Challenges and progress with parton showers simulating events from ee to AA collisions

Gregory Soyez

with PanScales: M.van Beekveld, M.Dasgupta, B.El-Menoufi, F.Dreyer, S.Ferrario Ravasio,

K.Hamilton, A.Karlberg, R.Medves, P.Monni, G.Salam, L.Scyboz, A.Soto-Ontoso,

R.Verheyen;

and with P.Caucal, E.Iancu, A.H.Mueller

IPhT, CNRS, CEA Saclay

Strong and Electroweak Matter 2022

Intro: event generators for high-energy collisions

Most observables/measurements can take the following form:

$$\mathcal{O} = \sum_{n} \int [d\Psi_n] \frac{d^n \sigma}{dk_1 \dots dk_n} \mathcal{O}_n(k_1, \dots, k_n)$$

2 / 22

Most observables/measurements can take the following form:

$$\mathcal{O} = \underbrace{\sum_{n} \int [d\Psi_{n}]}_{\text{phase space}} \underbrace{\frac{d^{n}\sigma}{dk_{1} \dots dk_{n}}}_{\text{weight/probability}} \underbrace{\mathcal{O}_{n}(k_{1}, \dots, k_{n})}_{\text{observable}}$$

Most observables/measurements can take the following form:

• Outrageously complex in general

Alice (*pp*) Alice (*PbPb*) Even for pheno calculations this quickly grows out of control

Gregory Soyez

Most observables/measurements can take the following form:

$$\mathcal{O} = \underbrace{\sum_{n} \int [d\Psi_{n}] \frac{d^{n}\sigma}{dk_{1} \dots dk_{n}}}_{\text{simulate numerically}} \underbrace{\mathcal{O}_{n}(k_{1}, \dots, k_{n})}_{\text{observable}}$$

- Outrageously complex in general
- Idea: simulate numerically sample "randomly" using a Monte Carlo event generator

Most observables/measurements can take the following form:

$$\mathcal{O} = \underbrace{\sum_{n} \int [d\Psi_{n}] \frac{d^{n}\sigma}{dk_{1} \dots dk_{n}}}_{\text{simulate numerically}} \underbrace{\mathcal{O}_{n}(k_{1}, \dots, k_{n})}_{\text{observable}}$$

- Outrageously complex in general
- Idea: simulate numerically sample "randomly" using a Monte Carlo event generator
- Main advantage: works for basically any observable

Event Generators are among us!

• % of ATLAS+CMS+LHCb papers citing some article/group in Jan '14 → May '20

[[]plot by Keith Hamilton]

3 / 22

Simulating a high-energy collision requires several ingredients

- A hard process
- Parton shower (initial and final-state)

Simulating a high-energy collision requires several ingredients

- A hard process
- Parton shower (initial and final-state)

4 / 22

Simulating a high-energy collision requires several ingredients

- A hard process
- Parton shower (initial and final-state)
- Hadronisation

Simulating a high-energy collision requires several ingredients

- A hard process
- Parton shower (initial and final-state)
- Hadronisation
- Multi-parton interactions

Gregory Soyez

June 24 2022, SEWM 4 / 22

 $Q \equiv 100 \text{ GeV}$ BSM ightarrow 1 TeV m_t m_{H}^{i} $m_{W/Z}$ $Q \gg \mu_{\rm NP}$ m_b m_c $\mu_{\rm NP} \sim$ 1 GeV m_{π}

physics probed across many scales

Basic message #2: physics at all scales

physics probed across many scales

Basic message #2: physics at all scales

physics probed across many scales

June 24 2022, SEWM

Basic message #2: physics at all scales

physics probed across many scales

June 24 2022, SEWM

Plan

- $\checkmark\,$ Motivate the importance of event generators
 - Parton showers in "the vacuum" (ee and pp collisions)
 - Goal: achieve precision (across all scales)
 - How is it built?
 - progress within PanScales (assessing and improving accuracy)
 - Parton showers in the medium (AA collisions)
 - Get a meaningful physical picture Qualitative (slowly moving towards quantitative)
 - the "Saclay" / JetMed factorised picture

Uncertainty on the reconstruction of the jet energy in ATLAS:

Dominant source comes from MC generator (Sherpa v. Pythia)

Critical!

This affects ALL the measurements involving jets

June 24 2022, SEWM

Parton showers in the "vacuum" (ee&pp) "Accuracy"?

= 200

7 / 22

Parton showers cover a large range of scales

Disparate scales \Rightarrow **logs** \Rightarrow **all-order resummation**

(Cumulative) distributions can (often) be written as ($L \equiv \ln 1/v_{cut}$)

$$P(v < e^{-L}) = \exp\left[\underbrace{g_1(\alpha_s L)L}_{\text{leading log}(LL)} + \underbrace{g_2(\alpha_s L)}_{\text{next-to-leading log}(NLL)} + \underbrace{g_3(\alpha_s L)\alpha_s}_{NNLL} + \dots\right]$$

Examples for the observable v:

- Thrust $T = \max_{|\vec{u}|=1} \frac{\sum_i |\vec{p}_i \cdot \vec{u}|}{\sum_i |\vec{p}_i|}$
- Cambridge y_{23} (\approx largest k_t in an angular-ordered clustering)
- angularities
- Z transverse momentum in Drell-Yan
- Jet vetos

Parton showers cover a large range of scales

Disparate scales \Rightarrow **logs** \Rightarrow **all-order resummation**

(Cumulative) distributions can (often) be written as ($L \equiv \ln 1/v_{cut}$)

$$P(v < e^{-L}) = \exp\left[\underbrace{g_1(\alpha_s L)L}_{\text{leading log}(LL)} + \underbrace{g_2(\alpha_s L)}_{\text{next-to-leading log}(NLL)} + \underbrace{g_3(\alpha_s L)\alpha_s}_{NNLL} + \dots\right]$$
$$\mathcal{O}(1/\alpha_s) \qquad \mathcal{O}(1) \qquad \mathcal{O}(\alpha_s)$$

in resummation regime:

 $\alpha_{\rm s} \ll 1, \qquad \qquad L \gg 1, \qquad \qquad \lambda \equiv \alpha_{\rm s} L \sim 1$

We should control at least $\mathcal{O}(1)$ contributions

Idea for testing:

$$\frac{\sum_{MC}(\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda = \alpha_s L, \alpha_s)} \quad \text{v.} \quad 1$$

with $\lambda = \alpha_s L$

NLL deviations

or

subleading effects?

Idea for testing:

$$\frac{\sum_{MC}(\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda = \alpha_s L, \alpha_s)} \quad \text{v.} \quad 1$$

with $\lambda = \alpha_s L$

NLL deviations

or

subleading effects?

Idea for testing:

$$\frac{\sum_{MC}(\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda = \alpha_s L, \alpha_s)} \quad \text{v.} \quad 1$$

with $\lambda = \alpha_s L$

or

subleading effects?

Idea for testing:

$$\frac{\sum_{MC}(\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda = \alpha_s L, \alpha_s)} \stackrel{\alpha_s \to 0}{\longrightarrow} 1$$

at fixed $\lambda = \alpha_s L$

-

Idea for testing:

$$\frac{\sum_{MC}(\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda = \alpha_s L, \alpha_s)} \stackrel{\alpha_s \to 0}{\longrightarrow} 1$$

at fixed $\lambda = \alpha_s L$

Next slides: get to NLL accuracy

Parton showers in the "vacuum" (ee&pp) How do parton showers work?

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

ELE NOR

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

Idea #1: gluon emission \equiv dipole splitting $(ij) \rightarrow (ik)(kj)$

ingredient 1: mapping

includes recoil

& energy-mom conservation

ingredient 2: emission probability Captures the soft/collinear limits

$$d\mathcal{P}_{\tilde{\imath}\tilde{\jmath}\to ijk} \approx \frac{\alpha_{s}^{(\mathsf{CMW})}}{\pi} \frac{dv}{v} d\bar{\eta} \times \\ \times [g(\bar{\eta})z_{i}P_{\tilde{\imath}\to ik}(z_{i}) \\ +g(-\bar{\eta})z_{j}P_{\tilde{\jmath}\to jk}(z_{j})]$$

 $v(\ll 1) \equiv$ ordering variable (measures "softness", e.g. k_t) $\bar{\eta} \equiv$ rapidity along the dipole (could also use ln z)

June 24 2022, SEWM 10 / 22

<<p>A 目 > A 目 > A 目 > 目 = のQQ

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

Gregory Soyez

Challenges and progress with parton showers

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

Idea #2:

iterate dipole splittings (populate the full phase space with multiple emissions)

Main benefits:

- automatic soft-gluon (antenna) pattern
- automatic angular ordering (coherence)
- easy collinear branchings

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

Idea #2:

iterate dipole splittings (populate the full phase space with multiple emissions)

Several challenges:

- ordering variable
- beyond large/leading-N_c
- treat recoil properly
- assess/improve accuracy

Towards NLL accuracy with the PanScales showers

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, arXiv:2002:11114]
[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Key element 1: how to associate colour and transverse recoil to dipoles? Expected radⁿ from $qg_1\bar{q}$ $[(qg_1) + (g_1\bar{q})]$ \bar{q}

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Key element 1: how to associate colour and transverse recoil to dipoles? Expected radⁿ from $qg_1\bar{q}$ \bar{q} recoils, C_F

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Key element 1: how to associate colour and transverse recoil to dipoles?

Notes:

- Say the two emissions have transverse momentum k_{t1} and k_{t2}
- "WRONG" only problematic if $k_{t2} \sim k_{t1}$
- Pythia is k_t -ordered \Rightarrow wrong IS problematic

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Key element 1: how to associate colour and transverse recoil to dipoles?

Notes:

- Say the two emissions have transverse momentum k_{t1} and k_{t2}
- "WRONG" only problematic if $k_{t2} \sim k_{t1}$
- PanScales with k_t-ordering still expected wrong

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Key element 1: how to associate colour and transverse recoil to dipoles?

Key element 2: choice of evolution variable

 $(0 < \beta < 1)$

ldea: emissions with commensurate k_t radiated with successively smaller angles

 $v \sim k_{t,ik} \theta^{\beta}_{ik}$

EL SQA

3 × < 3 ×

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Study

$$\frac{\sum_{MC} (\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL} (\lambda = \alpha_s L, \alpha_s)} \text{ for } \alpha_s \to 0.$$

 \times Pythia8 deviates from NLL

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Study

$$\frac{\sum_{MC}(\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda = \alpha_s L, \alpha_s)} \text{ for } \alpha_s \to 0.$$

 \times Pythia8 deviates from NLL \times Dire(v1) same as Pythia8

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Study

$$\frac{\sum_{MC}(\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda = \alpha_s L, \alpha_s)} \text{ for } \alpha_s \to 0.$$

- \times Pythia8 deviates from NLL
- × Dire(v1) same as Pythia8
- × PanLocal($\beta = 0$) still deviates (issue of k_t ordering remains)

12 / 22

 $\mathsf{PanLocal}\ \equiv \mathsf{momentum\ conservation\ ``local''\ in\ kinematic\ map}$

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Study

$$\frac{\sum_{MC}(\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda = \alpha_s L, \alpha_s)} \text{ for } \alpha_s \to 0.$$

- \times Pythia8 deviates from NLL
- × Dire(v1) same as Pythia8
- × PanLocal($\beta = 0$) still deviates (issue of k_t ordering remains)
- ✓ $PanLocal(0 < \beta < 1) OK$ (issue of k_t ordering remains)

 $\mathsf{PanLocal} ~\equiv \mathsf{momentum} ~\mathsf{conservation} ~`\mathsf{local''} ~\mathsf{in} ~\mathsf{kinematic} ~\mathsf{map}$

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Study

$$\frac{\sum_{MC} (\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL} (\lambda = \alpha_s L, \alpha_s)} \text{ for } \alpha_s \to 0.$$

- \times Pythia8 deviates from NLL
- × Dire(v1) same as Pythia8
- × PanLocal($\beta = 0$) still deviates (issue of k_t ordering remains)
- ✓ PanLocal($0 < \beta < 1$) OK (issue of k_t ordering remains)
- ✓ PanGlobal($0 \le \beta < 1$) OK (global recoil allows also for $\beta = 0$)

Cam. y_{23} , ratio to NLL 1.00 Σ_{MC}/Σ_{NLL}(α_s→0, λ) 0.90 0.85 0.95 Dipole(Py8) Dipole(Dire v1) $PanLocal(\beta=0,dip.)$ PanLocal($\beta = \frac{1}{2}$, dip.) PanLocal($\beta = \frac{1}{2}$, ant.) 0 PanGlobal($\beta = 0$) 0.80 PanGlobal($\beta = \frac{1}{2}$) Δ -0.6-0.4-0.20.0 $\lambda = \frac{1}{2}\alpha_s \log(y_{23})$

 $\begin{array}{ll} {\sf PanLocal} & \equiv {\sf momentum \ conservation \ ``local'' \ in \ kinematic \ map} \\ {\sf PanGlobal} & \equiv {\sf momentum \ conservation \ ``globally \ (global \ rescaling+Boost)} \end{array}$

Assessing accuracy: extensive observable list

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 2002.11114]

 $\mathsf{PanLocal}(\mathsf{0} < eta < \mathsf{1})$ and $\mathsf{PanGlobal}(\mathsf{0} \leq eta < \mathsf{1})$ get expected NLL (i.e. 0)

(green: OK at NLL; orange: issues at fixed order; red issues at fixed and all orders)

ELE NOR

Assessing accuracy: extension beyond leading N_c

 $\begin{aligned} \mathsf{PanLocal}(\mathsf{0} < \beta < \mathsf{1}) \ \& \ \mathsf{PanGlobal}(\mathsf{0} \leq \beta < \mathsf{1}) \\ & \text{get expected NLL} \end{aligned}$

Two methods beyond leading N_c ("segment" and NODS)

< 行

[K.Hamilton,R.Medves,G.P.Salam, L.Scyboz,GS,2011.10054]

Challenges and progress with parton showers Ju

I= nac

Assessing accuracy: extension to hadron collisions

22, SEWM 15 / 22

Assessing accuracy: spin correlations

Spin correlations enter at NLL:

- consecutive "hard" collinear splittings
- soft gluon + hard collinear splitting
 - $\begin{array}{l} \mathsf{PanLocal} \big(0 < \beta < 1 \big) \ \& \\ \mathsf{PanGlobal} \big(0 \leq \beta < 1 \big) \\ \text{get expected NLL} \end{array}$

[A.Karlberg,G.P.Salam,L.Scyboz, R.Verheyen,2103.16526] [K.Hamilton,+same,2111.01161]

-

-

Assessing accuracy: spin correlations

Spin correlations enter at NLL:

- consecutive "hard" collinear splittings
- soft gluon + hard collinear splitting
 - PanLocal($0 < \beta < 1$) & PanGlobal($0 \leq \beta < 1$) get expected NLL

[A.Karlberg, G.P.Salam, L.Scyboz, R.Verheven,2103.16526] [K.Hamilton,+same,2111.01161]

3 > 4 3

Overall result: first NLL parton shower

16 / 22

SIN NOR

Parton shower in the Quark-Gluon Plasma Main/leading picture

with P. Caucal, E. Iancu, A.H. Mueller 1801.09703, 1907.04866, 2005.05852, 2012.01457

Another look at scales

Another look at scales

Another look at scales

Gregory Soyez

Challenges and progress with parton showers

June 24 2022, SEWM

2 types of emissions

Standard "DGLAP" splitting rate:

$$d^2 \mathcal{P}_{
m vle} = rac{lpha_s(k_{\perp})}{\pi} P(z) dz \, rac{d heta}{ heta} pprox rac{2lpha_s(k_{\perp}) C_R}{\pi} \, rac{dz}{z} \, rac{d heta}{ heta}$$

✓ includes soft&collinear divergence

 ✓ Iterated (Markovian process) for successive branchings with angular ordering θ_{i+1} < θ_i

Medium interactions \Rightarrow additional emissions

BDMPS-Z spectrum (
$$\omega_c = \frac{1}{2} \hat{q} L^2$$
)

$$d^2 \mathcal{P}_{\mathsf{mie}} pprox rac{lpha_{s,\mathsf{med}} \mathcal{C}_R}{\pi} \sqrt{rac{2\omega_c}{E}} \, rac{dz}{z^{3/2}} \, \mathcal{P}_{\mathsf{broad}}(heta,\omega)$$

18 / 22

 \checkmark strong peak at small z, no collinear div.

- ✓ Here: assume θ from Gaussian k_{\perp} broadening
- ✓ Iterated (Markovian process) for successive branchings in formation time $t_f = \frac{2}{\omega \theta^2}$ ✓ NO ANGULAR ORDERING

compare the transverse momenta over the formation time: $t_f = \frac{2}{\omega \theta^2}$

$$egin{aligned} k^2_{\perp,\mathsf{vac}} &= \omega^2 heta^2 \ k^2_{\perp,\mathsf{med}} &= \hat{q} t_f = rac{2 \hat{q}}{\omega heta^2} \end{aligned}$$

compare the transverse momenta over the formation time: $t_f = \frac{2}{\omega \theta^2}$

$$egin{aligned} k^2_{\perp, ext{vac}} &= \omega^2 heta^2 \ k^2_{\perp, ext{med}} &= \hat{q} t_f = rac{2 \hat{q}}{\omega heta^2} \end{aligned}$$

Double-logarithmic approximation: 2 possible cases:

k²_{⊥,vac} ≫ k²_{⊥,med}: vacuum-like emission (VLE)
k²_{⊥,med} ≫ k²_{⊥,vac}: medium-induced emission (MIE)

transition at $k_{\perp,\mathrm{med}}^2 = k_{\perp,\mathrm{vac}}^2$ i.e. $\omega^3 \theta^4 = 2 \hat{q}$

Double-log accuracy:

in-medium VLEs

E SQA

Double-log accuracy:

- in-medium VLEs
- medium length
- VLEs vetoed in between

E SQA

Double-log accuracy:

- in-medium VLEs
- medium length
- VLEs vetoed in between
- colour (de)coherence
 - in-medium has $\theta > \theta_c$
 - in-medium: angular-ordered
 - ▶ in→out jump: no ordering

Double-log accuracy:

- in-medium VLEs
- medium length
- VLEs vetoed in between
- colour (de)coherence
 - in-medium has $\theta > \theta_c$
 - in-medium: angular-ordered
 - in→out jump: no ordering

Full picture: parton shower factorised in 3 stages in-medium angular-ordered VLEs

- **2** each VLE sources MIEs propagating through the medium
- **3** out-medium VLEs with first emission at any angle

- Easily implemented in a Monte-Carlo generator
- Generalised to longitudinally-expanding medium

- *R_{AA}*: "flatness" explained Higher *p*_t
 - \Rightarrow larger "in-medium" vac. phase-sp.

- \Rightarrow more sources for MIEs
- $\Rightarrow E_{\text{loss}}$ increased

- Easily implemented in a Monte-Carlo generator
- Generalised to longitudinally-expanding medium

- R_{AA}: "flatness" explained
- θ_g : clear transition around θ_c Expectedly more smeared in the data

- Easily implemented in a Monte-Carlo generator
- Generalised to longitudinally-expanding medium

- R_{AA}: "flatness" explained
- θ_g : clear transition around θ_c
- New idea: R_{AA} in bins of θ_g smaller θ_g
 - \Rightarrow less vacuum radiation
 - \Rightarrow less E_{loss} sources
 - \Rightarrow smaller R_{AA}

-

= 900

- Easily implemented in a Monte-Carlo generator
- Generalised to longitudinally-expanding medium

- R_{AA}: "flatness" explained
- θ_g : clear transition around θ_c
- New idea: R_{AA} in bins of θ_g smaller θ_g
 - \Rightarrow less vacuum radiation
 - \Rightarrow less E_{loss} sources
 - \Rightarrow smaller R_{AA}
 - Clearly observed by ATLAS

June 24 2022, SEWM 21 / 22

= 900

Monte Carlo generators (with parton showers at their core) are a key tool in HEP

Parton showers in pp collisions

- \rightarrow Need for precision (to match the precision quest of the LHC)
- ✓ New way to define and test accuracy (systematically improvable)
- $\checkmark\,$ First NLL shower
- ? TODO: *Z*+jets, dijets in *pp*, NNLL, ...

Parton showers in AA collisions

- ✓ New factorised approach (at double-log accuracy)
- ✓ Easy explanation for many quenching phenomena
 - ? TODO: beyond double log, geometry, " $\mathcal{O}(T)$ " phenomena
 - ? TODO: be more quantitative?

⇒ ↓ ≡ ↓ ≡ ⊨ √ Q ∩

Backup

三日 のへの

Basic features of QCD radiations

Take a gluon emission from a $(q\bar{q})$ dipole

Emission $(\tilde{p}_q \tilde{p}_{\bar{q}}) \rightarrow (p_q k)(k p_{\bar{q}})$:

$$k^{\mu}\equiv z_{q}\widetilde{p}^{\mu}_{q}+z_{ar{q}}\widetilde{p}^{\mu}_{ar{q}}+k^{\mu}_{ot}$$

3 degrees of freedom:

- Rapidity: $\eta = \frac{1}{2} \log \frac{z_q}{z_{\bar{q}}}$
- Transverse momentum: k_{\perp}
- Azimuth: ϕ

In the soft-collinear approximation

$$d\mathcal{P} = rac{lpha_{s}(k_{\perp})C_{F}}{\pi^{2}} \, d\eta \, rac{dk_{\perp}}{k_{\perp}} \, d\phi$$

Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 "log" variables η and log k_{\perp}

Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 "log" variables η and log k_{\perp}

Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 "log" variables η and log k_{\perp}

Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 "log" variables η and log k_{\perp}

3 / 12

Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 "log" variables η and log k_{\perp}

Multiple emissions in the Lund plane

Gregory Soyez

Challenges and progress with parton showers

June 24 2022, SEWM

4 / 12

Ordering variable: transverse momentum k_t

June 24 2022, SEWM 5 / 12

Ordering variable: transverse momentum k_t

= 900

Ordering variable: transverse momentum k_t

= 900

Different ordering variables...

... can lead to different emission orderings

June 24 2022, SEWM 6 / 12

NLL accuracy for a range of observables

- global event shapes
 - thrust
 - jet rates
 - angularities
 - broadening
 - ► ...
- non-global observables
 - e.g. energy in slice
- multiplicity
 (NLL is αⁿ_sL²ⁿ⁻¹)

= 900

NLL accuracy for a range of observables

- global event shapes
 - thrust
 - jet rates
 - angularities
 - broadening
 - ►
- non-global observables
 - e.g. energy in slice
- multiplicity (NLL is $\alpha_s^n L^{2n-1}$)

Correct matrix elements for N well separated emissions in the Lund plane

NLL accuracy for a range of observables

- global event shapes
 - thrust
 - jet rates
 - angularities
 - broadening
 - ► ...
- non-global observables
 - e.g. energy in slice
- multiplicity
 (NLL is αⁿ_sL²ⁿ⁻¹)

Correct matrix elements for *N* **well separated emissions in the Lund plane**

= 900

NLL accuracy for a range of observables

- global event shapes
 - thrust
 - jet rates
 - angularities
 - broadening
 - Þ ...
- non-global observables
 - e.g. energy in slice
- multiplicity
 (NLL is αⁿ_sL²ⁿ⁻¹)

Correct matrix elements for N well separated emissions in the Lund plane

NLL accuracy for a range of observables

- global event shapes
 - thrust
 - jet rates
 - angularities
 - broadening
 - •
- non-global observables
 - e.g. energy in slice
- multiplicity (NLL is $\alpha_s^n L^{2n-1}$)

Correct matrix elements for N well separated emissions in the Lund plane

Lund-plane representation: transverse recoil boundaries

June 24 2022, SEWM 8 / 12

Lund-plane representation: transverse recoil boundaries

Lund-plane representation: transverse recoil boundaries

Lund-plane representation: PanLocal evolution variable

Lund-plane representation: PanLocal evolution variable

Lund-plane representation: PanLocal evolution variable

Kinematic map

(just to give an idea of what it takes)

$$p_k = a_k \tilde{p}_i + b_k \tilde{p}_j + k_\perp$$

$$p_i = a_i \tilde{p}_i + b_i \tilde{p}_j - f k_\perp$$

$$p_j = a_j \tilde{p}_i + b_j \tilde{p}_j - (1 - f) k_\perp$$

f decides where to put recoil

- $f \rightarrow 1$ when $k \rightarrow i$
- $f \rightarrow 0$ when $k \rightarrow j$

Where to put the transition?

- Pythia8/Dire: equal angles in dipole rest frame
- PanLocal: equal angles in event frame

I DOC

10 / 12

Kinematic map

(just to give an idea of what it takes)

$$p_k = a_k \tilde{p}_i + b_k \tilde{p}_j + k_\perp$$
$$p_i = a_i \tilde{p}_i + b_i \tilde{p}_j - f k_\perp$$
$$p_j = a_j \tilde{p}_i + b_j \tilde{p}_j - (1 - f) k_\perp$$

with (PanLocal(β), variables \mathbf{v} and $\tilde{\eta}$)

$$\begin{aligned} |k_{\perp}| &= \rho \, \mathbf{v} \, e^{\beta |\tilde{\eta}|} \quad \rho = \left(\frac{2\tilde{p}_{i} \cdot Q \, \tilde{p}_{j} \cdot Q}{Q^{2} \tilde{p}_{i} \cdot \tilde{p}_{j}}\right)^{\beta/2} \\ a_{k} &= \sqrt{\frac{\tilde{p}_{j} \cdot Q}{2\tilde{p}_{i} \cdot Q \, \tilde{p}_{i} \cdot \tilde{p}_{j}}} \, |k_{\perp}| \, e^{+\tilde{\eta}}, \\ b_{k} &= \sqrt{\frac{\tilde{p}_{i} \cdot Q}{2\tilde{p}_{i} \cdot Q \, \tilde{p}_{i} \cdot \tilde{p}_{j}}} \, |k_{\perp}| \, e^{-\tilde{\eta}}, \end{aligned}$$

$f pprox \Theta(ilde\eta)$ and E-mom conservation

f decides where to put recoil

- $f \rightarrow 1$ when $k \rightarrow i$
- $f \rightarrow 0$ when $k \rightarrow j$

Where to put the transition?

- Pythia8/Dire: equal angles in dipole rest frame
- PanLocal: equal angles in event frame

A last example

 Look at angle Δψ₁₂ between two hardest "emissions" in jet (defined through Lund declusterings)

11 / 12

A last example

- Look at angle Δψ₁₂ between two hardest "emissions" in jet (defined through Lund declusterings)
- quite large NLL deviations in current dipole showers
- differences between quark and gluon jets

11 / 12

A last example

- Look at angle Δψ₁₂ between two hardest "emissions" in jet (defined through Lund declusterings)
- quite large NLL deviations in current dipole showers
- differences between quark and gluon jets
- PanGlobal gets correct NLL

JetNed vs. other HI generators

Monte-Carlo	JetMed	MARTINI	MATTER+LBT	Q-PYTHIA	JEWEL	Hybrid
Fact. scale	\checkmark	\checkmark	\checkmark	×	×	×
Decoherence	 ✓ 	×	×	×	×	×
LPM effect	\checkmark	\checkmark	X ⁽¹⁾	\checkmark	 ✓ 	×
Multiple branching	\checkmark	?	×	×	?	×
Hadronisation	×	\checkmark	\checkmark	\checkmark	✓	\checkmark
Medium geom/expnd.	×	\checkmark	\checkmark	X ⁽²⁾	 ✓ 	\checkmark
Hard scatterings	×	✓	\checkmark	×	 ✓ 	×
Medium response	×	×	\checkmark	×	✓	✓
HT splitting functions	×	×	\checkmark	×	×	×
Strongly coupled E_{loss}	×	×	×	×	×	\checkmark

Notes:

(1) A modified-Boltzmann approach has been proposed to take into account the LPM regime.

(2) Q-PYTHIA can be interfaced to an optical Glauber model

[P.Caucal, PhD, 2010.02874]

▶ ∢ ∃ ▶

EL SQA