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1 Introduction.

We attempt to overcome the abstruse and compact chapter of the Maxima manual devoted to
the subject of rules and patterns, and provide a more tutorial-like introduction to the subject.
We also try to provide a detailed introduction to the workings of the Lisp language program
(source matcom.lisp) underlying the Maxima pattern matching system.

These notes are based on the manual and comments by R. Fateman and R. Dodier in the
Maxima mailing list and on drafts, as well as experimentation. This is not however, intended to
be exhaustive. But, contrary to the manual which presents the various functions in alphabetical
order, we try here to build a logical progression, starting from the matching functions and then
moving to the replacement functions.

To summarize, in advance: The idea is that by identifying patterns in expressions we can guide
a computation to transform those expressions to satisfy some computational need. This is by
contrast with a more typical procedure-oriented specification, based on applying functions to
expressions. A pattern-directed manipulation of expressions is the principal mode for user-
written procedure definitions in Mathematica. Some syntactic sugar in the language tends to
hide this from the casual user.

We use extended examples of Maxima programming by declaring patterns and replacements later
in this presentation as a method for implementing manipulation of quaternions.

We remind the reader that the methods of pattern-matching and replacement are of necessity
transformed into an intermediate conventional language, so they may be interpreted or executed
in a conventional sequential manner. That intermediate language is Common Lisp.

These notes are supplemented by a first section describing in general terms what is pattern
matching and what are some useful applications, as well as the problems this involves. Some
parts of this perspective may need to be somewhat acquainted to the maxima rules and patterns
mechanisms. Finally we have added an appendix showing how one can extend the maxima
pattern matching tools to tackle problems that are not easily solved using the built in tools, for
example in the case of non commutative multiplication, using maxima functions to build new
rules.
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2 A perspective on pattern matching

Since we do not have a computer algebra system that knows all of mathematics, and it is unlikely
that we will ever encounter one, it becomes important for us to be able to add the specialized
knowledge that we need to an existing system.

There are several well-known ways of adding information. Here are some of them. Setting values,
such as π = 3.14159 which is only approximately right. Defining functions like absolute value.

myabs(x) := if x<0 then -x else x.

But that works only if x is an explicit number, so this is probably insufficient for a symbolic
system. Maybe

myabs(x) := if numberp(x) then (if x>0 then x else -x)
else abs(x) /*symbolic result*/

This too does not include all the knowledge we might encode. We know that f(z)2 is positive if
f(z) is real, even if we don’t specifically know the value of z or the explicit definition of f – just
that it maps whatever z might be to real numbers. We might try something like this:

myabs(x) := if numberp(x) then (if x>0 then x else -x)
else

if ‘‘it looks like an even power of an expression
that can only take on real values’’ then x

else abs(x) /*symbolic result*/

We haven’t said how to compute that test, but even so, this too is incomplete. For instance, for
real z we know that cos z + 1 is non-negative.

We can continue to elaborate on this function, but there are two issues to notice.

• First, the program is getting more complicated and we might (or others) introduce bugs
more cases.

• It might get rather slow, as more and more computation is needed to determine the program
flow. For instance, there is a program, sqfr which can tell us if polynomial p can be
represented as q2 for some polynomial q. It is a non-trivial computation though, and you
might not wish to use it if it is likely to be unsuccessful.

• The description of what the program actually does may become unwieldy, and even an
attentive user might not be able to figure out what the program does in any particular case.
In fact, the documentation might diverge from the actual program, as it is “improved”.

There are several other ways of organizing the code, but one that seems to be particularly
attractive is the use of patterns.
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Let us start by defining testing programs (called predicates: a program that returns true or false)
like this:

nonnegnum(p) := is (numberp(p) and p>=0)

and associate this predicate what we call a pattern variable, nnp this way:

matchdeclare(nnp,nonnegnum)

Then we can add a rule to our system via tellsimp to teach it how to simplify myabs. We will
explain tellsimp and other programs in more detail later, but for the moment, here is how we
say that if the simplifier encounters myabs(43) where 43 is nonnegnum, then myabs(43) should
simplify to 43.

tellsimp( myabs(nnp), nnp)$

Therefore myabs(43) returns 43. myabs(-43)returns myabs(-43) because there is no tellsimp
rule for that case.

The next part could fix this:

negnum(p) := is (numberp(p) and p<0)$
matchdeclare(negp, negnum)$
tellsimp (myabs(negp), -negp)$

now myabs(-43) returns 43.

At this point, myabs(z^2) will not trigger any rules and so will be “simplified” to myabs(z^2)
by just leaving it alone.

Define another predicate:

squared(p):= /* return true if p can be expressed as an
even power of a real-valued expression, or a product of even powers of
real-valued expressions otherwise false.*/

matchdeclare (sp2,squared)$

tellsimp(myabs(sp2), sp2)$

Even though this is beginning to look complicated, we can still try to identify individual “facts”
with particular tellsimp rules. If we are careful, the rules are mutually independent – they don’t
overlap. This can be tricky, but it is a way of tamping down bugs.

It is also possible to define match programs that just return a list of bindings, using defmatch, or
rule programs via defrule that are independent of the simplifier, and are independently applied.
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An example which is of mathematical interest is the following:

This mysabs example, even as it trends toward complexity, does not illustrate a particular hazard
that is often encountered: where a pattern expression is too general and the user can expect one
set of matches, but the matching program in the computer identifies a different way. This is espe-
cially of concern for patterns involving addition and multiplication, where the user’s expectations
may be at odds with the implementation in the computer system. For instance, assume pattern
variables a,b are declared “true” and can match anything. We can imagine that a pattern u*v
might match an expression 3*z as [u=3,v=z] but also [u=z, v=3]. We might be surprised to
see it match [u=1, v=3*z], but this is mathematically consistent. More surprisingly, it can even
match [u=45, v=3*z/45]. How could that last one be proper? Consider the pattern f(u,u*v)
matching the expression f(45,3*z). Indeed,

matchdeclare([u,v],true)$
defmatch(m1, f(u,u*v))$
m1(f(45,3*z));

returns [u=45,v=3*z/45]

Sometimes it is clear that the pattern can match a given expression in only one way. In other
cases there are multiple matches possible,and this is a problem. The Maxima program will return
the first and only one it finds, and that might be different from the user’s expectation.

One way out of this is for the matching program to generate another assignment of variables still
consistent with predicates, if the previous assignment fails, etc. This is called “backtracking”and
can be expensive in some cases. It can be useful and sufficiently efficient in small expressions.

One computer algebra system, Mathematica, uses matching with backtracking. Detailed knowl-
edge of the matching program (whether in Maxima or Mathematica) can help avoid wrong turns.
This may require an understanding of the ordering of terms in sum or product expression, or
other details. A better way is to define a collection of patterns so carefully that the result is that
only one pattern, the uniquely right one, matches any given expression.

A natural question to ask is whether pattern-replacement rules are “better” than conventional
programs. This has a formal mathematical answer, as follows: In principle it is possible to per-
form any computation that can be done in a conventional sequential language using a collection of
pattern-replacement rules. Or vice versa. 1 The choice of technique may be a matter of personal
taste, convenience, efficiency of implementation and simplicity or readability of notation.

The expected use of pattern matching, to augment the simplifier, or to substitute for writing
conventional programs that define some new mathematical function, can be straightforward if
the pattern variables are used to essentially check the properties of individual arguments to a
function. It is more difficult to use if the patterns involve segmenting terms in a sum or product,
because these operators have the algebraic properties of commutativity and associativity. There is
an alternative which deliberately recognizes this, and more explicitly partitions such expressions2

1A formalization of a primitive notion of pattern-replacement rules, Semi-Thue systems, is provably “Turing
complete”. That is, it is equivalent in computational power to a conventional programming language in that each
can be used to simulate the other, or to compute anything that is conventionally computable. Another formalism
related to the notion of pattern matching is logical “unification”. This is a process of solving symbolic equations,
but where symbols can occur on both sides.

2Partitioning of Algebraic Subexpressions in Computer Algebra Systems: Or, Don’t use matching so much.
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Here’s a brief introduction to that, using the partitioning program as part of the predicate for
the match variable pp. (You may skip this section on first reading.)

load(partition),
(matchdeclare (pp, partition_expression("+",constantp,0,"+",g,’ANSpp)),
tellsimp(foo(pp),ANSpp),
declare([a,b,c],constant), /* put "constant" property on symbols a,b,c
*/
/* try it out */
[foo(a+b+c+x+y+3),foo(w),foo(b), foo(a*b+x),foo(a*b)]);

-->
[g(c+b+a+3,y+x),foo(w),foo(b),g(a*b,x),foo(a*b)]

notes:
foo(a+b+c+x+y+3) shows that it works.
foo(w) is unchanged because w is not a sum.
foo(b) is unchanged because b is not a sum, even though b is constant
foo(a*b+x) shows that Maxima knows a*b is a constant if a,b, are each
constant
foo(a*b) again is not a sum..

That predicate for pp uses the program partition_expression which partitions an expression
E that is a sum, choosing all those pieces that can pass the test constantp, and starting with the
initial value 0, adds them all together to get a result S. The program then sets the global variable
ANSpp to g(S,E-S) and returns true. Why is this global variable idea in there? Pattern matches
must return true or false, indicating a match or non-match. If the replacement is returned, that’s
ambiguous – what if the desired replacement is literally false? We can’t return that (i.e. we can’t
say “the pattern matched and we return the result false”.) So we say “the pattern succeeded and
the result is stored in some variable.”

Just to review: Here the intent is to separate components of a sum E into two parts: those items
that are constant, S, versus those that are not. Each of the two parts will be a sum, initially
zero. The result will be g(S,E-S), and ANSpp will be set to g(S,E-S). If foo is applied to something
that is not a sum, it remains unchanged.

If you are continuing to read here, you are probably in agreement that rules and pattern-
replacement methods can be useful in computer algebra systems, and want to become more
acquainted with them.

3 The matcher.

The first step is to formalize the notion of a match. We have a pattern P which looks like
a regular algebraic expression, and an expression E. The pattern P=f(a,b) and the expression
E=f(a,b) match, because each component of P and E correspond to the exact same symbols.

Including a neat integration example.
https://people.eecs.berkeley.edu/ fateman/papers/partition-new2.pdf
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We next define “match variables”, which are wildcards to match and select appropriate parts of
the target expressions. The matchdeclare function declares such wildcards, each of which is
associated with a condition or predicate P.

If we allow the match variable v to match “anything” then the pattern P=f(v,b) and the expression
E=f(a,b) match, with the binding [v=a]. The command to make v match any subexpression is
matchdeclare(v, true).

example

matchdeclare(v,true)$
defmatch(m0, h(v))$
m0(h(a)) ; returns [v=a]

a safer way of writing and using patterns is to make the names local, since the above interaction
leaves v assigned the value a. While this is useful, it can be confusing if such assignments are
surprises.

block( [v], m0(h(a))

Often we want the matching process to require that a variable v can be bound to an expression
E only a function q(E) evaluates to true. We have already used the predicate q = true which
allows any expression to match. Well, almost.

defmatch(m6,h(v,v))$
m6(h(1,1)); returns [v=1]
m6(h(1,2)); returns false

That is, the variable v is used twice in the pattern, and it must match the same expression each
time. (Note that “same” is a tricky concept for a CAS. Is sin2 x+ cos2 x the same as 1? For the
pattern matcher, that’s too much work.

Let’s try some more interesting predicates for match variables: We set variable ann and bnn to
match arbitrary atoms except numbers (mnemonic: nn= non-number), variable cna (not atom)
to match non-atoms, and variable numonly to match a number. The syntax is

matchdeclare(ann,pred1,bnn,pred1,cna,pred2,numonly,numberp);

Here pred1 is a logical function taking one variable which will be applied to ann before allowing
it to match in a pattern.

pred1(x):=atom(x) and not numberp(x);

Similarly for bnn etc.

For cna, we define
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pred2(x):= not atom(x);

For numonly we can take simply the built-in predicate numberp.

Alternatively, we can group ann and bnn together within [], and we can avoid the clutter of
defining extra names and use lambda functions in the matchdeclare:

matchdeclare([ann,bnn], lambda([r],atom(r) and not numberp(r)),
cna,lambda([r], not atom(r)),
numonly,numberp);

An example of more mathematical interest:

%i1) apred(r):= if (r#0 and freeof(x,r)) then true else false;
(%o1) apred(r) := if (r # 0) and freeof(x, r) then true
(%i2) pred(r):= if freeof(x,r) then true else false;
(%o2) pred(r) := if freeof(x, r) then true
(%i3) matchdeclare(a,apred, b,pred, c,pred);
(%o3) done
(%i4) defmatch(m,a*x^2+b*x+c);
(%o4) m
(%i5) m(3*x^2+1);
(%o5) [c = 1, a = 3, b = 0]
(%i6) subst(%,[(-b+sqrt(b^2-4*a*c))/(2*a),(-b-sqrt(b^2-4*a*c))/(2*a)]);

%i %i
(%o6) [-------, - -------]

sqrt(3) sqrt(3)
(%i7)

Advanced remark: there is a more general form for predicates, which allow them to apply to
several wildcards at once. For example, as in the manual:

gt (i, j) := integerp(j) and i < j;$
matchdeclare (i, integerp, j, gt(i))$

In this situation, where the predicate for j is gt(i), the system appends j at the end of the
arguments of gt, and thus runs gt(i,j) so j matches only when j>i. It is necessary that j be
bound before i in the sequence of matching.

Internally the effect of matchdeclare is to put information on the property list of the wildcard
variables, where that information will be used when “compiling” patterns using those variables.
This is the way we can peek under the covers in Lisp to see the property list of a symbol.

(%i1) matchdeclare(a,pred1)
(%i2) :lisp (symbol-plist ’$a)
(MPROPS (NIL MATCHDECLARE ($PRED1)))

7



A pattern is a Maxima expression generally involving user-named functions like f,g,h, and built-
in kernels (such as sin, cos, exp, etc.) all of which are constants in the pattern. Also some of
the symbols in the pattern are the declared match variables. Technically, the aim of a pattern
matcher is to determine if a given expression can be “unified” with the pattern: that is, it is of
the same form as the pattern, with wildcards substituted by actual values, with other variables
and constants matched by themselves. 3

To step through this matching in Maxima let us use the defmatch function that will be described
in more detail later on, and we’ve already used it in passing. In its most simple incarnation reads:

(%i4) defmatch(m1,h(ann,bnn,numonly) ); /* define a match program m1*/
(%o4) m1

One can also use the function defrule which can be used to produce essentially the same
effect. defrule says to bind those names and put them into a rule right-hand side: pattern –>
replacement.

(%i5) defrule(r1,h(ann,bnn,numonly),[’numonly = numonly,’bnn = bnn,’ann = ann])$

m1(h(q,r,34)); r1(h(q,r,34));

everyone is happy here, with the result [numonly=34,bnn=r,ann=q]

If we have the pattern ann*bnn*numonly, we don’t have so much luck.

defmatch(m1,ann*bnn*numonly)

Let us try to match 2xy with these rules. Perhaps you expect to collect x in ann y in bnn (or
the converse) and 2 in numonly. Instead one gets:

(%i6) m1(2*x*y);
(%o6) false
(%i7) r1(2*x*y);
(%o7) false

To understand this, let us relax the predicate on variable ann. Note it is sufficient to run
matchdeclare and redefine the rule:

(%i8) matchdeclare(ann,atom,bnn,pred1,cna,pred2,numonly,numberp)$

(%i9) defmatch(m1,ann*bnn*numonly)$
3It is possible to write a whole language based on a theory of unification in first-order logic,such is the language

Prolog.
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(%i10) m1(2*x*y);
(%o10) [numonly = 2, bnn = x y, ann = 1]

We can now explain various facets of the matching mechanism. The variable bnn was matched
first, and it greedily collected all the non-numeric atoms, those that matched its predicate, and
collected them as a product. That left the expression as 2, which can match numonly, leaving
the expression as 1. That can match ann now, since 1 is an atom! So we are done! It may not
be what you expected. First defmatch creates a matching program m1, and puts on the Maxima
property list (MPROP) of the Lisp symbol $m1 a $RULE property which is a Maxima list (or MLIST)
containing two values: the “left-hand side” to be matched and the replacement result. Here the
replacement is an empty Maxima list “[]” which in Lisp looks like ((MLIST) ).

The command disprule can be used for displaying the same information but using the Maxima
language. Note that defrule or defmatch data have in their definition access to the appropriate
match variables and thus their property list, which contain the corresponding predicates. This
information is accessed when defrule or defmatchis used.

A subsequent change in the match variables will not affect m1 or r1 unless there is a new call to
defrule ! That is, we would have to re-run the commands.

In the case of %o10 the matcher has correctly associated d to the number 2. The matcher has
shuffled terms around using product commutativity to satisfy the predicates, it is not a syntactic
or string matcher like the one in grep, awk, etc. but it uses knowledge of algebraic properties to
do matching. It is more puzzling that a=1 and b=x*y.

Recall that b matches symbols that are not numbers. The addition and multiplication operators
are commutative and nary. In these situations the matcher is greedy and for a given match
variable, it attempts to gather all the symbols or subexpressions appearing in the addition or the
multiplication that satisfy the associated predicate. For example in %o14 above, b matches the
three symbols x,y,z. Now what about a? The matcher is able to “invent” that x*y*z = 1*x*y*z
and then tries to associate a with 1. In the first matchdeclare a is forbidden to be a number.
But this matcher has no backtracking capability, so having set b=xy will not come back to
set a=x, b=y, hence the matcher fails. This explains the results in %o6 and %o7. When we relax
the condition on a, the matcher can set a=1 and then everything works OK.

Remark: let us insist that in the case of (commutative) addition and multiplication, the matching
is done in a possibly non intuitive way. Let us illustrate this by the following example:

(%i1) matchdeclare(aa,atom,bb,all);
(%o1) done
(%i2) defmatch(rr,aa+bb);
(%o2) rr
(%i3) rr(x+y+x*y);
(%o3) [bb = x y + y + x, aa = 0]
(%i4) matchdeclare(aa,all,bb,atom);
(%o4) done
(%i5) defmatch(rr,aa+bb);
(%o5) rr
(%i6) rr(x+y+x*y);
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(%o6) [bb = y + x, aa = x y]

The result in %o3 is similar to what we have seen above. The matcher attributes greedily
everything to bb and satisfies aa with 0. The second example with inverted order is more
interesting. First we see that the matcher works in inverse lexicographic order, it first tries to
satisfy bb and then aa in both cases. Note it is the same for products. Second we see that the
matcher collects all the atoms in the expression and outputs the sum of these atoms in bb. This
may be quite unintuitive since bb has the predicate “atom” but at the end is not atomic, but the
sum of all atoms. A term which satisfies more than one predicate is taken by the first predicate
which it satisfies. Each predicate is tested against all operands of the sum or product before the
next predicate is evaluated. The order in which the matching is done is inverse lexicographic in
the pattern variables. Note that the order of terms in the match pattern is not necessarily the
order in which you typed the terms. The expression is possibly rearranged by simplification. If
this causes problems, the recommended fix is to define predicates that completely partition the
expression uniquely.

One can also use the following trick to convert a sum or a product to an expression whose
pieces can be manipulated separately (this would also allow to manipulate non commutative
multiplication):

(%i1) matchdeclare(p, ?mplusp);
(%o1) done
(%i2) defrule(rp,p, foo(first(p),foo(rest(p))));
(%o2) rp : p -> foo(first(p), foo(rest(p)))
(%i3) rp(a+b+c);
(%o3) foo(c, foo(b + a))
(%i4) apply1(a+b+c,rp);
(%o4) foo(c, foo(foo(b, foo(a))))

Here one uses the predicate mplusp at the lisp level to avoid being caught in the machinery for
sums and products.

When we have both atoms and non atoms such as sin(x) or sin(y) or numbers, the matcher is
able to completely partition expressions as below.

(%i20) matchdeclare(a,pred1,b,pred1,c,pred2,d,numberp)$
(%i21) defmatch(r2,b*c*d)$
(%i22) r2(2*x*y*sin(u)*cos(w));
(%o22) [d = 2, c = sin(u) cos(w), b = x y]

So the matcher has attributed the product of all atoms (not numbers) to b, the product of all non-
atoms to c and the number to d. In general it will partition the expression in three components
corresponding to mutually exclusive predicates, and this partitioning is unique, independent of
order of factors.

Thus to separate pieces that are free of x and pieces that are free of y, where x and y can be
specified by the call to the matching program, consider this:

(%i1) matchdeclare(nox,freeof(x), noy,freeof(y))$
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(%i2) defmatch(separate, nox+noy,x,y)$ /*notice extra arguments! */
(%i3) separate(sin(u)+4*v+cos(v)+5*u,u,v);
(%o4) [x=u,y=v,noy=sin(u)+5*u,nox=cos(v)+4*v]

If the command was answer:separate(x+y+4,x,y) we could not object to where 4 was matched,
since it is free of x and free of y. As it happens, noy collects its terms first, so the result is
[x=x,y=y,noy=x+4,nox=y]. One neat way of picking out, from that expression, the value for
(say) noy is subst(answer,noy) which gives x+4. Another way is to observe that there is a side
effect of calling the match program separate. The values of nox and noy are set, and so it is
safer to have a local binding:

(%i5) what_is_free_of_v(W):=block([nox,noy], separate(W,u,v), noy)$
(%i6) what_is_free_of_v(sin(u)+4*v+cos(v)+5*u);
(%o6) sin(u)+5*u

The match variables in a sum or product are tested in reverse alphabet order, so in a+b+c, the
c is the first variable and its predicate get first crack at the expression.

When the formula to be matched is not a sum or product, there is no problem from commuta-
tivity or functions with variable number of arguments (nary functions), and patterns work in a
straightforward way, with matching essentially traversing the internal structure of expressions,
matching locations to patterns. For example

(%i16) matchdeclare([a1,a2,a3],true)$ /* a1,a2,a3 match anything */
(%i17) defmatch(pat3, h(g(a1,3),a2,r(a3)))$ /* made-up functions h,g,r */
(%i18) pat3(h(g(43,3),w+4,r(y+7)));
(%o18) [a3=y+7,a2=w+4,a1=43]

Returning to sums and products, there are some possibly unexpected matches related to the
representation of expressions in the program: observe the terms with a negative sign in a sum
or quotients in a product

(%i24) r2(x*y/z); /* recall, defmatch(r2,b*c*d), d is a number, c non-atom */
1

(%o24) [d = 1, c = -, b = x y]
z

First the matcher has inserted a factor 1 to match d, but note that 1/z appears in the non-atoms.
This is because 1/z is indeed not an atom, op(1/z)="/". Analogously for a subtraction, where
-1*y is not an atom:

(%i25) defmatch(r2,b+c)$
(%i26) r2(x-y);
(%o26) [c = - y, b = x]

Finally let us look at how the matcher works with expressions containing sub-expressions:
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(%o27) matchdeclare(a,pred1,b,pred2,c,numberp,d,pred1)$
(%i29) defmatch(r3,c+a*b+3*d);
defmatch: 3 d

will be matched uniquely since sub-parts would otherwise be ambigious.
defmatch: b a

will be matched uniquely since sub-parts would otherwise be ambigious.
(%i31) r3(5+x*sin(y)+3*z);
(%o31) [d = z, c = 5, a = x, b = sin(y)]

This pattern worked as we might have hoped, but this is fortuitous: because the pattern program
first looked for 3*d, where d is a symbolic atom. If it had first found the subexpression x*sin(y),
it would have divided it by 3 and tried pred1 on the expression x*sin(y)/3 which would fail.
That’s the meaning of the message. That is, the pattern matcher is going to try only once
(uniquely) to match a sub-part, and if that fails, it won’t try again on another sub-part. There
is insufficient guidance (there are no anchors) in the pattern. This is undoubtedly a subtle point,
and attempts to clarify the warning message have apparently not succeeded!

3.1 If one is interested in the inner workings.

Let us see how the matcher works in more details on a simple case. The following works only on
Maxima systems that do not automatically compile code into machine language. One of those
is Clisp, and that was used for this example.

(%i1) matchdeclare(a,atom);
(%o1) done
(%i2) defmatch(r,h*a);
(%o2) r
(%i3) r(h*x);
(%o3) [a = x]
(%i4)

Here we point out that the pattern should contain undeclared objects which are matched only by
themselves. These are anchors, and the anchor here is the object h. In fact, the process doesn’t
really "match" h, it divides by it, and sees if what is left matched a. We can see the function
generated by defmatch by doing:

(%i4) :lisp(symbol-function ’$r)
#<FUNCTION LAMBDA (TR-GENSYM1) (DECLARE (SPECIAL TR-GENSYM1))

(CATCH ’MATCH
(PROG NIL (DECLARE (SPECIAL))
(SETQ TR-GENSYM1 (MEVAL ’((MQUOTIENT) TR-GENSYM1 $H)))
(COND ((DEFINITELY-SO ’(($ATOM) TR-GENSYM1)) (MSETQ $A TR-GENSYM1))
((MATCHERR)))

(RETURN (RETLIST $A))))>
(%i4) ?trace(?matcherr);
;; Tracing function MATCHERR.
(%o4) (matcherr)
(%i5) :lisp(trace $r)
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;; Tracing function $R.
($R)
(%i5) r(h*x);
1. Trace: ($R ’((MTIMES SIMP) $H $X))
1. Trace: $R ==> ((MLIST SIMP) ((MEQUAL SIMP) $A $X))
(%o5) [a = x]
(%i6) r(h*sin(x));
1. Trace: ($R ’((MTIMES SIMP) $H ((%SIN SIMP) $X)))
2. Trace: (MATCHERR)
1. Trace: $R ==> NIL
(%o6) false

We see that TR-GENSYM1, a generated name for the argument is bound to ’((MTIMES SIMP)
$H $X) that is h*x. The first thing done is to divide by h to get x. Then the first clause of the
COND tests the predicate associated with a, namely atom() on x. If x is an atom, the program
sets a=x,and returns to the caller with the list [a=x]. If that clause fails the second consists of
a call to (matcherr) throws the ’MATCH tag and has result nil. The ’MATCH is caught by the
CATCH, and returning nil. The idea is that any time the program finds the match must fail,
it does an immediate "throw" to exit the procedure. The general pattern matching program
composes the code to follow along the matching process. The pieces of code are emitted by
various functions (getdec, compileatom, compileplus, compiletimes) as bits of lisp data (which,
after being inserted into the framework with catch and throw can be interpreted as lisp functions
(and compiled to machine code). One can see these various bits of code emitted by tracing said
functions. For example:

(%i33) :lisp(trace compiletimes)
...
(%i35) defmatch(r,a*b);

0: (COMPILETIMES TR-GENSYM16 ((MTIMES SIMP) $A $B))
0: COMPILETIMES returned

((COND
((PART* TR-GENSYM16 ’($B $A)

’((LAMBDA (#:G494)
(DECLARE (SPECIAL #:G494))
(COND
((DEFINITELY-SO ’(($PRED2) #:G494)) (MSETQ $B #:G494))
((MATCHERR))))

(LAMBDA (#:G495)
(DECLARE (SPECIAL #:G495))
(COND
((DEFINITELY-SO ’(($PRED1) #:G495)) (MSETQ $A #:G495))
((MATCHERR)))))))

(T (MATCHERR))))
(%o35)

r

where the part:

(COND
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((DEFINITELY-SO ’(($PRED2) #:G494)) (MSETQ $B #:G494))
((MATCHERR)))

is in fact issued by getdec as seen by tracing it. We see that the symbol-function of $r is built
piece by piece by several functions.

The very peculiar behavior of the matcher in the presence of sums or products is programmed
in PART+ for sums and PART* for products which can be found in matrun.lisp. In particular the
following at the end of PART+:

(setq saved 0)
(mapc
#’(lambda (z)

(cond ((null (setq val (catch ’match (mcall (car preds) z)))) nil)
(t (setq saved (add2* saved val))

(setq e (delete z e :count 1 :test #’equal)))))
e)

is what collects the sum of the parts satisfying the considered predicate in saved and deletes them
from the expression e. The predicates are arranged in a list, and only when the above returns is
the list truncated to get to the next predicate. One can see in the above (%i35) defmatch(r,a*b)
that PART* is given as arguments, the expression, the list of pattern variables in reverse lexico-
graphic order, and the list of predicates.

4 The functions defining rules, and transformation rules.

We have seen a particular form of the defmatch function. Its general form is the following:

defmatch(name, pattern,x_1,...,x_n)

that is one may specify extra "pattern arguments" besides the wildcards declared by matchde-
clare. However their use is not as flexible as that of the wildcards as illustrated below.

(%i1) pred1(x):=atom(x) and not numberp(x);
(%o1) pred1(x) := atom(x) and (not numberp(x))
(%i2) pred2(x):= not atom(x);
(%o2) pred2(x) := not atom(x)
(%i3) matchdeclare(a,pred1,b,pred2);
(%o3) done
(%i4) defmatch(r3,a+x+b*u,x);
(%o4) r3
(%i5) r3(y+z+sin(t)*u,z);
(%o5) [a = y, b = sin(t), x = z]

Here we have two wildcards and two extra variables x and u in the pattern. The variable x is
declared in defmatch and the variable u is undeclared, and will match only itself. The pattern
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argument x is given value z, but in fact z has to be given as argument to r3, and matches itself,
so there is no new information. Indeed:

(%i6) r3(y+z+sin(t)*u,x);
(%o6) false

So x doesn’t play a role of wildcard. On the other hand these pattern arguments allow to dissect
for example products (this doesn’t work with wildcards, as we have seen):

(%i7) defmatch(r4,x*y,x,y);
(%o7) r4
(%i8) r4(u*v,u,v);
(%o8) [x = u, y = v]

Presumably canonical ordering of the product x*y and order of the pattern variables are involved
in that specific identification. Note that pattern variables can be kernels: With the wildcard a
being an atom:

(%i9) defmatch(r4,a*y,y);
(%o9) r4
(%i10) r4(u*v,u);
(%o10) [a = v, y = u]
(%i11) r4(u*sin(v),sin(v));
(%o11) [a = u, y = sin(v)]

Anyways what can we do with the result of applying a rule defined by defmatch? One can
substitute the sequence of equalities in any expression of the pattern variables or even use them
directly. Beware there is a difference:

(%i12) a^2+y^2;
2 2

(%o12) y + u
(%i13) subst(%o11,a^2+y^2);

2 2
(%o13) sin (v) + u

In %i12 the a=u has been applied but not the y=sin(v). Only the wildcards have been effectively
substituted. Using subst gives a complete result.

The defrule function allows to specify a replacement directly. Its syntax is:

defrule(name,pattern,replacement)

Note that no extra pattern variables as in defmatch are allowed, but one is free to use undeclared
variables that will be matched by themselves. The replacement is any expression depending on
these variables and wild cards. It may be some mathematical function or some more textual
function as we have shown at the beginning
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defrule(r2,a*b*d,[’a = a,’b = b,’d = d]);

The replacement pattern is here chosen so that this rule has the same effect than defmatch(r2,a*b*d).
Replacement involving mathematical functions is for example:

(%i1) pred2(x):= not atom(x);
(%o1) pred2(x) := not atom(x)
(%i2) matchdeclare(a,atom,b,integerp,c,pred2);
(%o2) done
(%i3) defrule(r5,a+b*c+x,exp(a)/b*c/x);
defmatch: c b

will be matched uniquely since sub-parts would otherwise be ambigious.
a

%e c
(%o3) r5 : x + b c + a -> -----

b x
(%i4) r5(u+3*sin(v)+x);

u
%e sin(v)

(%o4) ----------
3 x

Note that x is undeclared in the pattern and matched by itself in the expression. It is very
important to identify precisely b and c in bc since they are transformed into c/b which could
easily be erroneously b/c. This is achieved by declaring b integerp and c non atom.

We end this discussion of defrule by an interesting textual replacement function appearing in the
manual:

(%i1) matchdeclare (aa, atom, bb, lambda ([x], not atom(x)));
(%o1) done
(%i2) defrule (r1, aa + bb, ["all atoms" = aa, "all nonatoms" = bb]);
(%o2) r1 : bb + aa -> [all atoms = aa, all nonatoms = bb]
(%i3) defrule (r2, aa * bb, ["all atoms" = aa, "all nonatoms" = bb]);
(%o3) r2 : aa bb -> [all atoms = aa, all nonatoms = bb]
(%i4) r1 (8 + a*b + %pi + sin(x) - c + 2^n);

n
(%o4) [all atoms = %pi + 8, all nonatoms = sin(x) + 2 - c + a b]
(%i5) r2 (8 * (a + b) * %pi * sin(x) / c * 2^n);

n + 3
(b + a) 2 sin(x)

(%o5) [all atoms = %pi, all nonatoms = ---------------------]
c

The results are here a partition of atoms and non atoms in a sum and a product respectively.
However while c is certainly an atom it appears in the expressions in the form -c or 1/c which
both are not atoms. The predicates being logically disjoint aa and bb are indeed partitions of
the considered expressions determined without ordering ambiguity. Note also that the simplifier
has written 8 ∗ 2n as 2(n+ 3).
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With this example one can indeed show the greediness problem: let us define instead of two
mutually exclusive predicates two overlapping predicates:

(%i1) matchdeclare(aa, atom, bb, lambda ([x], not atom(x) or numberp(x)));
(%o1) done
(%i2) defrule (r1, aa + bb, ["all atoms" = aa, "all nonatoms" = bb]);
(%o2) r1 : bb + aa -> [all atoms = aa, all nonatoms = bb]
(%i3) r1 (8 + a*b + %pi + sin(x) - c + 2^n);

n
(%o3) [all atoms = %pi, all nonatoms = sin(x) + 2 - c + a b + 8]

Note that a number satisfies both predicates for aa and bb, so that 8 is taken greedily by the
first variable bb, and thus does not appear in "all atoms".

At this point we may have a lot of rules defined, a lot of wildcards declared by matchdeclare,
etc. There are convenience functions to list this stuff (disprule, propvars, printprops).

One may get for example:

(%i27) disprule(all);
(%t27) rr1 : 3 d + c + a b -> []

(%t28) rr2 : x + b u + a -> [x]

(%t29) rr3 : x y -> [x, y]

(%t30) rr4 : a y -> [y]

a
%e c

(%t31) rr5 : x + b c + a -> -----
b x

(%o31) [%t27, %t28, %t29, %t30, %t31]

(%i32) propvars (matchdeclare);
(%o32) [a, b, c, d]
(%i33) printprops (all, matchdeclare);
(%o33) [pred1(d), numberp(c), pred2(b), pred1(a)]

We see that the rules are labelled by disprule, wildcards are listed by propvars(matchdeclare)
and the associated predicates are listed by printprops. In a similar vein clear_rules() kills
the existing rules.

Once rules have been defined there is a mechanism to apply them automatically and recursively
in an expression. One does that using the functions apply1, apply2, applyb1.
apply1(exp,rule_1,...,rule_n) apply rule_1 to exp repeatedly until it fails. The the same
rule on all subexpressions, left to right (recall that an expression is a tree, usually with operators
at nodes and leafs are atoms). Then one does the same with rule_2 etc. The difference with
apply2 is that it applies in order rule_1,...,rule_n to each subexpression before passing to
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the next one. Finally applyb1 does the same but starting from bottom. The recusrsions are
limited by maxapplydepth from top to bottom and maxapplyheight from bottom towards top.

A trivial example: going from dot product to * product.

(%i1) matchdeclare(a,true,b,true);
(%o1) done
(%i2) defrule(r1,a.b,a*b);
(%o2) r1 : a . b -> a b
(%i3) apply1((x+y.(z+t.u)).(v+w.g),r1);
(%o3) (g w + v) (y (z + t u) + x)

Going the other way round.

(%i1) matchdeclare(a,lambda([e],not atom(e) and (op(e)="*")));
(%o1) done
(%i2) defmatch(r,a);
defmatch: evaluation of atomic pattern yields: a
(%o2) r
(%i3) defrule(r2,a,subst(".","*",a));
(%o3) r6 : a -> subst(., *, a)
(%i5) apply1((g*w + v)*(y*(z + t*u) + x),r2);
(%o5) (v + g . w) . (y . (z + t . u) + x)

Transforming only the leaf products in the expression tree:

(%i7) maxapplyheight:1$

(%i8) applyb1((g*w + v)*(y*(z + t*u) + x),r6);
(%o8) (v + g . w) (y (z + t . u) + x)

Suppose one wants to get the arguments of the leaf dot products:

(%i1) matchdeclare(a,lambda([e],not atom(e) and (op(e)=".")));
(%o1) done
(%i2) defrule(r3,a,print(args(a)));
(%o2) r3 : a -> print(args(a))
(%i3) maxapplyheight:1$
(%i5) applyb1((v + g . w)*(y*(z + t . u) + x),r3)$
[g, w]
[t, u]

Using recursive functions like apply1 may lead to infinite recursion if the replacement patterns
still matches:

(%i6) matchdeclare(a,atom);
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(%o6) done
(%i7) defrule(r,a,[a]);
(%o7) r : a -> [a]
(%i8) apply1(x+y,r);
INFO: Binding stack guard page unprotected
Binding stack guard page temporarily disabled: proceed with caution
(%i9) :lisp(trace $r)
($R)
(%i9) apply1(x+y,r);

0: ($R ((MPLUS SIMP) $X $Y))
0: $R returned NIL
0: ($R $X)
0: $R returned ((MLIST SIMP) $X) T
0: ($R ((MLIST SIMP) $X))
0: $R returned NIL
0: ($R $X) ..............

We see that r applies to x, giving [x], then doesn’t apply to [x]. It then descends recursively
to x inside [x] and infinite recursion begins. Note that applyb1 doesn’t suffer from the same
problem:

(%i5) applyb1(x+y,r);
0: ($R $X)
0: $R returned ((MLIST SIMP) $X) T
0: ($R $Y)
0: $R returned ((MLIST SIMP) $Y) T
0: ($R ((MLIST SIMP) ((MPLUS SIMP) $X $Y)))
0: $R returned NIL

(%o5) [y + x]

Here r applies on x and gives [x] but is then blocked, similar for y, so it goes upper to x+y and
returns [x+y].

Remark: In case the replacement pattern is a lambda function one has to apply the lambda
function to the matching variable to get the result, such as:

(%i1) matchdeclare(a,atom);
(%o1) done
(%i2) defrule(r,a,lambda([e],print("a =", e))(a));
(%o2) r : a -> lambda([e], print(a =, e))(a)
(%i3) r(x);
a = x
(%o3) x

Note the a inside the lambda is not captured automatically, and stays in the printout a=x. This
is a remark of R. Dodier.
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5 The let rules.

These rules are simplification rules specifically for use with products, namely products of atoms
to positive or negative powers and kernels such as sin(x), n!, f(x,y). They are defined in
nisimp.lisp.

Some of the arguments of prod may be declared in a matchdeclare statement, but as in the
case of defmatch, other arguments mays be specified in the let rule. Moreover one can specify
a predicate which specifies when these let arguments match. The replacement is any rational
function, and the matched arguments are substituted in it. A typical let rule takes the form:

let(product,replacement,predicate,arg_1,...arg_n);

To be more precise positive powers are grouped in a numerator and negatives one in a denomi-
nator. Powers of an atom in an expression match only when the power is greater or equal than
in the pattern, either in the numerator or denominator.

In fact let rules may be grouped in packages, so there is an extended form:

let([product,replacement,predicate,arg_1,...arg_n],package_name);

The let rules are applied to an expression by the commands:

letsimp(expression); or
letsimp(expression,package_name); or
letsimp(expression,pack_1,pack_2,...);

The command letsimp simplifies separately the numaerator and the denominator. If one wants
that cancellations occur between numerator and denominator, one needs to set

letrat:true;

Letsimp acts by applying the let rule repeatedly until the expression doesn’t change any more.
However this needs some comments.

(%i1) t(x,y):=true;
(%o1) t(x, y) := true
(%i2) let(x*y,x+y,t,x,y);
(%o2) x y --> y + x where t(x, y)
(%i3) letsimp(x*y+y*z);
(%o3) y z + y + x

We note that the letsimp has been distributed across the addition. The part x*y matches and
becomes x+y while y*z doesn’t match and is left as is. Similarly
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(%i4) letsimp(x*y*z);
(%o4) y z + x z

so z which is not declared is left in identical way in the replacement. Things are more tricky
when adding powers. Looking at nisimp.lisp one sees that the program to be traced is nisletsimp.
We get:

(%i5) trace(letsimp);
(%o5) [letsimp]
(%i6) :lisp(trace nisletsimp)

(NISLETSIMP)
(%i6) letsimp(x^2*y);

2
1 Enter letsimp [letsimp(x y)]

0: (NISLETSIMP
((MRAT SIMP ($X $Y) (#:X468 #:Y469)) (#:Y469 1 (#:X468 2 1)) . 1))

1: (NISLETSIMP ((MTIMES RATSIMP) ((MEXPT RATSIMP) $X 2) $Y))
2: (NISLETSIMP ((MPLUS SIMP) ((MEXPT SIMP) $X 2) ((MTIMES SIMP) $X $Y)))

3: (NISLETSIMP ((MEXPT SIMP) $X 2))
3: NISLETSIMP returned ((MEXPT SIMP) $X 2)
3: (NISLETSIMP ((MTIMES SIMP) $X $Y))

4: (NISLETSIMP ((MPLUS SIMP) $X $Y))
5: (NISLETSIMP $X)
5: NISLETSIMP returned $X
5: (NISLETSIMP $Y)
5: NISLETSIMP returned $Y

4: NISLETSIMP returned ((MPLUS) $X $Y)
3: NISLETSIMP returned ((MPLUS) $X $Y)

2: NISLETSIMP returned ((MPLUS) ((MEXPT SIMP) $X 2) ((MPLUS) $X $Y))
1: NISLETSIMP returned ((MPLUS) ((MEXPT SIMP) $X 2) ((MPLUS) $X $Y))
1: (NISLETSIMP 1)
1: NISLETSIMP returned 1

0: NISLETSIMP returned
((MQUOTIENT) ((MPLUS) ((MEXPT SIMP) $X 2) ((MPLUS) $X $Y)) 1)

2
x + (x + y)

1 Exit letsimp ------------
1

2
(%o6) y + x + x

At position 1 nisletsimp sees the product of x2 and y. This product matches the rule thus
at position 2 nisletsimp sees x2 + xy. Then at position 4 xy -> x+y and one gets the result
x2 + x + y, the quotient by 1 being due to rational representation. Hence the question: how is
it that one application of the rule to x2 ∗ y gives x2 + xy and not x2 + y ? This is understood if
one writes x2 ∗ y = x ∗ (x ∗ y)− > x ∗ (x+ y). Let us try to see if this works for higher powers:

(%i8) letsimp(x^3*y);
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3 2
(%o8) y + x + x + x

This is explained by the chain:

x3 ∗ y = x2 ∗ (x ∗ y) -> x2 ∗ (x+ y) = x3 + x ∗ (x ∗ y) -> x3 + x2 + x ∗ y -> x3 + x2 + x+ y

Finally let us look at:

(%i9) letsimp(x^3*y^2);
2 3 2

(%o9) y + 3 y + x + 2 x + 3 x

This is explained by : x3 ∗y2 -> x2 ∗y ∗ (x+y) = x3 ∗y+x2 ∗y2. The first one is x3+x2+x+y,
the second x ∗ y ∗ (x+ y) -> x ∗ (x+ y) + y ∗ (x+ y) -> x2 + y2 + 2 ∗ (x+ y), yielding the above
result.

This explains the nature of the recursion occurring in let rules. As is the case with defmatch it
is frequently more convenient to use variables in patterns defined by matchdeclare. For example
in below, variables m and n are matched to a1 and a2 and substituted in the replacement. An
example is in the manual:

(%i1) matchdeclare ([a, a1, a2], true)$
(%i2) oneless (x, y) := is (x = y-1)$
(%i3) let (a1*a2!, a1!, oneless, a2, a1);
(%o3) a1 a2! --> a1! where oneless(a2, a1) /* that is a2=a1-1 */
(%i4) letrat: true$
(%i5) let (a1!/a1, (a1-1)!);

a1!
(%o5) --- --> (a1 - 1)!

a1
(%i6) letsimp (n*m!*(n-1)!/m);
(%o6) (m - 1)! n!

Finally there are some convenience functions to manipulate let rules.

letrules(); display rules in current package, by default default_let_rule_package
letrules(pkg) ; display rules in pkg
let_rule_packages; is a list of all packages, including default_let_rule_package
remlet(product,package_name); removes rule for product in package_name
remlet(); removes all rules from current package
remlet(all); idem
remlet(all,package_name); removes all rules in package_name, and the name itself.
current_let_rule_package can be assigned to any package name.

We see that the let rules allow to simplify differently expressions. However they have to be
called explicitely by letsimp(). We are now going to discuss similar simplifying functions which
are directly hooked in the maxima simplifier, and are thus called automatically. They are called
letsimp (called before the simplifier) and letsimpafter (called after the simplifier).
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6 Tellsimp and tellsimpafter.

Both have the form:

tellsimp (pattern, replacement);
tellsimpafter (pattern, replacement);

The manual says: tellsimp is used when it is important to modify the expression before the
simplifier works on it, for instance if the simplifier "knows" something about the expression,
but what it returns is not to your liking. If the simplifier "knows" something about the main
operator of the expression, but is simply not doing enough for you, you probably want to use
tellsimpafter.

The pattern is comprised of wild cards declared with defmatch and other variables or kernels
and operators which are taken literally as above. For tellsimp the pattern may not be a sum,
product, single variable, or number. For tellsimpafter pattern may be any nonatomic expression
in which the main operator is not a pattern variable.

The simplification rule is associated to the main operator. If the name of the rule is foorule, one
can trace it by :lisp(trace foorule) and see it (with maxima -l clisp) with

:lisp (symbol-function ’$foorule).

A simple example:

(%i1) matchdeclare([a,b,c]:all);
(%o1) done
(%i2) tellsimpafter(a+b*c,a-b*c);
defmatch: c b

will be matched uniquely since sub-parts would otherwise be ambigious.
(%o2) [+rule1, simplus]

Note the rule is associated to main operator "+" and named +rule1. It is also associated to the
simplus generic simplification functions for sums. Tracing it gives:

(%i3) :lisp(trace +rule1)
(+RULE1)
(%i3) x+y*z;

0: (+RULE1 ((MPLUS) $X ((MTIMES SIMP) $Y $Z)) 1 NIL)
1: (+RULE1 ((MPLUS) $X ((MTIMES SIMP) -1 $Y $Z)) 1 NIL)
1: +RULE1 returned ((MPLUS SIMP) $X ((MTIMES SIMP) -1 $Y $Z))

0: +RULE1 returned ((MPLUS SIMP) $X ((MTIMES SIMP) -1 $Y $Z))
(%o3) x - y z

The following is trickier:
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(%i1) matchdeclare([a,b],all);
(%o1) done
(%i2) tellsimpafter(a+b,a-b);
(%o2) [+rule1, simplus]
(%i3) :lisp(trace +rule1)
(+RULE1)
(%i3) x+y;

0: (+RULE1 ((MPLUS) $X $Y) 1 NIL)
1: (+RULE1 ((MPLUS) $X $Y) 1 NIL)
1: +RULE1 returned ((MPLUS SIMP) $X $Y)
1: (+RULE1 ((MPLUS) ((MTIMES SIMP) -1 $X) ((MTIMES SIMP) -1 $Y)) 1 T)
1: +RULE1 returned

((MPLUS SIMP) ((MTIMES SIMP) -1 $X) ((MTIMES SIMP) -1 $Y))
1: (+RULE1

((MPLUS) 0 ((MPLUS SIMP) ((MTIMES SIMP) -1 $X) ((MTIMES SIMP) -1 $Y)))
1 NIL)

1: +RULE1 returned
((MPLUS SIMP) ((MTIMES SIMP) -1 $X) ((MTIMES SIMP) -1 $Y))

0: +RULE1 returned ((MPLUS SIMP) ((MTIMES SIMP) -1 $X) ((MTIMES SIMP) -1 $Y))
(%o3) (- y) - x

Here we see that a is matched to 0, and b to (x+y) so the result is probably unexpectedly -x-y.
We see once more the problems associated with the fact that for "+" and "*" the matcher is
greedy and constants like 0 or 1 are added freely in the game. For tellsimp, main operator "+"
is forbidden, and indeed if one tries it:

(%i1) matchdeclare([a,b],all);
(%o1) done
(%i2) tellsimp(a+b,a-b);
tellsimp: warning: rule will treat ’+’ as noncommutative and nonassociative.
(%o2) [+rule1, simplus]
(%i3) x+y;
INFO: Binding stack guard page unprotected
Binding stack guard page temporarily disabled: proceed with caution
Maxima encountered a Lisp error:
Binding stack exhausted.

Once more interaction between the tellsimprule and the simplifier causes infinite loop. These
function being very automatic can cause many unexpected results. But they can also produce
nice results.

It is possible to check how tellsimp and tellsimpafter rules are successively applied. Setting

announce_rules_firing: true;

before defining the simplification rules, will show how they are applied in a simpler way than
tracing them.

As an example let us present quaternions in this way. Here z0 plays the role of unit quaternion,
z1,z2,z3 are usually denoted i,j,k. The dot product plays the role of quaternionic product,
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but we need to introduce scalars as coefficients and impose distributivity with respect to addition
and product with a scalar.

(%i1) dotdistrib:true$
(%i2) dotscrules:true$
(%i3) tsa(i,j,k,s)::=buildq([i,j,k,s],apply( /* Utility macro */

tellsimpafter,[concat(z,i).concat(z,j),s*concat(z,k)]))$
(%i4) for kk in [[1,2,3,1],[2,1,3,-1],[3,1,2,1],[1,3,2,-1],

[2,3,1,1],[3,2,1,-1]] do ([i,j,k,s]:kk,tsa(i,j,k,s))$
(%i5) for kk in [[0,1],[1,0],[0,2],[2,0],[0,3],[3,0],[0,0]] do

([i,j]:kk,tsa(i,j,i+j,1))$
(%i6) for k from 1 thru 3 do tsa(k,k,0,-1)$
(%i7) for i from 0 thru 3 do

apply(declare,[[concat(a,i),concat(b,i)],scalar])$
(%i8) A: sum(concat(a,i)*concat(z,i),i,0,3)$
(%i9) B: sum(concat(b,i)*concat(z,i),i,0,3)$
(%i10) rat(expand(A.B),z0,z1,z2,z3);
(%o10)/R/ (a0 b3 + a1 b2 - a2 b1 + a3 b0) z3
+ ((- a1 b3) + a0 b2 + a3 b1 + a2 b0) z2
+ (a2 b3 - a3 b2 + a0 b1 + a1 b0) z1
+ ((- a3 b3) - a2 b2 - a1 b1 + a0 b0) z0

(%i11) cA:-a3*z3 - a2*z2 - a1*z1 + a0*z0$ /* Conjugate of A */
(%i12) nA:a3^2 + a2^2 + a1^2 + a0^2$ /* Norm of A = A.cA */
(%i13) rat(expand(A.cA/nA),z0,z1,z2,z3);
(%o13)/R/ z0 /* The unit quaternion */

One can check the proper declaration of scalars and of rules with propvars(scalar); and
disprule(all); In %o10 we see the product of two quaternions A and B. If a0=b0=0 only
the vector part appears and we see that the quaternionic product reduces to the vector product.
In %o13 we see that every non nul quaternion is invertible, i.e. quaternions form a field.

The gamma algebra of quantum field theory can be treated in a similar way, we refer to

https://github.com/dprodanov/clifford

by D. Prodanov. This formalism is also amenable to treat the case of groups defined by generators
and relations

https://en.wikipedia.org/wiki/Presentation_of_a_group

7 Appendix

The aim of this section is to describe in more details the relation between rules and functions. It
is based on private communications of Prof. Fateman. First, a rule defines a function. To see this
one has to use a maxima compiled with gcl or clisp since with sbcl the function is immediately
compiled. We shall take a very simple example for brevity:
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(%i1) matchdeclare(aa,atom);
(%o1) done
(%i2) defrule(r,aa+x,x+exp(aa));

aa
(%o2) r : x + aa -> x + %e
(%i3) r(x+y);

y
(%o3) %e + x
(%i4) :lisp(symbol-function ’$r);

(LAMBDA (TR-GENSYM0)
(DECLARE (SPECIAL TR-GENSYM0))
(CATCH ’MATCH

(PROG ($AA)
(DECLARE (SPECIAL $AA))
(SETQ TR-GENSYM0 (MEVAL ’((MPLUS) TR-GENSYM0 ((MMINUS) $X))))
(COND

((DEFINITELY-SO ’(($ATOM) TR-GENSYM0)) (MSETQ $AA TR-GENSYM0))
((MATCHERR)))

(RETURN
(VALUES (MEVAL ’((MPLUS SIMP) ((MEXPT SIMP) $%E $AA) $X)) T)))))

(%i4) :lisp(symbol-plist ’$r)

(MPROPS (NIL $RULETYPE $DEFRULE $RULE
((MEQUAL) ((MPLUS SIMP) $AA $X)
((MPLUS SIMP) ((MEXPT SIMP) $%E $AA) $X))))

(%i4) disprule(r);
aa

(%t4) r : x + aa -> x + %e

So we have defined a rule r with one pattern variable aa, and one anchor x, which does its job.
The program associated to the rule is attached to $r in the symbol-function of $r. Moreover a
description of the rule is present in the property list of $r and displayed by disprule(r). Finally
$r has no symbol-value.

The way the program works is cleared by tracing it (here with gcl):

(%i5) :lisp(trace $r)

($R)
(%i5) r(x+y);

1> ($R ((MPLUS SIMP) $X $Y))
<1 ($R ((MPLUS SIMP) $X ((MEXPT SIMP) $%E $Y)) T)

y
(%o5) %e + x

Thus the input TR-GENSYM0 to the function $r is (list (MPLUS SIMP) \$X \$Y) and the
output is composed of two values, first the transformed expression, and second the boolean value
T. This is because of the (values * *) at the end of the function. The beginning of the function
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is the matching engine. In this simple case, it works this way: since the rules tries to match
x+aa, x is subtracted to the input TR-GENSYM0 and what remains must be aa. But aa must
be an atom. In this case, applying to x+y it happens that y is an atom and thus one sets aa=y.
Otherwise one runs matcherr. For example r(x+y+z) returns false. This is because matcherr
just does (throw ’match nil), the tag ’match is catched by the CATCH ’MATCH which gets out
of the program outputting just one value nil, showed by the clisp trace:

(%i4) r(x+y+z);
1. Trace: ($R ’((MPLUS SIMP) $X $Y $Z))
1. Trace: $R ==> NIL
(%o4) false

In more complicated examples the pattern matcher works in essentially the same way processing
recursively to identify the various patterns to match. But there is no backtracking and if some
inside matcher enters matcherr the whole match returns false. Example:

%i1) matchdeclare(aa,atom,bb,numberp);
(%o1) done
(%i2) defrule(r,aa+bb*y,[aa,bb]);
(%o2) r : bb y + aa -> [aa, bb]
(%i3) r(x+2*y);
(%o3) [x, 2]
(%i4) :lisp(symbol-function ’$r)

(LAMBDA (TR-GENSYM0)
(DECLARE (SPECIAL TR-GENSYM0))
(CATCH ’MATCH

(PROG ($AA $BB TR-GENSYM1)
(DECLARE (SPECIAL $AA $BB TR-GENSYM1))
(SETQ TR-GENSYM1 (RATDISREP (RATCOEF TR-GENSYM0 (MEVAL ’$Y))))
(COND

((DEFINITELY-SO ’(($NUMBERP) TR-GENSYM1))
(MSETQ $BB TR-GENSYM1))

((MATCHERR)))
(SETQ TR-GENSYM0

(MEVAL ’(($RATSIMP)
((MPLUS) TR-GENSYM0 ((MTIMES) -1 TR-GENSYM1 $Y)))))

(COND
((DEFINITELY-SO ’(($ATOM) TR-GENSYM0)) (MSETQ $AA TR-GENSYM0))
((MATCHERR)))

(RETURN (VALUES (MEVAL ’((MLIST SIMP) $AA $BB)) T)))))

Here the pattern variable bb is identified as the coefficient of the anchor y in the rational expres-
sion of TR-GENSYM0 and tested to be a number. In this case one subtracts the product of bb
and y from the expression to get aa. Then aa is tested to be an atom.

We have described in some details the way the rules work, i.e. they are functions which take as
input one argument, an expression, and produce as output, either the transformed expression and
T, if there is match or NIL otherwise. In fact producing two values NIL,NIL does no harm in this
case and is more symmetric. For managing more sophisticated transformation rules it becomes
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necessary to write directly the function to be applied as a maxima function and transform it to
a maxima rule. To this aim we reproduce here a program communicated by Prof. Fateman, that
he calls function2maxrule.lisp:

;; generate a rule suitable for use by apply1 etc from a function
;; that returns a usual single value, a non-nil result or false.
;; multiple values: (result, true)
;; otherwise (false false)
;; note that if your functions actually returns successfully with
;; the result false, you can’t use this.

(defun $convertfunction2rule (rulename thefun )
;; generate a named function that returns a multiple-value
;; of 2 items. either (false false) or (theReplacement with subst, true)
(let* ((e (gensym "e"))

(ans (gensym "a"))
(body

(coerce ‘(lambda(,e) ;function of one argument
(let((,ans (mfuncall (quote ,thefun) ,e)))

(if (null ,ans)
(values nil nil) ;; false false for maxima
(values ,ans
t))))

’function)
))
(setf (symbol-function rulename) body))

;; I added stuff to make disprule happy, otherwise useless.
(setf (getf (symbol-plist rulename) ’mprops)

’(nil $ruletype $defrule $rule ((mequal) "foo" "bar")))
(meta-add2lnc rulename ’$rules)
rulename)

The basis of this program is that the maxima function “thefun” is applied to the expression e
using the maxima function call mfuncall. A lisp function is created from the maxima function
by the same technique used for example in coerce-float-fun (plot.lisp) and assigned to the symbol
function of the rule rulename. In this expression ’(lambda ....) is just a lisp list of symbols,
which can be manipulated, for example by interpolating the values of the initial expression ,e
and the transformed one ,ans and it is the (coerce ... ’function) which transforms this
list in a lambda function definition. The variables e (the expression) and ans (the transformed
expression) are protected from capture by using gensyms, they take a concrete value when the
rule is applied to some concrete expression.

One then has to define the maxima function “thefun” able to transform the expression, but for
that we need to identify patterns in the expression using the above mechanisms matchdeclare
and defmatch. The maxima function can manipulate these patterns in any way, and use any
conditions it likes on them. This is very flexible, but there is always the difficulty of properly
selecting the patterns in the expression.

Let us apply this technique to compute the normal ordering of creation and annihilation oper-
ators. So take two symbols a and b with a non commutative multiplication noted ”.” and the
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commutation relation b.a = a.b+ 1. Using it one wants to put all the a at the left and all the b
at the right, which we call normal order. A very similar problem is to write any element of the
enveloping algebra of the algebra of rotations in canonical order, up to lower order terms (this
is the Poincaré–Birkhoff–Witt theorem). Here one has 3 elements a, b, c with commutation rela-
tions b.a = a.b+ c plus circular permutations on (a, b, c), and one wants to write any polynomial
in a, b, c with the a first, then the b and finally the c. Sticking to our case, the following does the
job:

/* To express dot products as x.(y.(z.t)) etc. one makes dotassoc:false
and then expand(expr,0,0) similarly for the reverse */

dotassoc:false;
dotexptsimp:false;
dotdistrib:true;
dotscrules:true;

/* The expression to be transformed is a sum of terms of the form
x.(y. ...) multiplied by constants. We need to map the transformation rule
around sums and products by constants. */

/* a and b match only themselves */

matchdeclare(cc,true);

defrule(r1,b.a,a.b+1);
defrule(r2,b.(a.cc),a.(b.cc)+cc);

norm_ord(expr):=block([e:expr],
if (scalarp(e) or e=a or e=b) then return(e)
else if inpart(e,0)="+" then return(map(norm_ord, e))
else if inpart(e,0)="*" then return(map(norm_ord, e))
else if inpart(e,0)="." then return(applyb1(e,r2,r1))
else false); /* Should not occur */

load("function2maxrule.lisp");
convertfunction2rule(nord,norm_ord);

/* When using apply1 on this rule the recursion should stop when
applyb1(e,r2,r1) returns false */

/* Normal ordering a^^2.b^^3.a^^2 */

noexp:apply1(a.a.b.b.b.a.a,nord);
dotassoc:true$ dotexptsimp:true$
expand(noexp);

Where we load the above lisp program function2maxrule.lisp. The ideas in this example have
been explained by R. Fateman. Running it gives:

(%i10) convertfunction2rule(nord,norm_ord);

29



(%o10) nord
(%i11) noexp:apply1(a.a.b.b.b.a.a,nord);
(%o11) 2 (a . (a . b) + a . (a . (a . (b . b)))) + 4 (a . (a . b))

+ 4 (a . (a . (a . (b . b)))) + a . (a . (a . (a . (b . (b . b)))))
(%i12) dotassoc:true$

(%i13) dotexptsimp:true$

(%i14) expand(noexp);
<4> <3> <3> <2> <2>

(%o14) a . b + 6 (a . b ) + 6 (a . b)
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