLLA partonic spectra with measured ones. In what
follows we shall use the MLLA formula for jet multiplicity given by (7.32),
(7.35) with the just that very value of Λ. This permits one to predict the
energy dependence of the hadron multiplicities including terms ∼ √

αs N .
Integration of (9.18) can be easily checked to reproduce the total multi-

plicity. The angular integral of (9.21) can be written as

Nqqγ =

∫
dNqqγ

dΩ~n
= Nq (Yq) +Nq̄ (Yq̄) + 2 ln

√
a+−
2

·N ′q(Y ) .

Now we can transform this formula to the Lorentz-invariant expression. To
do that let us rewrite

Yq (q̄) = Y + ln x+(−) , x+ (−) ≡ Eq (q̄)/E

and use the expansion

Nq (Yq) = Nq (Y ) + lnx+ ·N ′q(Y ) + O
(αs

π
Nq

)
.

Then

Nqqγ = 2Nq(Y ) + ln
x+x−a+−

2
·N ′q(Y ) +O(αsN)= 2Nq(Y

∗
+−) · [1+O(αs)]

(9.28)

with Y ∗+− = Y + ln

√
x+x−a+−

2
= ln

√
(p+p−)

2Λ2
= ln

E∗

Λ
.

Here E∗ is the quark energy in the cms of qq , i.e. the Lorentz-invariant
generalization of a true parameter of hardness of the process.

The multiplicity Nqqg is, by analogy,

Nqqg =

∫
dNqqg

dΩ~n
= Nq (Yq) + Nq̄ (Yq̄) + Ng (Yg)+
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[
ln

√
a1+a1−
2a+−

+
2CF

Nc
ln

√
a+−
2

]
·N ′g(Y ) ,

where Yg = Y + ln x1. Proceeding as before one comes finally to the Lorentz-
invariant result

Nqqg =
[
2Nq (Y ∗+−) +Ng (Y ∗g )

]
·
(
1 +O

(αs

π

))
, (9.29)

with

Y ∗g = ln

√
(p+p1) (p−p1)

2(p+p−) Λ2
= ln

p1⊥
2Λ

, (9.30)

with p1⊥ the transverse momentum of g1 in the qq cms.
Comparing (9.28) with (9.29) we see, that replacement of a photon γ by

a gluon g1 leads to the additional multiplicity

Ng(Y
∗
g ) = Nqqg(W ) −Nqqγ(W ) , (9.31)

which depends not on the gluon energy but on its transverse momentum, i.e.
on the hardness of the primary process. Equation (9.29) reflects the coherent
nature of soft emission and has a correct limit when the event is transformed
to the two-jet configuration.

The same result can be written in another form, namely,

Nqqg =
[
2Nq(Y

∗
+−) +Ng(Y

∗
1+) +Ng(Y

∗
1−) −Ng(Y

∗
+−)

]
· [1 +O(αs)] , (9.32)

where Y ∗ij = ln
(√

(pipj)/2Λ2
)

= ln(E∗ij/Λ). This representation deals with

multiplicities of two-jet events at appropriate invariant pair energies E∗ij. Ex-
pression (9.32) has also a proper limit, 2Ng, when the qqg configuration is
forced to a quasi-two-jet one, g + (qq), with a the small angle between the
quarks.

Let us illustrate the results for Nqqg with the case of the Mercedes-like qqg
events (Θqq = Θqg = Θqg ≡ Θ0 = 1200). According to (9.29) we get

N sym
qqg =

∑

A=q,q,g

NA(Y ∗) , Y ∗ = ln

(
W

3Λ
sin

Θ0

2

)
. (9.33)

Here NA(Y ∗) describes the particle multiplicity in a jet A with the energy
EA = W/3 and the opening angle Θ0. Now we define the angular regions
in the event plane, as shown in Fig. 9.6, and with use of (9.33) calculate the
number of partons found in these regions. The result is presented in Table 9.1.
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I

II

q

g

q

Figure 9.6: Angular regions on the qqg plane for the Mercedes-like events,
which could be associated with a gluon jet (I) and a quark jet (II).

Let us draw attention that the ratio R of particle numbers in the regions,
which could be associated with the gluon and quark jets, is lower than its
asymptotic value [24] R∞ = Nc/CF = 2.25 and rises rather slowly with energy
increasing. Thus, at present energies the collective QCD effects in the spatial
distributions of multiplicity flows lead to a decrease of the observed ratios of
hadron yields in g and q jets.

Finally let us mention that in the first experiments the observed effects
were actually rather small since it was difficult to separate the quark and
gluon jets. So the true effect was reduced by the influence of events where
gluon was misidentified. This hampered the detailed experimental study of
QCD drag phenomena.

With the high statistics at the Z0 resonance one can use some prospective
methods for jet identification. For example, the large rates of charm and
bottom production permit one to tag the quark or/and antiquark of the QQg
(Q= c, b) event by the characteristic features of Q decays (prompt leptons,
specific exclusive final states, vertex detection, etc.), see Refs. [9,25]. Quark
tagging through the use of the semi-leptonic decays of c and b quarks for a

W/Λ N tot
qqg NI NII R = NI/NII

180 14 6.6 3.6 1.8
300 19 9.2 4.9 1.9

3000 56 28.0 14.0 2.0

Table 9.1: Multiplicity distribution in the threefold symmetric qqg event over
regions shown in Fig. 9.6.
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study of drag phenomena was successfully performed recently at LEP [11].
Another very promising way which seemingly guarantees at least 85% of g-
tagging was suggested which uses the computer “neural networks” trained to
recognize the jet type [26].

An important point is that the drag phenomena appear to be the same
for light and heavy quarks. This stems from the fact that the radiation
off a quark at large angles, determining intERjet particle flows, proves to be
insensitive to the value of the quark mass. Therefore one can use the standard
PT formulae for the drag effect (see below) to study interjet physics with help
of heavy quarks.

9.4 QCD Drag Effect in Interjet Particle

Flows

Now we turn to particle flows at large angles to the jets in e+e−→ qqg. Let
all the angles Θij between jets and the jet energies Ei be large: Θ+−∼Θ+1∼
Θ−1 ∼ 1, E1 ∼ E+ ∼ E− ∼ E ∼W/3. As was discussed above, the angular
distribution of soft interjet hadrons carries information about the coherent
gluon radiation off the color antenna formed by three emitters (q, q and g).

q

g

q

Θ2

p−

p1

p+

ϕ2
α

β

γ

Figure 9.7: Kinematics of interjet radiation in three-jet events.

The wide-angle distribution of a secondary soft gluon g2 displayed in
Fig. 9.7 can be written according to (9.24)–(9.25) as

8πdNqqg

dΩ~n2

=
1

Nc

W±1(~n2)N
′
g(Ym) =

[
(̂1+) + (̂1−) − 1

N2
c

̂(+−)

]
N ′g(Ym) .

(9.34)
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In the above Ym = lnEΘm/Λ, Θm = min{Θ+,Θ−,Θ1} with cos Θi = ~n2~ni.
The radiation pattern corresponding to the case when a photon γ is emitted
instead of a gluon reads (cf. (9.20))

8πdNqqγ

dΩ~n2

=
1

Nc

W+−(~n2) N
′
g(Ym) =

2CF

Nc

̂(+−) ·N ′g(Ym) . (9.35)

q

2
4

1
q

g, γ

Figure 9.8: Directivity diagram of soft gluon radiation, projected onto the
qqγ (dashed line) and qqg (solid) event planes. Particle flows (9.36) and (9.37)
are drawn in polar coordinates: Θ = φ2, r = ln 2W (φ2). Dotted circles show
the constant levels of particle flow: W (φ2) = 1, 2, 4.

The dashed line in Fig. 9.8 displays the corresponding “directivity diagram”,
projected onto the qqγ plane:

W+−(φ2) = 2CF

∫
d cos Θ2

2
̂(+−) = 2CF a+−V (α, β) , (9.36a)

V (α, β)=
2

cosα−cosβ

(
π−α
sinα

− π−β
sin β

)
; α=φ2 , β=Θ+−−φ2 . (9.36b)

Expression W+−(~n2) is simply related to the particle distribution in the two-
jet events e+e− → q(p+)+ q(p−), Lorentz boosted from the quark cms to the
lab system.

Replacing γ by g1 changes the directivity diagram essentially because the
antenna element g1 now participates in the emission as well. However, con-
trary to naive intuition, this change does not lead only to appearance of an
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additional particle flow in the g1 direction. Integrating (9.34) over Θ2 one
obtains (γ = Θ1+ + φ2):

W±1(φ2) = Nc

[
a+1V (α, γ) + a−1V (β, γ) − 1

N2
c

a+−V (α, β)

]
. (9.37)

Fig. 9.8 illustrates that the particle flow in the direction opposite to ~n1 ap-
pears to be considerably lower than in the photon case. So, the destructive
interference cancels radiation in the region between the quark jets giving a
surplus of radiation in the q–g and q –g valleys.

To demonstrate this drag effect let us take ~n+~n− = ~n+~n1 = ~n−~n1 and ~n2

pointing at direction opposite to ~n1, that is, midway between quarks.
Then, neglecting the weak dependence N ′g on Θ, one arrives at the ratio

dNqqg/d~n2

dNqqγ/d~n2
=

N2
c − 2

2 (N2
c − 1)

≈ 0.44. (9.38)

We emphasize that (9.24) and (9.34) provide not only the planar picture, but
the global three-dimensional pattern of particle flows.
It is worth noting that the destructive interference proves to be strong enough
to dump the particle flow in the direction opposite to the gluon to even smaller
values than that in the most kinematically “unfavorable” direction, which is
transverse to the event plane. The asymptotic ratio of these flows in the case
of threefold symmetric qqg events is

N〈⊥〉
N〈qq〉

=
Nc + 2CF

2 (4CF −Nc)
≈ 1.2 (9.39)

(see also Section 4.4).
Thus, the analysis of the bremsstrahlung pattern demonstrates particle

“drag” by the gluon jet g1. This phenomenon is easy to understand quanti-
tatively. If one drops the color suppressed contribution, the two remaining

terms in (9.34) may be interpreted as the sum of two independent (̂1+) and

(̂1−) antenna patterns, boosted from their respective rest frames into the
overall qqg cms.

The point is, that with neglecting the 1/N2
c terms, the hard gluon can be

treated as a quark-antiquark pair as shown in Fig. 9.9. In this approximation
each external quark line is uniquely connected to an external antiquark line
of the same color, forming what we have called colorless qq antennae. In
the general case, when calculating the resultant soft radiation pattern, one
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i

j
i′

j

i

g

j

Figure 9.9: Emission of a soft gluon in the large–Nc approximation.

can only deal with a set of such color connected qq pairs because the inter-
ference between gluons emitted from non-color-connected lines proves to be
suppressed by powers of 1/N2

c .
Along this line of reasoning the depletion of the q–q valley is a direct

consequence of Lorentz boosts. Such a scenario reproduces literally the ex-
planation of drag/string effect given by the canonical Lund string model (see
Refs. [8,27]). In this model quark and antiquark are supposed to be tied to-
gether by a nonperturbative string qualitatively similar to a superconducting
flux tube.

q

g

q

Figure 9.10: Canonical string model picture for the e+e− → qqg event.

The gluon is pictured here as a kink on this string, see Fig. 9.10. Two
string pieces in Fig. 9.10 are boosted from their respective rest frames and
because of this hadrons resulting from fragmentation of strings tend to flow
towards the gluon side. Notice that since there is no string piece spanned di-
rectly between the quark and antiquark, no particles are produced in between
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them, except by some minor “leakage” from the other two regions.
So we see that in what concerns qqg physics, as well as in many other

cases, the Lund string scenario provides an excellent picture for mimicking
the collective QCD phenomena that reflect dynamics of color flows. However,
at some point significant differences should certainly come out. First of all,
one might expect serious discrepancy between QCD and the string model
when studying some specific phenomena where color non-leading contribu-
tions dominate, and such happenings do take place, as we shall see later.

Now turning back to the qqg events let us notice that the canonical string
scheme predicts a larger drag for heavier hadrons and for particles carrying
a larger momentum component perpendicular to the event plane, pout

h . The
reasons are the following. The Lorentz transformation of momentum ~pi along
the boost direction is given by

~pi~nB → γB(~pi~nB + βBEi),

where ~nB is a unit vector in the boost direction, γB and βB denote the γ–
factor and the boost speed, and Ei stands for the particle energy. Since
Ei =

√
p2

i +m2
i and p2

i = (pin
i )

2
+ (pout

i )
2
, the effect becomes larger as mh or

pout
h gets larger.

By contrast, in the perturbative approach there are no reasons to expect
any substantial enhancement for subsamples with large pout

h or mh since, pro-
vided the energy is high enough for QCD cascades to dominate, the yields
of hadrons with different masses should be similar. In what concerns the
pout

h dependence, even an opposite statement could be made: with increase
of pout

h one leaves the event plane and the ratio of QCD motivated particle
flows in q–g and q–q valleys can be easily shown to approach unity instead of
becoming larger [9].

So, while the subasymptotic fragmentation effects may be important at
low energies, with increasing energy the QCD picture has to win out. Monte
Carlo studies of the energy evolution of the hadron flow ratios for subsam-
ples with different pout

h and mh show that the perturbative regime becomes
dominant already at LEP energies (see Refs. [28,29] for details). Experi-

ments [4−7,10] confirmed the drag effect in three-jet events. The depletion of
particles was observed in the q–q valley relative to q–g and q –g valleys.

The strong support of this effect came from the comparison of qqg and
qqγ events [22,23], that provided a model independent test of color coherence.
Fig. 9.11 shows the measured ratio of particle density in the q–q region for
qqg and qqγ events. If no coherence effects are present this ratio should be 1,
since kinematical configuration of both event types are taken the same.
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Figure 9.11: Ratio of particle densities in qqg and qqγ events as a function
of the scaled angle x = Θ+/Θ+−. Shown are data from JADE, MARK II and

TPC [21].

These observations have beautifully demonstrated the connection between
color and hadronic flows. However one should take the standard analysis of 3-
jet events with a pinch of salt. The point is that it suffers from some inherent
weaknesses that one would prefer to avoid.

First of all, the necessity of selecting a 3-jet event sample reduces the
statistics and may introduce biases into the observed hadron flows. The need
to define jet directions introduces a dependence on the jet-finding algorithm.
Discrimination between quark and gluon jets (e.g., on the basis of their rel-
ative energies) reduces the effect and prevents the use of symmetrical jet
configurations. Of course, the interjet collective phenomena are better ana-
lyzed if one identifies the quark jets. As it was mentioned in the previous
Section, this can be done in the case of the heavy flavor production events by
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tagging heavy quark decays.
Another approach has been proposed in Ref. [15] for revealing the connec-

tion between the observed hadronic distributions and the color structure of
an underlying hard process. The method is related to the drag effect analysis
but has the advantage of not requiring any special event selection or jet find-
ing. It involves measuring a ratio of energy-multiplicity correlations which is
especially sensitive to color flow in jet formation. This quantity is infrared
stable and can be calculated completely perturbatively.

To illustrate this approach, consider the emission of two soft gluons by a
hard qq system

W qq(~n3, ~n4) ∝ 2CFNc

(
a12

a31a43a42

+
a12

a32a43a41

− 1

N2
c

a2
12

a31a32a41a42

)
. (9.40)

Dividing by the product of the single-gluon distributions gives the gluon-gluon
correlation function

Cqq(η34, φ) =
W qq(~n3, ~n4)

W qq(~n3)W qq(~n4)
= 1 +

Nc

2CF

(
cosφ

cosh η34 − cosφ

)
, (9.41)

cf. (4.26) (for definitions of the angular variables η34, φ see Section 4.6). Note
that this asymptotic prediction can be numerically affected by finite energy
subleading correction ∼

√
αs(W ).

Equation (9.41) provides an infrared-finite measure of the correlation be-
tween color flows in the directions η3, φ3 and η4, φ4. According to the LPHD
hypothesis, it can be applied directly to hadronic flows. Considering, for
example, the flows in the orthogonal (φ = π/2) and back-to-back (φ = π)
azimuthal directions, one gets

Cqq(η34,
π

2
) = 1 , Cqq(0, π) =

N2
c − 2

2(N2
c − 1)

=
7

16
. (9.42)

This implies that for φ = π/2 the hadronic multiplicities are uncorrelated,
while for φ = π there is destructive interference, of the same magnitude as
the drag effect in symmetric jets given by (9.38). Thus, measurements of
hadronic flow correlations in the orthogonal and back-to-back azimuthal di-
rections should demonstrate the same type of color coherence as the drag
effect without requiring the selection of a three-jet event sample. Notice,
that contrary to the string/drag effect in three-jet events here there are no
reasons for the conventional string model to mimic this correlation pattern
without including multiple gluon bremsstrahlung. An analysis of color flow
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along the above lines may be performed for other correlations as well. For
example, study of asymmetry of azimuthal jet profiles may help to visualize
1/N2

c effects that are typically neglected in algorithmic shower models.
An interesting manifestation of the QCD wave nature of hadronic flows

arises from the double-inclusive correlations d2N/dΩαdΩβ (α, β denote the
interjet valleys) of the interjet flows in qqg events. Here one faces such tiny
effects as the mutual influence of different qq antennae. As a consequence

d2N/dΩ(gq)dΩ(gq)

d2N/dΩ(qq)dΩ(gq)

≡ r2 <
dN/dΩ(gq)

dN/dΩ(qq)

≡ r1

(detailed analytic formulae may be found in Ref. [2]).
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Problem 9.1 Using the LLA formulae of Subsection 1.3.4 derive the mean
momenta

〈
zB
〉

A
carried by gluons and quarks defined by (9.10).

Solution:
According to the definition (1.93) of the parton spectra in the moment rep-
resentation

〈
zB
〉

A
= D(j = 2, ξ) with ξ = ξ(EΘ0) − ξ(EΘ) .

Equation (1.104), (1.105) then give

νF (2) = −8

3
CF , νG(2) = −2

3
nf , ΦG

F (2) =
8

3
CF , ΦF

G(2) =
1

3
;

ν−(2) = −(
8

3
CF +

2

3
nf ) ≡ −γ , ν+(2) = 0 .

Constructing the residues (1.107)–(1.110) one finally arrives at

〈zq〉g = β ·
(
1 − e−γξ

)
, 〈zg〉g = α + β · e−γξ ; (9.43a)

〈zg〉q = α ·
(
1 − e−γξ

)
, 〈zq〉q = β + α · e−γξ ≡ Dval +Dsea (9.43b)

with α, β and γ defined by (9.13).

Problem 9.2 Check that the integration of (9.18) over the solid angle repro-
duces the relation

Ne+e−(W ) = 2Nq(E) .

Problem 9.3 Check the relation (9.36).

Problem 9.4 Derive asymptotic prediction (9.38) for the drag effect.

Problem 9.5 Taking the expression (9.34) for the qqg antenna pattern de-
rive the ratio of the particle flow in the direction, transversal to the scattering
plane, to the flow between quarks (9.39) for symmetric qqg events.



236 Radiophysics of QCD Jets

Bibliography

1. A. Bassetto, M. Ciafaloni, and G. Marchesini. Phys. Rep., C100:201,
1983.

2. Yu.L. Dokshitzer, V.A. Khoze and S.I. Troyan. Coherence and physics
of QCD jets. In A.H. Mueller, editor, Perturbative QCD, page 241.
World Scientific, Singapore, 1989.

3. Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troyan. Rev. Mod.
Phys., 60:373, 1988.

4. JADE Collaboration, A. Petersen. In J. Tran Than Van, editor, El-
ementary Constituents and Hadronic Structure, page 505. Editions
Frontières, Dreux, 1980.

5. JADE Collaboration, W. Bartel et al. Phys. Lett., B101:129, 1981. Z.
Phys., C21:37, 1983. Phys. Lett., B134:275, 1984.

6. TPC/2γ Collaboration, H. Aihara et al. Z. Phys., C28:31, 1985.

7. TASSO Collaboration, M. Althoff et al. Z. Phys., C29:29, 1985.

8. B. Andersson, G. Gustafson and T. Söstrand. Phys. Lett., 94B:211,
1980.

9. Ya.I. Azimov, Yu.L. Dokshitzer, V.A. Khoze and S.I. Troyan. Phys.
Lett., 165B:147, 1985. Sov. J. Nucl. Phys., 43:95, 1986.

10. W. de Boer. preprint CERN-PPE / 90–161, 1990.

11. OPAL Collaboration, M.Z. Akrawy et al. CERN-PPE / 91–31, 1991.
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In other types of hard collisions color coherence also leads to a rich diver-
sity of collective drag effects (for reviews see Refs. [1–5]). In this Section we
discuss soft particle production accompanying high-p⊥ hadronic collisions.
Our task here is to describe the characteristic properties of final states in
different types of hard scattering processes and to study, in particular, the
interference pattern which emerges when soft gluons are emitted by several
sources in a coherent manner.
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10.1 Implications of QCD Coherence to

High–p⊥ Collisions

Virtues of High–p⊥ Processes

1. A diversity of hard interactions as small distances. Varying the experi-
mental conditions (triggers) one may extract the dominant subprocess
and turn from one subprocess to another.

2. Dependence of length and height of the “plateau” in hadron spectra
on the different parameters: the length is determined by the total en-
ergy of the collision, and the height and the plateau structure depend
on the hardness of the process governed, as a rule, by the transverse
energy-momentum transfer. Thus, information becomes available that
is inaccessible in e+e− annihilation where both energy and hardness
were given by the value of W .

3. These reactions are the best source of high energy gluon jets.

4. Recall that just in high-p⊥ hadronic collisions the largest possible ener-
gies (hardness) will be reached.

5. Finally, detailed studies of such processes are necessary for designing
future experiments and analysis of their data, attempting, in particular,
to find new heavy objects.

There is a flip side of this coin. For hadronic collisions the underlying physics
is more complicated, than, say, for e+e− annihilation (e.g., because of the
presence of colored constituents in both the initial and final states), and the
energy range of applicability of the PT approach is now less clear. However,
the nature of jets, based on the dominant role of the QCD bremsstrahlung
processes, is the same for both reactions. Therefore, at least at the ener-
gies of future hadronic colliders, the main physical phenomena in jet physics
and characteristics of the final states should also be under the control of PT
dynamics. Presumably at LHC-SSC energies color coherence effects should
be well distinguishable from the minimum bias background. Coherent drag
phenomena could provide a valuable tool for extracting and studying mani-
festations of New Physics.

At sufficiently high energies it is the color structure of the parton collision
that determines the hadronic structure of high–p⊥ events. In the framework
of the LPHD concept the QCD radiation pattern is believed to survive the
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hadronization stage, so that observed hadrons should “remember” the color
topology of the basic hard scattering of partons.

10.2 Color Transfer and Particle Flows

In course of a hard interaction color is transferred abruptly from one parton
to another. For example, the colliding quarks 1 and 2 in the color states i,
k are simply “recharged” in the large-Nc approximation after the t-channel
gluon exchange

1i + 2k → 1′j + 2′m : tajit
a
mk =

1

2
δimδjk −

1

2Nc
δijδmk .

The parton–parton scattering acts here as a color antenna. Gluon brems-
strahlung associated with the incoming and the outgoing partons leads to
the formation of jets of hadrons around the directions of these four colored
emitters.

B

A
A

B

Θs

Θs

ω

Θ

Figure 10.1: Soft gluon bremsstrahlung accompanying small angle scattering
of partons A+B → A′ +B′. Θs � 1 is the scattering angle.

To demonstrate, how the interjet coherence connects the structure of
hadronic accompaniment with the t-channel color transfer, let us consider
high-p⊥ scattering of energetic partons A and B (EA ∼ EB ∼ √

s) at rela-
tively small angles Θs ≈ p⊥/E � 1, as shown in Fig. 10.1.
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The hardness of the process is determined by the momentum transfer p⊥ ≈√
−t̂, which naturally restricts the transverse momenta of the accompanying

gluon bremsstrahlung `⊥<p⊥ and, so the development of partonic cascades.
In the structure of the final hadronic system three regions may be sepa-

rated. Two of them adjoin the fragmentation regions of the colliding particles
and occupy the intervals of the pseudorapidity η:

∆η = ln
p⊥
Λ
, η =

1

2
ln

1 + cos Θ

1 − cos Θ
.

The hadronic spectrum in each of these intervals (“extended fragmentation
regions”) is saturated with the particles from the two bremsstrahlung cones
of the incoming and the scattered partons, and so results from an incoherent
sum of two jets with angular opening Θ = Θs. The height of the distribution is
determined, roughly speaking, by the sum of parton “color charges” CA +CA′

and CB + CC′ respectively. In the central region

|η| < η(Θs) ≈ ln

√
s

p⊥
≈ E

p⊥
(10.1)

(final particle angles larger than the scattering angle Θs), the incoming and
the scattered partons radiate coherently , and, as a result, the hadron density
is determined by the color charge Ct of the t-channel exchange (Ct = Nc for
gluon exchange, Ct = CF for quark exchange). Since in the given kinematics
(−t̂ � ŝ) gluon exchange dominates, we conclude that in the region (10.1)
hadronic spectrum is determined by the “color strength” of the gluon current
Ct = Nc, and what is of importance, it becomes universal, independent of the
nature of scattered partons (A , B being light or heavy quarks or gluons).

Rapidity Plateau

How should the rapidity distribution of hadrons accompanying the high-p⊥
scattering process look like? We are interested now in the kinematical region
of large angles (10.1) where the registered particles originate not from brems-
strahlung cones initiated by incoming and scattered partons, but are caused
by their common coherent radiation due to t-channel color transfer. Let us
take such a particle with transverse momentum k⊥ . It is relatively soft
partons with

R−1 � k⊥ �
√
−t ,

which determine the multiplicity flow at fixed Θ. Therefore a given particle
will normally be an offspring of a subjet with momentum `

k⊥ � `⊥ �
√
−t .
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This subjet as a whole can be said to have, within logarithmic accuracy, the
same emission angle Θ, with the ratio k⊥/`⊥ = x standing for the jet momen-
tum fraction carried by k. Since the parent parton ` will be predominantly a
soft gluon, the resulting spectrum can be represented by the formula

dσ

σ dη dk⊥
≈ 4Ct

∫ p⊥

k⊥

d`⊥
`2⊥

αs(`
2
⊥)

2π
Dg

(
k⊥
`⊥
, ln

`⊥
Λ

)
.

Here xDg(x, lnQ/Λ) is the standard distribution of particles with energy
fraction x in a gluon jet, for which the product of energy and opening angle
equals Q.

Integrating over k⊥ to get the inclusive rapidity spectrum, we obtain

f(η, ln p⊥) ≡ dσ

σ dη
=

∫ p⊥ d`⊥
`⊥

4Ct
αs(`

2
⊥)

2π

∫ 1

0

dxDg

(
x, ln

`⊥
Λ

)
. (10.2)

B+B PLATEAU
A+A

Non coherentNon coherent

η(Θs)−η(Θs)

f(η, k⊥)

η

Figure 10.2: Universal rapidity plateau at |η| < ln 1/Θs. Solid and dashed
lines illustrate schematically the difference between qq and gg scattering.

This expression shows that the yield of hadrons in the rapidity interval
|η(Θ)| < η(Θs) ≈ ln E/p⊥ does not depend on the rapidity, so that a flat
plateau distribution emerges (see Fig. 10.2). The plateau height is propor-
tional to the t-channel “color charge” Ct and increases with the hardness scale
of the scattering process. Comparing (10.2) with the DLA equation for the
jet multiplicity (5.47), one arrives at the formula which is familiar already to
us:

f(ln p⊥) ≈ Ct

Nc

N ′g

(
ln
p⊥
Λ

)
.

Color interference between jets seems to become a phenomenon of large poten-
tial value as a new additional tool for discriminating between hard processes.
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Figure 10.3: Color antennae for two crossing high-p⊥ qq scattering processes
and the drawings of the corresponding particle flows.
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For example, reconstruction of the antenna pattern from the effects of
particle drag may help to visualize the production mechanisms of new heavy
objects — the Higgs boson H , new quarks and leptons, supersymmetric par-
ticles etc. Most of these objects produce hadronic jets, and the configurations
of interjet particles should differ from the conventional QCD processes. An
interesting example comes from the comparison of the production of a color-
less object via gg of qq collisions. Here, if the hard kinematics is the same,
the heights of the accompanying plateau should differ by a factor of Nc/CF .

10.3 Two-Jet Production at Large p⊥

Hadronic high-p⊥ processes are rich in the collective drag phenomena. Let us
consider, e.g., the topology of events, resulting from the qq scattering

−t̂ ∼ ŝ = x1x2s (x1, x2 ∼ 1).

In this case the two crossing processes shown in Fig. 10.3(a) and 10.3(b)
have approximately equal probabilities. However each of them has its own
color topology, and therefore specific particle flows, as schematically shown
in Fig. 10.3(c) and (d).

For the subprocess of Fig. 10.3(a) the soft particle radiation pattern is

4π dN q1q2

dΩ~n
=
CF

Nc
N ′g

(
ln
E

Λ

)
·

{
(̂14)+(̂23)+

1

2NcCF

(
2
[
(̂12)+(̂34)

]
−(̂14)−(̂23)−(̂13)−(̂24)

)}
. (10.3)

In full analogy with the discussions of the drag effect in the previous
Section one may say that the leading contribution (the first term in (10.3))

has the structure of the sum of two independent qq -antennae (̂14) and (̂23).
This fact also can be mimicked by means of the topological picture of the
Lund string model.

Let us emphasize that in our case to each contribution (single antenna)
a dynamical distribution corresponds which takes into account the effects
of cascade multiplication. Furthermore, the perturbative approach permits
one to control not only the leading color contribution, but also the O(1/Nc)
corrections.
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Figure 10.4: Polar plot [3] showing the antenna pattern function
P (−1/2,−1/2,Θ, 0) versus Θ for the identical quark process q(p1)+q(p2)→
q(p3)+q(p4). The magnitude of P is given by the radial distance of the curves
from the origin. The plot has been cut off at P = 4, so the singularities in
the forward regions are not displayed.

The antenna patterns for the qq(q) scattering subprocesses for the case of
different and identical quark flavors are presented in the Appendix.

For illustration we show in Fig. 10.4 the antenna pattern function P

π
dN

dΩ~n
= P

(
t

s
,
u

s
; Θ, φ

)
N ′g (10.4)

for the case of identical flavor scattering

q(p1) + q(p2) → q(p3) + q(p4)

at 900 in the parton center of mass. Here s, t, u define the kinematical vari-
ables of the 2 → 2 hard scattering:

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p1 − p4)
2 . (10.5)

The explicit formulae describing antenna patterns for the qg and gg scattering
are more complicated than for qq (qq ) case (see Refs. [1,6] for details).
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Figure 10.5: Color antennae for hard scattering g1+g2 → g3+g4 in the case
when t-channel gluon exchange dominates (Θs�1).

For example, for the gg scattering events with small scattering angle
Θs � 1, when one-gluon exchange dominates in t-channel, two color con-
figurations of the participating gluons contribute, as shown in Fig:10.5. Here
the associated soft radiation reads (see Appendix)

8π
dNg1g2

dΩ~n
=

{
(̂13) + (̂24) +

1

2

[
(̂12) + (̂34) + (̂14) + (̂23)

]}
·N ′g

(
ln
E

Λ

)
.

(10.6)
Pattern function (10.4) for 900 gg-scattering is displayed in Fig. 10.6(a). Note-
worthy to mention a symmetry between four quadrants. A different situation
occurs in the case of qg-scattering shown in Fig. 10.6(b). A large asymmetry
of about a factor of four between gg and qq quadrants in clearly seen here.
If detectable, this asymmetry would allow the separation of g- and q-jets on
an event-by-event basis. By moving to large rapidity one can select events
in which the fraction of the longitudinal momentum carried by one of the
partons is very large and the other is very small thus enriching contribution
from the qg-scattering.
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Figure 10.6: Polar plots [3] showing the antenna patterns
P (−1/2,−1/2,Θ, 0) for (a): g1+g2→g3+g4, (b): g1+q2→g3+q4

10.4 Prompt γ , W , Z Production at Large p⊥

A drag effect, very similar to 3-jet events, can be studied in high-p⊥ processes,
such as γ, µ+µ− pair, W , Z production, where a colorless object is used as a
trigger [2,7].

Consider the three jet production

p+ p→ γ(p⊥) + jet1 + jet2 + jet3 .

The basic graphs describing the process are shown in Fig. 10.7. We shall
argue in a moment that gq→ γq dominates qq→ γg. Keeping only the hard
Compton scattering graph, the cross section for a hard photon of transverse
momentum p⊥ corresponding to 900 scattering in the parton cms reads (see,
e.g., reviews [5,8])

dσ

dp2
⊥ d cos Θ

=
∑

q

e2q

∫
dy xq D

q
p(xq, p

2
⊥) xg D

g
p(xg, p

2
⊥)

dσ

dp2
⊥

+ (p↔ p).

In the above xg · xq · s = 4p2
⊥ and y = y1 + y2 with y1 and y2 the rapidities of
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q

q g g

g gγγ γ γ

Figure 10.7: Hard scattering graphs leading to γ + jet production.

the outgoing γ and gluon jet respectively, eq the quark electric charge. Then

dσ

dp2
⊥ dy d cosΘ

=
∑

q

e2q
5πα · αs

96 p4
⊥

xq D
q
p(xq, p

2
⊥) xg D

g
p(xg, p

2
⊥) + (p↔ p).

The corresponding formula for the annihilation process qq → γg is

dσ

dp2
⊥ dy d cos Θ

=
∑

q

e2q
πα · αs

9 p4
⊥

xq D
q
p(xq, p

2
⊥) xq D

q
p(xq, p

2
⊥) + (p↔ p).

When xq (xg) <∼ 0.1 the Compton process dominates and one can neglect the
annihilation contribution.

q g q g q g

qq q γγγ

Figure 10.8: Soft gluon emission from the hard scattering graphs of Fig. 10.7.

The picture of the soft accompanying emission is schematically illustrated
in Fig. 10.8. The formula for radiation associated with the hard scattering
here has the same form as (9.34),

8πdN

dΩ~n

=

[
(̂23) + (̂21) − 1

N2
c

(̂13)

]
N ′g(Ym) , (10.7)
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with ~ni the direction of parton i, as shown in Fig. 10.9. The variable Ym =
lnEΘm/Λ governs the evolution of a jet with energy E and opening angle
Θm = min{Θ1,Θ2,Θ3}, cos Θi = (~n~ni).

As discussed earlier in Section 7.9 a reasonable phenomenology was done
for π± production, taking the limiting MLLA formulae for multiplicity of
pions in a gluon jet, Ng. To illustrate the structure of the coherence pattern
we present below results of evaluating (10.7) for final state pions projected
onto the plane of the hard scattering and at angles midway between the
parton directions labeled by A, B, C and D in Fig. 10.9.

q(3)

AB

C D

q(1) g(2)

γ

Figure 10.9: Kinematics of 900 scattering in the hard process q(p1)+g(p2) →
γ + q(p3).

Thus, dNA/d~n corresponds to the density of pions in the scattering plane
between directions of incoming gluon and outgoing photon. In Table 10.1 are
shown the values of pion multiplicities in four 300 sectors for different values
of E⊥/Λ.

E⊥/Λ 60 200 103 104

A 0.62 1.04 1.94 4.3
B 0.52 0.88 1.57 3.4
C 0.51 0.87 1.61 3.5
D 1.47 2.44 4.47 9.6

Table 10.1: The energy rise of pion multiplicities in the interjet 300 sectors.

As is easily seen, particle production is largest between the directions of
the incoming gluon and outgoing quark, but ∼ 2.8 times smaller between the
directions of the incoming quark and the outgoing quark. So, just as in the
e+e− → qqg reaction, the drag of hadrons is predicted in the direction of the
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gluon jet. This leads to an azimuthal asymmetry of particles, which can be
seen by looking end on at the struck q-jet, see for details Section 10.6.

A process very similar to hard γ production is that of high-p⊥ W produc-
tion. Here the cross section is [5,8]

dσ

dy1 dy2 dp2
⊥

=
∑

ij

x1 D
i
p(x1, p

2
⊥) x2 D

i
p(x2, p

2
⊥)

dσ̂ij

dt̂
,

with i, j a sum over partons and dσ̂ij/dt̂ the hard scattering cross section
i+j→W+parton. y1 and y2 are the rapidities of the W and the recoil parton
while p⊥ is the transverse momentum of the W .

At large p⊥ there are two fundamental processes which contribute:

(i) q(p1) + q(p2) →W (p4) + g(p3) , (10.8a)

(ii) q(p1) + g(p2) →W (p4) + q(p3) . (10.8b)

Figure 10.10: Polar plot [3] showing the antenna pattern P (−1
2
,−1

2
; Θ, 0)

versus Θ for the process q(p1)+q(p2)→W (p4)+g(p3), (solid line) and q(p1)+
g(p2)→W (p4)+q(p3), (dashed line) for 900 scattering in the parton cms.
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The basic cross sections are

dσud

dt
=

2πα · αs

9 sin2 ΘW

(t−M2
W )2 + (u−M2

W )2

s2 t u
, (10.9a)

dσug

dt
=

πα · αs

12 sin2 ΘW

s2 + u2 + 2M2
W t

− s3 u
+ (t↔ u) . (10.9b)

The associated soft gluon spectrum is quite different in the Compton and
annihilation processes. For qg→Wq (10.8b) it it given by (10.7) while for
qq → Wg (10.8a) the antenna pattern can be obtained by the interchange
(2 ↔ 3), see Ref. [2].

Fig. 10.10 illustrates the antenna pattern function P of (10.4) for the
processes (10.8) at 900 in the patron cms. One can easily see the essential
qualitative difference between the two mechanisms of the W -boson produc-
tion. From the process (i) the particle density between initial quark (1) and
final gluon (3) is equal to that between initial quark (2) and (3). Meantime,
the radiation due to (ii) which is large between the directions of the incoming
gluon (2) and the outgoing quark (3), appears to be much smaller between the
directions of the incoming quark (1) and the outgoing one (3), cf. Table 10.1.
Therefore one could suggest that it might be possible to distinguish whether
a W is produced by process (i) or (ii) on an event-by-event basis.

10.5 Color Structure of Heavy Quark

Production Processes

The study of heavy flavor production is one of the main objectives of the
collider experiments of the present and of the future. Apart from the intrinsic
QCD aspects of jets generated by heavy quarks which were under focus in
Chapter 4, this subject is of large importance for studies of the fundamental
properties of heavy particles, such as spatial oscillations of flavor and CP
violating effects in their decays. Recall also that heavy flavors dominate in
the quark decay modes of new objects such as the Higgs boson.

Here we extend the analysis of soft QCD radiation to processes involving
heavy quarks. Antenna patterns are briefly discussed for some particularly
interesting reactions. Details on this subject one can find in Refs. [9,10].

First of all, let us point out some specific properties of soft emission from
a colorless pair of massive quarks QQ

′
(QQ –antenna) [10,11]. In this case

the radiation pattern is determined by the classical current (notation are the



Color Structure of Heavy Quark Production Processes 253

same as in Fig. 4.9) and may be written as (cf. (4.12), (4.13))

dwQQ
′ =

dk

k
dΩ~n

αs

(2π)2
WQQ

′

, (10.10)

WQQ
′

= 2CF (̂ij)m = 2CF

(
ãij

ãi ãj
− 1

2γ2
i ã

2
i

− 1

2γ2
i ã

2
j

)
,

with βi denoting the velocity of quark i in the relations

ãij = 1−βiβj cos Θij , ãi = 1−βi cos Θi , γi =
Ei

mi

=
1√

1−β2
i

. (10.11)

From (10.10) one can see that the collinear singularity is removed from the
physical region by the quark mass mi. The effect of the second (third) term
in (10.10) is to suppress the radiation in the region ãi ≤ γ−2

i (ãj ≤ γ−2
j ),

introducing an effective cutoff cos Θi ≤ βi (cos Θj ≤ βj). Similarly to the
massless quark case, interference between the radiation from i and j tends to
suppress values of ãi and ãj above ãij.

After azimuthal averaging the emission of a soft gluon by a heavy quark
of velocity βi effectively takes place only in the following “screened cone” [10]

(cf. (4.16)):
βi cos Θij < cos Θi < cos Θmin

i ≈ βi , (10.12)

with βj the velocity of the quark which is color connected to the emitting one.
Equation (10.12) is convenient for treatment of heavy quark jet fragmentation
in Monte Carlo simulations.

Production of heavy quarks Q in hadronic collisions is governed by the
light-quark and gluon fusion mechanisms

(i) q(p1) + q(p2) → Q(p3) +Q(p4) ,

(ii) g(p1) + g(p2) → Q(p3) +Q(p4) .

Of special interest are electroweak subprocesses such as Higgs boson and Z0

production

(iii) g(p1) + g(p2) → H0 → Q(p3) +Q(p4) ,

(iv) q(p1) + q(p2) → Z0 → Q(p3) +Q(p4) .
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Figure 10.11: Color antenna configurations for heavy quark production sub-
processes: (a) qq→QQ, (b) gg→QQ, (c) gg→H→QQ,
(d) qq→Z0→QQ.

The light-quark fusion process (i) has a unique color structure, shown in
Fig. 10.11(a). The invariant matrix element squared σQ

s is given by (cf. with
σs in (A.6) for the massless case):

σQ
s =

CF

Nc

(
t′2 + u′2

s′2
+

2m2
Q

s′

)
, (10.15)

with
s′ = (p1+p2)

2 = 2p1p2 ,
t′ = (p1−p3)

2 −m2
Q = −2p1p3 ,

u′ = (p1−p4)
2 −m2

Q = −2p1p4 .

The amplitude of the gluon fusion (ii) has two possible color structures as
shown in Fig. 10.11(b). The invariant matrix element squared σG can be
written as a sum of two terms (see Refs. [10,12,13]):

σG = G(s′, t′, u′) +G(s′, u′, t′) , (10.16)

G(s′, t′,u′) =
Nc

N2
c −1

[
u′

2t′
−u′2

s′2
−2m2

Q

t′
−2m2

Q

s′
−2m4

Q

t′2

− 1

N2
c

(
u′

2t′
−2m2

Q

t′
−2m4

Q

t′2
+

4m4
Q

s′t′

)]
. (10.17)

The two terms in σG have clear correspondence to the two diagrams of
Fig. 10.11(b). The planar parts of G are just the squared amplitudes for
the different color flow structures. The suppressed by 1/N2

c , the non-planar
contribution to G, corresponds to the interference of these amplitudes.



Azimuthal Asymmetry of QCD Jets 255

For the subprocesses (iii) and (iv), the color structure is very sim-
ple: the initial and final states separately form color singlets, as shown in
Fig. 10.11(c),(d). The radiation pattern, corresponding to unique color struc-
ture of Fig. 10.11(a) can be approximated as

4π dN(i)

dΩ~n
=
[

(̂13)m + (̂24)m

] CF

Nc
N ′g , (10.18)

where ((̂ij))m is given by (10.10), (10.11). The terms neglected in (10.18)
is doubly suppressed: first by 1/N2

c , and second by the fact that it is not
collinear singular.

The antenna pattern for the gluon fusion subprocess (ii) can be written
to leading order in 1/Nc as

4π dN(ii)

dΩ~n
=

1

2

[(
(̂13)m+ (̂24)m+ (̂12)

)
δt′ +

(
(̂14)m+ (̂23)m+ (̂12)

)
δu′

]
N ′g ,

with δt′=G(s′, t′, u′)/σG, δu′=G(s′, u′, t′)/σG defined by (10.16), (10.17).
Finally, in the Higgs boson and Z0 production processes the antenna pat-

terns are given by

4π dN(iii)

dΩ~n

=

[
Nc

CF

(̂12) + (̂34)m

]
CF

Nc

·N ′g , (10.19)

4π dN(iv)

dΩ~n

=
[

(̂12) + (̂34)m

] CF

Nc

·N ′g . (10.20)

10.6 Azimuthal Asymmetry of QCD Jets

As we have already discussed in Section 9.4 the treatment of the structure
of final states given by the string picture qualitatively reproduces the QCD
radiation pattern only up to O(1/N2

c ) corrections (the large-Nc-limit). Such
corrections are mainly neglected in all the parton shower algorithms. The
reason is that these terms often appear with a negative sigh, or correspond to
events with an undefined color flow, and so it is not clear how to handle them
in Monte Carlo shower simulations (see Refs. [1,14]). Normally the neglect is
not drastic, but under special conditions 1/N2

c terms may become sizable or
even dominant.

10.6.1 Jet Asymmetry in e+e− annihilation

The simplest example is given by the azimuthal asymmetry of a quark jet
in qqg events. The radiation pattern is given here by (9.34) When all the
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angles are large the third term in (9.34) (negative color-suppressed antenna
̂(+−)) leads to a small correction to the canonical string interpretation of

the drag effect. However if the q and q are close to each other, this term is
kinematically enhanced, and is no longer negligible.

q(  )

q
q(   )

(−)
(+) g

g( )

(1)

+

− 1

(a) (b)

+

−

Θ0

ϕ

Figure 10.12: The azimuthal asymmetry of the quark jet in e+e− → qqg.
(a) Geometry of the event plane, dashed lines show the topology of color
strings. (b) Scheme of azimuthal separation of particles from quark jet, see
(10.21), (10.22).

The azimuthal distribution of particles produced inside a cone of given
opening half-angle Θ0 may be characterized by an asymmetry parameter (see
Fig. 10.12)

A(Θ0) =
N→g (Θ < Θ0) −N→q (Θ < Θ0)

Ntot (Θ < Θ0)
=

(∆N)as

Ntot
. (10.21)

The azimuthal integration for (∆N)as,

(∆N)as =




π/2∫

−π/2

−
3π/2∫

π/2


 dφ

2π
·
(

8π ∆N

dΩ

)
, (10.22)

can be done explicitly. For parametrically small Θ0 values the contribution

of the (̂+i)-antenna (i = −, 1) to (∆N)as reads

1

2

Θ0∫

0

dΘ+

Θ+

(
2Θ+

π
cot

Θ+i

2

)
N ′g(lnEΘ+) ≈ Θ0

π
cot

Θ+i

2
N ′g(lnEΘ0) ,
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while the nonsingular antenna (̂−1) produces negligible correction (∆N)as ∼
Θ3

0. The resulting asymmetry parameter takes the form

A(Θ0) ≈ 2Θ0

π
G

√
4Nc

αs(EΘ0)

2π
, (10.23)

G =
Nc

2CF
cot

Θ+1

2
+

1

2NcCF
cot

Θ+−
2

, (10.24)

where we have substituted

N ′g(lnEΘ0)

Ng(lnEΘ0)
=

√
4Nc

αs(EΘ0)

2π
·
(

1 +O(

√
αs

π
)

)
.

The first color-favored term in (10.24) describes the string model moti-
vated asymmetry due to the “boosted string segment” connecting q- and
g-directions. The corresponding asymmetry vanishes with increase of Θ+1 as
the string piece straightens.

Here, however, the second term of (10.24) enters the game, forcing the
asymmetry to increase anew as shown in Fig. 10.13(a). This behavior might
be interpreted as an additional repulsion between particles from two neigh-
boring q- and q-jets. Let us remind the reader that in the Lund string scenario
no direct color connection exists between the quarks.

For symmetric configuration,

Θ+1 = Θ−1 = π − Θ+−/2 ,

the color-suppressed term prevails when

Θ+− ≤ 2 arctan
1

Nc
≈ 370 .

To realize this effect one has to select qqg events with rear kinematics,
when a hard gluon moves in opposite direction to the quasi-collinear qq pair.
Fig. 10.13(b) displays the predicted asymptotical asymmetry of the quark jet
at finite values of Θ0 as a function of the relative angle between the q- and
q-jets. The increase of A with decreasing Θqq can be seen only for very small
values of Θ0. The reason is that for Θ0 >∼ 50 the effect of repulsion is masked
by the fragments of the neighboring q-jet which partially fill the Θ0-cone,
leading to a drastically increasing negative contribution to A.

The abovementioned phenomenon can be studied experimentally by look-
ing at the azimuthal distribution of particles around the identified quark di-
rection, which can be most conveniently done by tagging heavy flavor quark
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Figure 10.13: QCD (solid) versus large-Nc-limit (dashed) predictions for
(a) G-factor of (10.23) and
(b) asymmetry parameter A in the symmetric qqg events.

jets. An interesting vista on this problem is connected with the Z0 → ccg
events. As one can see from Fig. 10.13(b), the increase of A is of comfortable
size at moderate angles Θcc.

10.6.2 Jet Asymmetry in hadron scattering

The azimuthal asymmetry of produced jets is certainly not specific to 3-jet
events. An analogous picture should be observed, e.g., in high-p⊥ processes
(see Ref. [1] for details). The qualitative difference between the predictions
of QCD and its large-Nc-limit proves to be the pp scattering with the identi-
fication of the scattered q-jet.

To elucidate the asymmetry phenomenon in high-p⊥ processes let us com-
pare the angular pattern of the radiation accompanying qq′ and qq′ scattering
(where q and q′ have different flavors). The corresponding particle distribu-
tions are given by (10.3) and (A.1), (A.2). Similar to the qqg example, the
first color-favored terms in these equations correspond topologically to canon-

ical string pieces. “Boosted” (̂14) and (̂23) antennae for the quark scattering
lead to the azimuthal asymmetry of the jets. Unlike this case, drawing the
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string picture for qq′ scattering one should expect no such asymmetry since

both (̂12) and (̂34) antennae appear to be straight (each string piece is in its
cms).

In the case of qq′ scattering the color-suppressed term leads to some devi-
ation from the Lund motivated asymmetry. Meantime, for the qq′ scattering
such a term determines the whole effect.

3

4

(a) (b)

1 12

+

2

− + −

ϕΘ0

Figure 10.14: Definition of the azimuthal asymmetry A(Θ0) of the scattered
jet #3.

For illustration let us consider the azimuthal distribution of particles inside
the jet #3. Determining the asymmetry parameter A(Θ0) analogously to
(10.21) (see Fig. 10.14),

A(Θ0) =
N→2(Θ < Θ0) −N→1(Θ < Θ0)

Ntot(Θ < Θ0)
,

one obtains for small opening half-angle Θ0 around the jet-#3 direction

Aqq′(Θ0) = γ̃0
2Θ0

π

[
Nc

2CF
tan

Θs

2
+

1

2NcCF
(cot

Θs

2
−2 tan

Θs

2
)

]
, (10.25a)

Aqq′(Θ0) = γ̃0
2Θ0

π

[
1

2NcCF
(2 tan

Θs

2
+ cot

Θs

2
)

]
. (10.25b)

Here

γ̃0 =

√
4Nc

αs(EΘ0)

2π

and Θs is the scattering angle:

Θ13 = Θ24 = Θs , Θ23 = Θ14 = π − Θs .
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Figure 10.15: G-factor for qq′ and qq′ scattering. Solid — QCD, dashed —
large-Nc limit for qq′ case (for qq′ scattering string scenario predicts G = 0).

Fig. 10.15 demonstrates the comparison of event shape factor G (factors in
square brackets in (10.25)) with their large-Nc-limits. The O(1/N2

c ) term in
(10.25a) dominates for scattering angles

Θs < 2 arctan

√
1

N2
c + 2

≈ 33.60 .

The predicted magnitude of the QCD asymmetry in qq′ scattering appears to
be comparable with that of the qq′ case. For example,

Aqq′ ≈ Aqq′ at small Θs ,

Aqq′ ≈ 3

8
Aqq′ at Θs = 900 .

Notice, that to study the azimuthal properties of jet #3 the natural restriction
Θs > 2Θ0 has to be imposed.
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Recall that in the case of identical quarks new effects arise leading to the
complication of the antenna patterns via

• modification of the qq scattering amplitude and

• opening of the annihilation channel for the qq case.

Keeping in mind that the asymmetry of the jet #3 comes mainly from (̂13)

and (̂23) antennae, one can simply observe that in the case of qq scattering
this asymmetry, unlike the case of distinguishable quarks, contains also the

color-favored term (̂13) ·Rs, caused by the annihilation contribution. This
term produces a negative asymmetry, opposite to the positive one due to the
remaining terms. Note, the color-favored negative asymmetry occurs also
for the qq → q′q′ and qq → 2g subprocesses. We emphasize that just the
color-suppressed O(1/N2

c ) term proves to govern the overall asymmetry here
owing to the numerical smallness of the annihilation cross section (σs/σqq <∼
1/10 for Θs < 900, see Appendix). One concludes, thus, that QCD differs
qualitatively from the canonical string picture in predicting the asymmetry of
the azimuthal jet profile. In this point we face for the first time the situation
when QCD and its large-Nc-limit gave opposite sign predictions.

Quark-antiquark scattering can be studied in pp collisions at high-p⊥ .
Here both qq and qq′ scattering occur. To make the qualitative difference
between the predictions of QCD and its large-Nc-limit most spectacular it is
necessary to identify the scattered quark jet. The asymmetry predicted for
the case of a tagged quark jet is shown in Fig. 10.16. As we see, in the region
of cms scattering angles 700 < Θs < 1100 QCD predicts jet asymmetry

A = +(4 ÷ 7)% at the half-angle Θ0 = 300

unlike the opposite sign effect

A = −(2.5 ÷ 1.5)% ,

originated from the large-Nc treatment of QCD formulae, equivalent to the
string-motivated approach.

10.7 Lessons

Concluding this Chapter let us enumerate the main lessons from studying the
collective QCD effects — interjet coherence phenomena.
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Figure 10.16: Asymmetry parameter A(Θ0 = 300) of the scattered tagged

q-jet in pp-collisions [1].

1. The effects of gluon interference do not permit one to formulate, a
priori, a probabilistic scheme for the development of partonic system.
However for each specific inclusive characteristic it is possible to divide
the essential coherent effects into two types:

(a) accounts for the coherence effects in the intrajet cascades. These
are reduced on average to the Markov process of independent
particle multiplication into sequentially shrinking angular cones
Θn+1 ≤ Θn;

(b) gives an account of the interference effects in the total amplitude
for production of the minimal number of jets (partons), whose
configuration corresponds to the given experiment. Just this am-
plitude reflects specific features of a hard collision. Each of the
produced jets evolves in an universal manner inside a fixed open-
ing angle Θ0, which size depends on the mutual location of jets
from the ensemble.
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2. The aforementioned division permits, in each concrete case, a classical
probabilistic picture of parton branching to be retained, thus allowing
the use of Monte Carlo simulations. However the collective phenom-
ena in the multijet ensembles could be reproduced with use of classical
probabilistic language only approximately, in large Nc limit. The prob-
lem is that nowadays one faces an unresolved problem how to handle
non-positive definite 1/N2

c terms in Monte Carlo algorithms.

3. The experimental evidence of such bright phenomena as the hump-
backed plateau (coherence of the first kind) and the drag effect (co-
herence of the second kind) has shown quite convincingly that these
interference effects survive the hadronization stage. Therefore, one can
say, that in spite of confinement the hadronic system reflects very del-
icate features of the color field dynamics, which in turn stem from the
nature of QCD as a gauge theory.

4. The observation of the color interference between soft hadrons from, say,
q– and g–jets reveals the QCD wave properties of hadronic flows. Thus,
it can be considered as an experimental proof of the common brems-
strahlung nature of the hadroproduction mechanisms for both jets. The
properties of drag phenomena are deeply rooted in the basic structure
of nonabelian gauge theory.

5. Drag effects lead to a noticeable azimuthal asymmetry of particle flow
relative to the “jet axis”. The character of this asymmetry depends on
the geometry of the whole event.

6. The relative smallness of some nonclassical effects, e.g., in azimuthal jet
asymmetry or in color screening does not diminish their fundamental
importance. This consequence of QCD radiophysics is a serious warning
against the ideas about independently evolving jets.
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Problem 10.1 Derive the expression for the average of the heavy quark an-

tenna (̂ij)m over the azimuthal angle, see (10.10).

Solution:
Analogously to the massless case (see Section 4.4) let us represent (̂ij)m in
the form

(̂ij)m = (Pij)m + (Pji)m (10.26)

where

(Pij)m =
βi

2ãi

(
Ai

1 − βi cos Θi
+

Bi

1 − βj cos Θj

)

Ai = βi − cos Θi , Bi = cos Θi − βj cos Θij

and similarly for (Pji)m, which could be associated with radiation from par-
tons i and j respectively. Using

〈
1

1 − βj cos Θj

〉
=

1√
B2

i + (sin Θi/γj)2

one gets

〈
(Pij)m

〉
=

βi

2ãi

(
Ai

βiAi + γ−2
i

+
Bi√

B2
i + (sin Θi/γj)2

)
. (10.27)

From (10.26), (10.27) one can derive the relation (10.12), see Ref. [10].

Problem 10.2 Calculate the contribution to ∆Nas (see (10.22)) from an-

tennae (̂+i) (i = −, 1) and (̂−1). Analyze the behavior at small values of
Θ+.

Answer:

∆N+i = si
a+i

a+ |a+ − a+i|
· 2

π
arctan

sin Θ+ sin Θ+i

|cos Θ+ − cos Θ+i|
s− = −1, s1 = 1; aij = 1−~ni~nj = 1−cos Θij, ai = 1−~n~ni = 1−cos Θi,
see Fig. 10.12.

∆N−1 =
1 − cos Θ−1

sin Θ+−+sin Θ1+ +sin Θ−1 cos Θ+

∑

i=−,1

si
sin Θ+i

|cos Θ+−cos Θ+i|

· 2
π

arctan
sin Θ+ sin Θ+i

|cos Θ+−cos Θ+i|
.
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With Θ+ → 0

∆N+i ≈ si
sin Θ+

1 − cos Θ+
· 2

π
cot

Θ+i

2
∝ 1

Θ+

∆N−1 ∝ Θ+ .

Problem 10.3 Prove that in the case of pp collisions QCD and its large-Nc-
limit lead to the opposite sign azimuthal asymmetry of quark jet at large cms
scattering angles.
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Appendix

Radiation Patterns for Parton–Parton Scattering

The aim of this is to collect the formulae describing the radiation patterns for
some 2 → 2 hard processes. The reader can find in Refs. [1,6] more details.
The antenna pattern for the hard q(q) scattering may be written as

4πdN

dΩ~n
=
[

(̂12) + (̂34) + D̂tsRu + D̂usRt

] CF

Nc
·N ′g . (A.1)

Here

D̂ts = (̂13) + (̂24) − (̂12) − (̂34) = −D̂st , (A.2a)

D̂us = (̂14) + (̂23) − (̂12) − (̂34) = −D̂su , (A.2b)

D̂tu = −D̂ut = D̂ts − D̂us (A.2c)

are the “dipole” combinations of different antennae with subscripts s, t, u de-
fined according to (10.5). Dipoles D̂ prove to be less singular than the leading

term ((̂12) + (̂34)). They are responsible, e.g., for the azimuthal asymmetry
of jets studied in Section 10.6.

The functions Ru(s, t, u), Rt(s, t, u) are uniquely determined for each ele-
mentary 2 → 2 hard subprocesses.

For the case of scattering of quarks with different flavors

q1 q
′
2 → q3 q

′
4

one has

Rt = 1 +Ru , Ru = − 1

2NcCF
.

For the same flavor quarks
q1 q2 → q3 q4

the exchange amplitude enters the game and these functions become more
complicated:

Rt =
σt

σqq

− 1

2NcCF

, Ru =
σu

σqq

− 1

2NcCF

, (A.3)

σt =
CF

Nc

s2 + u2

t2
, σu =

CF

Nc

s2 + u2

u2
; (A.4)

σqq = σt + σu − ∆tu , ∆tu =
CF

N2
c

2s2

tu
. (A.5)
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Here σt (σu) is the contribution to the qq-scattering cross section coming from
the t (u)–channel gluon exchange, with ∆tu the interference term.

For scattering of quark and antiquark of different flavors

q1 q
′
2 → q3 q

′
4

one has

Rt = −2Ru , Ru = − 1

2NcCF
.

When q and q are of the same flavor

Rt = −∆ts

σqq

+
1

NcCF

, Ru =
σs

σqq

− 1

2NcCF

, (A.6)

σs =
CF

Nc

t2 + u2

s2
,

σqq = σt + σs − ∆ts , ∆ts =
CF

N2
c

2u2

ts
. (A.7)

Here σs is the contribution of the annihilation channel, σt is given by (A.4),
and ∆ts is the interference term. Notice the color suppression of interference
contributions ∆ts = ∆tu(u↔ s).

The radiation pattern for the annihilation channel

q1 + q2 → g3 + g4

slightly differs from that of (A.1):

4πdN

dΩ~n

=

[
(̂12) +

Nc

CF

(̂34) + D̂tsRu + D̂usRt

]
CF

Nc

·N ′g ; (A.8)

Ru =
u2/s2 − 1/N2

c

2((t2 + u2)/s2 − 1/N2
c )
, Rt = Ru(t↔ u) .

We list below also formulae for the three other subprocesses assuming the
dominance of t-channel exchange (small scattering angle Θ13�1).

• g1+q2→g3+q4

4πdN

dΩ~n

=

[
Nc

CF

(̂13) + (̂24) +
Nc

4CF

(D̂st + D̂ut)

]
CF

Nc

·N ′g (A.9)
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• g1+g2→g3+g4

4πdN

dΩ~n
=

[
(̂13) + (̂24) +

1

4
(D̂st + D̂ut)

]
·N ′g (A.10)

• g1+q2→q3+g4

4πdN

dΩ~n

=

[
(̂23) +

Nc

CF

(̂14) +
Nc

2CF

(D̂tu +
1

2NcCF

D̂us)

]
CF

Nc

·N ′g (A.11)
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abbreviations

• DIS — deep inelastic (lepton–hadron) scattering

• DGLAP — Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (evolution
equations)

• DLA — double logarithmic approximation

• GF — generating functional

• KNO — Koba–Nielsen–Olesen (scaling)

• LLA — leading logarithmic approximation

• LPHD — local parton–hadron duality

• MLLA — modified leading logarithmic approximation

• PT — perturbative

• RG — renormalization group

• SL — single logarithmic (corrections, effects)
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