
CHAPTER 7

Synthesis and digital music

7.1. Introduction

WABOT-2
(Waseda University and

Sumitomo Corp., Japan 1985)

In this chapter, we investigate
synthesis of musical sounds. We pay
special attention to Frequency Mod-
ulation (or FM) synthesis, not be-
cause it is a particularly important
method of synthesis, but rather be-
cause it is easy to use FM synthesis as
a vehicle for conveying general prin-
ciples. We also discuss other aspects
of digital music, such as aliasing and
Nyquist's theorem, MIDI, and inter-
net resources.

Interesting musical sounds do
not in general have a static frequency
spectrum. The development with time
of the spectrum of a note can be un-
derstood to some extent by trying to
mimic the sound of a conventional mu-
sical instrument synthetically. This
exercise focuses our attention on what

are usually referred to as the attack, decay, sustain and release parts of a
note (ADSR). Not only does the amplitude change during these intervals,
but also the frequency spectrum. Synthesizing sounds which do not sound
mechanical and boring turns out to be harder than one might guess. The ear
is very good at picking out the regular features produced by simple minded
algorithms and identifying them as synthetic. This way, we are led to an ap-
preciation of the complexity of even the simplest of sounds produced by con-
ventional instruments.

Of course, the real strength of synthesis is the ability to produce sounds
not previously attainable, and to manipulate sounds in ways not previously
possible. Most music, even in today's era of the availability of cheap and
powerful digital synthesizers, seems to occupy only a very small corner of the
available sonic pallette. The majority of musicians who use synthesizers just
punch the presets until they �nd the ones they like, and then use them with-
out modi�cation. Exceptions to this rule stand out from the crowd; listening
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180 7. SYNTHESIS AND DIGITAL MUSIC

to a recording by the Japanese synthesist Tomita, for example, one is struck
immediately by the skill expressed in the shaping of the sound.

Further listening: (See Appendix R)

Isao Tomita, Pictures at an Exhibition (Mussorgsky).

7.2. Digital signals

The commonest method of dig-
ital representation of sound is about
as simple minded as you can get. To
digitize an analog signal, the signal is
sampled a large number of times a sec-
ond, and a binary number represents
the height of the signal at each sam-
ple time. Both of these processes are
sometimes referred to as quantization

(don't worry, there's no quantum me-
chanics involved here), but it is impor-
tant to realize that the processes are
separate, and need to be understood
separately.

For example, the Compact Disc
is based on a sample rate of 44.1 KHz,
or 44,100 sample points per second.1

At each sample point, a sixteen digit
binary number represents the height of the waveform at that point.

One way to represent the process of sampling a signal is as multiplica-
tion by a stream of Dirac delta functions (see x2.15). Let N denote the sam-
ple rate, measured in samples per second, and let �t = 1=N denote the in-
terval between sample times. So for example for compact disc recording we

1It is annoying that the default sample rate for DAT (Digital Audio Tape) is 48 KHz,
thereby making it diÆcult to make a digital copy on CD directly from DAT. This seems
to be the result of industry paranoia at the idea that anyone might make a digital copy of
music from a CD (DAT was originally designed as a consumer format, but never took o�
except among the music business professionals). The excuse that the higher sample rate
for DAT gives a higher cuto� frequency and therefore better audio �delity is easily seen
through in light of the fact that the improvement is about three quarters of a tone, which
is essentially insigni�cant.

Fortunately, the ratio 48; 000=44; 100 can be written as a product of small fractions,
4=3�8=7�5=7, which suggests an easy method of digital convertion. To multiply the sam-
ple rate by 4=3, for example, we use linear interpolation to quadruple the sample rate and
then omit two out of every three sample points. This gives much better �delity than con-
verting to an analog signal and then back to digital.
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want N = 44; 100 samples per second, and �t = 1=44; 100 seconds. We de-
�ne the sampling function with spacing �t to be

Æs(t) = �t

1X
n=�1

Æ(t� n�t):

The reason for the factor of �t in front of the summation is so that the inte-
gral of this function over an interval of time approximates the length of the
interval.

Æs(t)

6 6 6 6 6 6 6 6 6 6 6

�-�t

If f(t) represents an analog signal, then

f(t)Æs(t) = �t

1X
n=�1

f(t)Æ(t� n�t) = �t

1X
n=�1

f(n�t)Æ(t� n�t)

represents the sampled signal. This has been digitized with respect to time,
but not with respect to signal amplitude. The integral of the digitized sig-
nal f(t)Æs(t) over any period of time approximates the integral of the analog
signal f(t) over the same time interval.

One of the keys to understanding the digitized signal is Poisson's sum-
mation formula from Fourier analysis.

Theorem 7.2.1.

�t

1X
n=�1

f(n�t) =

1X
n=�1

f̂
� n

�t

�
: (7.2.1)

Proof. This follows from the Poisson summation formula (2.14.1), us-
ing Exercise 3 of x2.13. �

Corollary 7.2.2. The Fourier transform of the sampling function

Æs(t) is another sampling function in the frequency domain,

bÆs(�) = 1X
n=�1

Æ
�
� � n

�t

�
:

Proof. If f(t) is a test function, then the de�nition of Æs(t) givesZ
1

�1

f(t)Æs(t) dt = �t
1X

n=�1

f(n�t):

Applying Parseval's formula (2.13.4) to the left hand side (and noting that

the sampling function is real, so that Æs(t) = Æs(t)) and applying formula
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(7.2.1) to the right hand side, we obtainZ
1

�1

f̂(�)bÆs(�) d� = 1X
n=�1

f̂
� n

�t

�
:

The required formula for bÆs(�) follows. �

Corollary 7.2.3. The Fourier transform of a digital signal f(t)Æs(t) is

dfÆs(�) = 1X
n=�1

f̂
�
� � n

�t

�
which is periodic in the frequency domain, with period equal to the sampling

frequency 1=�t.

Proof. By Theorem 2.16.1(ii), we havedfÆs(�) = (f̂ � Æ̂s)(�);
and by Corollary 7.2.2, this is equal toZ

1

�1

f̂(u)
1X

n=�1

Æ
�
� � n

�t
� u
�
du =

1X
n=�1

f̂
�
� � n

�t

�
: �

7.3. Nyquist's theorem

Nyquist's theorem2 states that the maximum frequency that can be
represented when digitizing an analog signal is exactly half the sampling rate.
Frequencies above this limit will give rise to unwanted frequencies below the
Nyquist frequency of half the sampling rate.

To explain the reason for this, consider a pure sinusoidal wave with fre-
quency �, for example

f(t) = A cos(2��t):

Given a sample rate of N = 1=�t samples per second, the height of the func-
tion at the Mth sample is given by

f(M=N) = A cos(2��M=N):

If � is greater than N=2, say � = N=2 + �, then

f(M=N) = A cos(2�(N=2 + �)M=N)

= A cos(�M + 2��M=N)

= (�1)MA cos(2��M=N):

Changing the sign of � makes no di�erence to the outcome of this calcula-
tion, so this gives exactly the same answer as the waveform with � = N=2��
instead of � = N=2 + �. To put it another way, the sample points in

2Harold Nyquist, Certain topics in telegraph transmission theory, Transactions of the
American Institute of Electrical Engineers, April 1928. Nyquist retired from Bell Labs in
1954 with about 150 patents to his name. He was renowned for his ability to take a complex
problem and produce a simple minded solution that was far superior to other approaches.
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this calculation are exactly the points where the graphs of the functions
A cos(2�(N=2 + �)t) and A cos(2�(N=2 � �)t) cross.

The result of this is that a frequency which is greater than half the
sample frequency gets reected through half the sample frequency, so that
it sounds like a frequency of the corresponding amount less than half. This
phenomenon is called aliasing. In the above diagram, the sample points are
represented by black dots. The two waves have frequency slightly more and
slightly less than half the sample frequency. It is easy to see from the dia-
gram why the sample values are equal. Namely, the sample points are sim-
ply the points where the two graphs cross.

For waves at exactly half the sampling frequency, something interest-
ing occurs. Cosine waves survive intact, but sine waves disappear altogether.
This means that phase information is lost, and amplitude information is
skewed.

The upshot of Nyquist's theorem is that before digitizing an analog sig-
nal, it is essential to pass it through a low pass �lter to cut o� frequencies
above half the sample frequency. Otherwise, each frequency will come paired
with its reection.

In the case of digital compact discs, the cuto� frequency is half of 44.1
KHz, or 22.05 KHz. Since the limit of human perception is usually below 20
KHz, this may be considered satisfactory, but only by a small margin.

We can also explain Nyquist's theorem in terms of Corollary 7.2.3.
Namely, the Fourier transform

dfÆs(�) = 1X
n=�1

f̂
�
� � n

�t

�
is periodic with period equal to the sampling frequency N = 1=�t. The
term with n = 0 in this sum is the Fourier transform of f(t). The remaining
terms with n 6= 0 appear as aliased artifacts, consisting of frequency compo-
nents shifted in frequency by multiples of the sampling frequency N = 1=�t.
If f(t) has a nonzero part of its spectrum at frequency greater than N=2,
then its Fourier transform will be nonzero at plus and minus this quantity.
Then adding or subtracting N will result in an artifact at the corresponding
amount less than N=2, the other side of the origin.
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�N �N=2 0 N=2 N

signalsignal alias

� -N

�

Another remarkable fact comes out of Corollary 7.2.3. Namely, pro-
vided the original signal f(t) satis�es f̂(�) = 0 for � � N=2, in other words,
provided that the entire spectrum lies below the Nyquist frequency, the origi-
nal signal can be reconstructed exactly from the sampled signal, without any

loss of information. Namely, f̂(�) is reconstructed by truncatingdfÆs(�), and
then f(t) is reconstructed using the inverse Fourier transform. Carrying this
out in practise is a di�erent matter, and requires very accurate analog �lters.

7.4. The z-transform

For digital signals, it is often more convenient to use the z-transform
instead of the Fourier transform. The point is that by Corollary 7.2.3, the
Fourier transform of a digital signal is periodic, with period equal to the sam-
pling frequency. So it contains a lot of redundant information. The idea of
the z-transform is to wrap the Fourier transform round the unit circle in the
complex plane. This is achieved by setting

z = e2�i��t

so that as � changes in value by 1=�t, z goes exactly once round the unit cir-
cle in the complex plane. Any periodic function of � with period 1=�t can
then be written as a function of z. The Fourier transform of the sampled sig-
nal f(t)Æs(t) is thenZ

1

�1

f(t)Æs(t)e
�2�i�t dt =

Z
1

�1

 
1X

n=�1

�t f(t)Æ(t� n�t)

!
z�t=�t dt

=
1X

n=�1

�t f(n�t)z�n:

The factor of �t is just an annoying constant, and so the z-transform of the
digitized signal is simply de�ned as

F (z) =
1X

n=�1

f(n�t)z�n: (7.4.1)

The Fourier transform may be recovered asdfÆs(�) = �t F (e2�i��t):

Warning. It is necessary to exercise caution when manipulating expres-
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sions like equation (7.4.1), because of Euler's joke. Here's the joke. Consider
a signal which is constant over all time,

F (z) = � � � + z2 + z + 1 + z�1 + z�2 + : : :

=

1X
n=�1

zn:

Divide this in�nite sum up into two parts, and sum them separately.

F (z) = (� � � + z2 + z + 1) + (z�1 + z�2 + : : : )

=
1

1� z
+

z�1

1� z�1

=
1

1� z
+

1

z � 1
= 0:

This is clearly nonsense. The problem is that the �rst parenthesized sum
only converges for jzj > 1, while the second sum only converges for jzj < 1.
So there is no value of z for which both sums make sense simultaneously.

The resolution of this problem is only to allow signals with some �nite
starting point. So we assume that f(n�t) = 0 for all large enough negative
values of n. Then the sum converges inside the unit circle in the complex
plane.

In terms of the z-transform, delaying the signal by one sample corre-
sponds to multiplication by z�1. So in the literature, you will see the block
diagram for such a digital delay drawn as follows. We shall use the same con-
vention.

z�1- -

7.5. Digital �lters

The subject of digital �lters has a vast literature. We shall only touch
the surface, in order to illustrate how the z-transform enters the picture. Let
us begin with an example. Consider the following diagram.
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z�1- -
��
�

HHH��

6
��
��
+- -Input Output

If f(n�t) is the input and g(n�t) is the output, then the relation rep-
resented by the above diagram is

g(n�t) = f(n�t)� �f((n� 1)�t): (7.5.1)

So the relation between the z-transforms is

G(z) = F (z) � �z�1F (z) = (1� �z�1)F (z):

This tells us about the frequency response of the �lter. A given frequency
� corresponds to the points z = e�2�i��t on the unit circle in the complex
plane, with half the sampling frequency corresponding to e�i = �1.

At a particular point on the unit circle, the value of 1��z�1 gives the
frequency response. Namely, the ampli�cation is j1 � �z�1j, and the phase
shift is given by the argument of 1� �z�1.

More generally, if the relationship between the z-transforms of the in-
put and output signal, F (z) and G(z), is given by

G(z) = H(z)F (z)

then the function H(z) is called the transfer function of the �lter. The in-
terpretation of the transfer function, for example 1 � �z�1 in the above �l-
ter, is that it is the z-transform of the impulse response of the �lter.

1

��

Impulse response

The impulse response is de�ned to be the output resulting from an input
which is zero except at the one sample point t = 0, where its value is one,
namely

f(n�t) =

(
1 n = 0

0 n 6= 0:

The sampled function fÆs is then a Dirac delta function.
For digital signals, the convolution of f1 and f2 is de�ned to be

(f1 � f2)(n�t) =
1X

m=�1

f1((n�m)�t)f2(m�t):
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Multiplication of z-transforms corresponds to convolution of the original sig-
nals. This is easy to see in terms of how power series in z�1 multiply. So in
the above example, the impulse response is: 1 at n = 0, �� at n = 1, and
zero for n 6= 0; 1. Convolution of the input signal f(n�t) with the impulse
response gives the output signal g(n�t) according to equation (7.5.1).

As a second example, consider a �lter with feedback.

z�1 ��
HH

H
�����

6
��
��
+- -Input Output

The relation between the input f(n�t) and the output g(n�t) is now given by

g(n�t) = f(n�t)� �g((n� 1)�t):

This time, the relation between the z-transforms is

G(z) = F (z)� �z�1G(z);

or

G(z) =
1

1 + �z�1
F (z):

Notice that this is unstable when j�j > 1, in the sense that the signal grows
without bound. Even when j�j = 1, the signal never dies away, so we say
that this �lter is stable provided j�j < 1. This is easiest to see in terms of
the impulse response of this �lter, which is

1

1 + �z�1
= 1� �z�1 + �2z�2 � �3z�3 + : : :

1

��

Impulse response

Filters are usually designed in such a way that the output g(n�t) de-
pends linearly on f((n �m)�t) for a �nite set of values of m � 0 and on
g((n �m)�t) for a �nite set of values of m > 0. For such a �lter, the z-
transform of the impulse response is a rational function of z, which means
that it is a ratio of two polynomials

p(z)

q(z)
= a0 + a1z

�1 + a2z
�2 + : : :
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The coeÆcients a0; a1; a2; : : : are the values of the impulse response at t = 0,
t = �t, t = 2�t, . . .

The coeÆcients an tend to zero as n tends to in�nity, if and only if the
poles � of p(z)=q(z) satisfy j�j < 1. This can be seen in terms of the com-
plex partial fraction expansion of the function p(z)=q(z).

The location of the poles inside the unit circle has a great deal of ef-
fect on the frequency response of the �lter. If there is a pole near the bound-
ary, it will cause a local maximum in the frequency response, which is called
a resonance. The frequency is given in terms of the argument of the position
of the pole by

� = (sample rate)� (argument)=2�:

Decay time. The decay time of a �lter for a particular frequency is de-
�ned to be the time it takes for the amplitude of that frequency component
to reach 1=e of its initial value. To understand the e�ect of the location of a
pole on the decay time, we examine the transfer function

H(z) =
1

z � a
=

z�1

1� az�1
= z�1 + az�2 + a2z�3 + : : : :

So in a period of n sample times, the amplitude is multiplied by a factor of
an. So we want jajn = 1=e, or n = �1= ln jaj. So the formula for decay time is

Decay time =
��t
ln jaj =

�1
N ln jaj (7.5.2)

where N = 1=�t is the sample rate. So the decay time is inversely propor-
tional to the logarithm of the absolute value of the location of the pole. The
further the pole is inside the unit circle, the smaller the decay time, and the
faster the decay. A pole near the unit circle gives rise to a slow decay.

Exercises

1. (a) Design a digital �lter whose transfer function is z2=(z2 + z + 1
2 ), using the

symbol z�1 in a box to denote a delay of one sample time, as above.

(b) Compute the frequency response of this �lter. Let N denote the number of sam-

ple points per second, so that the answer should be a function of � for �N=2 < � <

N=2.

(c) Is this �lter stable?

Further reading:

R. W. Hamming, Digital �lters [40].

Bernard Mulgrew, Peter Grant and John Thompson, Digital signal processing [75].
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7.6. The discrete Fourier transform

The discrete Fourier transform is

F (k) =
1

N

N�1X
n=0

f(n)e�2�ink=N

f(n) =

N�1X
k=0

F (k)e2�ikn=N :

The fast Fourier transform is a way to compute the discrete Fourier trans-
form using 2N log2N operations rather than N2. The number of sample
points N has to be a power of two for it to be this eÆcient, but the algo-
rithm works for any highly composite value of N .

Further reading:

G. D. Bergland, A guided tour of the fast Fourier transform, IEEE Spectrum 6
(1969), 41{52.

James W. Cooley and John W. Tukey, An algorithm for the machine calculation of

complex Fourier series, Math. of Computation 19 (1965), 297{301. This is usually

regarded as the original article announcing the fast Fourier transform as a practical

algorithm.

7.7. Envelopes and LFOs

Whatever method is used to synthesize sounds, attention has to be
paid to envelopes, so we discuss these �rst. Very few sounds just consist of a
spectrum, static in time. If we hear a note on almost any instrument, there
is a clearly de�ned attack at the beginning of the sound, followed by a de-
cay, then a sustained part in the middle, and �nally a release. In any par-
ticular instrument, some of these may be missing, but the basic structure is
there. Synthesis follows the same pattern. The commonly used abbreviation
is ADSR envelope, for attack/decay/sustain/release envelope.

�
�
�
�
�
�
�
�
��J
J
JJ

@
@
@
@
@
@
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It was not really understood properly until the middle of the twentieth cen-
tury, when electronic synthesis was taking its �rst tentative steps, that the
attack portion of a note is the most vital to the human ear in identifying the
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instrument. The transients at the beginning are much more di�erent from
one instrument to another than the steady part of the note.

On a typical synthesizer, there are a number of envelope generators.
Each one determines how the amplitude of the output of some component of
the system varies with time. It is important to understand that amplitude of
the �nal signal is not the only attribute which is assigned an envelope. For
example, when a bell sounds, initially the frequency spectrum is very rich,
but many of the partials die away very quickly leaving a purer sound. Mim-
icking this sort of behavior using FM synthesis turns out to be relatively easy,
by assigning an envelope to a modulating signal, which controls timbre. We
shall discuss this further when we discuss FM synthesis, but for the moment
we note that aspects of timbre are often controlled with an envelope genera-
tor. When the synthesizer is controlled by a keyboard, as is often the case,
it is usual to arrange that depressing a key initiates the attack, and releas-
ing the key initiates the release portion of the envelope.

An envelope generator produces an envelope whose shape is determined
by a number of programmable parameters. These parameters are usually
given in terms of levels and rates. Here is an example of how an envelope
might work in a typical keyboard synthesizer or other MIDI controlled en-
vironment. Level 0 is the level of the envelope at the \key on" event. Rate
1 then determines how fast the level changes, until it reaches level 1. Then
it switches to rate 2 until level 2 is reached, and then rate 3 until level 3 is
reached. Level 3 is then in e�ect until the \key o�" event, when rate 4 takes
e�ect until level 4 is reached. Finally, level 4 is the same as level 0, so that
we are ready for the next \key on" event. In this example, there are two
separate components to the decay phase of the envelope. Some synthesizers
make do with only one, and some have even more.

Similar in concept to the envelope is the low frequency oscillator or
LFO. This produces an output which is usually in the range 0.1{20 Hz, and
whose waveform is usually something like triangle, sawtooth (up or down),
sine, square or random. The LFO is used to produce repeating changes in
some controllable parameter. Examples include pitch control for vibrato, and
amplitude or timbre control for tremolo. The LFO can also be used to con-
trol less obvious parameters such as the cuto� and resonance of a �lter, or
the pulse width of a square wave (pulse width modulation, or PWM), see
Exercise 6 in x2.4.

The parameters associated with an LFO are rate (or frequency), depth
(or amplitude), waveform, and attack time. Attack time is used when the ef-
fect is to be introduced gradually at the beginning of the note.

Here is a block diagram for a typical analog synthesizer.
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Osc - Filter - Amp - Tone - Echo - fx

Env 1

6

Env 2
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Env 3
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The oscillator (Osc) generates the basic waveform, which can be chosen from
sine wave, square wave, triangular wave, sawtooth, noise, etc. The envelope
(Env 1) speci�es how the pitch changes with time. The �lter speci�es the
\brightness" of the sound. It can be chosen from high pass, low pass and
band pass. The envelope (Env 2) speci�es how the brightness varies with
time. Also, a resonance is speci�ed, which determines the emphasis applied
to the region at the cuto� frequency. The ampli�er (Amp) speci�es the vol-
ume, and the envelope (Env 3) speci�es how the volume changes with time.
The tone control (Tone) adjusts the overall tone, the delay unit (Echo)
adds an echo e�ect, and the e�ects unit (fx) can be used to add reverber-
ation, chorus, and so on. Low frequency oscillators (lfo 1 and lfo 2) are
provided, which can be used to modulate the oscillator, �lter or ampli�er.

7.8. Additive Synthesis

The easiest form of synthesis to understand is additive synthesis, which
is in e�ect the opposite of Fourier analysis of a signal. To synthesize a peri-
odic wave, we generate its Fourier components at the correct amplitudes and
mix them. This is a comparatively ineÆcient method of synthesis, because
in order to produce a note with a large number of harmonics, a large number
of sine waves will need to be mixed together. Each will be assigned a sepa-
rate envelope in order to create the development of the note with time. This
way, it is possible to control the development of timbre with time, as well as
the amplitude. So for example, if it is desired to create a waveform whose at-
tack phase is rich in harmonics and which then decays to a purer tone, then
the components of higher frequency will have a more rapidly decaying enve-
lope than the lower frequency components.

Phase is unimportant to the perception of steady sounds, but more im-
portant in the perception of transients. So for steady sounds, the graph rep-
resenting the waveform is not very informative. For example, here are the
graphs of the functions sin(!t) + 1

2 sin(2!t) and sin(!t) + 1
2 cos(2!t).
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t

sin t+ 1
2 sin 2t

t

sin t+ 1
2 cos 2t

The only di�erence between these functions is that the second partial has had
its phase changed by an angle of �=2, so as steady sounds, these will sound
identical. With more partials, it becomes extremely hard to tell whether two
waveforms represent the same steady sound. It is for this reason that the
waveform is not a very useful way to represent the sound, whereas the spec-
trum, and its development with time, are much more useful.

Hammond B3 organ

In some ways, additive synthesis is
a very old idea. A typical cathedral or
church organ has a number of register
stops, determining which sets of pipes
are used for the production of the note.
The e�ect of this is that depressing a sin-
gle key can be made to activate a num-
ber of harmonically related pipes, typ-
ically a mixture of octaves and �fths.
Early electronic instruments such as the
Hammond organ operated on exactly the
same principle.

More generally, additive synthesis
may be used to construct sounds whose
partials are not multiples of a given fun-

damental. This will give non-periodic waveforms which nevertheless sound
like steady tones.

Exercises

1. Explain how to use additive synthesis to construct a square wave.
[Hint: Look at x2.2]

2. Explain in terms of the human ear (x1.2) why the phases of the harmonic com-

ponents of a steady waveform should not have a great e�ect on the way the sound

is perceived.

Further reading:

F. de Bernardinis, R. Roncella, R. Saletti, P. Terreni and G. Bertini, A new VLSI

implementation of additive synthesis, Computer Music Journal 22 (3) (1998), 49{61.
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7.9. Physical modeling

The idea of physical modeling is to take a physical system such as a
musical instrument, and to mimic it digitally. We give one simple example to
illustrate the point. We examined the wave equation for the vibrating string
in x3.1, and found d'Alembert's general solution

y = f(x+ ct) + g(x� ct):

Given that time is quantized with sample points at spacing �t, it makes sense
to quantize the position along the string at intervals of �x = c�t. Then at
time n�t and position m�x, the value of y is

y = f(m�x+ nc�t) + g(m�x� nc�t)

= f((m+ n)c�t) + g((m � n)c�t):

To simplify the notation, we write

y�(n) = f(nc�t); y+(n) = g(nc�t)

so that y� and y+ represent the parts of the wave traveling left, respectively
right along the string. Then at time n�t and position m�x we have

y = y�(m+ n) + y+(m� n):

This can be represented by two delay lines moving left and right:

- - - -

� � � �

6 6 6 6

? ? ? ?

��
��

��
��

��
��

��
��

+ + + +- - - -

z�1 z�1 z�1

z�1 z�1 z�1

-
position along string

y+

y

y�

It is a good idea to make the string an integer number of sample points
long, let us say l = L�x. Then the boundary conditions at x = 0 and x = l
(see equations (3.1.3) and (3.1.4)) say that

y�(n) = �y+(�n)
and that

y+(n+ 2L) = y+(n):

This means that at the ends of the string, the signal gets negated and passed
round to the other set of delays. Then the initial pluck or strike is represented
by setting the values of y�(n) and y+(n) suitably at t = 0, for 0 � n < 2L.
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Thinking in terms of digital �lters, the z-transform of the y+ signal

Y +(z) = y+(0) + y+(1)z�1 + y+(2)z�2 + : : :

satis�es

Y +(z) = z�2LY +(z) + (y+(0) + y+(1)z�1 + � � �+ y+(2L� 1))

or

Y +(z) =
y+(0)z2L + y+(1)z2L�1 + � � � + y+(2L� 1)z

z2L � 1
:

The poles are equally spaced on the unit circle, so the resonant frequencies
are multiples of N=2L, where N is the sample frequency. Since the poles are
actually on the unit circle, the resonant frequencies never decay.

To make the string more realistic, we can put in energy loss at one end,
represented by multiplication by a �xed constant factor �� with 0 < � � 1,
instead of just negating.

- - - . . .

� � � . . .

6 6 6 6

? ? ?
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��

��
��
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��

+ + +���
��
A
AA

-

- - -

z�1 z�1 z�1

z�1 z�1 z�1

The e�ect of this on the �lter analysis is to move the poles slightly inside the
unit circle:

Y +(z) =
y+(0)z2L + y+(1)z2L�1 + � � � + y+(2L� 1)z

z2L � �
:

The absolute values of the location of the poles are all equal to j�j 12L . The
decay time is given by equation (7.5.2) as

Decay time =
�2L

N ln j�j :

The above model is still not very sophisticated, because decay time is
independent of frequency. But it is easy to modify by replacing the multipli-
cation by � by a more complicated digital �lter. We shall see a particular ex-
ample of this idea in the next section. Another easy modi�cation is to have
two or more strings cross-coupled, by adding a small multiple of the signal
at the end of each into the end of the others. Adding a model of a sounding
board is not so easy, but it can be done.
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Further reading:

M. Laurson, C. Erkut, V. V�alim�aki and M. Kuuskankare, Methods for modeling re-

alistic playing in acoustic guitar synthesis, Computer Music Journal 25 (3) (2001),
38{49.

Julius O. Smith III, Physical modeling using digital waveguides, Computer Music
Journal 16 (4) (1992), 74{87.

Julius O. Smith III, Acoustic modeling, appears as article 7 in Roads et al [94], pages

221{263.

7.10. The Karplus{Strong algorithm

The Karplus{Strong algorithm gives very good plucked strings and per-
cussive instruments. The basic technique is a modi�cation of the technique
described in the last section, and consists of a digital delay followed by an
averaging process. Denote by g(n�t) the value of the nth sample point in
the digital output signal for the algorithm. A positive integer p is chosen to
represent the delay, and the recurrence relation

g(n�t) = 1
2 (g((n� p)�t) + g((n� p� 1)�t))

is used to de�ne the signal after the �rst p+1 sample points. The �rst p+1
values to feed into the recurrence relation are usually chosen by some random
algorithm, and then the feedback loop is switched in. This is represented by
an input signal f(n�t) which is zero outside the range 0 � n � p.

6

?

Input

F (z)

����
- z�p -

- z�1

?

��
��
+ -

��
�

HHH1
2

- Output

G(z)

Computationally, this algorithm is very eÆcient. Each sample point re-
quires one addition operation. Halving does not need a multiplication, only
a shift of the binary digits.

Let us analyse the algorithm by regarding it as a digital �lter, and us-
ing the z-transform, as described in x7.5. Let G(z) be the z-transform of the
signal g(n�t), and F (z) be the z-transform of the signal given for the �rst
p+ 1 sample points, f(n�t). We have

G(z) = 1
2 (1 + z�1)z�p(F (z) +G(z)):
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This gives

G(z) =
z + 1

2zp+1 � z � 1
F (z);

and so the z-transform of the impulse response is (z + 1)=(2zp+1 � z � 1).
The poles are the solutions of the equation

2zp+1 � z � 1 = 0:

These are roughly equally spaced around the unit circle, at amplitude just
less than one. The solution with smallest argument corresponds to the fun-
damental of the vibration, with argument roughly 2�=(p + 1

2). A more pre-
cise analysis is given in x7.11.

The e�ect of this is a plucked string sound with pitch determined by
the formula

pitch = (sample rate)=(p+ 1
2):

Since p is constrained to be an integer, this restricts the possible frequencies
of the resulting sound in terms of the sample rate. Changing the value of p
without introducing a new inital values results in a slur, or tie between notes.

A simple modi�cation of the algorithm gives drumlike sounds. Namely,
a number b is chosen with 0 � b � 1, and

g(n�t) =

(
+1
2(g((n� p)�t) + g((n� p� 1)�t) with probability b

�1
2(g((n� p)�t) + g((n� p� 1)�t)) with probability 1� b:

The parameter b is called the blend factor. Taking b = 1 gives the original
plucked string sound. The value b = 1

2 gives a drumlike sound. With b = 0,
the period is doubled and only odd harmonics result. This gives some inter-
esting sounds, and at high pitches this gives what Karplus and Strong de-
scribe as a plucked bottle sound.

Another variation described by Karplus and Strong is what they call
decay stretching. In this version, the recurrence relation

g(n�t) =

(
g((n� p)�t) with probability 1� �
1
2(g((n � p)�t) + g((n� p� 1)�t)) with probability �:

The stretch factor for this version is 1=�, and the pitch is given by

pitch = (sample rate)=(p+ �
2 ):

Setting � = 0 gives a non-decaying periodic signal, while setting � = 1 gives
the original algorithm described above.

There are obviously a lot of variations on these algorithms, and many
of them give interesting sounds.

7.11. Filter analysis for the Karplus{Strong algorithm

We saw in the last section that in order to understand the Karplus{
Strong algorithm in its simplest form, we need to locate the zeros of the poly-
nomial 2zp+1 � z � 1, where p is a positive integer. In order to do this, we
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begin by rewriting the equation as

2zp+
1

2 = z
1

2 + z�
1

2 :

Since we expect z to have absolute value close to one, the imaginary part of
z
1

2 + z�
1

2 will be very small. If we ignore this imaginary part, then the nth
zero of the polynomial around the unit circle will have argument equal to
2n�=(p+ 1

2 ). So we write

z = (1� ")e2n�i=(p+
1

2
)

and calculate ", ignoring terms in "2 and higher powers. Already from the
form of this approximation, we see that the resonant frequency correspond-
ing to the nth pole is equal to nN=(p+ 1

2 ), where N is the sample frequency.
This means that the di�erent resonant frequencies are at multiples of a fun-
damental frequency of N=(p + 1

2 ).
We have

2zp+
1

2 = 2(1� ")p+
1

2 � 2� 2(p+ 1
2)";

and

z
1
2 + z�

1
2 = (1� ")

1
2 en�i=(p+

1
2
) + (1� ")�

1
2 e�n�i=(p+

1
2
)

� (1� 1
2")(1 +

1
2 i(

2n�
p+ 1

2

)� 1
8(

2n�
p+ 1

2

)2)

+ (1 + 1
2")(1 � 1

2 i(
2n�
p+ 1

2

)� 1
8(

2n�
p+ 1

2

)2)

� 2� � n�
p+ 1

2

�2
+ 1

2 i"(
2n�
p+ 1

2

):

So equating the real parts, we �nd that the approximate value of " is

" � n2�2

2(p+ 1
2 )
3
:

Using the approximation ln(1� ") � �", equation (7.5.2) gives

Decay time � 2(p+ 1
2)
3

Nn2�2

where N is the sample rate. This means that the lower harmonics are decay-
ing more slowly than the higher harmonics, in accordance with the behavior
of a plucked string.

Further reading:

D. A. Ja�e and J. O. Smith III, Extensions of the Karplus{Strong plucked string

algorithm, Computer Music Journal 7 (2) (1983), 56{69. Reprinted in Roads [92],
481{494.

M. Karjalainen, V. V�alim�aki and T. Tolonen, Plucked-string models: From the

Karplus{Strong algorithm to digital waveguides and beyond, Computer Music Jour-
nal 22 (3) (1998), 17{32.

K. Karplus and A. Strong, Digital synthesis of plucked string and drum timbres,
Computer Music Journal 7 (2) (1983), 43{55. Reprinted in Roads [92], 467{479.

F. R. Moore, Elements of computer music [72], page 279.



198 7. SYNTHESIS AND DIGITAL MUSIC

C. Roads, The computer music tutorial [93], page 293.

C. Sullivan, Extending the Karplus{Strong plucked-string algorithm to synthesize

electric guitar timbres with distortion and feedback, Computer Music Journal 14 (3),

26{37.

7.12. Amplitude and frequency modulation

The familiar context for amplitude and frequency modulation is as a
way of carrying audio signals on a radio frequency carrier (AM and FM ra-
dio). In the case of AM radio, the carrier frequency is usually in the range
500{2000 KHz, which is much greater than the frequency of the carried sig-
nal. The latter is encoded in the amplitude of the carrier. So for example
a 700 KHz carrier signal modulated by a 440 Hz sine wave would be repre-
sented by the function

x = (A+B sin(880�t)) sin(1400000�t);

where A is an o�set to allow both positive and negative values of the wave-
form to be decoded.

t

x

Decoding the received signal is easy. A diode is used to allow only the
positive part of the wave through, and then a capacitor is used to smooth it
out and remove the high frequency carrier wave. The resulting audio signal
may then be ampli�ed and put through a loudspeaker.

In the case of frequency modulation, the carrier frequency is normally
around 90{120 MHz, which is even greater in comparison to the frequency
of the carried signal. The latter is encoded in variations in the frequency of
the carrier. So for example a 100 MHz carrier signal modulated by a 440 Hz
sine wave would be represented by the function

x = A sin(108:2�t+B sin(880�t)):

The amplitude A is associated with the carrier wave, while the amplitude
B is associated with the audio wave. More generally, an audio wave repre-
sented by x = f(t), carried on a carrier of frequency � and amplitude A, is
represented by

x = A sin(2��t+Bf(t)):
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t

x

Decoding frequency modulated signals is harder than amplitude mod-
ulated signals, and will not be discussed here. But the big advantage is that
it is less susceptible to noise, and so it gives cleaner radio reception.

An example of the use of amplitude modulation in the theory of syn-
thesis is ring modulation. A ring modulator takes two inputs, and the out-
put contains only the sum and di�erence frequencies of the partials of the in-
puts. This is generally used to construct waveforms with inharmonic partials,
so as to impart a metallic or bell-like timbre. The method for constructing
the sum and di�erence frequencies is to multiply the incoming amplitudes.
Equations (1.7.7), (1.7.10) and (1.7.11) explain how this has the desired re-
sult. The origin of the term \ring modulation" is that in order to deal with
both positive and negative amplitudes on the inputs and get the right sign
for the outputs, four diodes were connected head to tail in a ring.

Another example of amplitude modulation is the application of en-
velopes, as discussed in x7.7. The waveform is multiplied by the function
used to describe the envelope.

t

x

John Chowning

A great breakthrough in synthesis was
achieved in the late nineteen sixties when
John Chowning developed the idea of us-
ing frequency modulation instead of additive
synthesis.

The idea behind FM synthesis or fre-

quency modulation synthesis is similar to
FM radio, but the carrier and the signal are
both in the audio range, and usually related
by a small rational frequency ratio. So for
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example, a 440 Hz carrier and 440 Hz mod-
ulator would be represented by the function

x = A sin(880�t +B sin(880�t)):

The resulting wave is still periodic with frequency 440 Hz, but has a richer
harmonic spectrum than a pure sine wave. For small values of B, the wave
is nearly a sine wave

t

x

whereas for larger values of B the harmonic content grows richer

t

x

and richer.

t

x

This gives a way of making an audio signal with a rich harmonic content rel-
atively simply. If we wanted to synthesize the above wave using additive syn-
thesis, it would be much harder.

Here are examples of frequency modulated waves in which the modu-
lating frequency is twice the carrier frequency

t

x

and three times the carrier frequency.
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t

x

In the next section, we discuss the Fourier series for a frequency mod-
ulated signal. The Fourier coeÆcients are called Bessel functions, for which
the groundwork was laid in x2.8. We shall see that the Bessel functions may
be interpreted as giving the amplitudes of side bands in a frequency modu-
lated signal.

7.13. The Yamaha DX7 and FM synthesis

Yamaha DX7

The Yamaha DX7, which came out in the fall of 1983,3 was the �rst af-
fordable commercially available digital synthesizer. This instrument was the
result of a long collaboration between John Chowning and Yamaha Corpo-
ration through the nineteen seventies. It works by FM synthesis, with six
con�gurable \operators". An operator produces as output a frequency mod-
ulated sine wave, whose frequency is determined by the level of a modulat-
ing input, and whose envelope is determined by another input. The power of
the method comes from hooking up the output of one such operator to the
modulating input of another. In this section, we shall investigate FM syn-
thesis in detail, using the Yamaha DX7 for the details of the examples. Most
of the discussion translates easily to any other FM synthesizer. In Appendix
B, there are tables which apply to various models of FM synthesizers. Later
on, in xx7.16{7.17, we shall also investigate FM synthesis using the CSound
computer music language.

The DX7 calculates the sine function in the simplest possible way. It
has a digital lookup table of values of the function. This is much faster than

3Original price US $2000; no longer manufactured but easy to obtain second hand for
around US $250{$450.
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any conceivable formula for calculating the function, but this is at the ex-
pense of having to commit a block of memory to this task.

Let us begin by examining a frequency modulated signal of the form

sin(!ct+ I sin!mt): (7.13.1)

Here, !c = 2�fc where fc denotes the carrier frequency, !m = 2�fm where
fm denotes the modulating frequency, and I the index of modulation.

We �rst discuss the relationship between the index of modulation I,
the maximal frequency deviation d of the signal, and the frequency fm of the
modulating wave. For this purpose, we make a linear approximation to the
modulating signal at any particular time, and use this to determine the in-
stantaneous frequency, to the extent that this makes sense. When sin!mt is
at a peak or a trough, namely when its derivative with respect to t vanishes,
the linear approximation is a constant function, which then acts as a phase
shift in the modulated signal. So at these points, the frequency is fc. The
maximal frequency deviation occurs when sin!mt is varying most rapidly.
This function increases most rapidly when !mt = 2n� for some integer n.
Since the derivative of sin!mt with respect to t is !m cos!mt, which takes
the value !m at these values of t, the linear approximation around these val-
ues of t is sin!mt ' !mt� 2n�. So the function (7.13.1) approximates to

sin(!ct+ I!m(t� 2�)) = sin((!c + I!m)t� 2�I!m):

So the instantaneous frequency is fc+Ifm. Similarly, sin!mt decreases most
rapidly when !mt = (2n + 1)� for some integer n, and a similar calculation
shows that the instantaneous frequency is fc� Ifm. It follows that the max-
imal deviation in the frequency is given by

d = Ifm: (7.13.2)

The Fourier series for functions of the form (7.13.1) were analysed in
x2.8 in terms of the Bessel functions.

Putting � = !ct, z = I and � = !mt in equation (2.8.9), we obtain the
fundamental equation for frequency modulation:

sin(!ct+ I sin!mt) =

1X
n=�1

Jn(I) sin(!c + n!m)t: (7.13.3)

1  envelope 1

2  envelope 2

The interpretation of this equation is that for a fre-
quency modulated signal with carrier frequency fc and
modulating frequency fm, the frequencies present in the
modulated signal are fc+nfm. Notice that positive and
negative values of n are allowed here. The component
with frequency fc+nfm is called the nth side band of the
signal. Thus the Bessel function Jn(I) is giving the amplitude of the nth side
band in terms of the index of modulation. The block diagram on the DX7
for frequency modulating a sine wave in this fashion is as shown above. The
box marked \1" represents the operator producing the carrier signal and the
box marked \2" represents the operator producing the modulating signal.
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Each operator has its own envelope, which determines how its ampli-
tude develops with time. So envelope 1 determines how the amplitude of the
�nal signal varies with time, but it is less obvious what envelope 2 is determin-
ing. Since the output of operator 2 is frequency modulating operator 1, the
amplitude of the output can be interpreted as the index of modulation I. For
small values of I, J0(I) is much larger than any other Jn(I) (see the graphs in
Section 2.8), and so operator 1 is producing an output which is nearly a pure
sine wave, but with other frequencies present with small amplitudes. How-
ever, for larger values of I, the spectrum of the output of operator 1 grows
richer in harmonics. For any particular value of I, as n gets larger, the ampli-
tudes Jn(I) eventually tend to zero. But the point is that for small values of
I, this happens more quickly than for larger values of I, so the harmonic spec-
trum gives a purer note for small values of I and a richer sound for larger val-
ues of I. So envelope 2 is controlling the timbre of the output of operator 1.

Example. Suppose that we have a carrier frequency of 3� and a modulating fre-
quency of 2�. Then the zeroth side band has frequency 3�, the �rst 5�, the second
7�, and so on. But there are also side bands corresponding to negative values of
n. The minus �rst side band has frequency �. But there's no reason to stop there,
just because the next side band has negative frequency ��. The point is that a sine
wave with frequency �� is just the same as a sine wave with frequency � but with
the amplitude negated. So really the way to think of it is that the side bands with
negative frequency undergo reection to make the corresponding positive frequency.
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Notice also in this example that 3+2n is always an odd number, so only odd
multiples of � appear in the resulting frequency spectrum. In general, the frequency
spectrum will depend in an interesting way on the ratio of fm to fc. If the ratio is
a ratio of small integers, the resulting frequency spectrum will consist of multiples
of a fundamental frequency. Otherwise, the spectrum is said to be inharmonic.

Let us calculate the spectrum in this example for various values of I . First
we use a small value such as I = 0:2. Consulting Appendix B, we see that J0(I) �
0:9900, J1(I) � 0:0995, J2(I) � 0:0050 and Jn(I) is negligibly small for n � 3.
Using equation (2.8.4) (J

�n(I) = (�1)nJn(I)), we see that J
�1(I) � �0:0995,

J
�2(I) � 0:0050 and J

�n(I) is negligibly small for n � 3. So the frequency modu-
lated signal is approximately

0:0050 sin(2�(��)t)� 0:0995 sin(2��t) + 0:9900 sin(2�(3�)t)

+ 0:0995 sin(2�(5�)t) + 0:0050 sin(2�(7�)t):

Since sin(�x) = � sin(x), this is

�0:1045 sin(2��t) + 0:9900 sin(6��t) + 0:0995 sin(10��t) + 0:0050 sin(14��t):

This will be perceived as a note with fundamental frequency �, but with very strong
third harmonic.

Now let us carry out the same calculation with a larger value of I , say
I = 3. Again consulting Appendix B, we see that J0(I) � �0:2601, J1(I) � 0:3391,
J2(I) � 0:4861, J3(I) � 0:3091, J4(I) � 0:1320, J5(I) � 0:0430, J6(I) � 0:0114,
J7(I) � 0:0025, J8(I) � 0:0005, and only around n � 8 is Jn(I) negligibly small. So
the harmonic spectrum of the resulting frequency modulated signal is much richer,
and the �rst few terms are given by

� 0:0430 sin(2�(�7�)t) + 0:1320 sin(2�(�5�)t)� 0:3091 sin(2�(�3�)t)

+ 0:4861 sin(2�(��)t)� 0:3991 sin(2��t)� 0:2601 sin(2�(3�)t)

+ 0:3391 sin(2�(5�)t) + 0:4861 sin(2�(7�)t)

which makes

�0:8852 sin(2��t) + 0:0490 sin(6��t) + 0:2071 sin(10��t) + 0:5291 sin(14��t);

but it is clear that even higher harmonics than this are present with fairly large mag-
nitude, up to about the seventeenth harmonic (3 + 2 � 7 = 17), and then it starts
tailing o�. So the resulting note is very rich in harmonics. Notice also how we have
conspired to choose I so that the amplitude of the third harmonic is now very small.

Suppose, for example, that operator 2 is assigned an envelope which starts at

zero, peaks near the beginning, and then tails o� to zero. Then the resulting fre-

quency modulated signal will start o� as a pure sine wave, fairly quickly attain a

rich harmonic spectrum, and then tail o� again into a fairly pure sine wave. It is

easy to see that the possibilities opened up with even two operators is fairly wide.

In terms of block diagrams, additive synthesis for a waveform with �ve
sinusoidal components is represented as follows.

1 2 3 4 5
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So in the above example, to synthesize the corresponding sound additively
would require a large number of oscillators. The exact number would depend
on where the cuto� for audibility occurs.

1

32

The DX7 allows a large number of di�erent
con�gurations or \algorithms" which mix additive
and FM components. So for example if two sinu-
soidal waveforms of di�erent frequencies are added
together and the result used to modulate another
sine wave, then the block diagram is as shown to the

left. Oscillators labeled \2" and \3" are added together and used to modu-
late oscillator \1". The corresponding waveform is given by

sin(!1t+ I2 sin!2t+ I3 sin!3t)

=
1X

n2=�1

1X
n3=�1

Jn2(I2)Jn3(I3) sin(!1 + n2!2 + n3!3)t:

So the side bands have frequencies given by adding positive and nega-
tive multiples of the two modulating frequencies to the carrier frequency in
all possible ways. The amplitudes of these side bands are given by multiply-
ing the corresponding values of the Bessel functions.

6

66
6 6

6 6

1

2

3

Another possible con�guration is a cascade in
which the modulating signal is also modulated. This
should be thought of as equivalent to a larger number of
added sine waves modulating a single sine wave, in an
extension of the previous discussion. The block diagram
for this con�guration is shown to the right. The corre-
sponding formula is obtained by feeding formula (7.13.3)
into itself, giving

sin(!1t+ I2 sin(!2t+ I3 sin!3t))

=
1X

n2=�1

Jn2(I2) sin(!1t+ n2!2t+ n2I3 sin!3t)

=

1X
n2=�1

1X
n3=�1

Jn2(I2)Jn3(n2I3) sin(!1 + n2!2 + n3!3)t:

Here, the subscripts 2 and 3 correspond to the numbering on the oscil-
lators in the diagram. Again, the frequencies of the side bands are given by
adding positive and negative multiples of the two modulating frequencies to
the carrier frequency in all possible ways. But this time, the amplitudes of



206 7. SYNTHESIS AND DIGITAL MUSIC

the side bands are given by the more complicated formula Jn2(I2)Jn3(n2I3).
The e�ect of this is that the number of the side band on the second opera-
tor is used to scale the size of the index of modulation of the third opera-
tor. In particular, the original frequency has no side bands corresponding to
the third operator, while the more remote side bands of the second are more
heavily modulated.

6

6 6

6 6

Exercises

1. Find the amplitudes of the �rst few frequency components of the frequency mod-
ulated wave

y = sin(440(2�t) + 1
10 sin 660(2�t)):

Stop when the frequency components are attenuated by at least 100dB from the
strongest one.

You will need to use the tables of Bessel functions in Appendix B. Also re-

member that power is proportional to square of amplitude, so that dividing the am-

plitude by 10 attenuates the signal by 20dB.

7.14. Feedback, or self-modulation

1

One �nal twist in FM synthesis is feedback, or self-
modulation. This involves the output of an oscillator be-
ing wrapped back round and used to modulate the in-
put of the same oscillator. This corresponds to the block
diagram on the left, and the corresponding equation is

given by
f(t) = sin(!ct+ If(t)): (7.14.1)

We saw in x2.11 that this equation only has a unique solution provided
jIj � 1, and that then it de�nes a periodic function of t. The Fourier series
is given in equation (2.11.4) as

f(t) =
1X
n=1

2Jn(nI)

nI
sin(n!ct):

For values of I satisfying jIj > 1, equation (7.14.1) no longer has a sin-
gle valued continuous solution (see x2.11), but it still makes sense in the form
of a recursion de�ning the next value of f(t) in terms of the previous one,

f(tn) = sin(!ctn + If(tn�1)): (7.14.2)
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Here, tn is the nth sample time, and the sample times are usually taken to
be equally spaced. The e�ect of this equation is not quite intuitively obvi-
ous. As might be expected, the graph of this function stays close to the so-
lution to equation (7.14.1) when this is unique. When it is no longer unique,
it continues going along the same branch of the function as long as it can,
and then jumps suddenly to the one remaining branch when it no longer can.
But the feature which it is easy to overlook is that there is a slightly delayed
instability for small values of f(t). Here is a graph of the solutions to equa-
tions (7.14.1) and (7.14.2) superimposed.

t

�

The e�ect of the instability is to introduce a wave packet whose frequency is
roughly half the sampling frequency. Usually the sampling frequency is high
enough that the e�ect is inaudible.

Feedback for a stack of two or more oscillators is also used. It seems
hard to analyse this mathematically, and often the result is perceived as
\noise". According to Slater (reference given on page 210), as the index of
modulation increases, the behavior of a stack of two FM oscillators with dif-
ferent frequencies, each modulating the other, exhibits the kind of bifurca-
tion that is characteristic of chaotic dynamical systems. This subject needs
to be investigated further.

In the DX7, there are a total of six oscillators. The process of design-
ing a patch4 begins with a choice of one of 32 given con�gurations, or \algo-
rithms" for these oscillators. Each oscillator is given an envelope whose pa-
rameters are determined by the patch, so that the amplitude of the output
of each oscillator varies with time in a chosen manner. Here is a table of the
32 available algorithms.

4Yamaha uses the nonstandard terminology \voice" instead of the more usual \patch".
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1

2

3

4

5

6

1

1

2

3

4

5

6

2

1

2

3

4

5

6

3

1

2

3

4

5

6

4

1

2

3

4

5

6

5

1

2

3

4

5

6

6

1

2

3

4 5

6

7

1

2

3

4 5

6

8

1

2

3

4 5

6

9

1

2

3

4

5 6

10

1

2

3

4

5 6

11

1

2

3

4 5 6

12

1

2

3

4 5 6

13

1

2

5

3

4

6

14

1

2

5

3

4

6

15

1

2 3

4

5

6

16

1

2 3

4

5

6

17

1

2 3 4

5

6

18

1

2

3

4 5

6

19

1 2

3

4

5 6

20

1 2

3

4 5

6

21

1 3

2

4 5

6

22

1 2

3

4 5

6

23

1 2 3 4 5

6

24

1 2 3 4 5

6

25

1 2

3

4

5 6

26

1 2

3

4

5 6

27

1

2

3

4

5

6

28

1 2 3

4

5

6

29

1 2 3

4

5

6

30

1 2 3 4 5

6

31

1 2 3 4 5 6

32

Not all the operators have to be used in a given patch. The operators
which are not used can just be switched o�. Output level is an integer in the
range 0{99; index of modulation is not a linear function of output level, but
rather there is a complicated recipe for causing an approximately exponen-
tial relationship. A table showing this relationship for various di�erent FM
synthesizers can be found in Appendix B.

We now start discussing how to use FM synthesis to produce various
recognisable kinds of sounds. In order to sound like a brass instrument such
as a trumpet, it is necessary for the very beginning of the note to be an al-
most pure sine wave. Then the harmonic spectrum grows rapidly richer, over-
shooting the steady spectrum by some way, and then returning to a reason-
ably rich spectrum. When the note stops, the spectrum decays rapidly to a
pure note and then disappears altogether. This e�ect may be achieved with
FM synthesis by using two operators, one modulating the other. The mod-
ulating operator is given an envelope looking like the one on page 189. The
carrier operator uses a very similar envelope to control the amplitude.

Next, we discuss woodwind instruments such as the ute, as well as or-
gan pipes. At the beginning of the note, in the attack phase, higher harmon-
ics dominate. They then decrease in amplitude until in the steady state, the
fundamental dominates and the higher harmonics are not very strong. This
can be achieved either by making the modulating operator have an envelope
looking like the one on page 189 only upside down, or by making the carrier
frequency a small integer multiple of the modulating frequency so that for
small values of the index of modulation, this higher frequency dominates. In
any case, the decay phase for the modulating operator should be omitted for
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a more realistic sound. For some woodwind instruments such as the clarinet,
it is necessary to make sure that predominantly odd harmonics are present.
This can be achieved, as in the example on page 203, by setting fc = 3f and
fm = 2f , or some variation on this idea.

Percussive sounds have a very sharp attack and a roughly exponential
decay. So an envelope looking like the graph of x = e�t is appropriate for the
amplitude. Usually a percussive instrument will have an inharmonic spec-
trum, so that it is appropriate to make sure that fc and fm are not in a ra-
tio which can be expressed as a ratio of small integers. We saw in Exercise 1
of x6.2 that the golden ratio is in some sense the number furthest from be-
ing able to be approximated well by ratios of small integers, so this is a good
choice for producing spectra which will be perceived as inharmonic. Alter-
natively, the analysis carried out in x3.5 can be used to try to emulate the
frequency spectrum of an actual drum.

Section x7.15 and the ones following it consist of an introduction to the
public domain computer music language CSound. One of our goals will be
to describe explicit implementations of two operator FM synthesis realizing
the above descriptions.

Further reading on FM synthesis:

J. Bate, The e�ect of modulator phase on timbres in FM synthesis, Computer Mu-
sic Journal 14 (3) (1990), 38{45.

John Chowning, The synthesis of complex audio spectra by means of frequency mod-

ulation, J. Audio Engineering Society 21 (7) (1973), 526{534. Reprinted as chapter
1 of Roads and Strawn [95], pages 6{29.

John Chowning, Frequency modulation synthesis of the singing voice, appeared in
Mathews and Pierce [66], chapter 6, pages 57{63.

Chowning and Bristow [13].

A. Horner, Double-modulator FM matching of instrument tones, Computer Music
Journal 20 (2) (1996), 57{71.

A. Horner, A comparison of wavetable and FM parameter spaces, Computer Music
Journal 21 (4) (1997), 55{85.

A. Horner, J. Beauchamp and L. Haken, FM matching synthesis with genetic algo-

rithms, Computer Music Journal 17 (4) (1993), 17{29.

M. LeBrun, A derivation of the spectrum of FM with a complex modulating wave,
Computer Music Journal 1 (4) (1977), 51{52. Reprinted as chapter 5 of Roads and
Strawn [95], pages 65{67.

F. R. Moore, Elements of computer music [72], pages 316{332.

D. Morrill, Trumpet algorithms for computer composition, Computer Music Journal
1 (1) (1977), 46{52. Reprinted as chapter 2 of Roads and Strawn [95], pages 30{44.

C. Roads, The computer music tutorial [93], pages 224{250.
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S. Saunders, Improved FM audio synthesis methods for real-time digital music gen-

eration, Computer Music Journal 1 (1) (1977), 53{55. Reprinted as chapter 3 of
Roads and Strawn [95], pages 45{53.

W. G. Schottstaedt, The simulation of natural instrument tones using frequency

modulation with a complex modulating wave, Computer Music Journal 1 (4) (1977),
46{50. Reprinted as chapter 4 of Roads and Strawn [95], pages 54{64.

D. Slater, Chaotic sound synthesis, Computer Music Journal 22 (2) (1998), 12{19.

B. Truax, Organizational techniques for c : m ratios in frequency modulation, Com-

puter Music Journal 1 (4) (1977), 39{45. Reprinted as chapter 6 of Roads and

Strawn [95], pages 68{82.

7.15. CSound

CSound is a public domain synthesis program written by Barry Vercoe
at the Media Lab in MIT in the C programming language. It has been com-
piled for various platform, and both source code and executables are freely
available.

The program takes as input two �les, called the orchestra �le and the
score �le. The orchestra �le contains the instrument de�nitions, or how to
synthesize the desired sounds. It makes use of almost every known method
of synthesis, including FM synthesis, the Karplus{Strong algorithm, phase
vocoder, pitch envelopes, granular synthesis and so on, to de�ne the instru-
ments. The score �le uses a language similar in conception to MIDI but dif-
ferent in execution, in order to describe the information for playing the in-
struments, such as amplitude, frequency, note durations and start times. The
utility MIDI2CS mentioned in x7.24 provides a exible way of turning MIDI
�les into CSound score �les. The �nal output of the CSound program is a
�le in some chosen sound format, for example a WAV �le or an AIFF �le,
which can be played through a computer sound card, downloaded into a syn-
thesizer with sampling features, or written onto a CD.

We limit ourselves to a brief description of some of the main features
of CSound, with the objective of getting as far as describing how to realise
FM synthesis. The examples are adapted from the CSound manual.

Getting it. The source code and executables for a number of platforms can
be obtained from

ftp://ftp.maths.bath.ac.uk/pub/dream/

(mirrored at ftp://ftp.musique.umontreal.ca/pub/mirrors/dream/)

as can the manual and some example �les. For a minimalist installation
on an MS-DOS (or Windows) based machine, get the �le csound new412.zip
from the subdirectory newest/ at the above site (or a later version if available;
the above version was released on March 6, 2001). Unzip it5 into a directory

5To unzip a �le under Windows, get hold of Winzip from winzip.com. This is share-
ware, but can be used inde�nitely without registration. If you prefer to use a free utility,
get hold of Info-ZIP's free MS-DOS based program unzip.exe (138 kB) from
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of your choice, and make sure the directory is in your path by editing the
autoexec.bat �le if necessary. If you are really short of space, delete every-
thing except the �les csound.txt, csound.exe and dos4gw.exe (total around 1
megabyte), and you will still be able to run all the examples described here.
Make a new subdirectory for your orchestra and score �les, and run CSound
from that subdirectory. Instructions for running CSound can be found on
page 213.

If you are running in an MS-DOS window under Windows 95/98/ME
or NT/2000, the above still works, but the �le csound con412.zip contains a
smaller and more eÆcient version of just the csound.exe �le and the csound.txt
�le; you won't need dos4gw.exe. The disadvantage is that the displays are
in ascii instead of full screen graphics. There is also a Windows front end
in csound win412.zip. This is capable of realtime sound output and realtime
MIDI handling, which the MS-DOS version is not, but apart from that, it is
quite primitive. For example, the program needs to restart every time it is
run, and cannot just replay the output.

The most up to date version of the manual is version 4.10, which can
be found at

http://lakewoodsound.com/csound/download.htm

This version does not seem to have made it onto the Bath ftp site mentioned
above.

The orchestra �le. This �le has two main parts, namely the header section,
which de�nes the sample rate, control rate, and number of output channels,
and the instrument section which gives the instrument de�nitions. Each in-
strument is given its own number, which behaves like a patch number on a
synthesizer.

The header section has the following format (everything after a semi-
colon is a comment):

sr = 44100 ; sample rate in samples per second
kr = 4410 ; control rate in control signals per second
ksmps = 10 ; ksmps = sr/kr must be an integer, samples per control period
nchnls = 1 ; number of channels (7.15.1)

An instrument de�nition consists of a collection of statements which
generate or modify a digital signal. For example the statements

instr 1
asig oscil 10000, 440, 1

out asig
endin (7.15.2)

generate a 440 Hz wave with amplitude 10000, and send it to an output. The
two lines of code representing the waveform generator are encased in a pair

http://www.cdrom.com/pub/infozip/UnZip.html
|there is also a copy on my machine:
ftp://byrd.math.uga.edu/pub/win/compression/unzip.exe
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of statements which de�ne this to be an instrument. For WAV �le output,
the possible range of amplitudes before clipping takes e�ect is from �32768
to +32767, for a total of 215 possible values. The �nal argument 1 is a wave-
form number. This determines which waveform is taken from an f statement
in the score �le (see below). In our �rst example below, it will be a sine wave.
The label asig is allowed to be any string beginning with a (for \audio sig-
nal"). So for example a1 would have worked just as well. The oscil statement
is one of CSound's many signal generators, and its e�ect is to output peri-
odic signals made by repeating the values passed to it, appropriately scaled
in amplitude and frequency. There is also another version called oscili, with
the same syntax, which performs linear interpolation rather than truncation
to �nd values at points between the sample points. This is slower by approx-
imately a factor of two, but in some situations it can lead to better sounding
output. In general, it seems to be better to use oscil for sound waves and os-
cili for envelopes (see page 215).

As it stands, the instrument (7.15.2) isn't very useful, because it can
only play one pitch. To pass a pitch, or other attributes, as parameters from
the score �le to the orchestra �le, an instrument uses variables named p1, p2,
p3, and so on. The �rst three have �xed meanings, and then p4, p5, . . . can
be given other meanings. If we replace 440 by p5,

asig oscil 10000, p5, 1

then the parameter p5 will determine pitch.

The score �le. Each line begins with a letter called an opcode, which de-
termines how the line is to be interpreted. The rest of the line consists of nu-
merical parameter �elds p1, p2, p3, and so on. The possible opcodes are:

f (function table generator),

i (instrument statement; i.e., play a note),

t (tempo),

a (advance score time; i.e., skip parts),

b (o�set score time),

v (local textual time variation),

s (section statement),

r (repeat sections),

m and n (repeat named sections),

e (end of score),

c (comment; semicolon is preferred).

If a line of the score �le does not begin with an opcode, it is treated as a con-
tinuation line.

Each parameter �eld consists of a oating point number with optional
sign and optional decimal point. Expressions are not permitted.
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An f statement calls a subroutine to generate a set of numerical val-
ues describing a function. The set of values is intended for passing to the
orchestra �le for use by an instrument de�nition. The available subroutines
are called GEN01, GEN02, . . . . Each takes some number of numerical argu-
ments. The parameter �elds of an f statement are as follows.

p1 Waveform number

p2 When to begin the table, in beats

p3 Size of table; a power of 2, or one more, maximum 224

p4 Number of GEN subroutine

p5, p6, . . . Parameters for GEN subroutine

Beats are measured in seconds, unless there is an explicit t (tempo) state-
ment; in our examples, t statements are omitted for simplicity.

So for example, the statement

f1 0 8192 10 1

uses GEN10 to produce a sine wave, starting \now", of size 8192, and assigns
it to waveform 1. The subroutine GEN10 produces waveforms made up of
weighted sums of sine waves, whose frequencies are integer multiples of the
fundamental. So for example

f2 0 8192 10 1 0 0.5 0 0.333

produces the sum of the �rst �ve terms in the Fourier series for a square
wave, and assigns it to waveform 2.

An i statement activates an instrument. This is the kind of statement
used to \play a note". Its parameter �elds are as follows.

p1 Instrument number

p2 Starting time in beats

p3 Duration in beats

p4, p5, . . . Parameters used by the instrument

An e statement denotes the end of a score. It consists of an e on a line
on its own. Every score �le must end in this way.

For example, if instrument 1 is given by (7.15.2) then the score �le

f1 0 8192 10 1 ; use GEN10 to create a sine wave
i1 0 4 ; play instr 1 from time 0 for 4 secs
e (7.15.3)

will play a 440Hz tone for 4 seconds.

Running CSound. The program CSound was designed as a command line
program, and although various front ends have been designed for it, the com-
mand line remains the most convenient method. Having installed CSound
according to the instructions that accompany the program, the proceedure
is to create an orchestra �le called <�lename>.orc and a score �le called
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<�lename>.sco using your favorite (ascii) text processor.6 The basic syntax
for running CSound is

csound <ags> <�lename>.orc <�lename>.sco

For example, if your �les are called ditty.orc and ditty.sco, and you want a
WAV �le output, then use the -W ag (this is case sensitive).

csound -W ditty.orc ditty.sco

This will produce as output a �le called test.wav. If you want some other
name, it must be speci�ed with the -o ag.

csound -W -o ditty.wav ditty.orc ditty.sco (7.15.4)

If you want to suppress the graphical displays of the waveforms, which csound
gives by default, this is achieved with the -d ag.

We are now ready to run our �rst example. Make two text �les, one
called ditty.orc containing the statements (7.15.1) followed by (7.15.2), and
one called ditty.sco containing the statements (7.15.3). If the program is prop-
erly installed, then typing the command (7.15.4) at the command line should
produce a �le ditty.wav. Playing this �le through a sound card or other au-
dio device should then sound a pure sine wave at 440Hz for 4 seconds.

Warning. Both the orchestra and the score �le are case sensitive. If you
are having problems running CSound on the above orchestra and score �les,
check that you have typed everything in lower case.

There is also an annoying feature, which is that if the last line of text
in the input �le does not have a carriage return, then a wave �le will be gen-
erated, but it will be unreadable. So it is best to leave a blank line at the
end of each �le.

Our \ditty" wasn't really very interesting, so let's modify it a bit. In
order to be able to vary the amplitude and pitch, let us modify the instru-
ment (7.15.2) to read

instr 1
asig oscil p4, p5, 1 ; p4 = amplitude, p5 = frequency

out asig
endin (7.15.5)

Now we can play the �rst ten notes of the harmonic series (see page 99) us-
ing the following score �le.

6Word processors such as Word Perfect or Word by default save �les with special for-
matting characters embedded in them. CSound will choke on these characters. In MS-
DOS, the command

edit <�lename>

will invoke a simple ascii text processor whose output will not choke CSound in this way.
If you are running in an MS-DOS box inside Windows, the command

notepad <�lename>

will start up the ascii text processor called notepad in a separate window, which is more
convenient for switching between the editor and running CSound.
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f1 0 8192 10 1 ; sine wave
i1 0.0 0.4 32000 261.6 ; fundamental (C, to nearest tenth of a Hz)
i1 0.5 0.4 24000 523.2 ; second harmonic, octave
i1 1.0 0.4 16000 784.8 ; third harmonic, perfect �fth
i1 1.5 0.4 12000 1046.4 ; fourth harmonic, octave
i1 2.0 0.4 8000 1308.0 ; �fth harmonic, just major third
i1 2.5 0.4 6000 1569.6 ; sixth harmonic, perfect �fth
i1 3.0 0.4 4000 1831.2 ; seventh harmonic, listen carefully to this one
i1 3.5 0.4 3000 2092.8 ; eighth harmonic, octave
i1 4.0 0.4 2000 2354.4 ; nineth harmonic, just major second
i1 4.5 0.4 1500 2616.0 ; tenth harmonic, just major third
e (7.15.6)

This �le plays a series of notes at half second intervals, each lasting 0.4 sec-
onds, at successive integer multiples of 220Hz, and at steadily decreasing am-
plitudes. Make an orchestra �le from (7.15.1) and (7.15.5), and a score �le
from (7.15.6), run CSound as before, and listen to the results.

Data rates. Recall from (7.15.1) that the header of the orchestra �le de-
�nes two rates, namely the sample rate and the control rate. There are three
di�erent kinds of variables in CSound, which are distinguished by how often
they get updated. a-rate variables, or audio rate variables, are updated at
the sample rate, while the k-rate variables, or control rate variables, are up-
dated at the control rate. Audio signals should be taken to be a-rate, while
an envelope, for example, is usually assigned to a k-rate variable. It is pos-
sible to make use of audio rate signals for control, but this will increase the
computational load. A third kind of variable, the i-rate variable, is updated
just once when a note is played. These variables are used primarily for set-
ting values to be used by the instrument. The �rst letter of the variable name
(a, k or i) determines which kind of variable it is.

The variables discussed so far are all local variables. This means that
they only have meaning within the given instrument. The same variable can
be reused with a di�erent meaning in a di�erent instrument. There are also
global versions of variables of each of these rates. These have names begin-
ning with ga, gk and gi. Assignment of a global variable is done in the header
section of the orchestra �le.

Envelopes. One way to apply an envelope is to make an oscillator whose
frequency is 1/p3, the reciprocal of the duration, so that exactly one copy of
the waveform is used each time the note is played. It is better to use oscili
rather than oscil for envelopes, because many sample points of the envelope
will be used in the course of the one period. So for example

kenv oscili p4, 1/p3, 2

uses waveform 2 to make an envelope. The �rst letter k of the variable name
kenv means that this is a control rate variable. It would work just as well to
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make it an audio rate variable by using a name like aenv, but it would de-
mand greater computation time, and result in no audible improvement.

The subroutine GEN07, which performs linear interpolation, is ideal for
an envelope made from straight lines. The arguments p4, p5, . . . of this sub-
routine alternate between numbers of points and values. So for example, the
statement

f2 0 513 7 0 80 1 50 0.7 213 0.7 170 0 ; ADSR envelope

in the score �le produces an envelope resembling the one on page 189 with
ADSR sections of length 80, 50, 213, 170 samples, with heights varying lin-
early

0! 1! 0:7! 0:7! 0;

and assigns it to waveform 2. The numbers of sample points in the sections
should always add up to the total length p3.

Recall that the total number of sample points must be either a power
of two, or one more than a power of two. It is usual to use a power of two
for repeating waveforms. For waveforms that will be used only once, such as
an envelope, we use one more than a power of two so that the number of in-
tervals between sample points is a power of two.

To apply the envelope to the instrument (7.15.5), we replace p4 with
kenv to make

instr 1
kenv oscili p4, 1/p3, 2 ; envelope from waveform 2

; p4 = amplitude
asig oscil kenv, p5, 1 ; p5 = frequency

out asig
endin

It would also be possible to replace the waveform number 2 in the def-
inition of kenv with another variable, say p6, to give a more general purpose
shaped sine wave.

Exercises

1. Make orchestra and score �les to play a major scale using a sine wave with an

ADSR envelope. Check that your �les work by running CSound on them and lis-

tening to the result.

7.16. FM synthesis using CSound

Here is the most basic two operator FM instrument:

instr 1
amod oscil p6 � p7, p6, 1 ; modulating wave, p6 = modulating frequency

; p7 = index of modulation
kenv oscili p4, 1/p3, 2 ; envelope, p4 = amplitude
asig oscil kenv, p5 + amod, 1 ; p5 = carrier frequency
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out asig
endin

(7.16.1)

The parameter p7 here represents the index of modulation; the reason
why it is multiplied by p6 in the de�nition of the modulating wave amod is
that the modulation is taking place directly on the frequency rather than on
the phase. According to equation (7.13.2), this means that the index of mod-
ulation must be multiplied by the frequency of the modulating wave before
being applied. The argument p5 + amod in the de�nition of asig is the car-
rier frequency p5 plus the modulating wave amod. The wave has been given
an envelope kenv.

For a score �le to illustrate this simple instrument, we introduce some
useful abbreviations available for repetitive scores. First, note that the i
statements in a score do not have to be in order of time of execution. The
score is sorted with respect to time before it is played. The carry feature
works as follows. Within a group of consecutive i statements in the score �le
(not necessarily consecutive in time) whose p1 parameters are equal, empty
parameter �elds take their value from the previous statement. An empty pa-
rameter �eld is denoted by a dot, with spaces between consecutive �elds. In-
tervening comments or blank lines do not a�ect the carry feature, but other
non-i statements turn it o�.

For the second parameter �eld p2 only, the symbol + gives the value
of p2 + p3 from the previous i statement. This begins a note at the time
the last one ended. The symbol + may also be carried using the carry fea-
ture described above. Liberal use of the carry and + features greatly sim-
plify typing in and subsequent alteration of a score. Here, then, is a score il-
lustrating simple FM synthesis with fm = fc, with gradually increasing in-
dex of modulation.

f1 0 8192 10 1 ; sine wave
f2 0 513 7 0 80 1 50 0.7 213 0.7 170 0 ; ADSR
i1 1 1 10000 200 200 0 ; index = 0 (pure sine wave)
i1 + . . . . 1 ; index = 1
i1 + . . . . 2 ; index = 2
i1 + . . . . 3 ; index = 3
i1 + . . . . 4 ; index = 4
i1 + . . . . 5 ; index = 5
e

Sections. An s statement consisting of a single s on a line by itself ends
a section and starts a new one. Sorting of i and f statements (as well as a,
which we haven't discussed) is done by section, and the timing starts again
at the beginning for each section. Inactive instruments and data spaces are
purged at the end of a section, and this frees up computer memory.

The following score, using the same instrument (7.16.1), has three sec-
tions with di�erent ratios fm : fc and with gradually increasing index of mod-
ulation.
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f1 0 8192 10 1 ; sine wave
i1 1 1 10000 200 200 0 ; index = 0, fm:fc = 1:1
i1 + . . . . 1 ; index = 1
i1 + . . . . 2 ; index = 2
i1 + . . . . 3 ; index = 3
i1 + . . . . 4 ; index = 4
i1 + . . . . 5 ; index = 5
s
i1 1 1 10000 200 400 0 ; index = 0, fm:fc = 1:2
i1 + . . . . 1 ; index = 1
i1 + . . . . 2 ; index = 2
i1 + . . . . 3 ; index = 3
i1 + . . . . 4 ; index = 4
i1 + . . . . 5 ; index = 5
s
i1 1 1 10000 400 200 0 ; index = 0, fm:fc = 2:1
i1 + . . . . 1 ; index = 1
i1 + . . . . 2 ; index = 2
i1 + . . . . 3 ; index = 3
i1 + . . . . 4 ; index = 4
i1 + . . . . 5 ; index = 5
e

Pitch classes. CSound has a function cpspch for converting octave and pitch
class notation in twelve tone equal temperament into frequencies in Hertz.
This function may be used in an instrument de�nition, so that the instru-
ment can be fed notes from the score �le in this notation.

The octave and pitch class notation consists of a whole number, rep-
resenting octave, followed by a decimal point and then two digits represent-
ing pitch class. The pitch classes are taken to begin with .00 for C and end
with .11 for B, although higher values will just overlap into the next octave.
The octave numbering is such that 8.00 represents middle C, 9.00 represents
the octave above middle C, and so on. So for example the A above middle
C can be represented as 8.09, or as 7.21, so that

cpspch(8.09) = cpspch(7.21) = 440:

Notes between two pitches on the twelve tone equal tempered scale can be
represented by using further digits. So if four digits are used after the deci-
mal point then the value is interpreted in cents. For example, if 8.00 repre-
sents middle C, then a just major third above this would be 8.0386, taken to
the nearest cent.
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7.17. Simple FM instruments

The bell. In this section, we use CSound and FM synthesis to imitate some
instruments. We begin with the sound of a bell.7 For a typical bell sound, we
need an inharmonic spectrum. We can obtain this by using simple two oper-
ator FM synthesis where fc and fm have a ratio which cannot be expressed
as a simple ratio of two integers. The golden ratio is particularly good in this
regard, for reasons explained in Exercise 1 of x6.2, so we take fm to be 1.618
times fc.

The bell sound is most easily made using envelopes representing expo-
nential decay for both amplitude and timbre. The subroutine GEN05 is de-
signed for this. It performs exponential interpolation, which is based on the
fact that between any two points (x1; y1) and (x2; y2) in the plane, with y1
and y2 positive, there is a unique exponential curve. It is given by

y = y
x�x2

x1�x2

1 y
x� x1

x2�x1

2 :

If y1 and y2 are both negative, replace them by the corresponding positive
number in the above formula and then negate the �nal answer.

The �elds for the GEN05 subroutine are the same as for GEN07 (see
page 216), except that the values p5, p7, . . . must all have the same sign. Re-
ferring back to the discussion of envelopes on page 215, we see that if we put

f2 0 513 5 1 513 .0001

in the score �le and

kenv oscili p4, 1/p3, 2

in the instrument de�nition, we will create an envelope with name kenv which
decays exponentially from 1 to 0.0001. For a bell sound, we use an enve-
lope like this for amplitude8 and an envelope decaying exponentially from 1
to 0.001 scaled up by a factor of 10 for index of modulation. We also use a
very long decay time, to permit the sound to linger.

1

0.001
15 sec

This explains the following instrument de�nition. Pitches have been con-
verted from octave and pitch class notation as explained above. In spite of
the fact that lower frequency components are present, the perceived pitch of
the note produced is equal to the carrier frequency.

7The examples in this section are adapted from an article of Chowning, reprinted as
chapter 1 of [95].

8Don't forget that amplitude is perceived logarithmically, so this sounds like a linear
decrease, and indeed is a linear decrease when measured in decibels.
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instr 1 ; FM bell
ifc = cpspch(p5) ; carrier frequency
ifm = cpspch(p5) * 1.618 ; modulating frequency

kenv oscili p4, 1/p3, 2 ; envelope, p3 = duration, exp decay f2
; p4 = amplitude

ktmb oscili ifm * 10, 1/p3, 3 ; timbre envelope, max = 10, exp decay f3
amod oscil ktmb, ifm, 1 ; modulator
asig oscil kenv, ifc + amod, 1 ; carrier

out asig
endin

Here is the score �le to play notes E, C, D, G for a chime, using this instru-
ment.

f1 0 8192 10 1
f2 0 513 5 1 513 .0001
f3 0 513 5 1 513 .001
i1 1 15 8000 8.04 ; 15 seconds at amplitude 8000 at middle C
i1 2.5 . . 8.00
i1 4 . . 8.02
i1 5.5 . . 7.07
e

A general purpose instrument. It is not hard to modify the instrument
described above to make a general purpose two operator FM synthesis in-
strument.

instr 1 ; Two operator FM instrument
ifc = cpspch(p5) * p6 ; p6 = carrier frequency multiplier
ifm = cpspch(p5) * p7 ; p7 = modulator frequency multiplier

kenv oscili p4, 1/p3, p8 ; p3 = duration
; p4 = amplitude, p8 = carrier envelope
ktmb oscili ifm * p10, 1/p3, p9 ; p9 = modulator envelope
; p10 = maximum index of modulation
amod oscil ktmb, ifm, 1 ; modulator
asig oscil kenv, ifc + amod, 1 ; carrier

out asig
endin

The rest of the examples in this section are described in terms of this setup.

The wood drum. To make a reasonably convincing wood drum, the am-
plitude envelope is made up of two exponential curves using GEN05,



7.17. SIMPLE FM INSTRUMENTS 221

1

0.2 sec

while the envelope for the index of modulation is made up of two straight
line segments, decreasing to zero and then staying there, using GEN07.

1

0.2 sec

It turns out to be better to use a modulating frequency lower than the car-
rier frequency. So we use the reciprocal of the golden ratio, which is 0.618.
We also use a large index of modulation, with a peak of 25, and a note du-
ration of 0.2 seconds. This instrument works best in the octave going down
from middle C. So the function table generators take the form

f1 0 8192 10 1 ; sine wave
f2 0 513 5 .8 128 1 385 .0001 ; amplitude envelope for wood drum
f3 0 513 7 1 64 0 449 0 ; modulating index envelope for wood drum

and the instrument statements take the form

i1 <time> 0.2 <amplitude> <pitch> 1.0 0.618 2 3 25

Brass. For a brass instrument, we use a harmonic spectrum containing all
multiples of the fundamental. This is easily achieved by taking fc = fm. The
relative amplitude of higher harmonics is greater when the overall amplitude
is greater, so the timbre and amplitude are given the same envelope. This is
chosen to look like the ADSR curve on page 189, to represent an overshoot
in intensity during the attack. The index of modulation does not want to be
as great as in the above examples. A maximum index of 5 gives a reasonable
sound. The envelope given below is suitable for a note of duration around
0.6 seconds. It would need to be modi�ed slightly for other durations.

f1 0 8192 10 1 ; sine wave
f2 0 513 7 0 85 1 86 0.75 256 0.7 86 0 ; envelope for brass

A typical note would then be represented by a statement of the form

i1 <time> 0.6 <amplitude> <pitch> 1.0 1.0 2 2 5

To improve the sound slightly on the brass tone presented here, we may wish
to add a small deviation to the modulating frequency, so that there is a slight
tremolo e�ect in the sound. If we replace the de�nition of the modulating
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frequency by the statement

ifm = cpspch(p5) * p7 + 0.5

then this will have the required e�ect.

Woodwind. For woodwind instruments, higher harmonics are present dur-
ing the attack, and then the low frequencies enter. So we want the carrier
frequency to be a multiple of the modulating frequency, and use an envelope

of the form
�
� C

C
for the carrier and

�
� for the modulator. So

the function table generators take the form

f1 0 8192 10 1 ; sine wave
f2 0 513 7 0 50 1 443 1 20 0 ; amplitude envelope for woodwind
f3 0 513 7 0 50 1 463 1 ; modulating index envelope for woodwind

For a clarinet, where odd harmonics dominate, we take fc = 3fm and a max-
imum index of 2. A basson sound is produced by giving the odd harmonics
a more irregular distribution. This can be achieved by taking fc = 5fm and
a maximum index of 1.5.

7.18. Further techniques in CSound

The CSound language is vast. In this section, we cover just a few of
the features which we have not touched on in the previous sections. For more
information, see the CSound manual.

Tempo. The default tempo is 60 beats per minute, or one beat per second.
To change this, a tempo statement is put in the score �le. An example of the
simplest form of tempo statement is

t 0 80

which sets the tempo to 80 beats per minute. The �rst argument (p1) of the
tempo statement must always be zero. A tempo statement with more argu-
ments causes accelerandos and ritardandos. The arguments are alternately
times in beats (p1 = 0, p3, p5 . . . ) and tempi in beats per minute (p2, p4,
p6, . . . ). The tempi between the speci�ed times are calculate by making the
durations of beats vary linearly. So for example the tempo statement

t 0 100 20 120 40 120

causes the initial tempo to be 100 beats per minute. By the twentieth beat,
the tempo is 120 beats per minute. But the number of beats per minute is
not linear between these values. Rather, the durations decrease linearly from
0.6 seconds to 0.5 seconds over the �rst twenty beats. The tempo is then
constant from beat 20 until beat 40. By default, the tempo remains constant
after the last beat where it is speci�ed, so in this example the last two pa-
rameters are superuous.
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The tempo statement is only valid within the score section (cf.
page 217) in which it is placed, and only one tempo statement may be used
in each section. Its location within the section is irrelevant.

Stereo and Panning. For stereo output, we want to set nchnls = 2 in the
header of the orchestra �le (7.15.1). In the instrument de�nition, instead of
using out, we use outs with two arguments. So for example to do a simple
pan from left to right, we might want the following lines in the instrument
de�nition.

kpanleft lineseg 0, p3, 1
kpanright = 1 - kpanleft

outs asig * kpanleft, asig * kpanright

The problem with this method of panning is that the total sound energy is
proportional to the square of amplitude, summed over the two channels. So
in the middle of the pan, the total energy is only 1=

p
2 times the total enery

on the left or right. So it sounds like there's a hole in the middle. The easiest
way to correct this is to take the square root of the straight line produced by
the signal generator lineseg. So for example we could have the following lines.

kpan lineseg 0, p3, 1
kpanleft = sqrt(kpan)
kpanright = sqrt(1-kpan)

Since sin2 � + cos2 � = 1, another way to keep uniform total sound energy is
as follows.

kpan lineseg 0, p3, 1
ipibytwo = 1.5708
kpanleft = sin(kpan * ipibytwo)
kpanright = sqrt((1 - kpan) * ipibytwo)

A good trick for obtaining what sounds like a wider sweep for the pan, es-
pecially when using headphones to listen to the output, is to make the angle
go from ��=4 to 3�=4 instead of 0 to �=2. This can be achieved by replac-
ing the de�nition of kpan above with the following line.

kpan lineseg -0.5, p3, 1.5

A more realistic pan takes account of the fact that at the far reaches of
the sweep, the sound should not be entirely concentrated in one channel. A
slightly delayed version can be fed into the other channel, with delay vary-
ing up to about 0.7 seconds at the extreme end of the sweep.

Display and spectral display. There is a facility for displaying either a
waveform or its spectrum, in an instrument �le. So for example the instru-
ment

instr 1
asig oscil 10000 440 1

out asig
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display asig p3
endin

is the same as (7.15.2), except that the extra line causes the graph of asig (of
length p3) to be displayed. If the ag -d (see page 214) is set, this line makes
no di�erence at all. Replacing the display line with

disp�t asig p3, 1024

causes a fast Fourier transform of asig to be displayed, using an input win-
dow size of 1024 points. The number of points must be a power of two be-
tween 16 and 4096.

Arithmetic. In the orchestra �le, variables represent signed oating point
real numbers. The standard arithmetic operations +, �, * (times) and / (di-
vide) can be used, as well as parentheses to any depth. Powers are denoted
a ^ b, but b is not allowed to be audio rate. The expression a % b returns a
reduced modulo b. Among the available functions are

int (integer part)
frac (fractional part)
abs (absolute value)
exp (exponential function, raises e to the given power)
log and log10 (natural and base ten logarithm; argument must be positive)
sqrt (square root)
sin, cos and tan (sine, cosine and tangent, argument in radians)
sininv, cosinv, taninv (arcsine, arccos and arctan, answer in radians)
sinh, cosh and tanh (hyperbolic sine, cosine and tangent)
rnd (random number between zero and the argument)
birnd (random number bewteen plus and minus the argument)

Conditional values can also be used. For example,

(ka > kb ? 3 : 4)

has value 3 if ka is greater than kb, and 4 otherwise. Comparisons may be
made using

> (greater than)
< (less than)
>= (greater than or equal to)
<= (less than or equal to)
== (equal to)
!= (not equal to).

Expressions, as well as variables, may be compared in this way, but audio
rate variables and expressions are not permitted.

Automatic score generation. There are a number of methods of avoiding
the tedious process of writing a score �le for CSound. One method is to use
the score translator program scot. This takes a text �le <�lename>.sc writ-
ten in a compressed score notation and writes out a score �le <�lename>.sco.
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Another is to use Cscore, which is a program for making and manipulating
score �les. The user writes a control program in the C language, which makes
use of a set of function de�nitions contained in a header �le cscore.h. Finally,
there is MIDI2CS, a program which takes a MIDI �le as input, and outputs
a score �le. There is also a considerable amount of support for MIDI within
the CSound language.

DirectCSound is a realtime version of CSound for the PC, and can be
obtained from Gabriel Maldonado's home page at

http://web.tiscalinet.it/G-Maldonado/home2.htm

I have not tried it out, so I cannot comment on how well it works, but it
looks promising.

Further reading on CSound:

Richard Boulanger, The CSound book [9].

Electronic Musician, Feb 1998 issue.

Keyboard, Jan 1997 issue.

7.19. Other methods of synthesis

Sampling is not really a form of synthesis at all, but is often used in
digital synthesizers. It is usual to sample sounds at only a small collection of
pitches, and then to pitch shift by stretching or compressing the waveform,
in order to �ll in the gaps. Pitch shifting a digital signal introduces high fre-
quency noise, related to the fact that the sample rate is not being shifted at
the same time. This is removed using a low pass �lter.

Wavetable synthesis is a method related to sampling, in which digitally
recorded wave �les are used as raw material to produce sounds which are a
sort of hybrid between synthesis and sampling. It is usual to use one wave
�le for the attack portion of the sound, and another for the sustain portion.
In the case of the sustain portion, a whole number of periods of the sound are
used to form a loop which is repeated. An envelope is then applied to shape
the sound, and then �nally the result is pitch shifted and put through a low
pass �lter. An exception to this general proceedure is \one shot" sounds such
as short percussive sounds. These are usually just recorded as a single wave-
�le without looping.

Granular synthesis is a method where the sound comes in small pack-
ets called grains, whose duration is usually of the order of ten milliseconds.
Thousands of these grains are used in each second, to create a sound texture.
Usually, some algorithm is used for describing large quantities of grains at a
time, so that each grain does not have to be described separately.

Further reading on granular synthesis:

S. Cavaliere and A. Piccialli, Granular synthesis of musical signals, appears as arti-
cle 5 in Roads et al [94], pages 155{186.
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John Duesenberry, Square one: a world in a grain of sound, Electronic Musician,
November 1999.

Curtis Roads, Granular synthesis of sound, Computer Music Journal 2 (2) (1978),
61{62. A revised and updated version of this article appears as chapter 10 of Roads
and Strawn [95], pages 145{159.

Curtis Roads, Granular synthesis, Keyboard, June 1997.

7.20. The phase vocoder

The phase vocoder is a method of sound analysis and manipulation. It
is based on the technique of applying a discrete Fourier transform to small
windows of the original sound. The transform may then be manipulated, and
�nally the sound may reconstructed from the manipulated transform. For
example, it is not hard to stretch a sound without altering the pitch using
this technique.

Further reading:

Mark Dolson, The phase vocoder: a tutorial, Computer Music Journal 10 (4) (1986),
14{27.

M.-H. Serra, Introducing the phase vocoder, appears as article 2 in Roads et al [94],

pages 31{90.

7.21. Chebychev polynomials

Composition of functions in general is a good way of obtaining syn-
thetic tones. For example, if we take a basic cosine wave cos �t and compose
it with the function f(x) = 2x2 � 1 then we obtain

2 cos2 �t� 1 = cos 2�t:

So composing with this function has the e�ect of doubling frequency. The
corresponding functions for arbitrary integer multiples of frequency are called
the Chebychev9 polynomials of the �rst kind, which we now investigate.

Let Tn(x) be the polynomial de�ned inductively by T0(x) = 1, T1(x) =
x, and for n > 1,

Tn(x) = 2xTn�1(x)� Tn�2(x):

Thus for example we have

T2(x) = 2x2 � 1;

T3(x) = 4x3 � 3x;

T4(x) = 8x4 � 8x2 + 1

T5(x) = 16x5 � 20x3 + 5x

T6(x) = 32x6 � 48x4 + 18x2 � 1

T7(x) = 64x7 � 112x5 + 56x3 � 7x:

9Other spellings for this name include Tchebyche� and Chebichev.
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Lemma 7.21.1. For n � 0 we have Tn(cos �t) = cosn�t.

Proof. The proof is by induction on n. We begin by observing that

cos �t cos(n� 1)�t� sin �t sin(n� 1)�t = cosn�t

cos �t cos(n� 1)�t+ sin �t sin(n� 1)�t = cos(n� 2)�t

(see x1.7), so that adding and rearranging, we have

cosn�t = 2 cos �t cos(n� 1)�t� cos(n� 2)�t:

Now for n = 0 and n = 1, the statement of the lemma is obvious from
the de�nition. For n � 2, assuming the statement to be true for smaller val-
ues of n, we have

Tn(cos �t) = 2 cos �t Tn�1(cos �t)� Tn�2(cos �t)

= 2 cos �t cos(n� 1)�t� cos(n� 2)�t

= cosn�t:

So by induction, the lemma is true for all n � 0. �

Using a weighted sum of Chebychev polynomials and composing, we
can obtain a waveform with the corresponding weights for the harmonics.
Changing the weighting with time will change the timbre of the resulting
tone. So for example, if we apply the operation

T1 +
1
3T3 +

1
5T5 +

1
7T7 +

1
9T9 +

1
11T11

to a cosine wave, we obtain an approximation to a square wave (see equation
(2.2.8)). This operation will turn any mixture of cosine waves into the same
mixture of square waves.

Exercises

1. Show that y = Tn(x) satis�es Chebychev's di�erential equation

(1� x2)
d2y

dx2
� x

dy

dx
+ n2y = 0:

2. Show that

Tn(x) = xn �

�
n

2

�
xn�2(1� x2) +

�
n

4

�
xn�4(1� x2)2 � : : :

3. Draw a graph of y = Tn(x) for �1 � x � 1 and 0 � n � 5.

7.22. Digital formats for music

Error correcting codes, cross interleaved Reed{Solomon codes
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7.23. MIDI

Most synthesizers these days talk to each other and to computers via
MIDI cables. MIDI stands for \Musical Instrument Digital Interface". It is
an internationally agreed data transmission protocol, introduced in 1982, for
the transmission of musical information between di�erent digital devices. It is
important to realise that in general there is no waveform information present
in MIDI, unless the message is a \sample dump". Instead, most MIDI mes-
sages give a short list of abstract parameters for an event.

There are three basic types of MIDI message: note messages, controller
messages, and system exclusive messages. Note messages carry information
about the starting time and stopping time of notes, which patch (or voice)
should be used, the volume level, and so on. Controller messages change pa-
rameters like chorus, reverb, panning, master volume, etc. System exclusive
messages are for transmitting information speci�c to a given instrument or
device. They start with an identi�er for the device, and the body can con-
tain any kind of information in a format proprietary to that device. The
commonest kind of system exclusive messages are for transmitting the data
for setting up a patch on a synthesizer.

The MIDI standard also includes some hardware speci�cations. It spec-
i�es a baud rate of 31:25 KBaud. For modern machines this is very slow, but
the for the moment we are stuck with this standard. One of the results of
this is that systems often su�er from MIDI \bottlenecks," which can cause
audibly bad timing. The problem is especially bad with MIDI data involving
continually changing values of a control variable such as volume or pitch.

Further reading:

S. de Furia and J. Scacciaferro, MIDI programmer's handbook [32].

F. R. Moore, The dysfunctions of MIDI, Computer Music Journal 12 (1) (1988), 19{
28.

J. Rothstein, MIDI, A comprehensive introduction [100].

Eleanor Selfridge-Field (Editor), Donald Byrd (Contributor), David Bainbridge

(Contributor), Beyond MIDI: The Handbook of Musical Codes, M. I. T. Press (1997).

7.24. Software and internet resources

The information in this section is, of course, very volatile. So it is likely
that by the time you are reading this, a lot of the information will already
be out of date.

Scales and Temperaments: The best internet resource on the subject of
scales, temperaments and tunings is

http://www.xs4all.nl/�huygensf/doc/bib.html

This is part of the Huygens-Fokker Foundation website, maintained by
Manuel Op de Coul, and consists of a giant bibliography together with links
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to other internet resources on the subject. The front page of the website is at

http://www.xs4all.nl/�huygensf/english/

Also on the same website, a discography of microtonal music can be found at

http://www.xs4all.nl/�huygensf/doc/discs.html

A large collection of scales and temperaments can be found at

http://www.xs4all.nl/�huygensf/doc/scales.zip

and the Scala scales and temperaments software can be found at

http://www.xs4all.nl/�huygensf/scala/

To subscribe to the alternate tunings email discussion group, send an empty
email message to tuning-subscribe@onelist.com.

Just Intonation Network: http://www.dnai.com/�jinetwk/

Bohlen{Pierce scale: http://members.aol.com/bpsite/index.html

Music Theory: Sites o�ering free music theory tuition online include

Easy Music Theory (Gary Ewer): http://www.musictheory.halifax.ns.ca/

Java Music Theory: http://academics.hamilton.edu/music/spellman/JavaMusic/

Online Music Instruction Page (Ken Fansler):
http://orathost.cfa.ilstu.edu/�kwfansle/onlinemusicpage.htm

Practical Music Theory: http://www.teoria.com/java/eng/java.htm

Sound editors: There are some good shareware sound editors. Among the
best are:

Cool Edit: http://www.syntrillium.com/cooledit/index.html

Goldwave: http://www.goldwave.com/

Acid Wav: http://www.polyhedric.com/software/acid/

There are two freeware audio frequency analysers for the PC called

Spectrogram: http://www.monumental.com/rshorne/gram.html

Frequency analyzer: http://www.hitsquad.com/smm/programs/Frequency/

CSound: This free software is described in x7.15. Versions for various plat-
forms (PC, Mac, Unix, Atari, NeXT) are available from

ftp://ftp.maths.bath.ac.uk/pub/dream/

To subscribe to the email discussion group for CSound, send an empty mes-
sage to csound-subscribe@lists.bath.ac.uk. Further information about CSound
can be found at the following www pages:

http://www.mitpress.com/e-books/csound/frontpage.html

(the CSound front page, MIT Press)
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http://www.bright.net/�dlphilp/dp csound.html

(Dave Phillips' PC CSound page)

http://www.bright.net/�dlphilp/linux csound.html

(Dave Phillips' Linux CSound page)

http://music.dartmouth.edu/�dupras/wCsound/csoundpage.html

(Martin Dupras' CSound page)

A utility for PC and Unix called MIDI2CS, written by Rudiger Borrmann,
converts MIDI �les to Csound scores. It is available from

http://www.snafu.de/�rubo/songlab/midi2cs/csound.html

A utility for emulating the Yamaha DX7 with CSound can be found at Je�
Harrington's site

http://www.parnasse.com/dx72csnd.shtml

Other synthesis software: This is a rapidly expanding �eld, and new
products turn up almost every week. The ones I know of are as follows.

Audio Architect (PC): http://www.audiarchitect.com/

Bitheadz Retro AS-1 (Mac): http://www.bitheadz.com (free demo)

CLM (Common Lisp Music, freeware):
http://www-ccrma.stanford.edu/CCRMA/Software/clm/clm.html

CMix (Next, Linux, Sparc, SGI, PowerMac; freeware):
http://www.music.princeton.edu/winham/cmix.html

Cybersound Studio (Mac, Win 95/98/ME): http://www.cybersound.com

Cycling '74 (Mac + Opcode Max): http://www.cycling74.com (free demo)

Grain Wave (Mac shareware): http://www.nmol.com/users/mikeb/

Ik Multimedia's Groovemaker and Ax�e (Mac, Win 95/98/ME):
http://www.ikmultimedia.com (free demo)

Lemur (Mac): http://datura.cerl.uiuc.edu/Lemur/AboutLemur.html

Native Instruments Reaktor/Generator/Transformator (Win 95/98/ME):
http://www.native-instruments.com/ (free demo)

Nemesis GigaSampler (Win 95/98/ME): http://www.nemesismusic.com

Nyquist (freeware):
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/music/web/music.software.html

Seer Systems Reality: http://www.seersystems.com

Steinberg Rebirth RB-338 (Mac, Win 95/98/ME/NT):
http://www.us.steinberg.net (free demo)

Synthesis Toolkit (C++ code):
http://www-ccrma.stanford.edu/CCRMA/Software/STK/
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Virtual Sampler (Win 95/98/ME/NT):
This can be found at Sonic Spot, http://www.sonicspot.com/, or at MAZ,
http://www.maz-sound.com/. It is shareware, and the unregistered version
does everything but save sounds. It includes a complete Yamaha DX7 emu-
lation.

The most impressive site for information on the processes and control of syn-
thesis is Electronic Music Interactive, at

http://nmc.uoregon.edu/emi/emi.html

Synthesizers and patches: The best general websites for synthesizers and
patches are

Synthesizer and Midi Links Page:
http://www.interlog.com/�spinner/lbquirke/synthesis/links/

Synth Site: http://www.sonicstate.com/bbsonic/synth/index.cfm

At the anonymous ftp site ftp.ucsd.edu, in the subdirectory /midi/patches,
there are patches for Casio CZ-1, CZ-2, Ensoniq ESQ1, SQ1, Kawai K1, K4,
K5, XD-5, Korg M1, T3, WS (Wavestation), Roland D10, D5, D50, D70,
SC55, U20, and Yamaha DX7, FB01, TX81Z, SY22, SY55, SY77, SY85.

For the Yamaha DX7, there is a web page which I maintain at

http://www.math.uga.edu/�djb/dx7.html

which contains, among other things, a patch archive and instructions for join-
ing the email discussion group.

Typesetting software:

CMN (Common Music Notation, freeware for NeXT and SGI machines):
http://ccrma-www.stanford.edu/CCRMA/Software/cmn/cmn.html

Finale is a commercial music notation package for the Mac and PC Win-
dows (current version Finale 98), and is available from Coda Music Software.
Their web site

http://www.codamusic.com/

has more information. A free demonstration version of the program is avail-
able on this web site. Without academic discount, Finale is very expensive,
but with academic discount it costs about $200{$250. To subscribe to the
email discussion group for Finale, send an email message to listserv@shsu.edu

with the phrase \subscribe Finale" or \subscribe Finale-Digest" in the body of
the message. To be removed from the list, send \signo� Finale" or \signo�

Finale-Digest" to the same address.

Finale forum (not sanctioned by Coda Music): http://www.cmp.net/�nale/

Finale Resource Page: http://www.peabody.jhu.edu/�skot/�nale/�n home.html

Ftp site for Finale users: ftp://ftp.shsu.edu/pub/�nale/
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Keynote is a public domain textual, graphical and algorithmic music editor
for the Unix X Window system, the Mac or the Amiga, available from

ftp://xcf.berkeley.edu

LilyPond is a GNU project (and hence free) music typesetter for Unix sys-
tems. It is available from

http://www.cs.uu.nl/�hanwen/lilypond/index.html

Lime (Mac, Win 95): http://datura.cerl.uiuc.edu/

Mozart: http://www.mozart.co.uk/

Muzika 3 is a public domain (freeware) music notation package for PC Win-
dows, available from

ftp://garbo.uwasa.�/windows/sound/muzika3.zip or from

ftp://ftp.cica.indiana.edu/ftp/pub/win3/sounds/muzika3.zip

Nutation (NeXT, freeware): ftp://ccrma-ftp.stanford.edu/pub/Nu.pkg.tar

Overture is a Mac based commercial music notation package.

Score: http://ace.acadiau.ca/score/links3.htm

Sibelius is a notation package for the PC: http://www.sibelius.com/

MusicTEX: MusicTEX, written by the french organist Daniel Taupin, and
its successor MusixTEX are public domain music typesetting packages to run
under Donald Knuth's TEX program. The necessary �les may be found on

ftp://rsovax.ups.circe.fr/TeX/musictex/

See also: http://www.gmd.de/Misc/Music/

A public domain version of TEX for Windows 95/98/ME, called MikTeX, and
can be found at http://www.miktex.de. Versions for all platforms are avail-
able from CTAN at ftp.tex.ac.uk, ftp.dante.de or ctan.tug.org. See also TUG
(the TEX user's group) at http://tug.org.

Goldberg Variation 25, J. S. Bach
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Example of Output from MusicTEX

MuTEX is the precursor of MusicTEX, written by Andrea Steinbach and An-
gelica Schofer. It is in the public domain, and is available by anonymous ftp
from ymir.claremont.edu in [anonymous.tex.music.mtex] (VMS).

MIDI2TEX is a program written by Hans Kuykens for converting MIDI �les
into MusicTEX �les. The latest version can be found on CTAN (see page 232).

ABC2MTEX is a program for converting tunes from its own text-based for-
mat into MusicTEX �les. It is designed primarily for folk and traditional mu-
sic of Western European origin written on one stave in standard classical no-
tation. It can be obtained directly from its author, Chris Walshaw, via email:
C.Walshaw@gre.ac.uk, or from

ftp://celtic.stanford.edu/pub/tunes/abc2mtex/

Sequencers: Cakewalk and Cubase are competing commercial Windows
based sequencers, neither of which is cheap, but both of which are packed
with features. To subscribe to the Cakewalk users' group, send a message
to listserv@lists.colorado.edu with the phrase \subscribe cakewalk" in the body
of the message. To subscribe to the Cubase users' group, send a message to
cubase-users-request@nessie.mcc.ac.uk. Messages for the group should be sent
to cubase-users@mcc.ac.uk.

Power Tracks Pro Audio is a very cheap, but fully functional commercial
Windows based sequencer, available from PG Music for $29. More informa-
tion can be found at

http://www.pgmusic.com/

Rosegarden is an integrated MIDI sequencer and musical notation editor. It
is free software for Unix and X, and it may be found at

http://www.bath.ac.uk/�masjpf/rose.html

WinJammer is a shareware Windows based sequencer, which may be found at

ftp://ftp.cnr.it/pub/msdos/win3/sounds/wjmr23.zip
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WinJammer Pro (I'm not sure what the di�erence is) is in the same direc-
tory, as wjpro.zip.

Random music: There are a number of freeware/shareware probabilistic
music programs designed to run under Windows.

Aleatoric composer (shareware):
ftp://oak.oakland.edu/msdos/music/alcomp11.zip

Art Song 2.3 (shareware): http://members.aol.com/strohbeen/fmlsw.html

FMusic 1.9 (freeware): http://members.aol.com/dsinger594/caman/fmusic19.zip

FractMus 2.3 (freeware): ftp://ftp.cdrom.com/pub/win95/music/frctmu25.zip

Fractal Tune Smithy (freeware/shareware):
http://matrix.crosswinds.net/�fractalmelody/index.htm

Improvise 1.2 (shareware):
ftp://ftp.cnr.it/pub/msdos/win3/sounds/impvz120.zip

Make-Prime-Music (freeware):
http://members.tripod.de/Latrodectus98/index.html

Mandelbrot Music (freeware): http://www.�n.ne.jp/�yokubota/mandele.shtml

MusiNum 2.08 (freeware):
http://www.forwiss.uni-erlangen.de/�kinderma/musinum/musinum.html

QuasiFractalComposer 2.01 (freeware):
http://members.tripod.com/�paulwhalley/

Tangent (free/shareware): http://www.randomtunes.com/

The Well Tempered Fractal 3.0 (freeware):
http://www-ks.rus.uni-stuttgart.de/people/schulz/fmusic/wtf/wtf30.zip

MIDI: The MIDI speci�cation can be obtained via email by sending a mes-
sage with the phrase GET MIDISPEC PACKAGE in the message body, to
listserv@auvm.american.edu. There are archives of MIDI �les available at

ftp://ftp.cs.ruu.nl/MIDI/DOC/archives/

ftp://ftp.waldorf-gmbh.de/pub/midi/

There are two programs called mf2t and t2mf which convert standard MIDI
�les into human readable ASCII text and back again. The MIDI home page
on the WWW is

http://www.eeb.ele.tue.nl/midi/index.html

A good starting point for information about MIDI is the Northwestern Uni-
versity site

http://nuinfo.nwu.edu/musicschool/links/projects/midi/expmidiindex.html

Academic Computer Music: The following departments in American
universities have programs in computer music. CalArts (David Rosenboom,
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Morton Subotnick), Carnegie Mellon (Roger Dannenberg), MIT (Tod Ma-
chover, Barry Vercoe), Princeton (Paul Lansky), Stanford (John Chowning,
Chris Cha�e, Perry Cook, etc.), SUNY Bu�alo (David Felder, Cort Lippe),
UC Berkeley (David Wessel), UCSD (Miller Puckett, F. Richard Moore,
George Lewis, Peter Otto).

IRCAM is an institution in Paris for computer music, which has an anony-
mous ftp site at ftp.ircam.fr. In particular, the music/programming environ-
ment MAX can be found there.

Music Theory Online (the Online Journal of the Society for Music Theory)
can be found at

http://boethius.music.ucsb.edu/mto/mtohome.html

FAQs: There are several FAQs (\Frequently Asked Questions" and their an-
swers) available on the internet. Two that I know of are available from the site
xcf.berkeley.edu, either by anonymous ftp or by email. They are the electronic
and computer music FAQ, in /pub/misc/netjam/doc/ECMFAQ and the compo-
sition FAQ, in /pub/misc/netjam/doc/FAQ/composition/compositionFAQ.entire.
Or send an email message to netjam-request@xcf.berkeley.edu with the subject
line \request for ECM FAQ", respectively \request for composition FAQ".

Other resources: The following are some interesting WWW pages:

Everyone seems to want to know more about the infamous \Mozart e�ect".
Volume VII, Issue 1 (Winter 2000) of MuSICA Research Notes is devoted to
this much overpublicized and misunderstood topic, and can be found at

http://www.musica.uci.edu/mm/V7I1W00.html

http://www.oulu.�/music.html is a directory of music sites.

http://www.music.indiana.edu/misc/music-resources.html is a catalog of music
resources.

http://sunsite.unc.edu/pub/ianc/index.html is the Internet Underground Music
Archive.

To subscribe to the electronic music email discussion group, send a message
to listserv@auvm.bitnet with the line \SUB EMUSIC-L" in the body. Messages
for the group should be sent to emusic-l@auvm.bitnet. For the digests only, re-
place EMUSIC-L with EMUSIC-D.

Online papers: See Appendix O for a selection of relevant papers which
can be downloaded from academic journals.




