Physics in the Lund plane(s)

Gregory Soyez, with Frederic Dreyer, Andrew Lifson, Gavin Salam and Adam Takacs based on arXiv:1807.04758, arXiv:2007.06578 and arXiv:2112.09140

IPhT, CNRS, CEA Saclay
Flowing into the future, SCGP Jet Workshop, March 21-25 2022

- 2 historical pictures to see jets
(1) Energy flows (e.g. Sterman-Weinberg, SISCone)
(2) Branching trees (e.g. anti- k_{t}, k_{t}, Cambridge/Aachen)
- Both pictures are physically sound; both pictures have pros and cons (cone maybe more intuitive; trees usually nicer to PQCD ; more would be another talk)
- 2 historical pictures to see jets
(1) Energy flows (e.g. Sterman-Weinberg, SISCone)
(2) Branching trees (e.g. anti- k_{t}, k_{t}, Cambridge/Aachen)
- Both pictures are physically sound; both pictures have pros and cons
(cone maybe more intuitive; trees usually nicer to pQCD; more would be another talk)
- Ideas carry through to jet substructure
some tools rely on trees (e.g. mMDT/SoftDrop), some rely on E-flows (e.g. EEC, N-subjettiness)
- 2 historical pictures to see jets
(1) Energy flows (e.g. Sterman-Weinberg, SISCone)
(2) Branching trees (e.g. anti- k_{t}, k_{t}, Cambridge/Aachen)
- Both pictures are physically sound; both pictures have pros and cons (cone maybe more intuitive; trees usually nicer to pQCD; more would be another talk)
- Ideas carry through to jet substructure
some tools rely on trees (e.g. mMDT/SoftDrop), some rely on E-flows (e.g. EEC, N-subjettiness)

This talk

Show the virtues and breadth of branching trees through a single "magic wand": the Lund jet plane(s)/tree Including: basic intuition, pQCD calculations, MC developments, Deep Learning, ...
use Cambridge/Aachen to iteratively recombine the closest pair

E.g.: conceptually the largest-energy (p_{t} or z) branch \equiv emissions from the "leading parton"

- closely follows our beloved angular ordering

The Lund plane(s) representation (2/3)

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes

$$
\begin{aligned}
& k_{t} \equiv \text { momentum transverse to a dipole } \\
& \eta \equiv \frac{1}{2} \ln z_{q} / z_{\bar{q}} \text { (longitudinal component) } \\
& \phi \equiv \text { azimuthl angle }
\end{aligned}
$$

$$
d \mathcal{P}=\frac{\alpha_{s}\left(k_{t}\right) C_{F}}{\pi^{2}} d \eta \frac{d k_{t}}{k_{t}} d \phi
$$

The Lund plane(s) representation (2/3)

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes - primary

The Lund plane(s) representation (2/3)

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
- primary
- secondary

The Lund plane(s) representation (2/3)

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
- primary
- secondary

The Lund plane(s) representation (2/3)

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
- primary
- secondary

The Lund plane(s) representation $(3 / 3)$

Two different Lund (\mathcal{L}) structures

"primary plane"

(follow hard branch)

full (de-)clustering tree

$$
\mathcal{L}_{\text {tree }} \equiv\left\{\mathcal{T}, \mathcal{L}_{\text {hard }}, \mathcal{L}_{\text {soft }}\right\}
$$

$$
\begin{aligned}
\eta & =-\ln \tan \frac{\theta_{i}}{2} \\
k_{t} & =E_{\text {soft }} \sin \theta \quad z=\frac{E_{\text {soft }}}{E_{\text {parent }}} \\
\psi & \equiv \text { azimuthal angle }
\end{aligned}
$$

Main features

Separated physics regions

Different physics in different regions

- pQCD above $k_{t} \gtrsim \Lambda_{\text {QCD }}$ (data: $5-10 \mathrm{GeV}$)
- pQCD split: soft v. soft+coll v. hard-coll
- NP effects at low k_{t} (hadr \& MPI)

Central observation

Lund diagrams are useful to do resummations, MC developments Lund diagramd/trees/planes can actually be reconstructed in practice

The rest of this talk covers several applications:
\checkmark Calculations (and measurements)
\checkmark Tagging (incl. machine learning)
\checkmark Monte-Carlo developments
(\checkmark) Heavy-ion collisions: possible and interesting but not covered here

Application \#1: QCD calculations

Primary Lund plane multiplicity

Average number of emission at given k_{t}, Δ :

$$
\rho=\frac{1}{N_{\text {jets }}} \frac{d^{2} N}{d \ln \Delta d \ln k_{t}}
$$

Primary Lund plane multiplicity

Average number of emission at given k_{t}, Δ :

$$
\rho=\frac{1}{N_{\text {jets }}} \frac{d^{2} N}{d \ln \Delta d \ln k_{t}}
$$

[A. Lifson, G. Salam, GS, arXiv:2007.06578]

- Double-logarithmic behaviour:

$$
\rho=\frac{2 \alpha_{s}\left(k_{t}\right) C_{R}}{\pi}
$$

- Single-log calculation including \checkmark Running-coupling (trivial) \checkmark ISR+large angle

Primary Lund plane multiplicity

Average number of emission at given k_{t}, Δ :
[A. Lifson, G. Salam, GS, arXiv:2007.06578]

$$
\rho=\frac{1}{N_{\text {jets }}} \frac{d^{2} N}{d \ln \Delta d \ln k_{t}}
$$

Primary Lund plane multiplicity

Average number of emission at given k_{t}, Δ :

$$
\rho=\frac{1}{N_{\text {jets }}} \frac{d^{2} N}{d \ln \Delta d \ln k_{t}}
$$

- Double-logarithmic behaviour:

$$
\rho=\frac{2 \alpha_{s}\left(k_{t}\right) C_{R}}{\pi}
$$

- Single-log calculation including
\checkmark Running-coupling (trivial)
\checkmark ISR+large angle
\checkmark Hard-collinear branchings
\checkmark Clustering effects

Primary Lund plane multiplicity

Average number of emission at given k_{t}, Δ :

$$
\rho=\frac{1}{N_{\text {jets }}} \frac{d^{2} N}{d \ln \Delta d \ln k_{t}}
$$

from NLOJet++
(some non-trivial details)
$2 \rightarrow 3$ at NNLO would greatly help!
[M.Czakon,A.Mitov,R.Poncelet106.05331]
[A. Lifson, G. Salam, GS, arXiv:2007.06578]

- Double-logarithmic behaviour:

$$
\rho=\frac{2 \alpha_{s}\left(k_{t}\right) C_{R}}{\pi}
$$

- Single-log calculation including
\checkmark Running-coupling (trivial)
\checkmark ISR+large angle
\checkmark Hard-collinear branchings
\checkmark Clustering effects
- + Matching to NLO (\sim top)

Primary Lund plane multiplicity

Average number of emission at given k_{t}, Δ :

$$
\rho=\frac{1}{N_{\text {jets }}} \frac{d^{2} N}{d \ln \Delta d \ln k_{t}}
$$

from Pythia8, Herwig7 and Sherpa2
[A. Lifson, G. Salam, GS, arXiv:2007.06578]

- Double-logarithmic behaviour:

$$
\rho=\frac{2 \alpha_{s}\left(k_{t}\right) C_{R}}{\pi}
$$

- Single-log calculation including
\checkmark Running-coupling (trivial)
\checkmark ISR+large angle
\checkmark Hard-collinear branchings
\checkmark Clustering effects
- + Matching to NLO (\sim top)
- + NP corrections (\sim bottom)

Data v. theory

[ATLAS, 2004.03540]

- good agreement (particularly for $k_{t} \gtrsim 5 \mathrm{GeV}$)
- commensurate exp.\&th. uncert.
- Can we get α_{s} from this?
[see Ben's talk]

Lund multiplicity (1/2)

Lund multiplicity

count the (average) number of Lund declusterings (in the full tree) with $k_{t} \geq k_{t, \text { cut }}$

All-order structure $\left(L=\ln \frac{Q}{k_{t}, \text { ut }}\right)$:

$$
\left\langle N^{L \mathrm{P}}\left(L, \alpha_{s}\right)\right\rangle=\underbrace{h_{1}\left(\alpha_{s} L^{2}\right)+\sqrt{\alpha_{s}} h_{2}\left(\alpha_{s} L^{2}\right)}_{\text {Since } 1992}+\underbrace{\alpha_{s} h_{3}\left(\alpha_{s} L^{2}\right)}_{\text {New N NDDLL! }}+\ldots
$$

$$
\begin{aligned}
& 2 \pi h_{3}^{(q)}=D_{\text {end }}^{q \rightarrow q g}+\left(D_{\text {end }}^{g \rightarrow g g}+D_{\text {end }}^{g \rightarrow q \bar{q}}\right) \frac{C_{F}}{C_{A}}(\cosh \nu-1)+D_{\text {hme }}^{q q g} \cosh \nu+\frac{C_{F}}{C_{A}}\left[\left(1-c_{\delta}\right) D_{\text {pair }}^{q \bar{q}}(\cosh \nu-1)+\left(K+D_{\text {pair }}^{\text {gg }}+C_{s} D_{\text {pair }}^{q \bar{q}}\right) \frac{\nu}{2} \sinh \nu\right] \\
& +C_{F}\left[\left(\cosh \nu-1-\frac{1-c_{8}}{4} \nu^{2}\right) D_{\text {clust }}^{(\text {prim) }}+(\cosh \nu-1) D_{\text {clust }}^{\text {(sec) }}\right]+\frac{C_{F}}{C_{A}}\left[D_{\text {elocss }}^{g} \frac{\nu}{2} \sinh \nu+\left(D_{\text {elooss }}^{q}-D_{\text {eloss }}^{g}\right)(\cosh \nu-1)\right] \\
& +\frac{C_{F}}{C_{A}} \frac{\pi^{2} \beta_{0}^{2}}{8 C_{A}}\left[3 \nu\left(2 \nu^{2}-1\right) \sinh \nu+\left(\nu^{4}+3 \nu^{2}\right) \cosh \nu\right]+\frac{C_{F}}{2}\left\{\left(B_{g g}+c_{s} B_{g q}\right)^{2} \nu^{2} \cosh \nu+8\left[2 c_{s} B_{g g}-2 c_{s} B_{q}-\left(1-3 c_{s}^{2}\right) B_{g q}\right] B_{g q} \cosh \nu\right. \\
& \left.+\left[4 B_{q}\left(B_{g g}+\left(2 c_{s}+1\right) B_{g q}\right)-\left(B_{g g}+c_{s} B_{g q}\right)\left(B_{g g}+9 c_{s} B_{g q}\right)\right] \nu \sinh \nu+4\left(1-c_{\delta}^{2}\right) B_{g q}^{2} \nu^{2}+8\left[2 c_{s} B_{q}-2 c_{s} B_{g g}+\left(1-3 c_{s}^{2}\right) B_{g q}\right] B_{g q}\right\} \\
& +\frac{C_{F}}{C_{A}} \frac{\pi B_{0}}{2}\left\{\left(B_{g g}+c_{s} B_{g q}\right) \nu^{3} \sinh \nu+\left[2 B_{q}-2 B_{g g}+\left(6-8 C_{f}\right) B_{g q}\right] \nu \sinh \nu+2\left(B_{q}+B_{g g}+B_{g q}\right) \nu^{2} \cosh \nu-4\left(1-C_{f}\right) B_{g q}\left(2 \cosh \nu-2+\nu^{2}\right)\right\}
\end{aligned}
$$

Side product: NNDL Cambridge multiplicity for $y_{\text {cut }}=k_{t, \text { cut }}^{2}$

Lund multiplicity (1/2)

Lund multiplicity

count the (average) number of Lund declusterings (in the full tree) with $k_{t} \geq k_{t, \text { cut }}$

All-order structure $\left(L=\ln \frac{Q}{k_{t}, \text { ut }}\right)$:

$$
\left\langle N^{L \mathrm{P}}\left(L, \alpha_{s}\right)\right\rangle=\underbrace{h_{1}\left(\alpha_{s} L^{2}\right)+\sqrt{\alpha_{s}} h_{2}\left(\alpha_{s} L^{2}\right)}_{\text {Since 1992 }}+\underbrace{\alpha_{s} h_{3}\left(\alpha_{s} L^{2}\right)}_{\text {Neen NNDLL!! }}+\ldots
$$

```
2\pi\mp@subsup{h}{3}{(q)}=\mp@subsup{D}{\mathrm{ end }}{q->qg}+(\mp@subsup{D}{\mathrm{ end }}{g->gg}+\mp@subsup{D}{\mathrm{ end }}{g->q\overline{q}})\frac{\mp@subsup{C}{F}{}}{\mp@subsup{C}{A}{}}(\operatorname{cosh}\nu-1)+\mp@subsup{D}{\mathrm{ hme }}{qqg}\operatorname{cosh}\nu+\frac{\mp@subsup{C}{F}{}}{\mp@subsup{C}{A}{}}[(1-\mp@subsup{C}{s}{})\mp@subsup{D}{\mathrm{ pair }}{q\overline{q}}(\operatorname{cosh}\nu-1)+(K+\mp@subsup{D}{\mathrm{ pair }}{gg}+\mp@subsup{C}{\overline{s}}{\mathrm{ gair }}\mp@subsup{D}{\mathrm{ pair }}{q\overline{q}})\frac{\nu}{2}\operatorname{sinh}\nu]
```



```
    +}\frac{\mp@subsup{C}{F}{}}{\mp@subsup{C}{A}{}}\frac{\mp@subsup{\pi}{}{2}\mp@subsup{\beta}{0}{2}}{8\mp@subsup{C}{A}{}}[3\nu(2\mp@subsup{\nu}{}{2}-1)\operatorname{sinh}\nu+(\nu\mp@subsup{\nu}{}{4}+3\mp@subsup{\nu}{}{2})\operatorname{cosh}\nu]+\frac{C}{2}{(\mp@subsup{B}{gg}{}+\mp@subsup{c}{s}{}\mp@subsup{B}{gq}{}\mp@subsup{)}{}{2}\mp@subsup{\nu}{}{2}\operatorname{cosh}\nu+8[2\mp@subsup{c}{s}{}\mp@subsup{B}{gg}{}-2\mp@subsup{c}{s}{}\mp@subsup{B}{q}{}-(1-3\mp@subsup{C}{s}{2})\mp@subsup{B}{gq}{}]\mp@subsup{B}{gq}{}\operatorname{cosh}
    +[4\mp@subsup{B}{q}{}(\mp@subsup{B}{gg}{}+(2\mp@subsup{c}{\delta}{}+1)\mp@subsup{B}{gq}{})-(\mp@subsup{B}{gg}{}+\mp@subsup{c}{\delta}{}\mp@subsup{B}{gq}{})(\mp@subsup{B}{gg}{}+9\mp@subsup{c}{\delta}{}\mp@subsup{B}{gq}{})]\nu\operatorname{sinh}\nu+4(1-\mp@subsup{c}{\delta}{2})\mp@subsup{B}{gq}{2}\mp@subsup{\nu}{}{2}+8[2\mp@subsup{c}{s}{}\mp@subsup{B}{q}{}-2\mp@subsup{c}{\delta}{\prime}\mp@subsup{B}{gg}{}+(1-3\mp@subsup{c}{s}{2})\mp@subsup{B}{gq}{}]\mp@subsup{B}{gq}{}}
    +}\frac{\mp@subsup{C}{F}{}}{\mp@subsup{C}{A}{}}\frac{\pi\mp@subsup{B}{0}{}}{2}{(\mp@subsup{B}{gg}{}+\mp@subsup{c}{8}{}\mp@subsup{B}{gq}{})\mp@subsup{\nu}{}{3}\operatorname{sinh}\nu+[2\mp@subsup{B}{q}{}-2\mp@subsup{B}{gg}{}+(6-8\mp@subsup{c}{g}{})\mp@subsup{B}{gq}{}]\nu\operatorname{sinh}\nu+2(\mp@subsup{B}{q}{}+\mp@subsup{B}{gg}{}+\mp@subsup{B}{gq}{})\mp@subsup{\nu}{}{2}\operatorname{cosh}\nu-4(1-\mp@subsup{c}{f}{\prime})\mp@subsup{B}{gq}{}(2\operatorname{cosh}\nu-2+\nu\mp@subsup{\nu}{}{2})
```

No "long-distance effect" \Rightarrow simpler than k_{t}

Lund multiplicity (2/2)

[R. Medves, A. Soto, GS, soon]

NNDL Matched to NLO

- Clear effect of resummation
- Clear effect compared to NDL (incl. uncert)

Several questions

- LEP (ALEPH) measurement?
cf. Yang-Ting's recent 2111.09914
- Upgrade to LHC jets?
- Can it lead to an α_{s} measurement?
- NNLO? ${ }^{3}{ }^{3}$ L?

Lund multiplicity at LEP

Application \#2: Boosted object tagging

Tagging boosted W bosons (v. QCD jets) [1/2]

Clear potential on a simple image (also: many basic features recognised)

Tagging boosted W bosons (v. QCD jets) [2/2]

Tagging boosted W bosons (v. QCD jets) [2/2]

Quark v. gluon jets: I. approach

Optimal discriminant (Neyman-Pearson lemma)

$$
\mathbb{L}_{\text {prim,tree }}=\frac{p_{g}\left(\mathcal{L}_{\text {prim,tree }}\right)}{p_{q}\left(\mathcal{L}_{\text {prim,tree }}\right)}
$$

Quark v. gluon jets: I. approach

Optimal discriminant (Neyman-Pearson lemma)

$$
\mathbb{L}_{\text {prim,tree }}=\frac{p_{g}\left(\mathcal{L}_{\text {prim,tree }}\right)}{p_{q}\left(\mathcal{L}_{\text {prim,tree }}\right)}
$$

Approach \#1

Deep-learn $\mathbb{L}_{\text {prim,tree }}$
LSTM with $\mathcal{L}_{\text {prim }}$ or Lund-Net with $\mathcal{L}_{\text {tree }}$

Quark v. gluon jets: I. approach

Optimal discriminant (Neyman-Pearson lemma)

$$
\mathbb{L}_{\text {prim,tree }}=\frac{p_{g}\left(\mathcal{L}_{\text {prim,tree }}\right)}{p_{q}\left(\mathcal{L}_{\text {prim,tree }}\right)}
$$

Approach \#1

Deep-learn $\mathbb{L}_{\text {prim,tree }}$

LSTM with $\mathcal{L}_{\text {prim }}$ or Lund-Net with $\mathcal{L}_{\text {tree }}$

Approach \#2

Use pQCD to calculate $p_{q, g}\left(\mathcal{L}_{\text {prim,tree }}\right)$

- Consider $k_{t} \geq k_{t, \text { cut }}$ to stay perturbative
- Resum logs to all orders in α_{s}, up to single logs
- single logs from "DGLAP" collinear splittings

$$
\begin{aligned}
& P_{q}\left(\mathcal{L}_{\text {parent }}\right)=S_{q}\left(\Delta_{\text {prev }}, \Delta\right)\left[\tilde{P}_{q q}(z) p_{q}\left(\mathcal{L}_{\text {hard }}\right) p_{g}\left(\mathcal{L}_{\text {soft }}\right)+\tilde{P}_{g q}(z) p_{g}\left(\mathcal{L}_{\text {hard }}\right) p_{q}\left(\mathcal{L}_{\text {soft }}\right)\right] \\
& p_{g}\left(\mathcal{L}_{\text {parent }}\right)=S_{g}\left(\Delta_{\text {prev }}, \Delta\right)\left[\tilde{P}_{g g}(z) p_{g}\left(\mathcal{L}_{\text {hard }}\right) p_{g}\left(\mathcal{L}_{\text {soft }}\right)+\tilde{P}_{q g}(z) p_{q}\left(\mathcal{L}_{\text {hard }}\right) p_{q}\left(\mathcal{L}_{\text {soft }}\right)\right]
\end{aligned}
$$

- some single logs for emissions at commensurate angles
- At double-log: $\frac{p_{g}}{p_{q}}=\left(\frac{C_{A}}{C_{F}}\right)^{n_{\text {prim }}} \Rightarrow$ reproduces the Iterated SoftDrop multiplicity

Quark v. gluon jets: II. ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit $\theta_{1} \gg \theta_{2} \gg \cdots>\theta_{n}$ $\Rightarrow \mathrm{ML}$ expected to give the same performance

Quark v. gluon jets: II. ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit $\theta_{1} \gg \theta_{2} \gg \cdots \gg \theta_{n}$ $\Rightarrow \mathrm{ML}$ expected to give the same performance

Converges for large-enough networks

Quark v. gluon jets: III. performance

$$
p p \rightarrow Z q \text { v. } p p \rightarrow Z g \quad\left(p_{t} \sim 500 \mathrm{GeV}, R=0.4\right)
$$

ROC: Pythia sample

- clear performance ordering:
(1) Lund + ML $>$ Lund analytic $>$ ISD
(2) tree $>$ prim

Quark v. gluon jets: III. performance

$$
p p \rightarrow Z q \vee . p p \rightarrow Z g \quad\left(p_{t} \sim 500 \mathrm{GeV}, R=0.4\right)
$$

- clear performance ordering:
(1) Lund + ML $>$ Lund analytic $>$ ISD
(2) tree $>$ prim
- larger gains with no k_{t} cut

Quark v. gluon jets: III. performance

$$
p p \rightarrow Z q \text { v. } p p \rightarrow Z g \quad\left(p_{t} \sim 500 \mathrm{GeV}, R=0.4\right)
$$

- clear performance ordering:
(1) Lund + ML $>$ Lund analytic $>$ ISD
(2) tree $>$ prim
- larger gains with no k_{t} cut
- Interesting questions:
- Analytic approach to NP?
- Apply analytics to other systems ($W / Z / H$, top)

$$
e^{+} e^{-} \rightarrow Z \rightarrow q \bar{q} v . e^{+} e^{-} \rightarrow H \rightarrow g g \quad(\sqrt{s}=125 \mathrm{GeV}, \text { no ISR })
$$

observed performance:

- tagging both hemispheres
i.e. both jets should be tagged
full event clearly worse that (jet) $)^{2}$

Towards full-event tagging

$$
e^{+} e^{-} \rightarrow Z \rightarrow q \bar{q} v . e^{+} e^{-} \rightarrow H \rightarrow g g \quad(\sqrt{s}=125 \mathrm{GeV} \text {, no ISR })
$$

observed performance:

- tagging both hemispheres
- double Lund-Net tag
train separately on hard \& soft hemispheres use another NN (or MVA) to combine the two clear performance gain

$$
e^{+} e^{-} \rightarrow Z \rightarrow q \bar{q} v . e^{+} e^{-} \rightarrow H \rightarrow g g \quad(\sqrt{s}=125 \mathrm{GeV}, \text { no ISR })
$$

observed performance:

- tagging both hemispheres
- double Lund-Net tag
- Lund-Net for the full event Another performance gain

Towards full-event tagging

$$
e^{+} e^{-} \rightarrow Z \rightarrow q \bar{q} v . e^{+} e^{-} \rightarrow H \rightarrow g g \quad(\sqrt{s}=125 \mathrm{GeV} \text {, no ISR })
$$

observed performance:

- tagging both hemispheres
- double Lund-Net tag
- Lund-Net for the full event Another performance gain

Open questions/work in progress

- How does the analytic do?
e.g. what gain from full-event tagging?
- Applications to other cases (e.g. at the LHC)?

Application \#3: MC development

Obvious comparisons

"standard" data vs. Monte Carlo comparison

Recall that different Lund regions are sensitive to different physics:

Revisiting substructure observables

- Equivalent to angularities/EECs:

$$
\begin{aligned}
& S_{\beta}=\sum_{i \in \mathcal{L}} E_{i} e^{-\beta \eta_{i}} \\
& M_{\beta}=\max _{i \in \mathcal{L}} E_{i} e^{-\beta \eta_{i}}
\end{aligned}
$$

\checkmark subjets allows for the use of "max"
\checkmark sum \neq max at NLL
\checkmark can be defined in $p p$

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,2002.11114] [K.Hamilton,R.Medves,G.Salam,L.Scyboz,GS,2011.10054]

- N-subjettiness-like: sum excluding the N largest

$$
\tau_{N}^{\beta, \text { Lund }}=\sum_{i \in A_{N}} E_{i} e^{-\beta \eta_{i}} \quad \text { with } \quad A_{N}=\operatorname{argmin}_{X \subset \mathcal{L},|\mathcal{L} \backslash X|=N-1}
$$

\checkmark Could replace sum by max (likely gaining a simpler resummation structure)
\checkmark Could be defined on the primary plane only

Crafted observables

Azimuth between $1^{\text {st }}$ and $2^{\text {nd }}$ prim. declust.

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,2002.11114]

Expected ratio of 1 at NLL NLL failures for "standard" showers "New" PanScales shower OK at NLL

Crafted observables

Azimuth between $1^{\text {st }}$ and $2^{\text {nd }}$ prim. declust.
[A.Karlberg, G.Salam,L.Scyboz,R.Verheyen,2103.16526]
All-order $\gamma^{*} \rightarrow q \bar{q}, \lambda=-0.5$
PanGlobal $(\beta=0) \quad \nmid$ PanLocal (ant. $\beta=0.5$)
PanLocal (dip. $\beta=0.5) ~ \square$ Toy shower

Sensitive to (collinear) spin
"New" PanScales shower have spin at NLL agrees w EEEC from 2011.02492 (EEEC less sensitive)

Crafted observables

Azimuth between $1^{\text {st }}$ and $2^{\text {nd }}$ prim. declust.

Sensitive to (soft) spin
"New" PanScales shower have spin at NLL first all-order result
(1) Lund diagrams have helped thinking about resummation and MCs Now they can be reconstructed in practice
(2) They provide a view of a jet/event which mimics angular ordering
(3) They provide a separation between different physical effects
(9) Broad spectrum of applications:

- Wide range of possible (p)QCD calculations Main limitation: (non-global) clustering logs; can we apply grooming-like techniques?
- Large scope for crafting new observables for improved (p)QCD calculations
- Large scope for crafting new observables for MC development/validation
- More connections to deep learning, heavy-ion collisions, ...
(5) Still many open questions and space for more applications in the future

Backup

Promoting to a practical tool

Construct the Lund tree in practice: use the Cambridge(/Aachen) algorithm Main idea: Cambridge(/Aachen) preserves angular ordering
$e^{+} e^{-}$collisions
(1) Cluster with Cambridge $\left(d_{i j}=2\left(1-\cos \theta_{i j}\right)\right)$
(2) For each (de)-clustering $j \leftarrow j_{1} j_{2}$:

$$
\begin{aligned}
& \eta=-\ln \theta_{12} / 2 \\
& k_{t}=\min \left(E_{1}, E_{2}\right) \sin \theta_{12} \\
& z=\frac{\min \left(E_{1}, E_{2}\right)}{E_{1}+E_{2}} \\
& \psi \equiv \text { some azimuth, } \ldots
\end{aligned}
$$

Jet in $p p$

(1) Cluster with Cambridge/Aachen $\left(d_{i j}=\Delta R_{i j}\right)$
(2) For each (de)-clustering $j \leftarrow j_{1} j_{2}$:

$$
\begin{aligned}
& \eta=-\ln \Delta R_{12} \\
& k_{t}=\min \left(p_{t 1}, p_{t 2}\right) \Delta R_{12} \\
& z=\frac{\min \left(p_{11}, p_{t 2}\right)}{p_{t 1}+p_{t 2}} \\
& \psi \equiv \text { some azimuth, } \ldots
\end{aligned}
$$

Primary Lund plane

Starting from the jet, de-cluster following the "hard branch" (largest E or p_{t})

Quark v. gluon jets: III. performance v. others

$$
p p \rightarrow Z q \text { v. } p p \rightarrow Z g \quad\left(p_{t} \sim 500 \mathrm{GeV}, R=0.4\right)
$$

- Analytic approach shows gains for $k_{t}>1 \mathrm{GeV}$ (shapes improve at small ε_{q} by adding smaller k_{t})

Quark v. gluon jets: III. performance v. others

$$
p p \rightarrow Z q \text { v. } p p \rightarrow Z g \quad\left(p_{t} \sim 500 \mathrm{GeV}, R=0.4\right)
$$

Significance: Lund models v. others

- Analytic approach shows gains for $k_{t}>1 \mathrm{GeV}$ (shapes improve at small ε_{q} by adding smaller k_{t})
- ML performance on par with PFN, slightly better than Particle-Net (treatment of PDG-ID could maybe be improved)

