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Intro: event generators for high-energy collisions

Gregory Soyez Challenges and progress with parton showers June 24 2022, SEWM 1 / 22



(Fairly) generic example

Most observables/measurements can take the following form:

O =
∑
n

∫
[dΨn]

dnσ

dk1 . . . dkn
On(k1, . . . , kn)

Outrageously complex in general

Idea: simulate numerically
sample “randomly” using a Monte Carlo event generator

Main advantage: works for basically any observable
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Outrageously complex in general

Alice (pp) Alice (PbPb)
Even for pheno calculations this quickly grows out of control

Idea: simulate numerically
sample “randomly” using a Monte Carlo event generator

Main advantage: works for basically any observable
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Event Generators are among us!

[plot by Keith Hamilton]
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Anatomy of a high-energy collision

?

1 GeV 10 GeV 100 GeV 1 TeV scale

hard
process

Simulating a
high-energy

collision requires
several ingredients

A hard process

Parton shower
(initial and
final-state)

Hadronisation

Multi-parton
interactions

...
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Basic message #2: physics at all scales
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Parton
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A lot of work in past 20 years:

“Amplitudes”

MadGraph, aMC@NLO,

POWHEG, MCFM, ...

MLM, CKKW, Mi(N)NLO

UNNLOPS, Geneva, ...

Historical showers:

Pythia,Herwig,Sherpa

More recent work:

Dire, Vincia, Deductor, PanScales...

Nonperturbative modelling

∝ (µNP/Q)#

if IRC-safe

Parton
shower

This Talk
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Plan

✓ Motivate the importance of event generators

Parton showers in “the vacuum” (ee and pp collisions)

▶ Goal: achieve precision (across all scales)

▶ How is it built?

▶ progress within PanScales (assessing and improving accuracy)

Parton showers in the medium (AA collisions)

▶ Get a meaningful physical picture
Qualitative (slowly moving towards quantitative)

▶ the “Saclay”/JetMed factorised picture
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A nice illustrative example for precision needs

Uncertainty on the reconstruction
of the jet energy in ATLAS:

Dominant source comes from MC
generator (Sherpa v. Pythia)

Critical!

This affects ALL the
measurements involving jets
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Parton showers in the “vacuum” (ee&pp)
“Accuracy”?
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Parton showers cover a large range of scales

Disparate scales ⇒ logs ⇒ all-order resummation

(Cumulative) distributions can (often) be written as (L ≡ ln 1/vcut)

P(v < e−L) = exp

[
g1(αsL)L︸ ︷︷ ︸

leading log(LL)

+ g2(αsL)︸ ︷︷ ︸
next-to-leading log(NLL)

+ g3(αsL)αs︸ ︷︷ ︸
NNLL

+ . . .

]

Examples for the observable v :

Thrust T = max|u⃗|=1

∑
i |p⃗i˙⃗u|∑
i |p⃗i |

Cambridge y23 (≈ largest kt in an angular-ordered clustering)

angularities

Z transverse momentum in Drell-Yan

Jet vetos
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Parton showers cover a large range of scales

Disparate scales ⇒ logs ⇒ all-order resummation

(Cumulative) distributions can (often) be written as (L ≡ ln 1/vcut)

P(v < e−L) = exp

[
g1(αsL)L︸ ︷︷ ︸

leading log(LL)

+ g2(αsL)︸ ︷︷ ︸
next-to-leading log(NLL)

+ g3(αsL)αs︸ ︷︷ ︸
NNLL

+ . . .

]

O(1/αs) O(1) O(αs)

in resummation regime:

αs ≪ 1, L ≫ 1, λ ≡ αsL ∼ 1

We should control at least O(1) contributions
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Testing accuracy

0.6 0.4 0.2 0.0
= 1

2 slog(y23)

0.80
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)

Cam. y23, ratio to NLL

Pythia8

NLL
s = 0.02

Idea for testing:

ΣMC (λ=αsL,αs)

ΣNLL(λ=αsL,αs)
v. 1

with λ = αsL

NLL deviations

or

subleading effects?

Next slides: get to NLL accuracy
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Parton showers in the “vacuum” (ee&pp)
How do parton showers work?
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Dipole/Antenna showers: ingredients

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are
dipole/antenna showers (main exception: Herwig)
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Dipole/Antenna showers: ingredients

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are
dipole/antenna showers (main exception: Herwig)

Idea #1:

gluon emission ≡ dipole splitting

(ij) → (ik)(kj)

ingredient 1: mapping

p̃i , p̃j︸ ︷︷ ︸
before split

→ pi , pj , pk︸ ︷︷ ︸
after split

includes recoil
& energy-mom conservation

viewed as

→

p̃i

p̃j

pi

pj

pk
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Dipole/Antenna showers: ingredients

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are
dipole/antenna showers (main exception: Herwig)

Idea #1:

gluon emission ≡ dipole splitting

(ij) → (ik)(kj)

ingredient 1: mapping

p̃i , p̃j︸ ︷︷ ︸
before split

→ pi , pj , pk︸ ︷︷ ︸
after split

includes recoil
& energy-mom conservation

ingredient 2: emission probability
Captures the soft/collinear limits

dPı̃ȷ̃→ijk ≈α
(CMW)
s

π

dv

v
d η̄×

×[g(η̄)ziPı̃→ik(zi )

+g(−η̄)zjPȷ̃→jk(zj)]

v(≪ 1) ≡ ordering variable
(measures “softness”, e.g. kt)

η̄ ≡ rapidity along the dipole
(could also use ln z)
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Dipole/Antenna showers: ingredients

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are
dipole/antenna showers (main exception: Herwig)

generated as

v0 = Q v1 v2 v3 v4 v5 µNP

Idea #2:

iterate dipole splittings
(populate the full phase space with

multiple emissions)

Rooted in QCD factorisation

Pn+1(vn+1)

= e−∆n(v0,v)|M2|(v)Pn(vn)

n, n + 1 particles

probabilities

Sudakov

≡”no emissions”
(virtuals)

real emission
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Dipole/Antenna showers: ingredients

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are
dipole/antenna showers (main exception: Herwig)

generated as

v0 = Q v1 v2 v3 v4 v5 µNP

Idea #2:

iterate dipole splittings
(populate the full phase space with

multiple emissions)

Main benefits:

automatic soft-gluon
(antenna) pattern

automatic angular
ordering (coherence)

easy collinear branchings
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Dipole/Antenna showers: ingredients

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are
dipole/antenna showers (main exception: Herwig)

generated as

v0 = Q v1 v2 v3 v4 v5 µNP

Idea #2:

iterate dipole splittings
(populate the full phase space with

multiple emissions)

Several challenges:

ordering variable

beyond large/leading-Nc

treat recoil properly

assess/improve accuracy
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Towards NLL accuracy with the PanScales showers

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,arXiv:2002:11114]
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PanScales showers
[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]

Key element 1: how to associate colour and transverse recoil to dipoles?

Expected radn

from qg1q̄
[(qg1) + (g1q̄)] qq̄

g1
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PanScales showers
[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]

Key element 1: how to associate colour and transverse recoil to dipoles?

Expected radn

from qg1q̄
[(qg1) + (g1q̄)] qq̄

g1

q recoils, CF
g recoi

ls, CA

q̄ recoils, CF
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PanScales showers
[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]

Key element 1: how to associate colour and transverse recoil to dipoles?

Expected radn

from qg1q̄
[(qg1) + (g1q̄)] qq̄

g1

q recoils, CF
g recoi

ls, CA

q̄ recoils, CF

Pythia:
recoiler decided in
dipole rest frame qq̄

g1

WRONGWRONG

Notes:

Say the two emissions have transverse momentum kt1 and kt2

“WRONG” only problematic if kt2 ∼ kt1

Pythia is kt-ordered ⇒ wrong IS problematic
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PanScales showers
[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]

Key element 1: how to associate colour and transverse recoil to dipoles?

Expected radn

from qg1q̄
[(qg1) + (g1q̄)] qq̄

g1

q recoils, CF
g recoi

ls, CA

q̄ recoils, CF

PanScales:
recoiler decided in

event frame qq̄

g1

OK
good enough

(with right evol. var.)

Notes:

Say the two emissions have transverse momentum kt1 and kt2

“WRONG” only problematic if kt2 ∼ kt1

PanScales with kt-ordering still expected wrong
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PanScales showers
[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]

Key element 1: how to associate colour and transverse recoil to dipoles?

Expected radn

from qg1q̄
[(qg1) + (g1q̄)] qq̄

g1

q recoils, CF
g recoi

ls, CA

q̄ recoils, CF

PanScales:
recoiler decided in

event frame qq̄

g1

OK
good enough

(with right evol. var.)

Key element 2: choice of evolution variable

v ∼ kt,ikθ
β
ik (0 < β < 1)

Idea: emissions with commensurate kt
radiated with successively smaller angles
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Assessing accuracy: y23
[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]

Example: C/A y23 ≡ maxikti

Study

ΣMC (λ=αsL,αs)

ΣNLL(λ=αsL,αs)
for αs → 0.

× Pythia8 deviates from NLL

× Dire(v1) same as Pythia8
× PanLocal(β = 0) still deviates

(issue of kt ordering remains)

✓ PanLocal(0 < β < 1) OK
(issue of kt ordering remains)

✓ PanGlobal(0 ≤ β < 1) OK
(global recoil allows also for β = 0)

0.6 0.4 0.2 0.0
= 1

2 slog(y23)

0.80

0.85

0.90

0.95

1.00

M
C
/

N
LL

(
s

0,
)

Cam. y23, ratio to NLL

NLL
 Dipole(Py8)

PanLocal ≡ momentum conservation “local” in kinematic map
PanGlobal ≡ momentum conservation “globally (global rescaling+Boost)
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Assessing accuracy: y23
[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]

Example: C/A y23 ≡ maxikti

Study

ΣMC (λ=αsL,αs)

ΣNLL(λ=αsL,αs)
for αs → 0.

× Pythia8 deviates from NLL
× Dire(v1) same as Pythia8
× PanLocal(β = 0) still deviates

(issue of kt ordering remains)

✓ PanLocal(0 < β < 1) OK
(issue of kt ordering remains)

✓ PanGlobal(0 ≤ β < 1) OK
(global recoil allows also for β = 0)

0.6 0.4 0.2 0.0
= 1

2 slog(y23)

0.80
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0.95

1.00

M
C
/

N
LL

(
s

0,
)

Cam. y23, ratio to NLL

NLL
 Dipole(Py8)

 Dipole(Dire v1)
 PanLocal( =0,dip.)

PanLocal ≡ momentum conservation “local” in kinematic map

PanGlobal ≡ momentum conservation “globally (global rescaling+Boost)
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Assessing accuracy: y23
[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]

Example: C/A y23 ≡ maxikti

Study

ΣMC (λ=αsL,αs)

ΣNLL(λ=αsL,αs)
for αs → 0.

× Pythia8 deviates from NLL
× Dire(v1) same as Pythia8
× PanLocal(β = 0) still deviates

(issue of kt ordering remains)

✓ PanLocal(0 < β < 1) OK
(issue of kt ordering remains)

✓ PanGlobal(0 ≤ β < 1) OK
(global recoil allows also for β = 0)
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Assessing accuracy: extensive observable list
[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,2002.11114]
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2

i ]
FC1

2

FC1

BW

BT

y23

(Py8/Dire v1)

NGLs

obs = 1
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PanGlobal
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event
shapes
(different
scalings)

non-global
multiplicity

PanLocal(0 < β < 1) and PanGlobal(0 ≤ β < 1) get expected NLL (i.e. 0)

(green: OK at NLL; orange: issues at fixed order; red issues at fixed and all orders)
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Assessing accuracy: extension beyond leading Nc
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Two methods beyond leading Nc

(“segment” and NODS)

[K.Hamilton,R.Medves,G.P.Salam,

L.Scyboz,GS,2011.10054]
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Assessing accuracy: extension to hadron collisions
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PanLocal(0 < β < 1) &
PanGlobal(0 ≤ β < 1)
get expected NLL

For now only colour-singlet production
[M.van Beekveld,S.Ferrario Ravasio,G.P.Salam,

A.Soto-Ontoso,GS,R.Verheyen,2205.02237]
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Assessing accuracy: spin correlations
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All-order γ∗ → qq̄, λ = −0.5 Spin correlations enter at NLL:

consecutive “hard”
collinear splittings

soft gluon + hard
collinear splitting

PanLocal(0 < β < 1) &
PanGlobal(0 ≤ β < 1)
get expected NLL

[A.Karlberg,G.P.Salam,L.Scyboz,

R.Verheyen,2103.16526]

[K.Hamilton,+same,2111.01161]

Overall result: first NLL parton shower
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Assessing accuracy: spin correlations

0.00

0.05

0.10

1
σ

to
t

d
σ

d
∆
ψ

1
2

α
s

=
1
0 −

7
,

1
-lo

o
p

ru
n

n
in

g
z
1
>

0
.1

,
z
2
>

0
.1

all

gg

qq̄
rest

all

gg

qq̄
rest

all

gg

qq̄
rest

all

gg

qq̄
rest

∆ψ12

PanGlobal (β = 0)
PanLocal (dip. β = 0.5)

PanLocal (ant. β = 0.5)
Toy shower

−5
0
5 all

×10−3
PS−toy

toy

−5
0
5 g

g

−5
0
5 qq̄

−5
0
5 rest

−π −π/2 0 π/2 π

∆ψ

0.000

0.002

0.004

0.006

0.008

1
σ

to
t

d
Σ

d
∆
ψ

α
s

=
1
0 −

7
,

1
-lo

o
p

ru
n

n
in

g

all

gg

qq̄

rest

all

gg

qq̄

rest

all

gg

qq̄

rest

all

gg

qq̄

rest

EEEC

−5
0
5 all

×10−3
PS−toy

toy

−5
0
5 g

g

−5
0
5 qq̄

−π −π/2 0 π/2 π

∆ψ

−5
0
5 rest

All-order γ∗ → qq̄, λ = −0.5 Spin correlations enter at NLL:

consecutive “hard”
collinear splittings

soft gluon + hard
collinear splitting

PanLocal(0 < β < 1) &
PanGlobal(0 ≤ β < 1)
get expected NLL

[A.Karlberg,G.P.Salam,L.Scyboz,

R.Verheyen,2103.16526]

[K.Hamilton,+same,2111.01161]

Overall result: first NLL parton shower
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Parton shower in the Quark-Gluon Plasma
Main/leading picture

with P. Caucal, E. Iancu, A.H. Mueller
1801.09703, 1907.04866, 2005.05852, 2012.01457
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Another look at scales

Q ≡
100 GeV
or higher

µNP ∼
1 GeV

L
H
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Hard
process,

Hadronisation
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ωbr

Qs

ωc = q̂L2

ωbr = α2
s q̂L

2

Qs =
√
q̂L

T

Medium

Back-reaction,
medium response

Medium-
induced
emissions

Working assumption

ωc , ωbr,Qs ≫ T

⇓
focus on shower

neglect thermalisation
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2 types of emissions

θ

(1−z)Eω = zE

E

Standard “DGLAP” splitting rate:

d2Pvle =
αs(k⊥)

π
P(z)dz

dθ

θ
≈ 2αs(k⊥)CR

π

dz

z

dθ

θ

✓ includes soft&collinear divergence
✓ Iterated (Markovian process) for successive
✓ branchings with angular ordering θi+1 < θi

θ

(1−z)Eω = zE

E

Medium interactions ⇒ additional emissions

BDMPS-Z spectrum (ωc = 1
2
q̂L2)

d2Pmie ≈ αs,medCR

π

√
2ωc

E

dz

z3/2
Pbroad(θ, ω)

✓ strong peak at small z , no collinear div.
✓ Here: assume θ from Gaussian k⊥ broadening
✓ Iterated (Markovian process) for successive
✓ branchings in formation time tf =

2
ωθ2

✓ NO ANGULAR ORDERING
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Combining vacuum and medium-induced emissions

compare the transverse momenta over the formation time: tf =
2

ωθ2

k2
⊥,vac = ω2θ2

k2
⊥,med = q̂tf =

2q̂

ωθ2

Double-logarithmic approximation: 2 possible cases:

k2
⊥,vac ≫ k2

⊥,med: vacuum-like emission (VLE)

k2
⊥,med ≫ k2

⊥,vac: medium-induced emission (MIE)

transition at k2
⊥,med = k2

⊥,vac i.e. ω3θ4 = 2q̂
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Factorised physical picture

Double-log accuracy:

in-medium VLEs

medium length

VLEs vetoed in between

colour (de)coherence
▶ in-medium has θ > θc
▶ in-medium: angular-ordered
▶ in→out jump: no ordering

θ

ω
θ

=
lo

g
 

t
lo

g
 k

log 1/

ω
 =E

medium

inside

ω
3 θ

4 =2q

Full picture: parton shower factorised in 3 stages

in-medium angular-ordered VLEs
each VLE sources MIEs propagating through the medium
out-medium VLEs with first emission at any angle
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Basic results

Easily implemented in a Monte-Carlo generator

Generalised to longitudinally-expanding medium

100 200 500 1000
pT [GeV]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R A
A
(x

)

anti-kt(R = 0.4), |yjet| < 2.8
= 1, t0 = 1/Qs, q0t0 = Q2

s

jet RAA (expanding medium, EPPS16NLO)
Qs = 1.2 GeV, L = 4 fm, med = 0.35
Qs = 1.4 GeV, L = 4 fm, med = 0.28
Qs = 1.6 GeV, L = 4 fm, med = 0.23
Qs = 2.0 GeV, L = 4 fm, med = 0.17

RAA: “flatness” explained
Higher pt
⇒ larger “in-medium” vac. phase-sp.
⇒ more sources for MIEs
⇒ Eloss increased

θg : clear transition around θc

New idea: RAA in bins of θg
smaller θg
⇒ less vacuum radiation
⇒ less Eloss sources
⇒ smaller RAA
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RAA: “flatness” explained

θg : clear transition around θc
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Basic results

Easily implemented in a Monte-Carlo generator

Generalised to longitudinally-expanding medium

sourge: A.Sickles QM2022

talk

RAA: “flatness” explained

θg : clear transition around θc

New idea: RAA in bins of θg
smaller θg
⇒ less vacuum radiation
⇒ less Eloss sources
⇒ smaller RAA

Clearly observed by ATLAS
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Conclusions

Monte Carlo generators (with parton showers at their core)
are a key tool in HEP

Parton showers in pp collisions

→ Need for precision (to match the
precision quest of the LHC)

✓ New way to define and test
accuracy (systematically
improvable)

✓ First NLL shower

? TODO: Z+jets, dijets in pp,
NNLL, ...

Parton showers in AA collisions

→ Many effect, e.g. vacuum and
medium-induced emissions

✓ New factorised approach (at
double-log accuracy)

✓ Easy explanation for many
quenching phenomena

? TODO: beyond double log,
geometry, “O(T )” phenomena

? TODO: be more quantitative?
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Backup
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Basic features of QCD radiations

Take a gluon emission from a (qq̄) dipole

p̃q
pq

pq̄
p̃q̄

k

Emission (p̃qp̃q̄) → (pqk)(kpq̄):

kµ ≡ zqp̃
µ
q + zq̄p̃

µ
q̄ + kµ⊥

3 degrees of freedom:

Rapidity: η = 1
2 log

zq
zq̄

Transverse momentum: k⊥
Azimuth: ϕ

In the soft-collinear approximation

dP =
αs(k⊥)CF

π2
dη

dk⊥
k⊥

dϕ
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Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 “log” variables η and log k⊥

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

k

q q̄

k

soft &
colinear

hard
collinear

so
ft
(l
ar
ge

an
gl
e)

soft &
colinear

ha
rd
co
lli
ne
ar
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Multiple emissions in the Lund plane

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

a
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c

a
b c
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Parton shower in the Lund plane

Ordering variable: transverse momentum kt

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

Start with kt = Q

one qq̄ dipole

Generate kt1 < Q
(using Sudakov proba)

Generate η1
&split dipoles

(qq̄) → (qg1) + (g1q̄)

Generate kt2 < kt1
(now from 2 dipoles)

Generate η2
&split dipoles

(g1q̄) → (g1g2) + (g2q̄)

Iterateuntil kt = kt,cut
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Different ordering variables...

... can lead to different emission orderings

kt (transv. mom.) ordering

a

b

kta > ktb
⇒ a emitted before b

q (virtuality) ordering

a

b

qb > qs
⇒ b emitted before a
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Our targeted accuracy

NLL accuracy for
a range of observables

global event shapes
▶ thrust

▶ jet rates

▶ angularities

▶ broadening

▶ ...

non-global
observables
e.g. energy in slice

multiplicity
(NLL is αn

s L
2n−1)

Correct matrix elements for N well
separated emissions in the Lund plane

(only half the primary Lund plane for simplicity)

separated
in any

direction

“ordering”
depends on
observable

mistake
allowed
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Lund-plane representation: transverse recoil boundaries

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

q
recoilsq̄

re
co
ils

g
recoils

Expected

Pythia8/DirePanLocal
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Lund-plane representation: PanLocal evolution variable

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

1 2

2 11 2

kt ordering

kt recoil from q: OK

kt ordering

kt recoil from 1: not OK

v ∝ kte
−β|η| ordering

kt recoil from q: OK
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Kinematic map

(just to give an idea of what it takes)

pk = ak p̃i + bk p̃j + k⊥
pi = ai p̃i + bi p̃j − f k⊥
pj = aj p̃i + bj p̃j − (1− f )k⊥

with (PanLocal(β), variables v and η̃)

|k⊥| = ρ v eβ|η̃| ρ =
(
2p̃i .Q p̃j .Q
Q2 p̃i .p̃j

)β/2

ak =

√
p̃j .Q

2p̃i .Q p̃i .p̃j
|k⊥| e+η̃,

bk =
√

p̃i .Q
2p̃j .Q p̃i .p̃j

|k⊥| e−η̃,

f ≈ Θ(η̃) and E-mom conservation

f decides where to put recoil

f → 1 when k → i

f → 0 when k → j

Where to put the transition?

Pythia8/Dire: equal angles
in dipole rest frame

PanLocal: equal angles in
event frame
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A last example

▶ Look at angle ∆ψ12 between
two hardest “emissions” in jet
(defined through Lund declusterings)

▶ quite large NLL deviations
in current dipole showers

▶ differences between
quark and gluon jets

▶ PanGlobal gets correct NLL

∆ψ12
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JetNed vs. other HI generators

Monte-Carlo JetMed MARTINI MATTER+LBT Q-PYTHIA JEWEL Hybrid
Fact. scale ✓ ✓ ✓ ✗ ✗ ✗

Decoherence ✓ ✗ ✗ ✗ ✗ ✗

LPM effect ✓ ✓ ✗(1) ✓ ✓ ✗

Multiple branching ✓ ? ✗ ✗ ? ✗

Hadronisation ✗ ✓ ✓ ✓ ✓ ✓
Medium geom/expnd. ✗ ✓ ✓ ✗(2) ✓ ✓
Hard scatterings ✗ ✓ ✓ ✗ ✓ ✗

Medium response ✗ ✗ ✓ ✗ ✓ ✓
HT splitting functions ✗ ✗ ✓ ✗ ✗ ✗

Strongly coupled Eloss ✗ ✗ ✗ ✗ ✗ ✓

Notes:
(1) A modified-Boltzmann approach has been proposed to take into account the LPM regime.
(2) Q-PYTHIA can be interfaced to an optical Glauber model

[P.Caucal,PhD,2010.02874]
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