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Statistical mechanics of membranes

Random D-surfaces embedded in d-dimensional space

Complex systems whose physical properties are dominated by the entropy
of thermal fluctuations (case of interest: D =2 in d = 3 space)

Distinct types of microscopic orders
@ crystalline (or tethered or polymerized): fixed-connectivity,

@ other: fluid (vanishing shear modulus) and hexatic membranes

Very rich set of universality classes

Extensive studies since the 80s: discovery of the (low-temperature) flat
phase of crystalline membranes [Nelson and Peleti '87, Aronovitz and
Lubensky '88, David and Guitter '88, Le Doussal and Radzihovsky '92, ...]

Interest considerably boosted by the discovery of graphene (2004)
clean free-standing graphene at room T
should exhibit a critical flat phase behaviour
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Physical examples of “flat” D = 2 crystalline membranes
Long-range orientational order vs anomalous elasticity / rigidity
(in order to evade the Mermin-Wagner theorem)
Cytoskeletons of red blood cell membranes

Early light scattering experiments (roughness exponent measurement) give
evidence for a critical flat phase behaviour [Schmidt et al. '93]

Free-standing graphene (subject to weak tension)

Ripples as out-of-plane deformations that stabilize the flat phase (possibly
not fully thermal in origin, effects of disorder, boundaries, electrons ...)

.—i?% o
Evidence for anomalous effects [Nicholl et al. 15, '17; Colangelo et al. '19;
Lopez-Polin et al. '15, '21]
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Theoretical model of a (flat) crystalline membrane
D-dimensional manifold in d-dimensional space described by:

@ D-dimensional (rest) coordinates x,

e d-dimensional (embedding) vector r(x).

For an undeformed (flat) structure: r(x) = x

4

X

[Image from the review [M. Bowick and A. Travesset '00]]
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Theoretical model of a (flat) crystalline membrane
D-dimensional manifold in d-dimensional space described by:

@ D-dimensional (rest) coordinates x,

e d-dimensional (embedding) vector r(x).

Landau action functional

Global translational invariance of S: depends only on derivatives 0;r
(i=1,---,D) = derivative field theory

2
o fief 0000

e r: bending rigidity (extrinsic curvature)

Slr] = /de [; (6/‘2")2 + L (8,-r)2 +u (8,-r 8jr) +v (8,-r 8,-r)

@ t, u, v: elastic constants (related to Lamé coefficients)

@ b: excluded volume (no self-avoidance: b = 0, phantom membrane)
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Theoretical model of a (flat) crystalline membrane

Two-field model [Nelson and Peleti ‘87, Aronovitz and Lubensky '88]
Low-T expansion: r(x) = (x + u(x), h(x))
@ u is the D-dimensional (in-plane) phonon field,

@ h the d — D-dimensional (out-of-plane) flexural field.

Slu, bl = / dDXB (62h)2 4 2

> uZ 4 ug- + irrelevant

with strain tensor uj; = O;u;j + Oju; + 0jh - 0;jh 4 irrelevant

Dimensional analysis: [u] = D —3, [h] = (D —4)/2, [\] = [u] =4 - D.
Upper critical dimension: D, = 4

Massless fields: long-range elastic interactions (evade Mermin-Wagner)
S[u, h] is quadratic in u: possible to integrate u exactly
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Theoretical model of a (flat) crystalline membrane

Effective model [Nelson and Peleti 87, Aronovitz and Lubensky '88]

Non-trivial tensor structure with non-local coupling

Salbl = 5 [ Kh(oP

1
+ /h(kl).h(kz) Rab.ca(q) ki k2 kS kS h(ks).h(ks)
k1,k2,k3,ka

where Rab,cd(q) =b Nab,cd(q) Tt Mab,cd(q)

1 9aqb
Nab,ca(@) D1 Pa(a) Pig(a),  Pay(a) = dab — ;2
D-1
Mab,Cd(q) = 2 [NaC,bd(q) + Nad,bc(q)] - Nab,cd(Q)

“New” (D-dependent) coupling: b = pu (DX + 2u)/(X + 2p)
The 2-field model and the EFT are completely equivalent.
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Anomalous elasticity in the flat phase from renormalization

Scaling behaviour of correlation functions
Guu ~ q7(2+77”)7 th ~ q—(4—17)
with anomalous dimensions 7, and 7 such that
ny =4— D —2n (from Ward identities)

= a single exponent 7 > 0 (e.g., roughness: ( = (4 — D —1)/2)

Strong renormalizations [Nelson and Peleti '87, Aronovitz and
Lubensky ’88, David and Guitter '88]

@ enhanced (length-scale dependent) rigidity: xg(q) ~ q~"
@ softened elastic constants: ug(q) ~ Ag(q) ~ g™

Long-range orientational order (normals to the membrane)
Lower critical dimension Dj. < 2 [Aronovitz, Golubovi¢ and Lubensky '89]

Note: auxetic behaviour characterized by a negative Poisson ratio
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Flat phase: quick review of 3 decades of results
@ e-expansion (D =4 — 2¢):
77(1|°°p) =0.96 [Aronovitz and Lubensky '88; David, Guitter et al. '89]
7](2|°°p) = 0.795 [Mauri and Katsnelson '20]

@ Self Consistent Screening Approximation (SCSA):
T](SCSA) = 0.821 [Le Doussal and Radzihovsky '92]
plimproved SCSA) -~ — 0 789  [Gazit '09)

@ Non Perturbative Renormalization Group (NPRG):
n(NPRG) = 0.849 [Kownacki and Mouhanna '09]

@ Monte Carlo simulations:
7™ = 0.750(5) [Bowick et al. '96] = 0.795(10) [Troster '13]

Experiments: p(blood cells) — . 70(20) [Schmidt et al. '93]
peraphene) ~ (.82 [Lopez-Polin et al. '15]
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Flat phase: quick review of 3 decades of results
Other methods:
o Large-d approach (d = 3):

2
pLereed) — g+0(1/d2) = 0.667 [Aronovitz, Golubovi¢ and Lubensky '89

[Aronovitz, Golubovié¢ and Lubensky '89]
o Large-d. (d. = d — D) approach:

268G T3

(Large-dc) —_
d. 2742

n +0(1/d®) = 1.676 [Saykin et al. '20]
@ modern amplitude techniques (bootstrap) ?

[Mauri and Katsnelson '20]: membrane models are scale but not conformal
invariant (and possibly non-unitary)

modern amplitude techniques (bootstrap) do not apply
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Flat phase: quick review of 3 decades of results

This talk: higher orders of the c-expansion
@ More accuracy on the value of
@ Better understanding of the perturbative structure of the flat phase
@ Comparison with NPRG and SCSA

More than 3 decades between the first (1-loop) result and the 2-loop one...
2-loop: [O. Coquand, D. Mouhanna and ST, PRE '20]

3-loop: [S. Metayer, D. Mouhanna and ST, PRE Letter '22]

Note: 4-loop in 2-field model [Pikelner '22]
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on the underlying embedding-space rotational invariance. The results of the two-loop calculation are

in progress, and already indicate that the SCSA is not exact, with the deviations appearing at the two-
loop order [79].

We also observe from (81) that the solution for d. = 0is n(D, d. = 0) = %52, i.e,, 55, = 0, which is

i7sj i’.M. Ch‘aikin, lv( Lubensky, l’rincipies of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995.
[79] L.Radzihovsky, B. Jacobsen, Ph.D. Thesis, University of Colorado at Boulder (2003), unpublished.

[80] M. Warner, E.M. Terentjev, Liquid Crystal Elastomers, Oxford Science Publications, 2005.
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Perturbative setup in the 2-field model

A
S[u, h] = /de [g (6,-2h)2 + 5 U + u,-2j + irrelevant

with strain tensor uj; = O;uj + Oju; + 0jh - 0jh 4 irrelevant
Feynman rules:

@ Free massless flexuron propagator (o, 5 =1, - ,d.):

5(0)(k):5a—ﬁ - a—»— g

af k4

o Free massless phonon propagator (i,j =1,---,D):
1 1 1 1

DO(q)= — (=pW) (N _
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Perturbative setup in the 2-field model

A
S[u, h] = /de [g (6,-2h)2 + 5 U + u,-2j + irrelevant

with strain tensor uj; = O;uj + Oju; + 0jh - 0jh 4 irrelevant
Feynman rules:

@ 3-point phonon-flexuron vertex:

(0 i
Mk K,a) = —2dus [n(a-kk+a-K k) +Ak-K g

Field theoretic approach to flat polymerized membranes MECOA48, Slovakia, May 2023

11/ 26



Perturbative setup in the 2-field model

A
S[u, h] = /de [g (6,-2h)2 + 5 U + u,-2j + irrelevant

with strain tensor uj; = O;uj + Oju; + 0jh - 0jh 4 irrelevant
Feynman rules:

@ 4-point (fully symmetrized) flexuron vertex:

A
Mods(ki ke ks ka) = 2 [ Ga,50,5k1 ko ka-ka+ -]+
+ﬂ [(5a’g5v’§k1-k3 ko kg +--- ]
24
« k1 ) k4

X

B k2 7 k3
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Perturbative setup in the EFT

K
Salt] = 5 [ KIh(oP

k

1

+ g [ hlla) e) Rascala) 2 48 45 2 ) i)
k1,ko,k3,ka
Feynman rules:
@ Free massless flexuron propagator (o, 5 =1, - ,d.):
SOu =2 — 4 e g
apf oA K
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Perturbative setup in the EFT
Salt] = 5 [ KIh(oP
k
1
4 g nlka)hle) Rusca(a) k8 K K6 K i) i)
k1,ko,k3,ka

Feynman rules:

@ 4-point flexuron vertex:

R ki + k
V) s(ki ko, ks, ka) = —ab“’(;“ 8 0,5 ki kS KS kS
« /?1 1) E4
q
8 ko v ks
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Dyson equations in 2-field model and EFT
In the 2-field model:

Sas(k) = S (k) + SO (k) Z,5(k) Ss5(k)
Dj(a) = DY (a) + D (@) (a) Dy(a)

= compute the self-energies X (flexuron) and 1 (phonon)

Parametrization for the flexuron self-energy (IR safe correlator despite 1/k*):

Sa 1
Sap(k) =~

K 1-5(k2)’

Parametrization for the phonon self-energy:

¥ (k%) = k=4 ¥ (k)

1 1 ~ 1
W0 G h@ O @ e
1 1 ~ 1
DJ_(q) = qu 1_ ﬁj_(q2) ) rIJ_(q2) = qu nl(qz)
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Dyson equations in 2-field model and EFT
In the EFT:

Sap(k) = S (k) + S (k) Z,5(k) S55(k)
Rabea(a) = R (@) + R (a)Meggh(a) Rehea(a)

= compute the self-energies ¥ (flexuron) and I (vertex)

Parametrization for the vertex self-energy:

Rabcd(q) = RN(q) Nabcd(Q) + RM(q) Mabcd(q) )
) +N"(a) Mabca(a),

RN(q)Zl_ﬁb,\,(q), fV(q) = bN"(q),
RM(q) 1_|i|LM(q)’ M(q) = pNY(q).
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Self-energy computations

Perturbative solution of the Dyson equations in 2-field model and EFT

= compute the self-energies ¥~ and Tl
Efficient use of massless Feynman diagram technics [Kotikov and ST '19]

Fully automated computations (by Simon Metayer):

@ Feynman diagrams generated using QGRAF [Nogueira '93]
Total number of diagrams at 3 loop:

> 2-field model: 61 diagrams
» EFT: 32 diagrams

@ import to MATHEMATICA and perform numerator and tensor algebra
@ reduction to master integrals using LITERED [Lee '14]

@ compute renormalization group (RG) flows and functions

Our approach is exact order by order in perturbation theory
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View of 1, 2 and 3-loop self-energy diagrams in the 2-field model:

/@\/A/O_&/g\_/g—_@/ﬂ\/ﬁ\ﬁ\h\? A\‘
};/f/\jh_d/\«//ﬁ\\?///%w\/&/ﬂ—\

\y\s/ﬁg\}¥/—@——\%%%\yvn(
N N =0=1<0s)
- e e

O = g ALY [ ) o o
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Renormalization conventions
Computations in dimensional regularization (D = 4 — 2¢)

oL . — w2
Renormalization constants computed in the MS scheme M~ = 4we™7E M?

u=2Zu, h=2Y2h, pu=2,u M* X=2Z\\M* b=2Z,b M*

where they take the form of Laurent series in ¢

Approach is algebraic (as in QCD):
o 2-field model:

finite = (p* — ¥) Z, finite = (p? Z, , — 1) 22,
finite = (p*(Zy Ar + 2 Zu pir) — M) Z°
o EFT:

finite = (p* — X) Z, finite = ((Z, pur) ™ — M) Z72,
finite = ((Zp b,) ! — Ny) Z72
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Renormalization group functions
Beta functions and field anomalous dimension extracted from the Zs

Bx = M OpZy (x = { A\, u, b}),
n=MOoapylogZ
Perturbative solution of system of equations = fixed points
o 2-field model:
B)\()\*vl‘b*) :07 ﬁu()‘*a/‘ﬁ) =0
e EFT
Bu(w,b*) =0, Bu(p*, b%) =0

Derive scheme-independent and universal n(\*, u*) and n(u*, b*)

strong check: n(A\*, u*) = n(u*, b*)

MECO048, Slovakia, May 2023
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© Results
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Fixed points and anomalous dims in the 2-field model
We find four fixed points (A¥, puf) (i=1,--- ,4)

Mechanical stability delimited by 4 =0 and 2A\+u =0
Special line (NPRG, SCSA, 1-loop): 3A 4+ =0
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Four fixed points (AF, uf) (i=1,---,4):
@ Pj: unstable gaussian FP (A} = pj = 0) with n; =0
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Four fixed points (AF, uf) (i=1,---,4):
@ Pj: unstable gaussian FP (A} = pj = 0) with n; =0
@ P,: unstable shearless FP (A5 = 3272¢/d, pu5 = 0) with 1, = 0
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Four fixed points (AF, uf) (i=1,---,4):
@ Pj: unstable gaussian FP (A} = pj = 0) with n; =0
@ P,: unstable shearless FP (A5 = 3272¢/d, pu5 = 0) with 1, = 0

@ P3: mechanically unstable at 2 and 3-loop (negative bulk-modulus
By = X5 +2u5/D < 0)

m3 = 0.9524¢ — 0.0711 €2 — 0.0698€> — 0.0750€* + O(€°)
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Four fixed points (A¥, uf) (i=1,---,4):
@ Pj: unstable gaussian FP (A} = pj = 0) with n; =0
@ P,: unstable shearless FP (A5 = 3272¢/d, pu5 = 0) with 1, = 0
@ P3: mechanically unstable at 2 and 3-loop (negative bulk-modulus
By = X5 +2u5/D < 0)

m =0.9524¢ — 0.0711 €2 — 0.0698€> — 0.0750€* + O(€d)
@ P4: IR-stable non-trivial fixed point (A} and pj})

24 144 ,  4(1286928(; — 568241) 4
257 3125 € 146484375

P4 contols the physics of the flat phase

=14 = + O(")

1-loop: [Aronovitz and Lubensky '88]

2-loop: [Coquand, Mouhanna and ST, PRE '20]
3-loop: [Metayer, Mouhanna and ST, PRE Letter '22]
4-loop: [Pikelner, EPL '22]
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Fixed points and anomalous dims in the EFT
We find four fixed points (bf,pf) (i=1,---,4)

b .
P2

Py

P1 P3
L - ¢

Mechanical stability delimited by 4 =0 and b=10
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Four fixed point (b7, uf) (i=1,---,4)
@ Pj: unstable gaussian FP (bf = pj = 0) with 1 =0
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Four fixed point (bf, ) (i=1,---,4)
@ Pj: unstable gaussian FP (bf = pj = 0) with 1 =0
e P%: unstable shearless FP (u5 = 0, b} # 0) with

7, =0.8000e — 0.0053¢2 + 0.0110€% + O(e*)
Note that at P%: n(2100P) — 0.795  [Mauri and Katsnelson '20]
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Four fixed point (bf, ) (i=1,---,4)
@ Pj: unstable gaussian FP (bf = pj = 0) with 1 =0
e P%: unstable shearless FP (u5 = 0, b} # 0) with
7, =0.8000e — 0.0053¢2 + 0.0110€% + O(e*)
Note that at P%: n(2100P) — 0.795  [Mauri and Katsnelson '20]
@ P3: on mechanical stability line (b5 = 0, 3 # 0)
m =0.9524¢ — 0.0711€% — 0.0698€> + O(e*)

Same result as in the 2-field model !

Field theoretic approach to flat polymerized membranes MECOA48, Slovakia, May 2023



Four fixed point (bf, ) (i=1,---,4)
@ Pj: unstable gaussian FP (bf = pj = 0) with 1 =0
e P%: unstable shearless FP (u5 = 0, b} # 0) with
7, =0.8000e — 0.0053¢2 + 0.0110€% + O(e*)
Note that at P%: n(2100P) — 0.795  [Mauri and Katsnelson '20]
@ P3: on mechanical stability line (b5 = 0, 3 # 0)
m =0.9524¢ — 0.0711€% — 0.0698€> + O(e*)
Same result as in the 2-field model !

@ P4 IR-stable non-trivial fixed point (b; and pu})

24 144 ,  4(1286928 (3 — 568241) 4 A
25 ¢ 3125 ¢ 146484375 < + 0)

Same result as in the 2-field model !

n="ns =
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Four fixed point (bf, ) (i=1,---,4)
@ Pj: unstable gaussian FP (bf = pj = 0) with 1 =0
e P%: unstable shearless FP (u5 = 0, b} # 0) with
7, =0.8000e — 0.0053¢2 + 0.0110€% + O(e*)
Note that at P%: n(2100P) — 0.795  [Mauri and Katsnelson '20]
@ P3: on mechanical stability line (b5 = 0, 3 # 0)
m =0.9524¢ — 0.0711€% — 0.0698€> + O(e*)
Same result as in the 2-field model !

@ P4 IR-stable non-trivial fixed point (b; and pu})

24 144 ,  4(1286928 (3 — 568241) 4 A
25 ¢ 3125 ¢ 146484375 < + 0)

Same result as in the 2-field model !

n="ns =

P4 contols the physics of the flat phase

Field theoretic approach to flat polymerized membranes MECOA48, Slovakia, May 2023 22 /26



Structure of the perturbative series and comparison
From our results (+ Pikelner's 4-loop) we find (de =1 and D = 4 — 2¢):

o P, 7, =0.8000c — 0.0053¢2 + 0.0110e3 + O(e)
o P3: 173 =0.9524¢ — 0.0711€¢2 — 0.0698¢> — 0.0750€* + O(€®)

@ Py4: IR-stable non-trivial fixed point

n=mns = 009600¢ — 0.0461¢> — 0.0267¢> — 0.0200€* + O(°)
nSSA = 0.9600¢ — 0.04766> — 0.0280€> — 0.0177¢€* + O(c%)
gNPRG = 0.9600¢ — 0.0367¢2 — 0.0266€3 — 0.0178¢* + O(e°)

Asymptotic series but small (and essentially decreasing) coefficients
Case D =2 (¢ =1) and at Py:

ntlooP = 0.96, n?'°°P = 0.9139, n3>'°°P = 0.8872, n*°P = 0.8670

1A = 0.8209, 7NPRC = 0.8491, 7™ = 0.795(10), 7%/2 = 0.806
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Beyond the rainbow (cancellations)
Factor V (our previous results correspond to V = 1)
SCSA exact in the rainbow approximation (V) = 0 no vertex corrections)
.
’ Pzﬁg =0.8¢ — 0.00533¢2 + (0.02478 — 0.01376 x V) &3 + O(e*)
A =0.8¢ — 0.00533¢% + 0.02478€% + O(e*)
nNPRG — 08¢ + 0.0347¢2 + 0.0098¢3 + O(eh)
o P3:
m3 = 0.9524 ¢ — (0.067 +0.0043 x V) e® — (0.056 + 0.014 x V)3 + O(e*)
A =0.9524¢ — 0.067¢> — 0.056€> + O(e*)
nNPRG = 0.9524¢ — 0.054¢% + 0.052¢3 + O(e*)
o Py:
n4 = 0.96€ — (0.0476 — 0.0015 x V) €2 — (0.0280 — 0.0012 x V)€ + O(e*)
A =0.96€ — 0.0476¢> — 0.02803 + O(e*)
nNPRG = 0.06¢ — 0.0367¢2 — 0.0266€¢3 + O(e*)
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@ Conclusion
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Conclusion

Field theoretic approach to the flat phase of polymerized membranes:
@ highly derivative field theories
@ intricate tensor structure
@ requires state of the art automation of calculations
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Conclusion

Field theoretic approach to the flat phase of polymerized membranes:
@ highly derivative field theories
@ intricate tensor structure
@ requires state of the art automation of calculations

From our exact results:

@ 731°%P — (0.8872 in the range of values obtained by other methods

o 2-field model and EFT have identical final results (strong check)
despite the fact that intermediate steps differ

@ asymptotic perturbative series have remarkably small (and mostly
decreasing) coefficients (very rare in theoretical physics)

@ this peculiar structure partly arises from strong cancellations, e.g., of
vertex corrections = explains the success of SCSA (and NPRG)
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Conclusion

Field theoretic approach to the flat phase of polymerized membranes:
@ highly derivative field theories
@ intricate tensor structure
@ requires state of the art automation of calculations

From our exact results:

@ 731°%P — (0.8872 in the range of values obtained by other methods

o 2-field model and EFT have identical final results (strong check)
despite the fact that intermediate steps differ

@ asymptotic perturbative series have remarkably small (and mostly
decreasing) coefficients (very rare in theoretical physics)

@ this peculiar structure partly arises from strong cancellations, e.g., of
vertex corrections = explains the success of SCSA (and NPRG)

Another important and non-trivial effect to take into account: disorder

= next talk by Simon Metayer
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