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Flows and trees

2 historical pictures to see jets
1 Energy flows (e.g. Sterman-Weinberg, SISCone)
2 Branching trees (e.g. anti-kt , kt , Cambridge/Aachen)

Both pictures are physically sound; both pictures have pros and cons
(cone maybe more intuitive; trees usually nicer to pQCD; more would be another talk)

Ideas carry through to jet substructure
some tools rely on trees (e.g. mMDT/SoftDrop), some rely on E -flows (e.g. EEC, N-subjettiness)

This talk

Show the virtues and breadth of branching trees
through a single “magic wand”: the Lund jet plane(s)/tree

Including: basic intuition, pQCD calculations, MC developments, Deep Learning, ...

See Jesse’s talk for the virtues and breadth of E flows
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The Lund plane(s) representation (1/3)

use Cambridge/Aachen to iteratively recombine the closest pair
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E.g.: conceptually the largest-energy (pt or z) branch ≡ emissions from the “leading parton”
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The Lund plane(s) representation (2/3)

larger angles smaller angles

closely follows our beloved
angular ordering

i.e. mimics partonic cascade

can be organised in Lund planes

primary
secondary
...

kt ≡ momentum transverse to a dipole

η ≡ 1
2
ln zq/zq̄ (longitudinal component)

ϕ ≡ azimuthl angle dP = αs(kt)CF

π2 dη dkt
kt

dϕ

ln kt ≈ zθ

η ≈ ln 1/θ

pq

pq̄

k

kµ = zqp
µ
q + zq̄p

µ
q̄ + kµ

t
watch out:

at commensurate angles
details of C/A matter

Gregory Soyez Jets and Lund plane(s) Flowing into the future, SCGP 4 / 24



The Lund plane(s) representation (2/3)

larger angles smaller angles

closely follows our beloved
angular ordering

i.e. mimics partonic cascade

can be organised in Lund planes

primary
secondary
...

kt ≡ momentum transverse to a dipole

η ≡ 1
2
ln zq/zq̄ (longitudinal component)

ϕ ≡ azimuthl angle dP = αs(kt)CF

π2 dη dkt
kt

dϕ

ln kt ≈ zθ

η ≈ ln 1/θ

pq

pq̄

k

kµ = zqp
µ
q + zq̄p

µ
q̄ + kµ

t

watch out:
at commensurate angles
details of C/A matter

Gregory Soyez Jets and Lund plane(s) Flowing into the future, SCGP 4 / 24



The Lund plane(s) representation (2/3)

larger angles smaller angles

closely follows our beloved
angular ordering

i.e. mimics partonic cascade

can be organised in Lund planes

primary

secondary
...

kt ≡ momentum transverse to a dipole

η ≡ 1
2
ln zq/zq̄ (longitudinal component)

ϕ ≡ azimuthl angle dP = αs(kt)CF

π2 dη dkt
kt

dϕ

ln kt ≈ zθ

η ≈ ln 1/θ

pq

pq̄

k

kµ = zqp
µ
q + zq̄p

µ
q̄ + kµ

t
watch out:

at commensurate angles
details of C/A matter

Gregory Soyez Jets and Lund plane(s) Flowing into the future, SCGP 4 / 24



The Lund plane(s) representation (2/3)

larger angles smaller angles

closely follows our beloved
angular ordering

i.e. mimics partonic cascade

can be organised in Lund planes

primary
secondary

...

kt ≡ momentum transverse to a dipole

η ≡ 1
2
ln zq/zq̄ (longitudinal component)

ϕ ≡ azimuthl angle dP = αs(kt)CF

π2 dη dkt
kt

dϕ

ln kt ≈ zθ

η ≈ ln 1/θ

pq

pq̄

k

kµ = zqp
µ
q + zq̄p

µ
q̄ + kµ

t
watch out:

at commensurate angles
details of C/A matter

Gregory Soyez Jets and Lund plane(s) Flowing into the future, SCGP 4 / 24



The Lund plane(s) representation (2/3)

larger angles smaller angles

closely follows our beloved
angular ordering

i.e. mimics partonic cascade

can be organised in Lund planes

primary
secondary
...

kt ≡ momentum transverse to a dipole

η ≡ 1
2
ln zq/zq̄ (longitudinal component)

ϕ ≡ azimuthl angle dP = αs(kt)CF

π2 dη dkt
kt

dϕ

ln kt ≈ zθ

η ≈ ln 1/θ

pq

pq̄

k

kµ = zqp
µ
q + zq̄p

µ
q̄ + kµ

t
watch out:

at commensurate angles
details of C/A matter

Gregory Soyez Jets and Lund plane(s) Flowing into the future, SCGP 4 / 24



The Lund plane(s) representation (2/3)

larger angles smaller angles

closely follows our beloved
angular ordering

i.e. mimics partonic cascade

can be organised in Lund planes

primary
secondary
...

kt ≡ momentum transverse to a dipole

η ≡ 1
2
ln zq/zq̄ (longitudinal component)

ϕ ≡ azimuthl angle dP = αs(kt)CF

π2 dη dkt
kt

dϕ

ln kt ≈ zθ

η ≈ ln 1/θ

pq

pq̄

k

kµ = zqp
µ
q + zq̄p

µ
q̄ + kµ

t

watch out:
at commensurate angles
details of C/A matter

Gregory Soyez Jets and Lund plane(s) Flowing into the future, SCGP 4 / 24



The Lund plane(s) representation (3/3)

θi

θj

zi

zj

Ti ≡ {θi , kt,i , zi , ψi ,mi , . . . }

for ee events: (similar for jets in pp)

η = − ln tan θi
2

kt = Esoft sin θ z =
Esoft

Eparent
ψ ≡ azimuthal angle

Two different Lund (L) structures
“primary plane”
(follow hard branch)

Lprim ≡ {Ti}
OR

full (de-)clustering tree

Ltree ≡ {T ,Lhard,Lsoft}

Lhard

LsoftLtree

T
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Main features

Primary Lund-plane regions

soft-collinear

hard-collinear (large
z)

IS
R
(la

rg
e
Δ
)

M
PI/U

E non-pert. (small kt)

ln(1/Δ)

ln
(k

t/
G
e
V
)

Separated physics regions

Different physics in different regions

pQCD above kt ≳ ΛQCD (data: 5−10 GeV)

pQCD split: soft v. soft+coll v. hard-coll

NP effects at low kt (hadr & MPI)
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Central observation

Lund diagrams are useful to do resummations, MC developments
Lund diagramd/trees/planes can actually be reconstructed in practice

The rest of this talk covers several applications:

✓ Calculations (and measurements)

✓ Tagging (incl. machine learning)

✓ Monte-Carlo developments

(✓) Heavy-ion collisions: possible and interesting but not covered here
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Application #1: QCD calculations
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Primary Lund plane multiplicity

Average number of emission at given kt , ∆:

ρ =
1

Njets

d2N

d ln∆d ln kt

soft
and

collinear

[A. Lifson, G. Salam, GS, arXiv:2007.06578]

Double-logarithmic behaviour:

ρ =
2αs(kt)CR

π

Single-log calculation including

✓ Running-coupling (trivial)
✓ ISR+large angle
✓ Hard-collinear branchings
✓ Clustering effects

+ Matching to NLO (∼ top)

+ NP corrections (∼ bottom)
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Primary Lund plane multiplicity

Average number of emission at given kt , ∆:

ρ =
1

Njets

d2N

d ln∆d ln kt

angular-ordered “DGLAP”

θ1 ≫ θ2 ≫ · · · ≫ θn

includes flavour changes

leading parton looses momentum

[A. Lifson, G. Salam, GS, arXiv:2007.06578]

Double-logarithmic behaviour:
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Primary Lund plane multiplicity

Average number of emission at given kt , ∆:

ρ =
1

Njets

d2N

d ln∆d ln kt

not prim C 2
F prim CFCA

complex E -ordered
structure (akin NGLs)

(semi-numerical treatment)

[A. Lifson, G. Salam, GS, arXiv:2007.06578]

Double-logarithmic behaviour:
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Primary Lund plane multiplicity

Average number of emission at given kt , ∆:

ρ =
1

Njets

d2N

d ln∆d ln kt

from NLOJet++
(some non-trivial details)

2→ 3 at NNLO would
greatly help!

[M.Czakon,A.Mitov,R.Poncelet106.05331]

[A. Lifson, G. Salam, GS, arXiv:2007.06578]

Double-logarithmic behaviour:

ρ =
2αs(kt)CR

π

Single-log calculation including

✓ Running-coupling (trivial)
✓ ISR+large angle
✓ Hard-collinear branchings
✓ Clustering effects

+ Matching to NLO (∼ top)

+ NP corrections (∼ bottom)

Gregory Soyez Jets and Lund plane(s) Flowing into the future, SCGP 9 / 24

https://arxiv.org/abs/2106.05331
https://arXiv.org/abs/2007.06578


Primary Lund plane multiplicity

Average number of emission at given kt , ∆:

ρ =
1

Njets

d2N

d ln∆d ln kt

hadronisation

U
E
/M

P
I

from Pythia8, Herwig7
and Sherpa2

[A. Lifson, G. Salam, GS, arXiv:2007.06578]

Double-logarithmic behaviour:

ρ =
2αs(kt)CR

π

Single-log calculation including

✓ Running-coupling (trivial)
✓ ISR+large angle
✓ Hard-collinear branchings
✓ Clustering effects

+ Matching to NLO (∼ top)

+ NP corrections (∼ bottom)
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Data v. theory

[ATLAS, 2004.03540]

0.02 0.05 0.1 0.2 0.5
z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(
,z

)

k
t =

2 GeV

5 GeV

10 GeV

ln1/

ln
1/

z

ATLAS setup: 0.147 < < 0.205
ATLAS
NLO+resum+NP

good agreement (particularly for kt ≳ 5 GeV)

commensurate exp.&th. uncert.

Can we get αs from this?
[see Ben’s talk]
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Lund multiplicity (1/2)

Lund multiplicity

count the (average) number of Lund declusterings
(in the full tree) with kt ≥ kt,cut

All-order structure (L=ln Q
kt,cut

):

⟨NLP(L, αs)⟩ = h1(αsL
2) +

√
αsh2(αsL

2)︸ ︷︷ ︸
Since 1992

+αsh3(αsL
2)︸ ︷︷ ︸

New NNDL!!

+ . . .

[R. Medves, A. Soto, GS, soon]

2πh
(q)
3 = Dq→qg

end +
(
Dg→gg
end + Dg→qq̄

end

) CF

CA
(cosh ν − 1) + Dqqg

hme cosh ν +
CF

CA

[
(1− c

δ
)Dqq̄

pair(cosh ν − 1) +
(
K + Dgg

pair + c
δ
Dqq̄
pair

) ν
2
sinh ν

]
+ CF

[(
cosh ν − 1− 1− c

δ

4
ν2
)
D

(prim)
clust + (cosh ν − 1)D

(sec)
clust

]
+

CF

CA

[
Dg
e-loss

ν

2
sinh ν +

(
Dq
e-loss − Dg

e-loss

)
(cosh ν − 1)

]
+

CF

CA

π2β20
8CA

[
3ν(2ν2 − 1) sinh ν + (ν4 + 3ν2) cosh ν

]
+

CF

2

{
(Bgg + c

δ
Bgq)

2ν2 cosh ν + 8
[
2c

δ
Bgg − 2c

δ
Bq − (1− 3c2

δ
)Bgq

]
Bgq cosh ν

+ [4Bq(Bgg + (2c
δ
+ 1)Bgq)− (Bgg + c

δ
Bgq)(Bgg + 9c

δ
Bgq)] ν sinh ν+4(1− c2

δ
)B2

gqν
2 + 8

[
2c

δ
Bq − 2c

δ
Bgg + (1− 3c2

δ
)Bgq

]
Bgq

}
+

CF

CA

πβ0
2

{
(Bgg + c

δ
Bgq)ν

3 sinh ν + [2Bq − 2Bgg + (6− 8c
δ
)Bgq] ν sinh ν+2(Bq + Bgg + Bgq)ν

2 cosh ν − 4(1− c
δ
)Bgq(2 cosh ν − 2 + ν2)

}

Side product: NNDL Cambridge multiplicity for ycut = k2
t,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

ln kt

η

lnQ

ln kt,cut

(finite z, 1−z)

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

Not NNDL lnQ

ln kt,cut

Not NNDLlnQ

ln kt,cut

ln kt

η

β0 × β0lnQ

ln kt,cut

β0× hard-coll.lnQ

ln kt,cut

ln kt

η
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}

No “long-distance effect” ⇒ simpler than kt

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

ln kt

η

lnQ

ln kt,cut

(finite z, 1−z)

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

Not NNDL lnQ

ln kt,cut

Not NNDLlnQ

ln kt,cut

ln kt

η

β0 × β0lnQ

ln kt,cut

β0× hard-coll.lnQ

ln kt,cut

ln kt

η
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Lund multiplicity (2/2)

[R. Medves, A. Soto, GS, soon]

NNDL Matched to NLO

Clear effect of resummation

Clear effect compared to NDL (incl. uncert)

Several questions

LEP (ALEPH) measurement?
cf. Yang-Ting’s recent 2111.09914

Upgrade to LHC jets?

Can it lead to an αs measurement?

NNLO? N3DL?

1 2 5 10 20 50 100

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

N
LP

e + e Z jets
s = 91.2 GeV

NLO
NLO+NDL
NLO+NNDL

1 2 5 10 20 50 100
kt, cut [GeV]

0.85
0.90
0.95
1.00
1.05

ra
tio

 to
 

NL
O+

NN
DL

Lund multiplicity at LEP
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Application #2: Boosted object tagging
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Tagging boosted W bosons (v. QCD jets) [1/2]

Clear potential on a simple image (also: many basic features recognised)
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Pythia8.230(Monash13)
s = 14 TeV, pt > 2 TeV

QCD jets, full plane
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W jets, full plane
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Tagging boosted W bosons (v. QCD jets) [2/2]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
W

1

10

100

1000

10000

1/
QC

D

Pythia 8.223 simulation
signal: pp WW, background: pp jj

anti-kt R = 1 jets, pt > 2 TeV

QCD rejection v. W tagging efficiency

mMDT mass
Lund+LL
Lund+LSTM
EdgeConv using Lund kinematics
ParticleNet [GQ19]

successful W tagging rate

Q
C
D

re
je
ct
io
n
fa
ct
or

[F.Dreyer,H.Qu
2012.08526]

[graph network using 4-vector(more complex)]

Graph Net trained on full Lund tree

Deep-learning (LSTM) using Lund primaries

Log-likelihood ratio based on Lund images

Historical mMDT/SoftDrop

Main messages

Large gain from info in the primary plane

Yet another gain from the full Lund tree
non-negligible amount of info for kt ≲ 1 GeV

non-negligible differences between generators or
parton/hadron level
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✓
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)

Approach #1

Deep-learn Lprim,tree

LSTM with Lprim or Lund-Net with Ltree
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)

Approach #1

Deep-learn Lprim,tree

LSTM with Lprim or Lund-Net with Ltree

Approach #2

Use pQCD to calculate pq,g (Lprim,tree)

Consider kt ≥ kt,cut to stay perturbative

Resum logs to all orders in αs , up to single logs
▶ single logs from “DGLAP” collinear splittings

Pq(Lparent) = Sq(∆prev,∆)
[
P̃qq(z)pq(Lhard)pg (Lsoft) + P̃gq(z)pg (Lhard)pq(Lsoft)

]
pg (Lparent) = Sg (∆prev,∆)

[
P̃gg (z)pg (Lhard)pg (Lsoft) + P̃qg (z)pq(Lhard)pq(Lsoft)

]
▶ some single logs for emissions at commensurate angles

At double-log:
pg
pq

=
(
CA
CF

)nprim ⇒ reproduces the Iterated SoftDrop multiplicity
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Quark v. gluon jets: II. ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit θ1 ≫ θ2 ≫ · · · ≫ θn
⇒ ML expected to give the same performance
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Converges for large-enough networks
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Quark v. gluon jets: III. performance

pp → Zq v. pp → Zg (pt ∼ 500 GeV, R = 0.4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01

2

5

10

20

50

100

200

gl
uo

n 
re

je
ct

io
n 

fa
ct

or
, 1

/
g

Pythia8, Z+jet

500 < pt < 550 GeV, R = 0.4
ln kt/[1 GeV]>0.0,with 

Lund density
nSD

analytic (prim)
analytic (tree)
Lund+LSTM (prim)
Lund-Net (tree)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
quark efficiency, q

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

ra
tio

 to
 d

en
sit

y

ROC: Pythia sample

clear performance ordering:

Lund+ML > Lund analytic > ISD
tree > prim

larger gains with no kt cut

Interesting questions:
▶ Analytic approach to NP?
▶ Apply analytics to other systems (W /Z/H, top)
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Towards full-event tagging

e+e− → Z → qq̄ v. e+e− → H → gg (
√
s = 125 GeV, no ISR)
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ROC curve: Z qq v. H gg

tag each  hemispheres

observed performance:

tagging both hemispheres
i.e. both jets should be tagged

full event clearly worse that (jet)2

double Lund-Net tag

Lund-Net for the full event
Another performance gain

Open questions/work in progress

How does the analytic do?
e.g. what gain from full-event tagging?

Applications to other cases (e.g. at the LHC)?
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observed performance:

tagging both hemispheres

double Lund-Net tag
train separately on hard & soft hemispheres
use another NN (or MVA) to combine the two

clear performance gain

Lund-Net for the full event
Another performance gain

Open questions/work in progress

How does the analytic do?
e.g. what gain from full-event tagging?

Applications to other cases (e.g. at the LHC)?

Gregory Soyez Jets and Lund plane(s) Flowing into the future, SCGP 19 / 24



Towards full-event tagging

e+e− → Z → qq̄ v. e+e− → H → gg (
√
s = 125 GeV, no ISR)

PR
ELI

MINARY

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
H gg

1

2

5

10

20

50

100

200

500

1000

1/
Z

qq

Lund-Net+ID
Pythia8.306, s = 125 GeV

ROC curve: Z qq v. H gg

tag each  hemispheres
NN(hard+soft hem)
full event

observed performance:

tagging both hemispheres

double Lund-Net tag

Lund-Net for the full event
Another performance gain

Open questions/work in progress

How does the analytic do?
e.g. what gain from full-event tagging?

Applications to other cases (e.g. at the LHC)?

Gregory Soyez Jets and Lund plane(s) Flowing into the future, SCGP 19 / 24



Towards full-event tagging

e+e− → Z → qq̄ v. e+e− → H → gg (
√
s = 125 GeV, no ISR)

PR
ELI

MINARY

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
H gg

1

2

5

10

20

50

100

200

500

1000

1/
Z

qq

Lund-Net+ID
Pythia8.306, s = 125 GeV

ROC curve: Z qq v. H gg

tag each  hemispheres
NN(hard+soft hem)
full event

observed performance:

tagging both hemispheres

double Lund-Net tag

Lund-Net for the full event
Another performance gain
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Application #3: MC development
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Obvious comparisons

parton shower hadronisation

“standard” data vs. Monte Carlo comparison

Recall that different Lund regions are sensitive
to different physics:

Primary Lund-plane regions

soft-collinear

hard-collinear (large
z)

IS
R
(la

rg
e
Δ
)

M
PI/U

E non-pert. (small kt)

ln(1/Δ)

ln
(k

t/
G
e
V
)
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Revisiting substructure observables

Equivalent to angularities/EECs:

Sβ =
∑
i∈L

Ei e
−βηi

Mβ = max
i∈L

Ei e
−βηi

✓ subjets allows for the use of “max”
✓ sum ̸=max at NLL
✓ can be defined in pp -0.1 0.0

M = 1

S = 1

Thrust
M = 1

2

S = 1
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FC1
2
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lim

s 0 [ PS / NLL 1 ]  for = 1
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s
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},
 sy

st
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%

, 
=

18

NLL accuracy tests  NODS method

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,2002.11114]

[K.Hamilton,R.Medves,G.Salam,L.Scyboz,GS,2011.10054]N-subjettiness-like: sum excluding the N largest

τβ,LundN =
∑
i∈AN

Ei e
−βηi with AN = argminX⊂L,|L\X |=N−1

✓ Could replace sum by max (likely gaining a simpler resummation structure)
✓ Could be defined on the primary plane only

Gregory Soyez Jets and Lund plane(s) Flowing into the future, SCGP 22 / 24

https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2011.10054


Crafted observables

Azimuth between 1st and 2nd prim. declust.
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Expected ratio of 1 at NLL

NLL failures for “standard” showers
“New” PanScales shower OK at NLL

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,2002.11114]
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Crafted observables
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All-order γ∗ → qq̄, λ = −0.5

Sensitive to (collinear) spin
“New” PanScales shower have spin at NLL

agrees w EEEC from 2011.02492 (EEEC less sensitive)

[A.Karlberg,G.Salam,L.Scyboz,R.Verheyen,2103.16526]
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Crafted observables
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first all-order result

[K.Hamilton,A.Karlberg,G.Salam,L.Scyboz,R.Verheyen,2111.01161]
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Conclusions

1 Lund diagrams have helped thinking about resummation and MCs
Now they can be reconstructed in practice

2 They provide a view of a jet/event which mimics angular ordering

3 They provide a separation between different physical effects

4 Broad spectrum of applications:

Wide range of possible (p)QCD calculations
Main limitation: (non-global) clustering logs; can we apply grooming-like techniques?

Large scope for crafting new observables for improved (p)QCD calculations

Large scope for crafting new observables for MC development/validation

More connections to deep learning, heavy-ion collisions, ...

5 Still many open questions and space for more applications in the future
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Backup
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Promoting to a practical tool

Construct the Lund tree in practice: use the Cambridge(/Aachen) algorithm
Main idea: Cambridge(/Aachen) preserves angular ordering

e+e− collisions

1 Cluster with Cambridge (dij = 2(1−cos θij ))

2 For each (de)-clustering j ← j1j2:
η = − ln θ12/2
kt = min(E1,E2) sin θ12
z = min(E1,E2)

E1+E2

ψ ≡ some azimuth,...

Jet in pp

1 Cluster with Cambridge/Aachen (dij = ∆Rij )

2 For each (de)-clustering j ← j1j2:
η = − ln∆R12

kt = min(pt1, pt2)∆R12

z = min(pt1,pt2)
pt1+pt2

ψ ≡ some azimuth,...

Primary Lund plane

Starting from the jet, de-cluster following the “hard branch” (largest E or pt)
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Quark v. gluon jets: III. performance v. others

pp → Zq v. pp → Zg (pt ∼ 500 GeV, R = 0.4)
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Significance: Lund models v. others
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EEC0.5(kt > 1 GeV)

1(allkt)
1(kt > 1 GeV)

Analytic approach shows gains for kt > 1 GeV
(shapes improve at small εq by adding smaller kt)

ML performance on par with PFN, slightly better
than Particle-Net
(treatment of PDG-ID could maybe be improved)
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Analytic approach shows gains for kt > 1 GeV
(shapes improve at small εq by adding smaller kt)

ML performance on par with PFN, slightly better
than Particle-Net
(treatment of PDG-ID could maybe be improved)
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