Field theoretic study of electron-electron interaction effects in Dirac liquids

Sofian Teber

Université Pierre et Marie Curie

Habilitation à Diriger des Recherches

Brief presentation

I am a condensed matter physicist working on low-dimensional electronic systems (interactions and/or disorder, phenomenology/theory)

Around 2011: study of electron-electron interaction effects in Dirac liquids

- motivations from condensed matter physics
- strong overlap with issues found in high energy physics
- field theory as a thread between low and high energy physics

First publication on the subject: ST, "Electromagnetic current correlations in reduced quantum electrodynamics," PRD (2012).

Since then: beautiful collaboration with Anatoly Kotikov (and Vadim Shilin) from JINR Dubna

Brief presentation

I am a condensed matter physicist working on low-dimensional electronic systems (interactions and/or disorder, phenomenology/theory)

Around 2011: study of electron-electron interaction effects in Dirac liquids

- motivations from condensed matter physics
- strong overlap with issues found in high energy physics
- field theory as a thread between low and high energy physics

First publication on the subject: ST, "Electromagnetic current correlations in reduced quantum electrodynamics," PRD (2012).

Since then: beautiful collaboration with Anatoly Kotikov (and Vadim Shilin) from JINR Dubna

Anatoly Kotikov @ Multi-Loop-2017 (UPMC)

Outline

1 Introduction

- 2 Models & Issues
- 3 Technical aspects
- Overview of results
- **5** Conclusion and Outlook

Outline

1 Introduction

- 2 Models & Issues
- 3 Technical aspects
- Overview of results
- 5 Conclusion and Outlook

Dirac liquids (systems with relativistic-like low-energy excitations)

Emblematic planar Dirac liquid: graphene [Novoselov, Geim et al. '04]

- One of the most 2D system (thickness 0.5nm = 1 atom)
- High crystal quality in 2D
- Exceptional properties stronger than steel and very stretchable, good conductor of electricity and heat (keep electronics cool), ...

Massless Dirac fermions

- theory: known for a long time [Wallace '47, Semenoff '84]
- ▶ first experimental evidence from unconventional QHE ([Novoselov et al. '05], theory: [Schakel '91, Gusynin & Sharapov '05]) $\sigma_{xy} = e^2 \nu / h$, $\nu = \pm 4 \times (n+1/2)$, n = 0, 1, ...

Note: by now there are also artificial graphene-like systems + surface states of topological insulators + 3D Dirac and Weyl semimetals

Dirac liquids (systems with relativistic-like low-energy excitations)

Emblematic planar Dirac liquid: graphene [Novoselov, Geim et al. '04]

- One of the most 2D system (thickness 0.5nm = 1 atom)
- High crystal quality in 2D
- Exceptional properties stronger than steel and very stretchable, good conductor of electricity and heat (keep electronics cool), ...

Massless Dirac fermions

- theory: known for a long time [Wallace '47, Semenoff '84]
- ▶ first experimental evidence from unconventional QHE ([Novoselov et al. '05], theory: [Schakel '91, Gusynin & Sharapov '05]) $\sigma_{xy} = e^2 \nu / h$, $\nu = \pm 4 \times (n+1/2)$, n = 0, 1, ...

Note: by now there are also artificial graphene-like systems + surface states of topological insulators + 3D Dirac and Weyl semimetals

Graphene as a membrane (2-brane)

Stability related to ripples (3 atoms high and 30 atoms long) to overcome the argument of Landau & Peierls

Strong and long-ranged (intrinsic case) electron-electron interactions

 $\alpha_g = rac{e^2}{4\pi\kappa\hbar\nu} pprox 2.2$ (suspended graphene: $\kappa pprox 1$ and $\nu = c/300$)

- Our focus: electron-electron interaction effects in an ideally flat, undoped (intrinsic) graphene sheet.
- Our approach: effective gauge field theory which captures universal (IR) properties (valid for other similar planar Dirac liquids)

Outline

Introduction

2 Models & Issues

3 Technical aspects

4 Overview of results

5 Conclusion and Outlook

General low-energy effective action for planar Dirac liquid:

$$L = \int d^2 x \left[\bar{\psi}_{\sigma} \left(i\gamma^0 \partial_t + iv \vec{\gamma} \cdot \vec{\nabla} \right) \psi^{\sigma} - e \bar{\psi}_{\sigma} \gamma^0 A_0 \psi^{\sigma} + e \frac{v}{c} \bar{\psi}_{\sigma} \vec{\gamma} \cdot \vec{A} \psi^{\sigma} \right] \\ - \frac{1}{4} \int d^3 x F^{\mu\nu} F_{\mu\nu}$$

- simple massless U(1) (abelian) gauge field theory with retardation (relativistic effects in x = v/c)
- fermions are in 2 dimensions but interact via exchange of 3 dimensional photons
- spin flavour $\sigma = 1, \cdots, N$ (N=2 for graphene)
- ψ_{σ} four-component spinor (in sublattice \otimes valley space)
- U(2N) flavour symmetry (U(4) sublattice symmetry for graphene)

Despite apparent simplicity:

model I is difficult to study and few results are available

General low-energy effective action for planar Dirac liquid:

$$L = \int d^2 x \left[\bar{\psi}_{\sigma} \left(i\gamma^0 \partial_t + iv \vec{\gamma} \cdot \vec{\nabla} \right) \psi^{\sigma} - e \bar{\psi}_{\sigma} \gamma^0 A_0 \psi^{\sigma} + e \frac{v}{c} \bar{\psi}_{\sigma} \vec{\gamma} \cdot \vec{A} \psi^{\sigma} \right] \\ - \frac{1}{4} \int d^3 x F^{\mu\nu} F_{\mu\nu}$$

Important result: proof of an IR Lorentz invariant fixed point (running v) Early theory: [Gonzalez, Guinea & Vozmediano '94] Experimental evidence [Elias et al. '11, Siegel et al. '11]

$$\beta_{v}(\alpha_{g}) = \begin{cases} -\frac{v \alpha_{g}}{4} \left(1 + \mathcal{O}(x^{2})\right) & \text{(case } x = v/c \to 0) \\ -\frac{8(1-x) v \alpha_{g}}{5\pi} \left(1 + \mathcal{O}((1-x))\right) & \text{(case } x = v/c \to 1) \end{cases}$$

such that

$$\begin{cases} v(\mu = 200 \text{meV}) \approx c/300 & \xrightarrow{\mu \to 0} c \\ \alpha_g(\mu = 200 \text{meV}) = e^2/(4\pi\hbar v) \approx 2.2 & \xrightarrow{\mu \to 0} \alpha_{QED} = 1/137 \end{cases}$$

Most studies focus on a simplified model with instantaneous interactions (non relativistic limit: $x = v/c \rightarrow 0$ and $\alpha_g \approx 2.2$):

$$L = \int \mathrm{d}^2 x \, \bar{\psi}_\sigma \left[\gamma^0 \left(\mathrm{i} \partial_t - e A_0 \right) + \mathrm{i} v \vec{\gamma} \cdot \vec{\nabla} \right] \psi^\sigma + \frac{1}{2} \, \int \mathrm{d}^3 x \, \left(\vec{\nabla} A_0 \right)^2$$

Two important focuses of the last decade related to understanding:

- dynamical flavour (chiral) symmetry breaking (D χ SB)
- interaction effects on transport properties (optical conductivity)

Most studies focus on a simplified model with instantaneous interactions (non relativistic limit: $x = v/c \rightarrow 0$ and $\alpha_g \approx 2.2$):

$$\mathcal{L} = \int \mathrm{d}^2 x \, \bar{\psi}_\sigma \left[\gamma^0 \left(\mathrm{i} \partial_t - e A_0 \right) + \mathrm{i} v \vec{\gamma} \cdot \vec{\nabla} \right] \psi^\sigma + \frac{1}{2} \, \int \mathrm{d}^3 x \, \left(\vec{\nabla} A_0 \right)^2$$

Two important focuses of the last decade related to understanding:

- dynamical flavour (chiral) symmetry breaking (D χ SB)
- interaction effects on transport properties (optical conductivity)

A quantitative understanding of these phenomena requires a thorough examination of the (non-)perturbative structure of the model

Most studies focus on a simplified model with instantaneous interactions (non relativistic limit: $x = v/c \rightarrow 0$ and $\alpha_g \approx 2.2$):

$$\mathcal{L} = \int \mathrm{d}^2 x \, \bar{\psi}_\sigma \left[\gamma^0 \left(\mathrm{i} \partial_t - e A_0 \right) + \mathrm{i} v \vec{\gamma} \cdot \vec{\nabla} \right] \psi^\sigma + \frac{1}{2} \, \int \mathrm{d}^3 x \, \left(\vec{\nabla} A_0 \right)^2$$

Two important focuses of the last decade related to understanding:

- dynamical flavour (chiral) symmetry breaking (D χ SB)
- interaction effects on transport properties (optical conductivity)

A quantitative understanding of these phenomena requires a thorough examination of the (non-)perturbative structure of the model

Theoretically: though model II is simpler than model I very different results obtained over the years!

Most studies focus on a simplified model with instantaneous interactions (non relativistic limit: $x = v/c \rightarrow 0$ and $\alpha_g \approx 2.2$):

$$\mathcal{L} = \int \mathrm{d}^2 x \, \bar{\psi}_\sigma \left[\gamma^0 \left(\mathrm{i} \partial_t - e A_0 \right) + \mathrm{i} v \vec{\gamma} \cdot \vec{\nabla} \right] \psi^\sigma + \frac{1}{2} \, \int \mathrm{d}^3 x \, \left(\vec{\nabla} A_0 \right)^2$$

Two important focuses of the last decade related to understanding:

- dynamical flavour (chiral) symmetry breaking (D χ SB)
- interaction effects on transport properties (optical conductivity)

A quantitative understanding of these phenomena requires a thorough examination of the (non-)perturbative structure of the model

Theoretically: though model II is simpler than model I very different results obtained over the years!

$D\chi SB$ in planar Dirac liquids

Global U(2N) "chiral" (flavour) symmetry (U(4) for graphene) Parity-even mass/gap term breaks $U(2N) \rightarrow U(N) \times U(N)$

$$\overline{\Psi}_{\sigma} \, \Psi^{\sigma} = \bar{\chi}_{\sigma} \, \chi^{\sigma} - \bar{\chi}_{_{N+\sigma}} \, \chi^{N+\sigma}$$

Is it possible that "chiral" symmetry is dynamically broken? (with dynamical generation of a parity-even mass/gap)

To study $D\chi SB$ one needs to determine:

- critical coupling constant α_c : D χ SB for $\alpha_g > \alpha_c \ (\forall N)$
- critical fermion flavour number N_c : D χ SB for $N < N_c$ and $\alpha_g \rightarrow \infty$

Accurate computation of numbers (α_c and N_c) required (understanding phase structure of model / phase diagram of system)

$D\chi SB$ in planar Dirac liquids

Global U(2N) "chiral" (flavour) symmetry (U(4) for graphene) Parity-even mass/gap term breaks $U(2N) \rightarrow U(N) \times U(N)$

 $\overline{\Psi}_{\sigma} \, \Psi^{\sigma} = ar{\chi}_{\sigma} \, \chi^{\sigma} - ar{\chi}_{\scriptscriptstyle N+\sigma} \, \chi^{N+\sigma}$

Is it possible that "chiral" symmetry is dynamically broken? (with dynamical generation of a parity-even mass/gap)

Experimentally: no gap observed [Elias '11] \Rightarrow expect $\alpha_c > 2.2$

Theoretically: extensive work done [Khveshchenko '01; Gorbar et al. '02; Leal et al. '03; Son '07; Liu et al. '09; Gamayun et al. '09; Drut et al. '08, '09; Gonzalez '12, '15; Buividovich et al. '12, '13; Popovic et al. '13; Katanin '16; Carrington et al. '17; ...] (+ many with Hubbard-like interactions) Various techniques used (analytical to lattice simulations) Different levels of approximations made...

Last 10 years: different results obtained for $\alpha_c!$

$\alpha_c (N_c)$	Method	Year
7.65	SD (LO, dynamic RPA, running v)	2013
3.7	FRG, Bethe-Salpeter	2016
$3.2 < \alpha_c < 3.3$	SD (LO, dynamic RPA, running v)	2012
3.1	SD (LO, bare vertex approximation)	2015
2.06	SD (LO, dynamic RPA, running v)	2017
1.62	SD (LO, static RPA)	2002
(3.52)	SD (LO)	2009
1.13 (3.6)	SD (LO, static RPA, running v)	2008
1.11 ± 0.06	Lattice simulations	2008
0.99	RG study	2012
0.92	SD (LO, dynamic RPA)	2009
0.9 ± 0.2	Lattice simulations	2012
0.833	RG study	2008

Optical conductivity of planar Dirac liquids

$$\vec{j}(\omega, \vec{q}) = \sigma(\omega, \vec{q}) \vec{E}(\omega, \vec{q})$$

Optical (collision-less) regime: $\omega \gg T$

- response to a homogeneously applied electric field $(\vec{q}
 ightarrow 0)$
- photon energies $\omega \approx 1 {
 m eV}$ (visible range of the spectrum)

Intrinsic graphene: semi-metal (no state at the Fermi points).

Does it conduct?

Optical conductivity of planar Dirac liquids

$$\vec{j}(\omega, \vec{q}\,) = \sigma(\omega, \vec{q}\,)\,\vec{E}(\omega, \vec{q}\,)$$

Optical (collision-less) regime: $\omega \gg T$

- response to a homogeneously applied electric field $(\vec{q}
 ightarrow 0)$
- photon energies $\omega \approx 1 \text{eV}$ (visible range of the spectrum)

Intrinsic graphene: semi-metal (no state at the Fermi points).

Does it conduct?

Minimal conductivity of free 2D Dirac fermions (no disorder) [Ludwig, Fisher, Shankar and Grinstein '94]

$$\sigma_0(\omega) = \frac{e^2}{4\hbar}$$

Non-zero and universal (independent of ω)

Optical conductivity of planar Dirac liquids

$$\vec{j}(\omega, \vec{q}\,) = \sigma(\omega, \vec{q}\,)\,\vec{E}(\omega, \vec{q}\,)$$

Optical (collision-less) regime: $\omega \gg T$

- response to a homogeneously applied electric field $(\vec{q}
 ightarrow 0)$
- photon energies $\omega \approx 1 \text{eV}$ (visible range of the spectrum)

Intrinsic graphene: semi-metal (no state at the Fermi points).

Does it conduct?

Minimal conductivity of free 2D Dirac fermions (no disorder) [Ludwig, Fisher, Shankar and Grinstein '94]

$$\sigma_0(\omega) = \frac{e^2}{4\hbar}$$

Non-zero and universal (independent of ω)

Experimentally: optical conductivity is close to ideal (!?)

$$\sigma(\omega \approx 1 \mathrm{eV}) = \sigma_0 \left(1.00 \pm 0.02\right)$$

Data for $\hbar\omega < 1.2$ eV from [Mak et al. '08] and for $\hbar\omega > 1.2$ eV from [Nair et al. '08]

Theoretical situation

Optical conductivity from the polarization operator

$$\sigma(q_0) = -\lim_{\vec{q} \to 0} rac{\mathrm{i} q_0}{|\vec{q}|^2} \, \Pi^{00}(q_0, \vec{q}\,), \qquad q^\mu = (q^0, v \vec{q})$$

$$\Pi^{00}(q)=\langle T
ho(q)
ho(-q)
angle, \qquad
ho(q)=ear{\Psi}\gamma^0\Psi$$

"Perturbative" expansion: compute interaction correction coefficients

$$\sigma(q_0) = \sigma^{(0)} \left(\mathbf{1} + \mathcal{C}_{\mathbf{1}} \alpha_r + \mathcal{C}_{\mathbf{2}} \alpha_r^2 + \cdots \right)$$

Expect $C_i \neq 0$ because Kohn's theorem does not to apply.

Theoretical situation

Optical conductivity from the polarization operator

$$\sigma(q_0) = -\lim_{\vec{q} \to 0} rac{\mathrm{i} q_0}{|\vec{q}|^2} \, \Pi^{00}(q_0, \vec{q}\,), \qquad q^\mu = (q^0, v \vec{q})$$

$$\Pi^{00}(q)=\langle T
ho(q)
ho(-q)
angle, \qquad
ho(q)=ear{\Psi}\gamma^0\Psi$$

"Perturbative" expansion: compute interaction correction coefficients

$$\sigma(q_0) = \sigma^{(0)} \left(\mathbf{1} + \mathcal{C}_{\mathbf{1}} \alpha_r + \mathcal{C}_{\mathbf{2}} \alpha_r^2 + \cdots \right)$$

Expect $C_i \neq 0$ because Kohn's theorem does not to apply.

Accurate computation of numbers (C_i) required!

Theoretical situation

Optical conductivity from the polarization operator

$$\sigma(q_0) = -\lim_{\vec{q} \to 0} rac{\mathrm{i} q_0}{|\vec{q}|^2} \, \Pi^{00}(q_0, \vec{q}\,), \qquad q^\mu = (q^0, v \vec{q})$$

$$\Pi^{00}(q)=\langle {\cal T}
ho(q)
ho(-q)
angle,\qquad
ho(q)=ear{\Psi}\gamma^{0}\Psi$$

"Perturbative" expansion: compute interaction correction coefficients

$$\sigma(q_0) = \sigma^{(0)} \left(\mathbf{1} + \mathcal{C}_{\mathbf{1}} \alpha_r + \mathcal{C}_{\mathbf{2}} \alpha_r^2 + \cdots \right)$$

Expect $C_i \neq 0$ because Kohn's theorem does not to apply.

Extensive theoretical work since 2008 to compute C_1 : [Herbut et al. '08; Mishchenko '08; Sheehy and Schmalian '09; Juričić et al. '10; Abedinpour et al. '11; Sodemann and Fogler '12; Rosenstein et al. '13; Gazzola et al. '13; Link et al. '16; Boyda et al. '16; Stauber et al. '17; ...]

Various techniques used: analytical, lattice simulation, ...

Last 10 years: different results obtained for C_1 !

\mathcal{C}_1	Method	Year
$C^{(1)} = \frac{25-6\pi}{12}$	current + hard cut-off	2008
≈ 0.512		
$C^{(2)} = \frac{19-6\pi}{12}$	density + hard cut-off	2008
pprox 0.013	current & kinetic equations + soft cut-off	2008
	current + hard cut-off	2009
	density + hard cut-off	2011
	density + hard cut-off	2012
	current + hard cut-off & implicit regularization	2013
	lattice (tight-binding) simulations	2016
	Quantum Monte Carlo calculations	2016
(0.05)	Hartree-Fock simulations (self-screened)	2017
$\mathcal{C}^{(3)} = \frac{11 - 3\pi}{6}$	kinetic equations, hard cut-off	2008
≈ 0.263	current & density, dim. reg.	2010
	lattice (tight-binding) simulations	2013
(1/4 = 0.25)	Hartree-Fock simulations (unscreened)	2017

Alternative (non-conventional) approach: [ST '12]

Study interaction effects starting from the IR Lorentz invariant fixed point $(v/c \rightarrow 1 \text{ fully retarded interaction and } \alpha_g \rightarrow \alpha = 1/137)$

$$\mathcal{S} = \int \mathrm{d}^3 x \, ar{\psi}_\sigma \mathrm{i} \not\!\!D \psi^\sigma + \int \mathrm{d}^4 x \, \left[-rac{1}{4} \, F^{\mu
u} \, F_{\mu
u} - rac{1}{2\xi} \, (\partial_\mu A^\mu)^2
ight]$$

Boundary effective Lagrangian (in 2 + 1 dimensions): non-local

$$L = \int \mathrm{d}^3 x \, \left[\bar{\psi}_{\sigma} \mathrm{i} \left(\partial \!\!\!/ + \mathrm{i} e \tilde{A} \right) \psi^{\sigma} - \frac{1}{4} \, \tilde{F}^{\mu\nu} \, \frac{2}{[-\Box]^{1/2}} \, \tilde{F}_{\mu\nu} + \frac{1}{2\tilde{\xi}} \, \tilde{A}^{\mu} \frac{2 \, \partial_{\mu} \partial_{\nu}}{[-\Box]^{1/2}} \, \tilde{A}^{\nu} \right]$$

- $\tilde{\xi} = (1+\xi)/2$: (non-local) gauge fixing parameter associated to reduced gauge field \tilde{A}^{μ}
- fractional power (1/2) in the reduced photon propagator

Alternative (non-conventional) approach: [ST '12]

Study interaction effects starting from the IR Lorentz invariant fixed point $(v/c \rightarrow 1 \text{ fully retarded interaction and } \alpha_g \rightarrow \alpha = 1/137)$

$$S = \int \mathrm{d}^3 x \, ar{\psi}_\sigma \mathrm{i} D \hspace{-.05cm}/ \psi^\sigma + \int \mathrm{d}^4 x \, \left[- rac{1}{4} \, F^{\mu
u} \, F_{\mu
u} - rac{1}{2\xi} \, (\partial_\mu A^\mu)^2
ight]$$

Model known in some form or the other for a long time (under different names): reduced QED [Gorbar et al. '01], pseudo QED [Marino '93], ... and more recently: mixed-dimensional QED [Son '15]

Generalization to arbitrary dimensions d_e and d_γ (reduced QED_{d_e,d_γ}):

$$S = \int \mathrm{d}^{d_e} x \, \bar{\psi}_\sigma \mathrm{i} \not\!\!\!D \psi^\sigma + \int \mathrm{d}^{d_\gamma} x \, \left[-\frac{1}{4} \, F^{\mu\nu} \, F_{\mu\nu} - \frac{1}{2\xi} \, (\partial_\mu A^\mu)^2 \right]$$

case relevant to planar Dirac liquids: d_e = 3 and d_γ = 4 (QED_{4,3})
case d_e = d_γ = d: usual QED_d (QED₄, QED₃, QED₂)

Alternative (non-conventional) approach: [ST '12]

Study interaction effects starting from the IR Lorentz invariant fixed point $(v/c \rightarrow 1 \text{ fully retarded interaction and } \alpha_g \rightarrow \alpha = 1/137)$

$$S = \int \mathrm{d}^3 x \, ar{\psi}_\sigma \mathrm{i} D \hspace{-.05cm}/ \psi^\sigma + \int \mathrm{d}^4 x \, \left[- rac{1}{4} \, F^{\mu
u} \, F_{\mu
u} - rac{1}{2\xi} \, (\partial_\mu A^\mu)^2
ight]^2$$

Initial motivations:

- (lower-dimensional) branes (D χ SB) [Gorbar et al. '01]
- applications to planar systems (dSC, QHE) [Marino '93; Dorey & Mavromatos '92; Kovner & Rosenstein '92]

Recent burst of activity on reduced QED_{4,3}: quantum Hall physics [Marino et al. '14, '15], optical properties [Raya et al. '15, '16], 1/2-filled FQHE systems [Son '15], LKF [Ahmad et al. '16], duality [Hsiao & Son '17], bCFT [Herzog & Huang '17]...

- more symmetry: simpler model to study interaction corrections
- powerful techniques of relativistic Feynman diagram calculations apply

Ideal framework to accurately compute numbers

- more symmetry: simpler model to study interaction corrections
- powerful techniques of relativistic Feynman diagram calculations apply

Ideal framework to accurately compute numbers

- \Rightarrow compute: \mathcal{C} , $lpha_c$, N_c in the ultra-relativistic limit $(x = v/c \rightarrow 1)$
- ⇒ reach a quantitative understanding of the effect of electron-electron interactions at the IR fixed point
- \Rightarrow adapt the formalism to the non-relativistic limit ($x = v/c \rightarrow 0$)

- more symmetry: simpler model to study interaction corrections
- powerful techniques of relativistic Feynman diagram calculations apply

Ideal framework to accurately compute numbers

- \Rightarrow compute: C, α_c , N_c in the ultra-relativistic limit ($x = v/c \rightarrow 1$)
- ⇒ reach a quantitative understanding of the effect of electron-electron interactions at the IR fixed point
- \Rightarrow adapt the formalism to the non-relativistic limit ($x = v/c \rightarrow 0$)

Study of reduced $QED_{d_e,d_{\gamma}}$ in arbitrary dimensions also allows:

- a control over computations, *e.g.*, recover known results in QED₄
- to reconnect with long-standing issues, e.g., $D\chi SB$ in large-N QED₃

- more symmetry: simpler model to study interaction corrections
- powerful techniques of relativistic Feynman diagram calculations apply

Ideal framework to accurately compute numbers

- \Rightarrow compute: C, α_c , N_c in the ultra-relativistic limit ($x = v/c \rightarrow 1$)
- \Rightarrow reach a quantitative understanding of the effect of electron-electron interactions at the IR fixed point
- \Rightarrow adapt the formalism to the non-relativistic limit ($x = v/c \rightarrow 0$)

Study of reduced $QED_{d_e,d_{\gamma}}$ in arbitrary dimensions also allows:

- a control over computations, e.g., recover known results in QED₄
- to reconnect with long-standing issues, e.g., $D\chi SB$ in large-N QED₃

$D\chi SB$ in (2 + 1)-dimensional QED (QED₃)

Extensive studies for more that three decades now:

- Original interest: [Pisarski '84; Appelquist et al. '84] similarities to (3 + 1)-dimensional QCD and toy model to study systematically $D\chi$ SB
- Also: [Marston & Affleck '89, loffe & Larkin '89] effective field theory for condensed matter physics systems (underdoped phase of d-wave superconductors) with relativistic-like low-energy excitations
- Since then: many studies using different approaches [Pisarski '91] [Appelquist et al. '88, '99] [Nash '89] [Kotikov '93] [Pennington et al. '91, '92] [Atkinson et al. '90] [Dagotto et al. '89, '90] [Gusynin et al. '96, '01] [Kubota et al. '01] [Bashir, Raya et al. '07, '09]...

$D\chi SB$ in (2 + 1)-dimensional QED (QED₃)

Extensive studies for more that three decades now:

- Original interest: [Pisarski '84; Appelquist et al. '84] similarities to (3 + 1)-dimensional QCD and toy model to study systematically D χ SB
- Also: [Marston & Affleck '89, loffe & Larkin '89] effective field theory for condensed matter physics systems (underdoped phase of d-wave superconductors) with relativistic-like low-energy excitations
- Since then: many studies using different approaches [Pisarski '91] [Appelquist et al. '88, '99] [Nash '89] [Kotikov '93] [Pennington et al. '91, '92] [Atkinson et al. '90] [Dagotto et al. '89, '90] [Gusynin et al. '96, '01] [Kubota et al. '01] [Bashir, Raya et al. '07, '09]...
- Very recently: burst of activity [Di Pietro et al. '16] [Giombi et al. '16] [Chester & Pufu '16] [Karthik & Narayanan '16] [Janssen '16] [Herbut '16] [Gusynin & Pyatkovskiy '16] ...
$D\chi SB$ in (2 + 1)-dimensional QED (QED₃)

Extensive studies for more that three decades now:

- Original interest: [Pisarski '84; Appelquist et al. '84] similarities to (3 + 1)-dimensional QCD and toy model to study systematically D χ SB
- Also: [Marston & Affleck '89, loffe & Larkin '89] effective field theory for condensed matter physics systems (underdoped phase of d-wave superconductors) with relativistic-like low-energy excitations
- Since then: many studies using different approaches [Pisarski '91] [Appelquist et al. '88, '99] [Nash '89] [Kotikov '93] [Pennington et al. '91, '92] [Atkinson et al. '90] [Dagotto et al. '89, '90] [Gusynin et al. '96, '01] [Kubota et al. '01] [Bashir, Raya et al. '07, '09]...
- Very recently: burst of activity

[Di Pietro et al. '16] [Giombi et al. '16] [Chester & Pufu '16] [Karthik & Narayanan '16] [Janssen '16] [Herbut '16] [Gusynin & Pyatkovskiy '16] ...

In 30 years: very different results obtained for N_c !

N _c	Method	Year
∞	SD (LO in $1/N$)	1984
∞	SD (non-perturbative)	1990, 1992
∞	RG study	1991
∞	lattice simulations	1993, 1996
< 4.4	F-theorem	2015
3.5 ± 0.5	lattice simulations	1988, 1989
$32/\pi^2 \approx 3.24$	SD (LO, Landau gauge)	1988
2.89	RG study (one-loop)	2016
$1 + \sqrt{2} = 2.41$	F-theorem	2016
< 9/4 = 2.25	RG study (one-loop)	2015
< 3/2	Free energy constraint	1999
0	SD (non-perturbative)	1990
0	lattice simulations	2015, 2016

Table: Values of N_c obtained over the years with different methods (at LO).

Outline

Introduction

- 2 Models & Issues
- 3 Technical aspects
 - Overview of results
 - 5 Conclusion and Outlook

Regularization & Renormalization

Dimensional regularization in the $\overline{\mathrm{MS}}$ -scheme where $\overline{\mu}^2 = 4\pi \ e^{-\gamma_E} \ \mu^2$

well known regulator which preserves symmetries (gauge invariance, Lorentz, ...) and power counting (mass independent)

For reduced $\text{QED}_{d_e,d_{\gamma}}$, use a double ε prescription [ST '12]:

$$d_e = 4 - 2\varepsilon_e - 2\varepsilon_\gamma, \qquad d_\gamma = 4 - 2\varepsilon_\gamma$$

 ε_e : dimensionality of the fermion field, ε_γ : regulates UV/IR singularities

Case of QED_{4,3}: expansion in vicinity of odd dimension: $d_e=3-2arepsilon_\gamma$

 $arepsilon_e
ightarrow 1/2$ and $arepsilon_\gamma
ightarrow 0$ (limits commute for QED_{4,3})

Use multi-loop techniques to compute self-energies (Laurent series in ε_{γ})

Regularization & Renormalization

Dimensional regularization in the $\overline{\mathrm{MS}}$ -scheme where $\overline{\mu}^2 = 4\pi \ e^{-\gamma_E} \ \mu^2$

well known regulator which preserves symmetries (gauge invariance, Lorentz, ...) and power counting (mass independent)

For reduced $\text{QED}_{d_e,d_{\gamma}}$, use a double ε prescription [ST '12]:

$$d_e = 4 - 2\varepsilon_e - 2\varepsilon_\gamma, \qquad d_\gamma = 4 - 2\varepsilon_\gamma$$

 ε_e : dimensionality of the fermion field, ε_γ : regulates UV/IR singularities

Case of QED_{4,3}: expansion in vicinity of odd dimension: $d_e = 3 - 2\varepsilon_\gamma$

 $arepsilon_e
ightarrow 1/2$ and $arepsilon_\gamma
ightarrow 0$ (limits commute for QED_{4,3})

Use multi-loop techniques to compute self-energies (Laurent series in ε_{γ}) **Renormalization:** BPHZ prescription (recursive form: disjoint divergent subrgaphs only)

$$\mathcal{R} G = (1 - \mathcal{K}) \mathcal{R}' G, \quad \mathcal{R}' G = G + \sum_{\overline{\Gamma}_d \neq \emptyset} \prod_{\gamma \in \overline{\Gamma}_d} \left(-\mathcal{K} \mathcal{R}' \gamma \right) \star G / \overline{\Gamma}_d$$

Compute renormalization constants:

$$(\psi = Z_{\psi}^{1/2}\psi_r, A = Z_A^{1/2}A_r, \alpha = Z_e^2\alpha_r\mu^{2\varepsilon}, ...)$$

$$Z_{x} = 1 + \sum_{l=1}^{\infty} \sum_{j=1}^{l} Z_{x}^{(l,j)} \frac{\alpha_{r}^{l}}{\varepsilon_{\gamma}^{j}} \qquad (x \in \{\psi, A, e, \xi, \Gamma, g\})$$

Deduce β -functions and anomalous dimensions of fields:

$$\beta(\alpha_r) = \mu \left. \frac{\partial \alpha_r}{\partial \mu} \right|_B, \quad \gamma_x(\alpha_r, \xi_r) = -\mu \left. \frac{\mathrm{d} \log Z_x(\alpha_r, \xi_r)}{\mathrm{d} \mu} \right|_B \quad (x \in \{\psi, A\})$$

For the year 2016-2017, breakthrough achievements (+ beautiful mathematics):

- 4-loop β -function Gross-Neveu [Gracey et al. '16]
- 5-loop β-function QCD [Baikov et al. '16; Luthe et al. '17; Chetyrkin et al. '17]
- 6-loop Φ^4 [Batkovich et al. '16; Kompaniets & Panzer '17]
- 7-loop Φ⁴ [Schnetz '16]
- 7-loop planar $\mathcal{N} = 4$ SYM (+ integrability) [Marboe & Velizhanin '16]

These achievements all concern 4-dimensional models!

For the year 2016-2017, breakthrough achievements (+ beautiful mathematics):

- 4-loop β -function Gross-Neveu [Gracey et al. '16]
- 5-loop β-function QCD [Baikov et al. '16; Luthe et al. '17; Chetyrkin et al. '17]
- 6-loop Φ^4 [Batkovich et al. '16; Kompaniets & Panzer '17]
- 7-loop Φ⁴ [Schnetz '16]
- 7-loop planar $\mathcal{N} = 4$ SYM (+ integrability) [Marboe & Velizhanin '16]

These achievements all concern 4-dimensional models!

Extend this to odd-dimensional models

(highly non-trivial but largely open: start at 2-loop) (non-perturbative: implement within a Schwinger-Dyson approach) For the year 2016-2017, breakthrough achievements (+ beautiful mathematics):

- 4-loop β -function Gross-Neveu [Gracey et al. '16]
- 5-loop β-function QCD [Baikov et al. '16; Luthe et al. '17; Chetyrkin et al. '17]
- 6-loop Φ^4 [Batkovich et al. '16; Kompaniets & Panzer '17]
- 7-loop Φ⁴ [Schnetz '16]
- 7-loop planar $\mathcal{N} = 4$ SYM (+ integrability) [Marboe & Velizhanin '16]

These achievements all concern 4-dimensional models!

Extend this to odd-dimensional models

(highly non-trivial but largely open: start at 2-loop) (non-perturbative: implement within a Schwinger-Dyson approach) Massless propagator type 2-loop diagram (basic building block)

$$J(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) = \int \int \frac{[\mathrm{d}^D k_1] [\mathrm{d}^D k_2]}{k_1^{2\alpha_1} k_2^{2\alpha_2} (k_2 - p)^{2\alpha_3} (k_1 - p)^{2\alpha_4} (k_2 - k_1)^{2\alpha_5}}$$

Arbitrary indices α_i and external momentum p in Euclidean space (D)

Goal: compute (dimensionless) coefficient function (Laurent series in ε_{γ})

$$G(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) = \frac{(4\pi)^D}{(p^2)^{D - \sum_{i=1}^5 \alpha_i}} J(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$$

Long history: exact computations are crucial

Field theoretic study of interaction effects in Dirac liquids

Rules for massless Feynman diagrams [Kazakov '83]

• Uniqueness relation ($\tilde{\alpha} = D/2 - \alpha$):

(Note: unique triangle has index $\sum_i \alpha_i = D$) • Integration by Parts (IBP) relation:

(Note: \pm corresponds to add or subtract 1 to index α_i)

$$G(1,1,1,1,\lambda) = \frac{1}{\lambda} = 3 \frac{\Gamma(\lambda)\Gamma(1-\lambda)}{\Gamma(2\lambda)} \left[\Psi'(\lambda) - \Psi'(1) \right]$$

But the following diagrams are beyond IBP and uniqueness:

$$G(1,1,1,1,\lambda) = \frac{1}{1} \left(\frac{\lambda}{1} \right)^{1} = 3 \frac{\Gamma(\lambda)\Gamma(1-\lambda)}{\Gamma(2\lambda)} \left[\Psi'(\lambda) - \Psi'(1) \right]$$

But the following diagrams are beyond IBP and uniqueness:

Example: need to compute masters such as:

$$G(1,1,1,1,\lambda) = \frac{1}{1} \left(\frac{\lambda}{1} \right)^{1} = 3 \frac{\Gamma(\lambda)\Gamma(1-\lambda)}{\Gamma(2\lambda)} \left[\Psi'(\lambda) - \Psi'(1) \right]$$

But the following diagrams are beyond IBP and uniqueness:

Example: need to compute masters such as:

... for which no exact solution is still available.

Field theoretic study of interaction effects in Dirac liquids

$$G(1,1,1,1,\lambda) = \frac{1}{1} \left(\frac{\lambda}{1} \right)^{1} = 3 \frac{\Gamma(\lambda)\Gamma(1-\lambda)}{\Gamma(2\lambda)} \left[\Psi'(\lambda) - \Psi'(1) \right]$$

But the following diagrams are beyond IBP and uniqueness:

Example: need to compute masters such as:

Field theoretic study of interaction effects in Dirac liquids

Result (useful for D χ **SB in QED**₃): functional relations for the most complicated integrals [Kotikov, Shilin & ST '16] (some similarity to functional relations obtained by [Kazakov '84] but more complicated)

$$\tilde{l}_1(\alpha+1) = \frac{(\alpha-1/2)^2}{\alpha^2} \tilde{l}_1(\alpha) - \frac{1}{\pi \alpha^2} \Big[\Psi'(\alpha) - \Psi'(1/2 - \alpha) \Big]$$

 $\tilde{l}_2(\alpha) = \tilde{l}_2(3/2 - \alpha), \quad \tilde{l}_3(\alpha) = \frac{2}{4\alpha - 1} \Big(\alpha \tilde{l}_2(1 + \alpha) - (1/2 - \alpha) \tilde{l}_2(\alpha) \Big) - \frac{\beta^2}{\pi}$

Other example of result (useful for $D\chi SB$ in QED_3): series

representation for the most complicated integrals [Kotikov, Shilin & ST '16] (using rules of [Kotikov '96] obtained via the Gegenbauer polynomial technique)

For Σ_2 , related master integral represented in terms of a two-fold series

$$\Sigma_{2} = \frac{1/2}{\alpha} \int_{1}^{1} (\alpha) = \frac{1/2}{\alpha} \int_{1}^{1} (\alpha) = \frac{(4\pi)^{3}}{(p^{2})^{-\alpha}} I_{1}(\alpha)$$

$$\begin{split} \tilde{l}_{1}(\alpha) &= \frac{(4\pi)^{3}}{(p^{2})^{-\alpha}} \int \frac{[\mathrm{d}^{3}k_{1}][\mathrm{d}^{3}k_{2}]}{|p - k_{1}|k_{1}^{2\alpha}(k_{1} - k_{2})^{2}(p - k_{2})^{2}|k_{2}|} = \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \frac{B(l, n, 1, 1/2)}{(n + 1/2)\Gamma(1/2)} \\ &\times \left[\frac{2}{n + 1/2} \left(\frac{1}{l + n + \alpha} + \frac{1}{l + n + 3/2 - \alpha} \right) + \frac{1}{(l + n + \alpha)^{2}} + \frac{1}{(l + n + 3/2 - \alpha)^{2}} \right] \end{split}$$

Outline

Introduction

- 2 Models & Issues
- 3 Technical aspects
- Overview of results

5 Conclusion and Outlook

Field theoretic study of interaction effects in Dirac liquids

Reduced QED_{4,3} (model III)

Boundary effective model in (2 + 1)-dimensions (non-local)

$$S(p) = rac{\mathrm{i}}{p}, \qquad D_{\mu
u}(p) = rac{P_{\mu
u}^{\xi/2}(p)}{2\,|p|}, \quad P_{\mu
u}^{\xi}(p) = g_{\mu
u} - (1-\xi)rac{p_{\mu}p_{
u}}{p^2}$$

Power counting similar to 4-dimensional theories

- renormalizable (power counting: $[e] = \varepsilon_{\gamma} \rightarrow 0, \ \forall \varepsilon_{e})$
- UV singular fermion self-energy \Rightarrow anomalous fermion dimension
- finite photon self-energy (divergent subgraphs) ⇒ no charge renormalization (non-local)

conformal invariance ($\beta(\alpha) = 0$ Tomonaga-Luttinger like)

Thorough investigation of the perturbative structure of the model [ST '12, '14; Kotikov & ST '13, '14]

Reduced QED_{4,3} (model III)

Boundary effective model in (2 + 1)-dimensions (non-local)

$$S(p) = rac{\mathrm{i}}{p}, \qquad D_{\mu
u}(p) = rac{P_{\mu
u}^{\xi/2}(p)}{2\,|p|}, \quad P_{\mu
u}^{\xi}(p) = g_{\mu
u} - (1-\xi)rac{p_{\mu}p_{
u}}{p^2}$$

Power counting similar to 4-dimensional theories

- renormalizable (power counting: $[e] = \varepsilon_{\gamma} \rightarrow 0, \ \forall \varepsilon_{e})$
- UV singular fermion self-energy \Rightarrow anomalous fermion dimension
- finite photon self-energy (divergent subgraphs) ⇒ no charge renormalization (non-local)

conformal invariance $(\beta(\alpha) = 0$ Tomonaga-Luttinger like)

Thorough investigation of the perturbative structure of the model [ST '12, '14; Kotikov & ST '13, '14] Reduced QED_{4,3}: computation of γ_{ψ} [Kotikov & ST '14]

Anomalous dimension of the fermion field:

$$\gamma_{\psi}(\bar{\alpha}_r,\xi_r) = 2\bar{\alpha}_r \, \frac{1-3\xi_r}{3} - 16 \, \left(\zeta_2 N_F + \frac{4}{27}\right) \, \bar{\alpha}_r^2 + \mathrm{O}(\bar{\alpha}_r^3)$$

Two-loop part is:

- gauge invariant (and similarly for QED₄ and QED₃)
- contains $\zeta_2 = \pi^2/6$ (unusual in $\overline{\text{MS}}$ -scheme) does not come from the ε_{γ} -expansion but from ε_e term:

$$K_1 = \frac{\Gamma^3(1 - \varepsilon_e)\Gamma(\varepsilon_e)}{\Gamma(2 - 2\varepsilon_e)} = \pi^2 \qquad (\varepsilon_e = 1/2)$$

Reduced QED_{4,3}: computation of C^* [ST '12; Kotikov & ST '13]

Self-energy and vertex parts almost cancel eachother (x = v/c = 1):

$$C^* = (92 - 9\pi^2)/(18\pi) = 46/(9\pi) - \pi/2 = 0.056$$

Compare with the results in the non-relativistic limit (x = v/c = 0):

 $\mathcal{C}^{(1)} = (25 - 6\pi)/12 = 25/12 - \pi/2 = 0.512$ [Herbut et al. '08] $\mathcal{C}^{(2)} = (19 - 6\pi)/12 = 19/12 - \pi/2 = 0.013$ [Mishchenko '08] $\mathcal{C}^{(3)} = (11 - 3\pi)/6 = 11/6 - \pi/2 = 0.263$ [Juričić et al. '10]

Good quantitative agreement with [Mishchenko '08] (self-energy part encodes relativistic corrections in x = v/c)

Reduced QED_{4,3}: computation of C^* [ST '12; Kotikov & ST '13]

Self-energy and vertex parts almost cancel eachother (x = v/c = 1):

$$C^* = (92 - 9\pi^2)/(18\pi) = 46/(9\pi) - \pi/2 = 0.056$$

Compare with the results in the non-relativistic limit (x = v/c = 0):

 $\mathcal{C}^{(1)} = (25 - 6\pi)/12 = 25/12 - \pi/2 = 0.512$ [Herbut et al. '08] $\mathcal{C}^{(2)} = (19 - 6\pi)/12 = 19/12 - \pi/2 = 0.013$ [Mishchenko '08] $\mathcal{C}^{(3)} = (11 - 3\pi)/6 = 11/6 - \pi/2 = 0.263$ [Juričić et al. '10]

Good quantitative agreement with [Mishchenko '08] (self-energy part encodes relativistic corrections in x = v/c)

Note: number similar to C^* appeared earlier for QED₃ [Gusynin et al. '01].

Field theoretic study of interaction effects in Dirac liquids

Reduced QED_{4,3}: computation of C^* [ST '12; Kotikov & ST '13]

Self-energy and vertex parts almost cancel eachother (x = v/c = 1):

$$C^* = (92 - 9\pi^2)/(18\pi) = 46/(9\pi) - \pi/2 = 0.056$$

Compare with the results in the non-relativistic limit (x = v/c = 0):

 $\mathcal{C}^{(1)} = (25 - 6\pi)/12 = 25/12 - \pi/2 = 0.512$ [Herbut et al. '08] $\mathcal{C}^{(2)} = (19 - 6\pi)/12 = 19/12 - \pi/2 = 0.013$ [Mishchenko '08] $\mathcal{C}^{(3)} = (11 - 3\pi)/6 = 11/6 - \pi/2 = 0.263$ [Juričić et al. '10]

Good quantitative agreement with [Mishchenko '08] (self-energy part encodes relativistic corrections in x = v/c)

Note: number similar to C^* appeared earlier for QED₃ [Gusynin et al. '01]. Field theoretic study of interaction effects in Dirac liquids Paris, December 12 2017 34 / 48

Three-dimensional QED

QED₃ is super-renormalizable

- dimensionful coupling constant $a = Ne^2/8$
- loop-expansion plagued by IR singularities (starting from two-loop) [Jackiw & Templeton '81] [Guendelman & Radulovic '83, '84]

Large-N limit of QED₃ ($N \rightarrow \infty$ and a fixed): **IR softening** [Appelquist & Pisarski '81, Appelquist & Heinz '81]

$$D_{\mu
u}(p) = rac{g_{\mu
u}}{p^2 \left[1 + \Pi(p)
ight]} = rac{g_{\mu
u}}{p^2 \left[1 + a/|p|
ight]} \stackrel{p\ll a}{\longrightarrow} rac{g_{\mu
u}}{a|p|}$$

Gauge propagator ~ 1/p and dimensionless coupling ~ 1/N
 Power counting in large-N QED₃ similar to 4-dimensional theories
 IR finite & no renormalization of the gauge field
 scale (conformal) invariance!

Three-dimensional QED

QED₃ is super-renormalizable

- dimensionful coupling constant $a = Ne^2/8$
- loop-expansion plagued by IR singularities (starting from two-loop) [Jackiw & Templeton '81] [Guendelman & Radulovic '83, '84]

Large-N limit of QED₃ ($N \rightarrow \infty$ and a fixed): **IR softening** [Appelquist & Pisarski '81, Appelquist & Heinz '81]

$$D_{\mu
u}(p) = rac{g_{\mu
u}}{p^2 \left[1 + \Pi(p)
ight]} = rac{g_{\mu
u}}{p^2 \left[1 + a/|p|
ight]} \stackrel{p\ll a}{\longrightarrow} rac{g_{\mu
u}}{a|p|}$$

ullet Gauge propagator $\sim 1/p$ and dimensionless coupling $\sim 1/N$

• Power counting in large-N QED₃ similar to 4-dimensional theories

IR finite & no renormalization of the gauge field scale (conformal) invariance!

conformal invariance eventually broken at large coupling $(N < N_c)$

Three-dimensional QED

QED₃ is super-renormalizable

- dimensionful coupling constant $a = Ne^2/8$
- loop-expansion plagued by IR singularities (starting from two-loop) [Jackiw & Templeton '81] [Guendelman & Radulovic '83, '84]

Large-N limit of QED₃ ($N \rightarrow \infty$ and a fixed): **IR softening** [Appelquist & Pisarski '81, Appelquist & Heinz '81]

$$D_{\mu
u}(p) = rac{g_{\mu
u}}{p^2 \left[1 + \Pi(p)
ight]} = rac{g_{\mu
u}}{p^2 \left[1 + a/|p|
ight]} \stackrel{p\ll a}{\longrightarrow} rac{g_{\mu
u}}{a|p|}$$

ullet Gauge propagator $\sim 1/p$ and dimensionless coupling $\sim 1/N$

• Power counting in large-N QED₃ similar to 4-dimensional theories

IR finite & no renormalization of the gauge field

scale (conformal) invariance!

conformal invariance eventually broken at large coupling (N < N_c)

Non-perturbative: cannot take place at any finite order in 1/N(30 years of history for the computation of N_c)

Our approach: solve Schwinger-Dyson equation in 1/N-expansion Consider the approach of [Appelquist et al. '88] (LO in 1/N-expansion):

> $N_c = 32/\pi^2 = 3.24$ is not large Contribution of higher order corrections may be essential!

Essential question: is the critical point stable? Related long-standing issue: proof of the gauge-invariance of N_c

Non-perturbative: cannot take place at any finite order in 1/N(30 years of history for the computation of N_c)

Our approach: solve Schwinger-Dyson equation in 1/N-expansion Consider the approach of [Appelquist et al. '88] (LO in 1/N-expansion):

> $N_c = 32/\pi^2 = 3.24$ is not large Contribution of higher order corrections may be essential!

Essential question: is the critical point stable? Related long-standing issue: proof of the gauge-invariance of N_c

We computed exactly next-to-leading order (NLO) corrections [Kotikov, Shilin & ST '16] [Kotikov & ST '16]

Non-perturbative: cannot take place at any finite order in 1/N(30 years of history for the computation of N_c)

Our approach: solve Schwinger-Dyson equation in 1/N-expansion Consider the approach of [Appelquist et al. '88] (LO in 1/N-expansion):

> $N_c = 32/\pi^2 = 3.24$ is not large Contribution of higher order corrections may be essential!

Essential question: is the critical point stable? Related long-standing issue: proof of the gauge-invariance of N_c

We computed exactly next-to-leading order (NLO) corrections [Kotikov, Shilin & ST '16] [Kotikov & ST '16]

Note: many works but very few address the study of NLO corrections Historic papers: [Nash '89] and [Kotikov '93] Recently, only one work besides ours: [Gusynin & Pyatkovskiy '16]

Field theoretic study of interaction effects in Dirac liquids

Non-perturbative: cannot take place at any finite order in 1/N(30 years of history for the computation of N_c)

Our approach: solve Schwinger-Dyson equation in 1/N-expansion Consider the approach of [Appelquist et al. '88] (LO in 1/N-expansion):

 $N_c = 32/\pi^2 = 3.24$ is not large Contribution of higher order corrections may be essential!

Essential question: is the critical point stable? Related long-standing issue: proof of the gauge-invariance of N_c

We computed exactly next-to-leading order (NLO) corrections [Kotikov, Shilin & ST '16] [Kotikov & ST '16]

Note: many works but very few address the study of NLO corrections Historic papers: [Nash '89] and [Kotikov '93] Recently, only one work besides ours: [Gusynin & Pyatkovskiy '16] **Fermion propagator** ($\Sigma(p)$: dynamically generated (parity-conserving) mass, A(p): fermion wave function):

$$S^{-1}(p) = [1 + A(p)] (i\hat{p} + \Sigma(p))$$

Photon propagator (non-local ξ -gauge, $\xi = 0$: Landau gauge):

$$D_{\mu
u}(p) = rac{P^{\xi}_{\mu
u}(p)}{p^2 \left[1 + \Pi(p)
ight]}, \quad P^{\xi}_{\mu
u}(p) = g_{\mu
u} - (1-\xi) rac{p_{\mu}p_{
u}}{p^2}\,,$$

SD equation for the fermion propagator $(\tilde{\Sigma}(p) = \Sigma(p)[1 + A(p)])$:

$$\begin{split} \tilde{\Sigma}(p) &= \frac{2a}{N} \operatorname{Tr} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{\gamma^{\mu} D_{\mu\nu}(p-k) \, \Sigma(k) \, \Gamma^{\nu}(p,k)}{[1+A(k)] \, (k^2 + \Sigma^2(k))} \\ A(p) p^2 &= -\frac{2a}{N} \, \operatorname{Tr} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{D_{\mu\nu}(p-k) \, \hat{p} \, \gamma^{\mu} \, \hat{k} \, \Gamma^{\nu}(p,k)}{[1+A(k)] \, (k^2 + \Sigma^2(k))} \end{split}$$

 $\Gamma^{\nu}(p,k)$: vertex function.

At LO: one diagram contributes to the gap equation (cross = mass insertion)

$$\Sigma(p) = \underbrace{8(2+\xi)a}_{N} \int \frac{[\mathrm{d}^{3}k] \Sigma(k)}{(k^{2}+\Sigma^{2}(k)) [(p-k)^{2}+a|p-k|]}$$

At NLO: four contributions

Use of advanced multi-loop techniques yields an exact gap equation

Simple form after Nash's resummation (γ_{ψ}):

$$1 = \frac{8\beta}{3\pi^2 N} + \frac{1}{\pi^4 N^2} \left[8\tilde{S}(\alpha,\xi) - \frac{16}{3}\beta \left(\frac{40}{9} + \hat{\Pi}_2\right) \right]$$

with complete (strong) suppression of gauge dependence at LO (NLO)

Implementing [Gusynin & Pyatkovskiy '16]'s prescription yields

$$\frac{1}{\beta} = \frac{8}{3\pi^2 N} - \frac{16}{3\pi^4 N^2} \left(\frac{40}{9} + \hat{\Pi}_2\right) \qquad \left(\hat{\Pi}_2 = \frac{92}{9} - \pi^2 = 2\pi \mathcal{C}^*\right)$$

fully gauge invariant gap equation order by order in the 1/N-expansion

 $N_c = 2.85$ in full agreement with [Gusynin & Pyatkovskiy '16] who used a different method Use of advanced multi-loop techniques yields an exact gap equation

Simple form after Nash's resummation (γ_{ψ}):

$$1 = \frac{8\beta}{3\pi^2 N} + \frac{1}{\pi^4 N^2} \left[8\tilde{S}(\alpha,\xi) - \frac{16}{3}\beta \left(\frac{40}{9} + \hat{\Pi}_2\right) \right]$$

with complete (strong) suppression of gauge dependence at LO (NLO)

Implementing [Gusynin & Pyatkovskiy '16]'s prescription yields

$$\frac{1}{\beta} = \frac{8}{3\pi^2 N} - \frac{16}{3\pi^4 N^2} \left(\frac{40}{9} + \hat{\Pi}_2\right) \qquad \left(\hat{\Pi}_2 = \frac{92}{9} - \pi^2 = 2\pi \mathcal{C}^*\right)$$

fully gauge invariant gap equation order by order in the 1/N-expansion

 $N_c = 2.85$ in full agreement with [Gusynin & Pyatkovskiy '16] who used a different method

Effeciency and power of multi-loop techniques (dim. reg. in $\overline{\rm MS}\mbox{-scheme})$ for non-perturbative Schwinger-Dyson type approach

Use of advanced multi-loop techniques yields an exact gap equation

Simple form after Nash's resummation (γ_{ψ}):

$$1 = \frac{8\beta}{3\pi^2 N} + \frac{1}{\pi^4 N^2} \left[8\tilde{S}(\alpha,\xi) - \frac{16}{3}\beta \left(\frac{40}{9} + \hat{\Pi}_2\right) \right]$$

with complete (strong) suppression of gauge dependence at LO (NLO)

Implementing [Gusynin & Pyatkovskiy '16]'s prescription yields

$$\frac{1}{\beta} = \frac{8}{3\pi^2 N} - \frac{16}{3\pi^4 N^2} \left(\frac{40}{9} + \hat{\Pi}_2\right) \qquad \left(\hat{\Pi}_2 = \frac{92}{9} - \pi^2 = 2\pi \mathcal{C}^*\right)$$

fully gauge invariant gap equation order by order in the 1/N-expansion

 $N_c = 2.85$ in full agreement with [Gusynin & Pyatkovskiy '16] who used a different method

 $\begin{array}{l} \mbox{Effeciency and power of multi-loop techniques (dim. reg. in $\overline{\rm MS}$-scheme)} \\ \mbox{for non-perturbative Schwinger-Dyson type approach} \end{array}$
N _c	Method	Year	
∞	SD (LO in $1/N$)	1984	
∞	SD (non-perturbative)	1990, 1992	
∞	lattice simulations	1993, 1996	
< 4.4	F-theorem	2015	
$(4/3)(32/\pi^2) = 4.32$	SD (LO, resummation)	1989	
3.5 ± 0.5	lattice simulations	1988, 1989	
3.31	SD (NLO, Landau gauge)	1993	
3.29	SD (NLO, Landau gauge)	2016	
$32/\pi^2 pprox 3.24$	SD (LO, Landau gauge)	1988	
3.0084 - 3.0844	SD (NLO, resummation)	2016	
2.89	RG study (one-loop)	2016	
2.85	SD (NLO, resummation, $\forall \xi$)	2016	
$1 + \sqrt{2} = 2.41$	F-theorem	2016	
< 9/4 = 2.25	RG study (one-loop)	2015	
< 3/2	Free energy constraint	1999	
0	SD (non-perturbative)	1990	
0	lattice simulations	2015, 2016	

Dynamical chiral symmetry breaking in reduced QED_{4,3}

Mapping between large-N QED₃ and QED_{4,3} [Kotikov & ST '16]

$$\frac{1}{\pi^2 N} \to \frac{\alpha}{4\pi} \equiv \frac{e^2}{(4\pi)^2}, \qquad \tilde{\eta} \to \frac{\eta}{2} \quad \left(\tilde{\xi} \to \frac{1+\xi}{2}\right)$$
$$\hat{\Pi}_2 = \frac{92}{9} - \pi^2 \quad \to \quad \hat{\Pi}_1 = \frac{N\pi^2}{2} \quad \text{and} \quad \tilde{\xi}\hat{\Pi}_1 = 0$$

Origin of the mapping: photon propagators have the same form $(\sim 1/p)$

A check: from Gracey's result [Gracey '93] for the NLO fermion anomalous dimension in QED₃ we recover the result of [Kotikov & ST '14]

$$\lambda_{\psi} = \frac{4}{\pi^2 N} \left(\frac{2}{3} - \tilde{\xi}\right) - \frac{8}{\pi^4 N^2} \left(\frac{8}{27} + \left(\frac{2}{3} - \tilde{\xi}\right) \hat{\Pi}_2\right) + \mathcal{O}(1/N^3)$$
$$\rightarrow \gamma_{\psi} = 2\frac{\alpha}{4\pi} \frac{1 - 3\xi}{3} - 16 \left(\zeta_2 N + \frac{4}{27}\right) \left(\frac{\alpha}{4\pi}\right)^2 + \mathcal{O}(\alpha^3)$$

Dynamical chiral symmetry breaking in reduced QED_{4,3}

Mapping between large-N QED₃ and QED_{4,3} [Kotikov & ST '16]

$$\frac{1}{\pi^2 N} \to \frac{\alpha}{4\pi} \equiv \frac{e^2}{(4\pi)^2}, \qquad \tilde{\eta} \to \frac{\eta}{2} \quad \left(\tilde{\xi} \to \frac{1+\xi}{2}\right)$$
$$\hat{\Pi}_2 = \frac{92}{9} - \pi^2 \quad \to \quad \hat{\Pi}_1 = \frac{N\pi^2}{2} \quad \text{and} \quad \tilde{\xi}\hat{\Pi}_1 = 0$$

Origin of the mapping: photon propagators have the same form $(\sim 1/p)$

LO result: early work of [Gorbar, Gusynin & Miransky '01]

$$\alpha_c(N=2) \approx 0.55, \qquad N_c(\alpha \to \infty) = 128/(3\pi^2) \approx 4.32$$

Extend the study of [Gorbar, Gusynin & Miransky '01] to NLO

Dynamical chiral symmetry breaking in reduced QED_{4,3}

Mapping between large-N QED₃ and QED_{4,3} [Kotikov & ST '16]

$$\frac{1}{\pi^2 N} \to \frac{\alpha}{4\pi} \equiv \frac{e^2}{(4\pi)^2}, \qquad \tilde{\eta} \to \frac{\eta}{2} \quad \left(\tilde{\xi} \to \frac{1+\xi}{2}\right)$$
$$\hat{\Pi}_2 = \frac{92}{9} - \pi^2 \quad \to \quad \hat{\Pi}_1 = \frac{N\pi^2}{2} \quad \text{and} \quad \tilde{\xi}\hat{\Pi}_1 = 0$$

Origin of the mapping: photon propagators have the same form $(\sim 1/p)$

LO result: early work of [Gorbar, Gusynin & Miransky '01]

$$\alpha_c(N=2) \approx 0.55, \qquad N_c(\alpha \to \infty) = 128/(3\pi^2) \approx 4.32$$

NLO result: with Nash's resummation and RPA (fully gauge-invariant)

$$\alpha_{c}(N=2) = 1.22, \qquad N_{c}(\alpha \to \infty) = 3.04 \qquad \alpha_{c}(N=1) = 0.62$$

Good quantitative agreement with values found in non-relativistic limit... Field theoretic study of interaction effects in Dirac liquids Paris, December 12 2017 41 / 48

α_{c} (N _c)	Method	Year
7.65	SD (LO, dynamic RPA, running v)	2013
3.7	FRG, Bethe-Salpeter	2016
$3.2 < \alpha_c < 3.3$	SD (LO, dynamic RPA, running v)	2012
3.1	SD (LO, bare vertex approximation)	2015
2.06	SD (LO, dynamic RPA, running v)	2017
1.62	SD (LO, static RPA)	2002
1.22 (3.04)	SD (NLO, RPA, resummation, $v/c ightarrow 1$, $orall \xi$)	2016
(3.52)	SD (LO)	2009
1.13 (3.6)	SD (LO, static RPA, running v)	2008
1.11 ± 0.06	Lattice simulations	2008
$1.03 < \alpha_{c} < 1.08$	SD (NLO, RPA, resummation, $v/c ightarrow 1)$	2016
$3.17 < N_c < 3.24$		
0.99	RG study	2012
0.92	SD (LO, dynamic RPA)	2009
0.9 ± 0.2	Lattice simulations	2012
0.833	RG study	2008

Non-relativistic reduced QED_{4,3} (model II)

Apply our formalism to the non-relativistic limit (x = 0)

NRQED_{4,3} vs QED_{4,3} (broken Lorentz invariance)

$$L = \int \mathrm{d}^2 x \, \bar{\psi}_\sigma \left[\gamma^0 \left(\mathrm{i} \partial_t - e A_0 \right) + \mathrm{i} v \vec{\gamma} \cdot \vec{\nabla} \right] \psi^\sigma + \frac{1}{2} \, \int \mathrm{d}^3 x \, \left(\vec{\nabla} A_0 \right)^2$$

- renormalizable (power counting: $[e] = \varepsilon_{\gamma} \rightarrow 0, \ \forall \varepsilon_{e})$
- finite photon self-energy (divergent subgraphs) ⇒ no charge renormalization (non-local)
- fermion self-energy: $\Sigma(k) = \gamma^0 k_0 \Sigma_{\omega}(k^2) v \vec{\gamma} \cdot \vec{k} \Sigma_k(k^2)$ At one-loop:
 - ► $\Sigma_{1\omega} = 0 \Rightarrow$ no wave function renormalization
 - singular $\Sigma_{1k} \Rightarrow$ Fermi velocity renormalization

Compute C in the non-relativistic limit [ST & Kotikov '14, '17]

Non-relativistic reduced QED_{4,3} (model II)

Apply our formalism to the non-relativistic limit (x = 0)

 $NRQED_{4,3}$ vs $QED_{4,3}$ (broken Lorentz invariance)

$$L = \int \mathrm{d}^2 x \, \bar{\psi}_\sigma \left[\gamma^0 \left(\mathrm{i} \partial_t - e A_0 \right) + \mathrm{i} v \vec{\gamma} \cdot \vec{\nabla} \right] \psi^\sigma + \frac{1}{2} \, \int \mathrm{d}^3 x \, \left(\vec{\nabla} A_0 \right)^2$$

- renormalizable (power counting: $[e] = \varepsilon_{\gamma} \rightarrow 0, \ \forall \varepsilon_{e})$
- finite photon self-energy (divergent subgraphs) ⇒ no charge renormalization (non-local)
- fermion self-energy: $\Sigma(k) = \gamma^0 k_0 \Sigma_{\omega}(k^2) v \vec{\gamma} \cdot \vec{k} \Sigma_k(k^2)$ At one-loop:
 - ► $\Sigma_{1\omega} = 0 \Rightarrow$ no wave function renormalization
 - singular $\Sigma_{1k} \Rightarrow$ Fermi velocity renormalization

Compute C in the non-relativistic limit [ST & Kotikov '14, '17]

NRQED_{4,3}: computation of C [ST & Kotikov '14, '17]

At the level of multi-loop computations: non-trivial masters

semi-massive 2-loop tadpole integrals ($m=q_{E0}/v$, $D_e=2-2arepsilon_\gamma$)

$$\begin{split} I_n(\alpha) &= \int [\mathrm{d}^{D_e} k_1] [\mathrm{d}^{D_e} k_2] \, \frac{(\vec{k_1} \cdot \vec{k_2}\,)^n [|\vec{k_1} - \vec{k_2}\,|^2]^{-1/2}}{[|\vec{k_1}\,|^2]^\alpha \, [|\vec{k_1}\,|^2 + m^2] \, [|\vec{k_2}\,|^2]^\alpha \, [|\vec{k_2}\,|^2 + m^2]} \\ &= \, \frac{(m^2)^{D_e + n - 2\alpha - 5/2}}{(4\pi)^{D_e}} \, \tilde{I}_n(\alpha) \, . \end{split}$$

Use rules for massive diagrams [Davydyshev & Boos '91; Kotikov '91]

Yields the bare value:
$$C = \frac{11 - 3\pi}{6} = C^{(3)}$$

NRQED_{4,3}: computation of C [ST & Kotikov '14, '17]

At the level of renormalization: subtract sub-divergent graphs (BPHZ)

In perfect agreement with the result of [Mishchenko '08] (and similarly for the current-current correlation function)

Radiative corrections in the non-relativistic limit are *finite* and *well-determined*

 $\begin{array}{l} \mbox{Effeciency and power of multi-loop techniques (dim. reg. in $\overline{\rm MS}$-scheme$)$} \\ + $\mbox{BPHZ renormalization prescription}$$ in the non-relativistic limit $$ \end{array}$

Outline

Introduction

- 2 Models & Issues
- 3 Technical aspects
- Overview of results

5 Conclusion and Outlook

Conclusion

We have:

- developped a field theoretic renormalization study of interaction effects in (planar) Dirac liquids (reduced QED models)
- initiated systematic study of perturbative structure of the models (new master integrals, *cf.*, Loopedia [Bogner, Panzer et al. '17])
- initiated systematic study of non-perturbative structure of the models (dim. reg. within Schwinger-Dyson)
- achieved a quantitative understanding of some of the properties of planar Dirac liquids:
 - ultra-relativistic limit (v/c = 1): C^* , α_c , N_c (+ links to QED₃ clarified)
 - non-relativistic limit (v/c = 0): C (closer to experimental reality)

Strong base on which our (quantitative) understanding of odd-dimensional QFTs can be further improved (original approach to many-body physics in cond. matt. physics)

Conclusion

We have:

- developped a field theoretic renormalization study of interaction effects in (planar) Dirac liquids (reduced QED models)
- initiated systematic study of perturbative structure of the models (new master integrals, *cf.*, Loopedia [Bogner, Panzer et al. '17])
- initiated systematic study of non-perturbative structure of the models (dim. reg. within Schwinger-Dyson)
- achieved a quantitative understanding of some of the properties of planar Dirac liquids:
 - ultra-relativistic limit (v/c = 1): C^* , α_c , N_c (+ links to QED₃ clarified)
 - non-relativistic limit (v/c = 0): C (closer to experimental reality)

Strong base on which our (quantitative) understanding of odd-dimensional QFTs can be further improved (original approach to many-body physics in cond. matt. physics)