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Statistical mechanics of membranes

Random D-surfaces embedded in d-dimensional space

Complex systems whose physical properties are dominated by the entropy
of thermal fluctuations (case of interest: D = 2 in d = 3 space)

Distinct types of microscopic orders

crystalline (or tethered or polymerized): fixed-connectivity,

other: fluid (vanishing shear modulus) and hexatic membranes

Very rich set of universality classes

Extensive studies since the 80s: discovery of the (low-temperature) flat
phase of crystalline membranes [Nelson and Peleti ’87, Aronovitz and
Lubensky ’88, David and Guitter ’88, Le Doussal and Radzihovsky ’92, ...]

Interest considerably boosted by the discovery of graphene (2004)
clean free-standing graphene at room T

should exhibit a critical flat phase behaviour
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Physical examples of “flat” D = 2 crystalline membranes

Long-range orientational order vs anomalous elasticity / rigidity
(in order to evade the Mermin-Wagner theorem)

Cytoskeletons of red blood cell membranes

Early light scattering experiments (roughness exponent measurement) give
evidence for a critical flat phase behaviour [Schmidt et al. ’93]

Free-standing graphene (subject to weak tension)

Ripples as out-of-plane deformations that stabilize the flat phase (possibly
not fully thermal in origin, effects of disorder, boundaries, electrons ...)

Evidence for anomalous effects [Nicholl et al. ’15, ’17; Colangelo et al. ’19;
Lopez-Polin et al. ’15, ’21]
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Theoretical model of a (flat) crystalline membrane
D-dimensional manifold in d-dimensional space described by:

D-dimensional (rest) coordinates x,

d-dimensional (embedding) vector r(x).

For an undeformed (flat) structure: r(x) = x

4 Crystalline Membranes

A crystalline membrane is a two dimensional fish-net structure with bonds
(links) that never break - the connectivity of the monomers (nodes) is fixed.
It is useful to keep the discussion general and consider D-dimensional objects
embedded in d-dimensional space. These are described by a d-dimensional
vector !r(x), with x the D-dimensional internal coordinates, as illustrated
in Fig.10. The case (d = 3, D = 2) corresponds to the physical crystalline
membrane.

z

x

y

r(x  )α

xα

Figure 10: Representation of a membrane.

To construct the Landau free energy of the model, one must recall that
the free energy must be invariant under global translations, so the order
parameter is given by derivatives of the embedding !r, that is !tα = ∂#r

∂uα
, with

α = 1, · · · , D. This latter condition, together with the invariance under
rotations (both in internal and bulk space), give a Landau free energy [35,
36, 37]

F (!r) =
∫

dDx
[
1

2
κ(∂2

α!r)
2 +

t

2
(∂α!r)

2 + u(∂α!r∂β!r)
2 + v(∂α!r∂

α!r)2
]

+
b

2

∫
dDx dDyδd(!r(x) − !r(y)) , (5)

14

[Image from the review [M. Bowick and A. Travesset ’00]]
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Theoretical model of a (flat) crystalline membrane
D-dimensional manifold in d-dimensional space described by:

D-dimensional (rest) coordinates x,

d-dimensional (embedding) vector r(x).

Landau action functional

Global translational invariance of S : depends only on derivatives ∂i r
(i = 1, · · · ,D) ⇒ derivative field theory

S [r] =

∫
dDx

[
κ

2

(
∂2
i r
)2

+
t

2

(
∂i r
)2

+ u
(
∂i r ∂j r

)
+ v

(
∂i r ∂i r

)]

+
b

2

∫
dDx

∫
dDy δ(d)

(
r(x)− r(y)

)

κ: bending rigidity (extrinsic curvature)

t, u, v : elastic constants (related to Lamé coefficients)

b: excluded volume (no self-avoidance: b = 0, phantom membrane)
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Theoretical model of a (flat) crystalline membrane

Two-field model [Nelson and Peleti ’87, Aronovitz and Lubensky ’88]

Low-T expansion: r(x) =
(
x + u(x), h(x)

)

u is the D-dimensional (in-plane) phonon field,

h the d − D-dimensional (out-of-plane) flexural field.

S [u, h] =

∫
dDx

[
κ

2

(
∂2
i h
)2

+
λ

2
u2
ii + µ u2

ij

]
+ irrelevant

with strain tensor uij = ∂iuj + ∂jui + ∂ih · ∂jh + irrelevant

Dimensional analysis: [u] = D − 3, [h] = (D − 4)/2, [λ] = [µ] = 4− D.
Upper critical dimension: Duc = 4

Massless fields: long-range elastic interactions (evade Mermin-Wagner)

S [u, h] is quadratic in u: possible to integrate u exactly
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Theoretical model of a (flat) crystalline membrane

Effective model [Nelson and Peleti ’87, Aronovitz and Lubensky ’88]

Non-trivial tensor structure with non-local coupling

Seff[h] =
κ

2

∫

k
k4 |h(k)|2

+
1

4

∫

k1,k2,k3,k4

h(k1).h(k2)Rab,cd(q) ka1 kb2 kc3 kd4 h(k3).h(k4)

where Rab,cd(q) = b Nab,cd(q) + µMab,cd(q)

Nab,cd(q) =
1

D − 1
PT
ab(q)PT

cd(q), PT
ab(q) = δab −

qaqb
q2

Mab,cd(q) =
D − 1

2

[
Nac,bd(q) + Nad ,bc(q)

]
− Nab,cd(q)

“New” (D-dependent) coupling: b = µ (Dλ+ 2µ)/(λ+ 2µ)

The 2-field model and the EFT are completely equivalent.
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Anomalous elasticity in the flat phase from renormalization

Scaling behaviour of correlation functions

Guu ∼ q−(2+ηu), Ghh ∼ q−(4−η)

with anomalous dimensions ηu and η such that

ηu = 4− D − 2η (from Ward identities)

⇒ a single exponent η > 0 (e.g., roughness: ζ = (4− D − η)/2)

Strong renormalizations [Nelson and Peleti ’87, Aronovitz and
Lubensky ’88, David and Guitter ’88]

enhanced (length-scale dependent) rigidity: κR(q) ∼ q−η

softened elastic constants: µR(q) ∼ λR(q) ∼ qηu

Long-range orientational order (normals to the membrane)
Lower critical dimension Dlc < 2 [Aronovitz, Golubović and Lubensky ’89]

Note: auxetic behaviour characterized by a negative Poisson ratio
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Flat phase: quick review of 3 decades of results
ε-expansion (D = 4− 2ε):

η(1loop) = 0.96 [Aronovitz and Lubensky ’88; David, Guitter et al. ’89]

η(2loop) = 0.795 [Mauri and Katsnelson ’20]

Self Consistent Screening Approximation (SCSA):

η(SCSA) = 0.821 [Le Doussal and Radzihovsky ’92]

η(improved SCSA) = 0.789 [Gazit ’09]

Non Perturbative Renormalization Group (NPRG):

η(NPRG) = 0.849 [Kownacki and Mouhanna ’09]

Monte Carlo simulations:

η(sim) = 0.750(5) [Bowick et al. ’96] = 0.795(10) [Tröster ’13]

Experiments: η(blood cells) = 0.70(20) [Schmidt et al. ’93]
η(graphene) ≈ 0.82 [Lopez-Polin et al. ’15]
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Flat phase: quick review of 3 decades of results
Other methods:

Large-d approach (d = 3):

η(Large-d) =
2

d
+O(1/d2) = 0.667 [Aronovitz, Golubović and Lubensky ’89]

[Aronovitz, Golubović and Lubensky ’89]

Large-dc (dc = d − D) approach:

η(Large-dc ) =
2

dc
− 68ζ3 − 73

27d2
c

+ O(1/d3
c ) = 1.676 [Saykin et al. ’20]

modern amplitude techniques (bootstrap) ?

[Mauri and Katsnelson ’20]: membrane models are scale but not conformal
invariant (and possibly non-unitary)

modern amplitude techniques (bootstrap) do not apply
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Flat phase: quick review of 3 decades of results

This talk: higher orders of the ε-expansion

More accuracy on the value of η

Better understanding of the perturbative structure of the flat phase

Comparison with NPRG and SCSA

More than 3 decades between the first (1-loop) result and the 2-loop one...

2-loop: [O. Coquand, D. Mouhanna and ST, PRE ’20]

3-loop: [S. Metayer, D. Mouhanna and ST, PRE Letter ’22]

Note: 4-loop in 2-field model [Pikelner ’22]
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a b s t r a c t

Motivated by freely suspended graphene and polymerized mem-
branes in soft and biological matter we present a detailed study of
a tensionless elastic sheet in the presence of thermal fluctuations
and quenched disorder. The manuscript is based on an extensive
draft dating back to 1993, that was circulated privately. It presents
the general theoretical framework and calculational details of nu-
merous results, partial forms of which have been published in
brief Letters (Le Doussal and Radzihovsky, 1992; 1993). The exper-
imental realization atom-thin graphene sheets (Novoselov et al.,
2004) have driven a resurgence in this fascinating subject, making
our dated predictions and their detailed derivations timely. To
this end we analyze the statistical mechanics of a generalized D-
dimensional elastic ‘‘membrane’’ embedded in d dimensions using
a self-consistent screening approximation (SCSA), that has proved
to be unprecedentedly accurate in this system, exact in three com-
plementary limits: (i) d ! 1, (ii) D ! 4, and (iii) D = d. Focusing
on the critical ‘‘flat’’ phase, for a homogeneous two-dimensional
(D = 2) membrane embedded in three dimensions (d = 3), we
predict its universal roughness exponent ⇣ = 0.590, length-scale
dependent elastic moduli exponents ⌘ = 0.821 and ⌘u = 0.358,
and an anomalous Poisson ratio, � = �1/3. In the presence
of random uncorrelated heterogeneity the membrane exhibits a
glassy wrinkled ground state, characterized by ⇣ 0 = 0.775, ⌘0 =

0.449, ⌘0
u = 1.101 and a Poisson ratio � 0 = �1/3. Motivated by a

number of physical realizations (charged impurities, disclinations
and dislocations) we also study power-law correlated quenched
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Fig. 3. A roughness ⇣ as a function of embedding dimension, d for two-dimensional (D = 2) elastic membranes. The solid curve
is the SCSA result, Eq. (82). The long-dashed–short-dashed curve is the O(✏) result, setting ✏ = 2. The dashed curve corresponds
to ⌘ = 2/d chosen (somewhat arbitrarily) in Refs. [8,9] as a possible interpolation to finite d (asymptotic to the solid curve for
d ! 1).

This result agrees with the findings of Refs. [8,9]. As discussed above, this limiting property was
expected from the construction of the SCSA, built on 1/dc-expansion.

Expansion of the solution of (81) to first order in ✏ = 4 � D gives

⌘(D = 4 � ✏, dc) =
✏

2 + dc/12
, (88)

which is also in agreement with the result of Ref. [8], exact to O(✏) for all dc . This is not a general
property of SCSA. Here it can be traced to the fact that the vertex diagram (c) in Fig. 2 is convergent,
due to the structure of the theory. Because of the transverse projectors in (47) one can always extract
one power of external momentum from each external Eh legs. As a result the only counter-terms
needed are for two-point functions. This special property can be traced to a Ward identities based
on the underlying embedding-space rotational invariance. The results of the two-loop calculation are
in progress, and already indicate that the SCSA is not exact, with the deviations appearing at the two-
loop order [79].

We also observe from (81) that the solution for dc = 0 is ⌘(D, dc = 0) =
4�D
2 , i.e., ⌘u = 0, which is

the exact result for dc = 0, as discussed in previous section.
Thus, as advertised, the SCSA is indeed exact in three distinct complementary limits. These strong

constraints are at the heart of its quantitative accuracy in the physical dimension.
The present method also gives interesting predictions for the lower-critical dimension Dlc(dc) for

orientational order, i.e., order in rh. The fluctuations of the latter can be calculated as

h(rh)2i ⇠ T
Z

q

q2

Zq4�⌘
⇠ T L2�D�⌘, (89)

which is found to diverge with system size L for D < Dlc determined by the equation

2 � ⌘(Dlc, dc) = Dlc . (90)

410 P. Le Doussal, L. Radzihovsky / Annals of Physics 392 (2018) 340–410

[72] D.C. Mattis, Phys. Lett. A 56 (1976) 421.
[73] Y. Imry, S.K. Ma, Phys. Rev. Lett. 35 (1975) 1399.
[74] For review of random field and bond disorders see for example article by D. S. Fisher in Physics Today, 1989.
[75] As usual at long wavelengths the higher moments are expected to be irrelevant in renormalization group sense.
[76] S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge University Press, 1995.
[77] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Science Publications, 2002.
[78] P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995.
[79] L. Radzihovsky, B. Jacobsen, Ph.D. Thesis, University of Colorado at Boulder (2003), unpublished.
[80] M. Warner, E.M. Terentjev, Liquid Crystal Elastomers, Oxford Science Publications, 2005.
[81] X. Xing, L. Radzihovsky, Annals of Physics 323 (2008) 105–203.

Phys. Rev. E 71 (2005) 011802;
Europhysics Letters 61 (2003) 769;
Phys. Rev. Lett. 90 (2003) 168301.

[82] E. Guitter, F. David, S. Leibler, L. Peliti, Phys. Rev. Lett. 61 (1988) 2949.
[83] L. Radzihovsky, Europhysics Letters 29 (1995) 227.
[84] S.F. Edwards, P.W. Anderson, J. Phys. F 5 (1975) 965.
[85] It is not clearwhether there is an underlying physical reason for this dc ! 4dc property or that it is just an accident special

to the SCSA.
[86] Actually there is an additional mixed marginal phase in which both LR curvature and LR stress disorders are relevant,

analogous to themixed LRM and LRMG phases and the exponents are completely determinedwith ⌘ = ⌘0 = z . However,
this phase turns out to only exist on a special line z = 2 � D/2 � zµ/2 and is therefore not likely to be experimentally
significant. For this reason we do not describe in any further detail.

[87] O. Stenull, T.C. Lubensky, Europhysics Letters 61 (2003) 776.
Phys. Rev. E 69 (2004) 021807.

[88] P. Le Doussal, J. Phys. A 25 (1992) L469.

Field theoretic approach to flat polymerized membranes MECO48, Slovakia, May 2023 9 / 26



Outline

1 Introduction

2 Field theoretic approach

3 Results

4 Conclusion

Field theoretic approach to flat polymerized membranes MECO48, Slovakia, May 2023 10 / 26



Perturbative setup in the 2-field model

S [u, h] =

∫
dDx

[
κ

2

(
∂2
i h
)2

+
λ

2
u2
ii + µ u2

ij

]
+ irrelevant

with strain tensor uij = ∂iuj + ∂jui + ∂ih · ∂jh + irrelevant
Feynman rules:

Free massless flexuron propagator (α, β = 1, · · · , dc):

S
(0)
αβ (k) =

δα,β
k4

= �
k

α β

Free massless phonon propagator (i , j = 1, · · · ,D):

D
(0)
ij (q) =

1

q2

(
1

µ
P

(⊥)
ij (q) +

1

2µ+ λ
P

(‖)
ij (q)

)
= �

q
i j
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Perturbative setup in the 2-field model

S [u, h] =

∫
dDx

[
κ

2

(
∂2
i h
)2

+
λ

2
u2
ii + µ u2

ij

]
+ irrelevant

with strain tensor uij = ∂iuj + ∂jui + ∂ih · ∂jh + irrelevant
Feynman rules:

3-point phonon-flexuron vertex:

Γ
j (0)
αβ (k, k′,q ) = − i

2
δα,β

[
µ (q · k k ′j + q · k′ kj) + λ k · k′ qj

]

= �−→qj

β k′

α k
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Perturbative setup in the 2-field model

S [u, h] =

∫
dDx

[
κ

2

(
∂2
i h
)2

+
λ

2
u2
ii + µ u2

ij

]
+ irrelevant

with strain tensor uij = ∂iuj + ∂jui + ∂ih · ∂jh + irrelevant
Feynman rules:

4-point (fully symmetrized) flexuron vertex:

Γ
(0)
αβγδ(k1, k2, k3, k4) =

λ

24
[ δα,β δγ,δ k1 · k2 k3 · k4 + · · · ] +

+
µ

24
[ δα,β δγ,δ k1 · k3 k2 · k4 + · · · ]

= �
β k2

α k1

γ k3

δ k4
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Perturbative setup in the EFT

Seff[h] =
κ

2

∫

k
k4 |h(k)|2

+
1

4

∫

k1,k2,k3,k4

h(k1).h(k2)Rab,cd(q) ka1 kb2 kc3 kd4 h(k3).h(k4)

Feynman rules:

Free massless flexuron propagator (α, β = 1, · · · , dc):

S
(0)
αβ (k) =

δα,β
k4

= 
k

α β
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Perturbative setup in the EFT

Seff[h] =
κ

2

∫

k
k4 |h(k)|2

+
1

4

∫

k1,k2,k3,k4

h(k1).h(k2)Rab,cd(q) ka1 kb2 kc3 kd4 h(k3).h(k4)

Feynman rules:

4-point flexuron vertex:

V
(0)
αβγδ(k1, k2, k3, k4) = −Rabcd(k1 + k2 )

4
δα,β δγ,δ k

a
1 kb2 kc3 kd4

= �
~q

β ~k2

α ~k1

γ ~k3

δ ~k4
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Dyson equations in 2-field model and EFT
In the 2-field model:

Sαβ(k) = S
(0)
αβ (k) + S (0)

αγ (k) Σγδ(k) Sδβ(k)

Dij(q) = D
(0)
ij (q) + D

(0)
ik (q)Πkl(q)Dlj(q)

⇒ compute the self-energies Σ (flexuron) and Π (phonon)

Parametrization for the flexuron self-energy (IR safe correlator despite 1/k4):

Sαβ(k) =
δα,β
k4

1

1− Σ̃(k2)
, Σ̃(k2) = k−4 Σ(k)

Parametrization for the phonon self-energy:

D‖(q) =
1

(2µ+ λ) q2

1

1− Π̃‖(q2)
, Π̃‖(q

2) =
1

(2µ+ λ) q2
Π‖(q

2)

D⊥(q) =
1

µ q2

1

1− Π̃⊥(q2)
, Π̃⊥(q2) =

1

µ q2
Π⊥(q2)
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Dyson equations in 2-field model and EFT
In the EFT:

Sαβ(k) = S
(0)
αβ (k) + S (0)

αγ (k) Σγδ(k) Sδβ(k)

Rabcd(q) = R
(0)
abcd(q) + R

(0)
abef (q)Πefgh(q)Rghcd(q)

⇒ compute the self-energies Σ (flexuron) and Π (vertex)

Parametrization for the vertex self-energy:

Rabcd(q) = RN(q)Nabcd(q) + RM(q)Mabcd(q) ,

Πabcd(q) = ΠN(q)Nabcd(q) + ΠM(q)Mabcd(q) ,

RN(q) =
b

1− Π̃N(q)
, Π̃N(q) = b ΠN(q) ,

RM(q) =
µ

1− Π̃M(q)
, Π̃M(q) = µΠM(q) .
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Self-energy computations

Perturbative solution of the Dyson equations in 2-field model and EFT

⇒ compute the self-energies Σ and Π

Efficient use of massless Feynman diagram technics [Kotikov and ST ’19]

Fully automated computations (by Simon Metayer):

Feynman diagrams generated using Qgraf [Nogueira ’93]

Total number of diagrams at 3 loop:

I 2-field model: 61 diagrams
I EFT: 32 diagrams

import to Mathematica and perform numerator and tensor algebra

reduction to master integrals using LiteRed [Lee ’14]

compute renormalization group (RG) flows and functions

Our approach is exact order by order in perturbation theory
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View of 1, 2 and 3-loop self-energy diagrams in the 2-field model:
Our work; a three-loop approach
Perturbation theory at three-loop order for derivative multicharge models.
Number of diagrams: Two-field model (61), EFT (33).

EDPIF – LPTHE – SU Simon Metayer September 2021 3 / 11
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Renormalization conventions
Computations in dimensional regularization (D = 4− 2ε)

Renormalization constants computed in the MS scheme M
2

= 4πe−γEM2

u = Z ur, h = Z 1/2 hr, µ = Zµ µr M
2ε, λ = Zλ λr M

2ε, b = Zb br M
2ε

where they take the form of Laurent series in ε

Approach is algebraic (as in QCD):

2-field model:

finite = (p4 − Σ)Z , finite = (p2 Zµ µr − Π⊥)Z 2,

finite = (p2(Zλ λr + 2Zµ µr )− Π‖)Z
2

EFT:

finite = (p4 − Σ)Z , finite = ((Zµ µr )−1 − ΠM)Z−2,

finite = ((Zb br )−1 − ΠN)Z−2
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Renormalization group functions

Beta functions and field anomalous dimension extracted from the Z s

βx = M ∂MZx (x = {λ, µ, b}),
η = M ∂M logZ

Perturbative solution of system of equations ⇒ fixed points

2-field model:

βλ(λ∗, µ∗) = 0 , βµ(λ∗, µ∗) = 0

EFT

βµ(µ∗, b∗) = 0 , βb(µ∗, b∗) = 0

Derive scheme-independent and universal η(λ∗, µ∗) and η(µ∗, b∗)

strong check: η(λ∗, µ∗) = η(µ∗, b∗)
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Fixed points and anomalous dims in the 2-field model
We find four fixed points (λ∗i , µ

∗
i ) (i = 1, · · · , 4)

Mechanical stability delimited by µ = 0 and 2λ+ µ = 0
Special line (NPRG, SCSA, 1-loop): 3λ+ µ = 0
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Four fixed points (λ∗i , µ
∗
i ) (i = 1, · · · , 4):

P1: unstable gaussian FP (λ∗1 = µ∗1 = 0) with η1 = 0

P2: unstable shearless FP (λ∗2 = 32π2ε/dc , µ∗2 = 0) with η2 = 0

P3: mechanically unstable at 2 and 3-loop (negative bulk-modulus
B∗3 = λ∗3 + 2µ∗3/D < 0)

η3 = 0.9524 ε − 0.0711 ε2 − 0.0698 ε3 − 0.0750 ε4 + O(ε5)

P4: IR-stable non-trivial fixed point (λ∗4 and µ∗4)

η ≡ η4 =
24

25
ε − 144

3125
ε2 − 4(1286928 ζ3 − 568241)

146484375
ε3 + O(ε4)

P4 contols the physics of the flat phase

1-loop: [Aronovitz and Lubensky ’88]
2-loop: [Coquand, Mouhanna and ST, PRE ’20]
3-loop: [Metayer, Mouhanna and ST, PRE Letter ’22]
4-loop: [Pikelner, EPL ’22]
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Fixed points and anomalous dims in the EFT
We find four fixed points (b∗i , µ

∗
i ) (i = 1, · · · , 4)

P1

P
2



P3

P4

µ

b

Mechanical stability delimited by µ = 0 and b = 0
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Four fixed point (b∗i , µ
∗
i ) (i = 1, · · · , 4)

P1: unstable gaussian FP (b∗1 = µ∗1 = 0) with η1 = 0

P′2: unstable shearless FP (µ∗2 = 0, b∗2 6= 0) with

η′2 = 0.8000 ε − 0.0053 ε2 + 0.0110 ε3 + O(ε4)

Note that at P′2: η(2loop) = 0.795 [Mauri and Katsnelson ’20]

P3: on mechanical stability line (b∗3 = 0, µ∗3 6= 0)

η3 = 0.9524 ε − 0.0711 ε2 − 0.0698 ε3 + O(ε4)

Same result as in the 2-field model !

P4: IR-stable non-trivial fixed point (b∗4 and µ∗4)

η ≡ η4 =
24

25
ε − 144

3125
ε2 − 4(1286928 ζ3 − 568241)

146484375
ε3 + O(ε4)

Same result as in the 2-field model !

P4 contols the physics of the flat phase
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Structure of the perturbative series and comparison
From our results (+ Pikelner’s 4-loop) we find (dc = 1 and D = 4− 2ε):

P′2: η′2 = 0.8000 ε − 0.0053 ε2 + 0.0110 ε3 + O(ε4)

P3: η3 = 0.9524 ε − 0.0711 ε2 − 0.0698 ε3 − 0.0750 ε4 + O(ε5)

P4: IR-stable non-trivial fixed point

η ≡ η4 = 0.9600 ε − 0.0461 ε2 − 0.0267 ε3 − 0.0200 ε4 + O(ε5)

ηSCSA = 0.9600 ε − 0.0476 ε2 − 0.0280 ε3 − 0.0177 ε4 + O(ε5)

ηNPRG = 0.9600 ε − 0.0367 ε2 − 0.0266 ε3 − 0.0178 ε4 + O(ε5)

Asymptotic series but small (and essentially decreasing) coefficients

Case D = 2 (ε = 1) and at P4:

η1-loop = 0.96 , η2-loop = 0.9139 , η3-loop = 0.8872 , η4-loop = 0.8670

ηSCSA = 0.8209 , ηNPRG = 0.8491 , ηsim = 0.795(10) , η[2/2] = 0.806
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Beyond the rainbow (cancellations)
Factor V (our previous results correspond to V = 1)
SCSA exact in the rainbow approximation (V = 0 no vertex corrections)

P′2:
η′2 = 0.8 ε − 0.00533 ε2 + (0.02478− 0.01376× V) ε3 + O(ε4)

ηSCSA = 0.8 ε − 0.00533 ε2 + 0.02478 ε3 + O(ε4)

ηNPRG = 0.8 ε + 0.0347 ε2 + 0.0098 ε3 + O(ε4)

P3:

η3 = 0.9524 ε − (0.067 + 0.0043× V) ε2 − (0.056 + 0.014× V) ε3 + O(ε4)

ηSCSA = 0.9524 ε − 0.067 ε2 − 0.056 ε3 + O(ε4)

ηNPRG = 0.9524 ε − 0.054 ε2 + 0.052 ε3 + O(ε4)

P4:

η4 = 0.96 ε − (0.0476− 0.0015× V) ε2 − (0.0280− 0.0012× V) ε3 + O(ε4)

ηSCSA = 0.96 ε − 0.0476 ε2 − 0.0280 ε3 + O(ε4)

ηNPRG = 0.96 ε − 0.0367 ε2 − 0.0266 ε3 + O(ε4)
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Conclusion
Field theoretic approach to the flat phase of polymerized membranes:

highly derivative field theories

intricate tensor structure

requires state of the art automation of calculations

From our exact results:

η3-loop = 0.8872 in the range of values obtained by other methods

2-field model and EFT have identical final results (strong check)
despite the fact that intermediate steps differ

asymptotic perturbative series have remarkably small (and mostly
decreasing) coefficients (very rare in theoretical physics)

this peculiar structure partly arises from strong cancellations, e.g., of
vertex corrections ⇒ explains the success of SCSA (and NPRG)

Another important and non-trivial effect to take into account: disorder

⇒ next talk by Simon Metayer
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