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The growing scope of jet substructure

In the early 2000-2010’s: Jet substructure was a niche
(I would have had to explain what it is and why it is interesting)

Over ∼10 years it has become a standard tool at colliders
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substructure ≡ internal dynamics of jets

Before getting into applications, a few words about HOW it is done
(excluding ML)
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“standard” jet clustering

Two main classes of approaches for jet clustering:
Jets as particle branchings → pairwise clustering ((anti-)kt , C/A, ...)

Jets as energy flows → cone algorithms (SISCone, MidPoint, ...)

The same broad classes apply to substructure:
Use particle branchings → techniques based on de-clustering the jet

Use energy flows → techniques based on (sub)jet shapes
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A decade of substructure tools

(modified)
MassDrop

Tagger
(recursive)

SoftDrop
Trimming

Pruning

Shower
deconstructn

JH Top
tagger

HEP Top
taggerLund

Plane

(generalised)

angularities

N-subjettiness

Energy
Correlation
Functions

Energy flow
Polynomials

Jet Pull

* Non-exhaustive/biased/... list

tree of QCD branchings flow of energy

Take these two which
offer a complete view of the jet
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Energy flows

[P.komiske,E.Metodiev,J.Thaler,1712.07124]

Energy-flow polynomials

EFPG (jet j) =
∑

i1,...,iN∈j
zi1 . . . ziN

∑
(k,l)∈G

θik il

with G a (multi)graph with N vertices and some edges (k , l)

Main properties:

linear basis for IRC-safe substructure observables

includes energy-correlation function:
∑

i ,j zizjθ
β
ij (and higher-orders)

widely used for tagging

Can be used for various ML tagging applications

Interesting underlying computational structures
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Clustering approach: Cambridge/Aachen

Cambridge/Aachen: iteratively recombine the closest pair

θ1 θ2 θ3 θ4

θ5
θ6

z1
z2

z3
z4

z5

z6

primary
secondary
tertiary

Usage:

I (iteratively) undo clusterings (following hard branch) to find structure (SoftDrop,...)

I study kinematic properties of the branchings (LundPlane)
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Lund Plane representations

[F.Dreyer,G.P.Salam,GS,1807.04758]
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(b)
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(b)

(b)(b)

(c)

I C/A mimics angular
ordering

I structure close to the
Lund diagrams used in
resummation/MC

Properties at each vertex

Ti = {θi ≡ ∆i , kt,i , zi , ϕi , . . . }

Either primary only:

Lprim(j) = [T1, . . . , Tn]primary

Or full tree

Ltree(j) = [Tj→j1,j2 ,

Ltree(j1),Ltree(j2)]
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Lund plane physics regions

Primary Lund-plane regions

soft-collinear

hard-collinear (large
z)

IS
R
(la

rg
e
Δ
)

M
PI/U

E non-pert. (small kt)

ln(1/Δ)

ln
(k

t/
G
e
V
)

Different physics contributions in
different regions of the (primary)
Lund plane

In particular, selecting kt ≥ kt,cut

selects a pQCD region (IRC safety)

Simple observable

Lund plane density:

ρ =
1

Njet

d2N

d ln 1/∆d ln kt

Prospect: trees & E flows are not exclusive: we can define
flow/shape observables on tree constructions
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New and exciting progress

In a nutshell: for a few big applications of substructure I will

Describe the physical idea (phrasing it in the Lund Plane picture)

Give (at least one) interesting recent development

Discuss potential new developments

Gregory Soyez Jet substructure for everyone CERN Jets 2021 10 / 32



New prospects at the LHC

JET
SUBSTRUCTUREtagging

boosted
objects

UE/Pileup
mitigation
(grooming)

QCD
precision

pheno

Heavy-ion
collisions

Machine
learning

Monte-Carlo
generators
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Physics ideas

QCD jet: mostly soft gluon emissions
W jet: hard W → qq̄ branching + no large-angle emissions

typically tree typically shape
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Illustrative example

Tagging a boosted W boson (using Z(→ µµ) + W (jet) vs. Z(→ µµ) + jet)

no substructure with substructure
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mMDT: 1307.0007; D2: 1305.0007; dichroic: 1612.03917
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Searches and measurements
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analytic pQCD and ML for W tagging

Maximise background rejection for given signal efficiency
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RecNN (LCBC '17)
Lund+LSTM (DSS '18)
ParticleNet (QG '19)

mMDT+D2

(analytic) All Lund
primaries

(semi-)analytic

ML

Full Lund
tree (ML)

Messages: - good job from “historical” taggers (SD+D2)
- Including all (primary) declusterings help [F.Dreyer,G.Salam,GS,1807.04758]

- ML can extract some additional information (∼ ParticleNet w smaller cost [Gregor’s])

- clear gain including the full tree [F.Dreyer,H.Qu,2012.08526]
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analytic pQCD and ML for q/g discrimination

[F.Dreyer,GS,A.Takacs,soon]
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Main messages:
X Nice analytic performance
X Better gain for ML

(∗) ∼ NLL generalisation of nSD
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Analytic pQCD and ML for q/g discrimination

If we increase the Boost (fixing

αs log(pt/kt,min) the gap between
analytic and ML closes

Great validation

Question: extra
information used by ML?

Question: MC accuracy?
is that extra information
well-described in MC?
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Fun with taggers: validate ML with QCD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01.0

2.0

5.0

10.0

20.0

50.0

100.0

gl
uo

n 
re

je
ct

io
n 

fa
ct

or
, 1

/
g

Microjet sample

pt = 1 TeV, kt > 1 GeV
R = 1, s = 0.5

Lund density
nSD

primary (an.)
tree (an.)
LSTM (primary)
Lund-Net

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
quark efficiency, q

1

2

3

ra
tio

 to
 L

un
d 

de
ns

ity

ROC: LSTM v. expected likelihood

Use a sample with exact LL angular
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Shows very good agreement

(∗) [F.Dreyer,M.Dasgupta,G.Salam,GS,1411.5182]
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Performance v. resilience
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Generic trade-off between discriminating power and resilience

ML gain mostly at small kt where modelling more important

some ML gain at larger kt . Accessible in pQCD?
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What to look for in the future

Tagging progress is (mostly) ML-oriented today

There are nonetheless some interesting directions where “QCD” can help

Improved inputs/architecture
Better control, faster convergence,...

QCD analytics can be used as a validation of ML in known limits

Trade-off between performance and “resilience”

Room for “simple” QCD-based taggers (like the above Lund-plane, or arXiv:2006.10480)

More in Gregor&Jesse’talks (ML) and in Jack’s talk (analytics)
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JET
SUBSTRUCTUREtagging

boosted
objects

UE/Pileup
mitigation
(grooming)

QCD
precision

pheno

Heavy-ion
collisions

Machine
learning

Monte-Carlo
generators

Gregory Soyez Jet substructure for everyone CERN Jets 2021 21 / 32



Analytics for precision: basics

What: compute substructure observables in pQCD

Why: gain understanding on tools, compare to data, ...

How: substructure often probes physics at scales � jet pt
→ need for resummation

from “standard” QCD and SCET
State-of-the-art: NLL (or NNLL) matched to NLO
intimate link with Parton Showers (more on this later)

A nice benefit: “groom” soft & large-angle radiation

makes calculations somewhat easier (mostly collinear physics)
reduced non-perturbative effects, pushed them to lower scales
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Analytics for precision

SoftDrop jet mass
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Regions dominated by either NP, resummation or fixed-order

Unique framework for new probes of QCD over several scales

Question: does substructure help for αs or PDF extraction?

See e.g. 1711.08341, 1603.09338, 1704.02210, 1712.05105, 1807.05974, 2104.06920, CMS-PAS-SMP-20-010

Prospect: study more complicated/differential quantities

More in Andrew, Ian and Jack’s talks
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Analytics for precision
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Jet quenching and substructure

Idea: interaction with the quark-gluon plasma

QGP affects the jet dynamics ⇒ probe with substructure
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Measuring the splitting function

y CMS (CMS-HIN-16-006)
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Reduction from E loss

Peak from extra emissions

Based on perturbative QCD
At LL: factorisation between

“vacuum” (standard) shower and
medium effects.
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Recent measurement by the Alice collaboration

Increasing number of substructure measurements at the LHC

Comparisons to QCD calculations and MC simulations

see also Pedro’s talk
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One aspect (I think) is key for the future
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Exp challenge:
requires high-pt
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Substructure for MC development

Main idea: substructure observables probe QCD dynamics

Primary Lund-plane regions

soft-collinear

hard-collinear (large
z)
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Substructure for MC development

Main idea: substructure observables probe QCD dynamics

direct comparison
between data and MC

[ATLAS,2004.03540]

observables for
accuracy tests/developments
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[M.Dasgupta,F.Dreyer,K.Hamilton,

P.Monni,G.Salam,GS,2002.11114]
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Substructure for MC development

Main idea: substructure observables probe QCD dynamics

direct comparison
between data and MC

observables for
accuracy tests/developments
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Better constraints ⇒ less modelling uncert. ⇒ improved searches
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Versatile tool for future developments

Tweak the tool to
match your needs

Connection with
precision calculation

Example: Energy3

Correlation functions
sensitive to spin
correlations at NLL

See Ian’s talk
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All-order EEEC, λ = −0.4

[A.Karlberg,G.Salam,L,Scyboz,
R.Verheyen,2103.16526]
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Conclusions & perspectives

Take-home messages

Substructure is now mainstream and is here to stay

Wide range of applications (Taggers, pQCD, HI, MC, ML)

Active exploration ground/laboratory for QCD, exploiting the
large phase-space offered by the LHC

Looking towards the future

Expect more analyses with boosted jets

Recent (and on-going) deep-learning revolution

Need more calculations & (unfolded) substructure measurements

Lots to do in substructure-based QGP studies

Almost endless possibilities to test ideas/MCs/...

(Online) BOOST2021: https://indico.cern.ch/event/1037559/
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