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Unexpected relation between

The Landau-Khalatnikov-Fradkin (LKF) transformation

an elegant and powerful transformation allowing one to study the gauge
covariance of Green's functions in gauge theories.

&

The multi-loop structure of Euclidean massless correlators J

subject to a mysterious cancellation of even zeta-values, (2, e.g., of 72",

Proof of the “no-m theorem”
even (-values can be absorbed in a redefinition of the transcendental basis,
i.e., the so-called hatted (-values, (opt1
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The LKF transformation (LKFT)

In its original form [Landau and Khalatnikov '55, Fradkin '55]
Relates the QED fermion propagator in two different {-gauges

4 —ipx
SF(x,€) = Sp(x, 1) eP~PO), =Ae / Ly

Other important works (including generalizations to higher point functions):
[Johnson & Zumino '59; Zumino '60; Okubo '60; Bialynicki-Birula '60;
Sonoda '01]

Physical quantities should not depend on gauge-fixing parameters & and 7

Control over gauge dependence & precious information can be obtained
by studying the gauge-covariance of correlation functions

Extensively used for decades

LKF transformation and even (-values RPP 2020, Ecole Polytechnique, January 30 5/20



The LKF transformation (LKFT)

In its original form [Landau and Khalatnikov '55, Fradkin '55]
Relates the QED fermion propagator in two different {-gauges

B d4 e—ipx
SF(x,€) = Se(x,1) ePX=PO - D(x) = A €? /ﬁ o A=

Most important (recent) applications:

@ gauge-covariance of Schwinger-Dyson equations
[Curtis & Pennington '90; Dong, Munczek & Roberts '94, '96; Bashir,
Kizilersu & Pennington '98, '00; Burden & Tjiang '98; Jia &
Pennington '16, '17; ... ]

@ estimation of large orders of perturbation theory (non-perturbative)
[Bashir and Raya '02, Jia & Pennington '17; ...]

@ generalization brane-worlds
[Ahmad et al. '16; James, Kotikov & ST '19]

@ generalization to SU(N) gauge theories [De Meerleer et al. '18, "19]
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Multi-loop structure of Euclidean massless correlators

We focus on propagator-type (p-type) functions: MS-renormalized
Euclidean 2-point functions (possible IRR) expressible in terms of massless
p-type Feynman integrals (p-integrals or master integrals).

Mysterious cancellations of even (-values, (»,, e.g., of 2"
Observations (pQCD p-type functions):

@ 30 years ago: all contributions proportional to 4 = 7*/90 cancel out
in the Adler function at three-loops [Gorishnii, Kataev & Larin '91]

o 10 years ago: four-loop contribution is also 7-free and a similar fact

holds for the coefficient function of the Bjorken sum rule [Baikov,
Chetyrkin & Kiihn '10]

@ recent years: increasing evidence for other quantities
[Jamin et al. '18; Davies & Vogt '18; Ruijl et al. '18; Vogt et al. '18;

Baikov et al. '18; Moch et al. '18; Herzog et al. '18, '19; Baikov et
al. "19]

Note: first appearance of (4 in some 5-loop correlators (e.g., Sqcp)
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“no-m theorem” [Broadhurst '99; Baikov & Chetyrkin '18]

Regularity in terms proportional to 72" explained by observing that
the e-dependent (d = 4 — 2¢) transformation of (-values

o 3e 5e3 2 5e 2

C3EC3+?<4_7C& C5EC5+7C6, Cr =Gy oo (L)

Eliminates even zetas from the loop expansion of p-integrals/-functions
Defines the existence of a hatted transcendental basis

Recently:
@ Eq. (1) has been generalized to 5- and 6-loop p-integrals [Baikov &
Chetyrkin '18; Georgoudis et al. '18]
e Eq. (1) has been generalized to 7-loop p-integrals [Baikov &
Chetyrkin '19]
@ results [Baikov & Chetyrkin '18, '19; Georgoudis et al. '18] also
display multi-¢ values

LKF transformation and even (-values RPP 2020, Ecole Polytechnique, January 30 7/20



“no-m theorem” [Broadhurst '99; Baikov & Chetyrkin '18]

Regularity in terms proportional to 72" explained by observing that
the e-dependent (d = 4 — 2¢) transformation of (-values

3e 5e3

b=GtaG-2t =Gt =G o ()

Eliminates even zetas from the loop expansion of p-integrals/-functions
Defines the existence of a hatted transcendental basis

Our work: proof of the no-7 theorem

@ using the LKFT, we generalize (1) to all orders in perturbation theory.

e note: we find the one-fold set of (-values (no multi-C values).
(the LKFT involves only products of I'-functions)
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View of first terms generated by our exact result

In blue: terms known from [Baikov & Chetyrkin "18] (up to 6 loops).
In red: terms known from [Baikov & Chetyrkin "19] (7 loop).
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View of first terms generated by our exact result

In blue: terms known from [Baikov & Chetyrkin "18] (up to 6 loops).
In red: terms known from [Baikov & Chetyrkin "19] (7 loop).
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These results provide stringent constraints on multi-loop calculations
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LKFT in dimensional regularization (d = 4 — 2¢)

ddp e—ipx
_ D(x)—D(0 _ 2 —
Sr(x.6) = Srlx,m) P00, Dy =aé [ R A—eo

(

Massless fermion propagator in some gauge &:

[ =

SF(pag) P(/’)f)? SF(Xvé):)?X(X7€)7

i

o>

where P(p, &) and X(x, &) are scalar functions.

Representations related by d-dimensional Fourier transform:

da ; d9 -
SF(p7£):/(2ﬂ_)Z/2€1pXSF(X7£)> SF(Xag):/(Zn_)g/ze_leSF(pag)'

Techniques for massless Feynman integral calculations [Kotikov & ST '19]
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LKFT in dimensional regularization (d = 4 — 2¢)

ddp e—ipx
_ D(x)—D(0 _ 2 —
Sr(x.6) = Srlx,m) P00, Dy =aé [ R A—eo

(

Techniques for massless Feynman integral calculations [Kotikov & ST "19]:

D(x) = —i A & (uPx*)>~ 9/ W’

because D(0) is a massless tadpole (no-scale integral).

D(0) =0,

Position-space LKFT in dimensional regularization (d = 4 — 2¢)

SF(x,€) = Sk(x,n) P

iAA o e?
D — r1— 2 2\¢e A e
(0 =221 - ) mA), e
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Let in some gauge n (7 = 0 in the Landau gauge):

P(p,n) = i am(n) A™ (ﬁi)mg

m=0

where an,(n) are coefficients of the loop expansion of the propagator and
[? = Anp? (7? = i e MS-scale)

the renormalization scale
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Let in some gauge n (7 = 0 in the Landau gauge):

00 ~o\ Me
P(p,n) =) am(n) A™ (i;)
m=0
where an,(n) are coefficients of the loop expansion of the propagator and
[? = Anp? (7? = i e MS-scale)
the renormalization scale
Momentum-space LKFT in dimensional regularization (1)

For another gauge &, the fermion propagator can be expressed as:

> ~2 N\ me
P(p,&) =S an(€)A™ (L
’ mz—:o (p2>
r(2—(m+1))
M(1+ me)
X i r(1+(m+/)€)rl(1—5) (AA)/ (I&2)/E

T2 —(m+1+1)) (—e) \p2

where am(&) = am(n)

1=0

LKF transformation and even (-values RPP 2020, Ecole Polytechnique, January 30




Scale fixing (appropriate choice is crucial)
We work in MS-like schemes

@ Popular MS-scale: subtracts Euler-y.
@ Popular G-scale [Chetyrkin, Kataev & Tkachov '80]: subtracts
Euler-v and (>
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Scale fixing (appropriate choice is crucial)
We work in MS-like schemes

@ Popular MS-scale: subtracts Euler-y.
@ Popular G-scale [Chetyrkin, Kataev & Tkachov '80]: subtracts
Euler-v and (>

We use (for uniform transcendental weight):
e minimal Vladimirov-scale (MV-scale): new scale based on old
calculations of [Vladimirov '79] (it has been used once in [Kataev &
Vardiashvili '88])

/'126

2 __
Emv = F(l - 8)

The MV-scale is the most efficient for our calculations

@ g-scale [Broadhurst '99] (small variant of G-scale)

e P(l—e)(1+¢)
He = I (1 - 2e)
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Momentum-space LKFT in dimensional regularization (II)
In both the MV-scale and g-scales (p =MV, g):

X 1-(m+1 aA) (2\"
om(€) = an() 3 1~ (7 23 P (l;)
T = (m+ 1)) (14 (m+ Ne)r?(1—e)
Sy (m, 1, €) = F(1+ me)r(1— (m+ I+ 1)e)
(1 - 2¢)

(bg(m, /,8) = <1>MV(m7 /78) r3/( — 5‘)— (]_ T 8)

The ®-functions can be expressed as expansions in (; (i > 3) using

M1+ pe) =exp [ —vBe + Z (—=1)°nsB%e®|, ns = %
s=2
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Momentum-space LKFT in dimensional regularization (III)
In the MV-scale:
o e (L (AAY (13"
m — dm ¢ 7Ia o
am(&) = am(n) < 1—(m+/+1)e v( €) (=)t \ p?
Syyv(m, 1) = exp [i ns ps(m, ) 55] Ns = Gs
P s:3 ) s
pe(m, 1) = (m+1)° — (m+1+1)* +2/+ (—1)5{(m+ 1y — ms}
pi(m,l) =0, p2(m, ) =0

Notice: ®pmy(m,/, ) contains (s-function values of a given weight (or
transcendental level) s in factor of &°.

property of uniform transcendentality [Kotikov & Lipatov '00]

For applications see, e.g., [Kotikov & Lipatov '02; Fleischer et al. '98;
Kotikov et al. '07; Bajnok et al. '09; Lukowski et al. '10; Marboe et
al. '15; Dixon et al. '19; Broedel et al. '19]
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Polynomials ps(m, /)
ps(m, 1) = (m-+1)7 = (m+ 1+ 1) + 21+ (<17 (m+ )" = m*
pi(m, 1) =0, p2(m, 1) =0
Conveniently separated in even and odd s values. Recursion relations:
P2k = P2k—1 + Lpak—2 + p3, L=1I(I+1)
P2k—1 = P2k—2 + Lpak—3 + p3
simple form holds in the MV-scheme (more complicated otherwise)
ps takes the form of a polynomial in L in factor of ps:
pa = 2p3,
ps = pas+Lps+ps=(3+L)ps,
pe = ps + Lpa + p3 = (4 + 3L)ps3,
Possible to eliminate L:
Lps = ps —3p3, ps = 3ps —5ps3,

Key fact: even polynomials are entirely expressible in terms of odd ones
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Generalize to arbitrary k:

K k—1
P2k = E p2s—1 Cok2s—1 = § P2k—2m+1 Cok 2k—2m+1
s=2 m=1

where the coefficients have the following structure
(2k)!
2m— 1)1 (2k —2m + 1)!

Cok 2k—2m+1 = bam—1 (

The first few values read:

1 1 1 17 31
bl_E) b3__17 b5_§) b7__?7 bg_?)
691 5461 929569
bll — _Ta b13 - Ta b15 - = 16 )
3202291 221930581
17 = T? b19 - _f7
4722116521 968383680827
2= bas = B E—

Looks like they are proportional to the numerators of Bernoulli numbers!
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Generalize to arbitrary k:

K k—1
P2k = § p2s—1 Cok2s—1 = § P2k—2m+1 Cok 2k—2m+1
s=2 m=1

where the coefficients have the following structure

. L, (2k)!
2k, 2k—2m+1 = b2m—1 (2m— 1! (2k —2m + 1)!

Closer inspection reveals relation with zero values of Euler polynomials:

bom-1 = —Eam—1(x = 0)

and therefore to Bernoulli, B,,, and Genocchi, G,,, numbers because

G 22m 1
Eop-1(x = 0) = %, Gom = i) Bam
m m
Hence: )
2m —1
bom—1 = -1 Bom
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Hatted (-values
At this point, we may reconsider:

dpmy(m, 1 e) = exp [Z Ns Ps(m, 1) 55} Ns = —
s=3

and perform the decomposition:

o0 o0 oo

2k 2k—1
E Ns ps€® = E Mok P2k €7 + E Mk—1 P2k—1€ .
s=3 k=2 k=2
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Hatted (-values
At this point, we may reconsider:

oo
dpmy(m, 1 e) = exp [Z ns ps(m, 1) 55} ns = G
s=3
and perform the decomposition:

o0 oo [e.o]
Z Ns ps € = Z Mok ok €2 + Z Tok—1 Pok-1€° T
s=3 k=2 k=2

Then

o o oo

2k 2k
E Mok Pok €7 = E P2s—1 E Mok Coks—16°" .
k=2 s—2 k=s
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Hatted (-values
At this point, we may reconsider:

oo
dpmy(m, 1 e) = exp [Z ns ps(m, 1) 55] ns = G
s=3
and perform the decomposition:

o o0 (o]

2k 2k—1
E Ns Ps€° = E M2k P2k €7 + E M2k—1 P2k—1€ .
s=3 k=2 k=2

Then
o o oo
2k 2k
> ok por e =D pas 1 Y Mok Cokps167F.
k=2 s=2 k=s
Hence:
o0 o0
A 25—1
Z s Ps(mu /) e = Z T2s—1 P2s—1 € g
s=3 s=2

o
A _ 2(k—s)+1
fl2s—1 = M2s—1 + E Mok Cokps—1 620K
k=s
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Hatted (-values

“no-7 theorem” [Broadhurst '99; Baikov & Chetyrkin '18]
Final exact analytical expression [Kotikov & ST "19]:

Omv(m, I, ) = exp [Z Cos— 11 B 82s—1]

s=2

0o
52571 = (ps—1 + Z Cok €2k,2571 62(I<fs)+1

k=s
a 2s —1 (2k —1)!
s—1 — Cokos— —<s
o251 = 53— Coks—1 = bak-2s11 (25 — 2)1 (2k — 25 + 1)
22m — 1
bom—1 = @r-1 Bom
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Hatted (-values

“no-7 theorem” [Broadhurst '99; Baikov & Chetyrkin '18]
Final exact analytical expression [Kotikov & ST "19]:

Omv(m, I, ) = exp [Z Cos— 11 B 82s—1]

s=2

0o
52571 = (ps—1 + Z Cok €2k,2571 62(I<fs)+1

k=s
A 25 — 1 (2k — 1)!
C s—1 — C s— —zs
2k25-1 = —5p— Cokas—1 = bakas o G S
22 — |
b2m—1=¥52m

Note 1: identical hatted (-values found for the g-scale [Kotikov & ST '19]
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Hatted (-values

“no-7 theorem” [Broadhurst '99; Baikov & Chetyrkin '18]
Final exact analytical expression [Kotikov & ST "19]:

Omv(m, I, ) = exp [Z Cos— 11 B 82s—1]

s=2

o
Goso1=Cos 1+ Y, Gok Cokps—g 267

k=s
A 25 — 1 (2k — 1)!
C s—1 — C s— —zs
2k25-1 = —5p— Cokas—1 = bakas o G S
22 — |
b2m—1=¥52m

Note 1: identical hatted (-values found for the g-scale [Kotikov & ST '19]
Note 2: same basis found for scalar QED [Kotikov & ST "19]
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View of first terms generated by our exact result

In blue: terms known from [Baikov & Chetyrkin "18] (up to 6 loops).
In red: terms known from [Baikov & Chetyrkin "19] (7 loop).
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Conclusion

@ our work clarifies the (-structure of gauge field theories (proof of
“no-m theorem”, exact formula valid to all orders of perturbation
theory),

@ provides stringent constraints (allowing important checks) on present
and future multi-loop results.

© minimal Vladimirov-scheme should prove itself of very convenient use
in multi-loop calculations.
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Conclusion

@ our work clarifies the (-structure of gauge field theories (proof of
“no-m theorem”, exact formula valid to all orders of perturbation
theory),

@ provides stringent constraints (allowing important checks) on present
and future multi-loop results.

© minimal Vladimirov-scheme should prove itself of very convenient use
in multi-loop calculations.

Multi-¢ values: open issue!
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