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Disclaimers

I do not consider myself a heavy-ion physicist

My background is more on (jets from) the “vacuum” side of
high-energy collisions

The pure “heavy-ion” part of this talk is most likely biased towards
my own work with Paul Caucal and Edmond Iancu

I have mixed feelings about the very existence of this talk

After all, heavy-ion collisions are QCD collisions!
What bridges are we building then?

Conversely, HI collisions are substantially more complex
⇒ more “modelling” & qualitative arguments
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From LEP/RHIC/Tevatron to the LHC (quite obvious)

Higher energy

Main consequence:
large pQCD
phase-space

Xprecision physics
Xth. uncertainties

Higher luminosity

X more observables
X higher precision
X more differential

PC,EI,GS,2012.01457 ATLAS,1711.02692
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Different physics at different scales: pp

Q ≡
100 GeV
or higher

µNP ∼
1 GeV

L
H

C
pr

ob
es

ph
ys
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s

ac
ro

ss
m

an
y

sc
al

es

pp

Hard
process,

Hadronisation
MPI/UE

Parton
shower

A lot of work in past 20 years:

amplitudes (NLO, NNLO)

NLO availability: MadGraph,

aMC@NLO, POWHEG, MCFM, ...

matching/merging: MLM, CKKW

Mi(N)NLO, UNNLOPS, Geneva, ...

Nk≥2LL resummations

Historical showers:

Pythia,Herwig,Sherpa

More recent work:

Dire, Vincia, Deductor, PanScales

Nonperturbative modelling

∝ (µNP/Q)#

if IRC-safe

some still need to make it to HI
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Different physics at different scales: HI

Jets scatter off the QGP

kt broadening

Transverse “kicks”:
q̂ ≡ 〈k2

⊥〉 per unit length.

Relevant scale: Qs =
√

q̂L

Medium-induced emissions

∼ QCD colour coherence broken
⇒ extra emissions (mostly large-angle)

2 relevant scales:
• q̂L2: hard (rare) emissions
• α2

s q̂L2: multiple emissions

effects on the QGP itself

No real separation between the jet
and the medium
⇒ correlated behaviour

back-reaction, medium recoil, ...

Relevant scale ∼ T
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Substructure opens (almost) endless options

Large phase-space where perturbative QCD can genuinely be
applied both in pp and in HI

implies correlated effort on (at least) 2 fronts

Understand the development
of parton cascades

Calls for several improvements:

fixed-order (pp)

resummations (pp)

quenching description (HI)

parton-shower MC (both)

develop observables sensitive
to the QCD dynamics

Jet substructure has proven a
powerful tool for about 10 years

I will focus on these 2 topics

with deep connections

between pp and HI
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Interlude
Representing radiation in the Lund plane
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Radiation from a qq̄ antenna

Take a gluon emission from a (qq̄) dipole

pq

pq̄

k

Emission:

kµ ≡ zqpµq + zq̄pµq̄ + kµ⊥

3 degrees of freedom:

Rapidity: η = 1
2 log

zq
zq̄

Transverse momentum: k⊥

Azimuth: φ

In the soft-collinear approximation

dP =
αs(k⊥)CF

π2
dη

dk⊥
k⊥

dφ
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Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 “log” variables η and log k⊥

pq

pq̄

k

log kt η = − log tan(θ/2)

E k
≤

1
2
m qq̄

q sideq̄ side

k

q q̄

k

soft &
colinear

hard
collinear

so
ft
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ge
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gl
e)

soft &
colinear

har
d

co
lli
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r

log kt

log 1/θθ = R

E
k ≤

p
t,jet R
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For a jet: η = − log tan θ/2 ≈ log 1/θ, θ < R
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Multiple emissions in the Lund plane

log kt η = − log tan(θ/2)

E k
≤

1
2
m qq̄

q sideq̄ side

a

b

c

a
b c
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Parton showers
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Parton shower in pp: big picture

Lots of progress over the past decade:

1→ 3 splitting functions: ingredients towards NLO DGLAP (e.g. Dire)

See e.g. [Jadach et al,16] [Li,Skands,16] [Höche,Krauss,Prestel,17] [Höche,Prestel,17]

Beyond leading colour: most showers (except herwig) use dipoles and are
leading Nc (even at leading log)

Amplitude-level showers (instead of ME2)
see e.g. [Forshaw,Holguin,Plätzer,19]

Beyond leading-Nc/full colour
see e.g. [Nagy,Soper,12] [Gieseke,Kirchgaesser,Plätzer,Siodmock,18]

[Höche,Reichelt,20] [Forshaw,Holguin,Plätzer,20]

Electroweak showers: include W /Z/γ in showers
involved splitting functions, explicit dependence on chirality/spin(∗)

see e.g. [Kleiss,Verheyen,20] [Bauer,Ferland,Webber,17-18]

[Bauer,DeJong,Nachman,Provasoli,19]

(∗) Technically, this is also the case for QCD showers
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What does shower accuracy mean?

Q ≡
100 GeV
→ 1 TeV

Q � µNP

µNP ∼
1 GeV

Hard
process,

matching

Hadronisation
MPI/UE

Parton
shower

“Standard” perturbative expansion

αs(Q)f1(v) + α2
s (Q)f2(v) + α3

s (Q)f3(v) + . . .

LO NLO NNLO

expect logs between disparate scales

αs log2 Q/µNP, αs log Q/µNP

(double, single,...) logs to resum

PS accuracy means logarithmic

accuracy: LL, NLL, N2LL, ...

well-defined
+ systematically improvable
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Target NLL accuracy

NLL accuracy for
a range of observables

global event shapes
I thrust

I jet rates

I angularities

I broadening

I ...

non-global
observables
e.g. energy in slice

multiplicity
(NLL is αn

s L
2n−1)

Correct matrix elements for N well
separated emissions in the Lund plane

(only half the primary Lund plane for simplicity)

separated
in any

direction
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Target NLL accuracy

(Cumulative) distributions can (often) be written as

P(v < e−L) = exp

[
g1(αsL)L︸ ︷︷ ︸

leading log(LL)

+ g2(αsL)︸ ︷︷ ︸
next-to-leading log(NLL)

+ g3(αsL)αs︸ ︷︷ ︸
NNLL

+ . . .

]

0.6 0.4 0.2 0.0
= 1

2 slog(y23)

0.80

0.85

0.90

0.95

1.00

M
C
/

N
LL

(
s,

)

Cam. y23, ratio to NLL

Pythia8

NLL
s = 0.02

Idea for testing:

ΣMC (λ=αsL,αs)

ΣNLL(λ=αsL,αs)
v. 1

with λ = αsL

NLL deviations

or

subleading effects?
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Idea for testing:

ΣMC (λ=αsL,αs)

ΣNLL(λ=αsL,αs)

αs→0−→ 1

at fixed λ = αsL

× Pythia8 deviates from NLL
× Dire(v1) same as Pythia8
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Target NLL accuracy

(Cumulative) distributions can (often) be written as

P(v < e−L) = exp

[
g1(αsL)L︸ ︷︷ ︸

leading log(LL)

+ g2(αsL)︸ ︷︷ ︸
next-to-leading log(NLL)

+ g3(αsL)αs︸ ︷︷ ︸
NNLL

+ . . .

]
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= 1

2 slog(y23)
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2 )

Idea for testing:

ΣMC (λ=αsL,αs)

ΣNLL(λ=αsL,αs)

αs→0−→ 1

at fixed λ = αsL

× Pythia8 deviates from NLL
× Dire(v1) same as Pythia8
X PanLocal(0 < β < 1) OK
X PanGlobal(0 ≤ β < 1) OK

[M.Dasgupta,F.Dreyer,K.Hamilton,
P.Monni,G.Salam,GS,20]
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More extensive tests

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]
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Recently: prescription beyond leading Nc [K.Hamilton,R.Medves,G.Salam,L.Scyboz,GS,20]
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Parton shower in HI: big picture

Complex but a good fraction is accessible from first-principles QCD

Significantly improved picture of jet quenching over the past few years

More precise calculations of medium-induced emissions
(longitudinal and transverse spectra)

Accumulate evidence for more fine-tuned effects
(decoherence, back-reaction, medium response, ...)

see e.g. [Mehtar-Tani,Tywomiuk,19] [Barata,Mehtar-Tani,Soto-Ontoso,Tywomiuk,20]

[Mehtar-Tani,Pablos,Tywomiuk,21] [Barata,Dominguez,Salgado,Vila,21]

What to look forwards to?

Still a lot to do “analytically”

going beyond simplifying assumptions → higher accuracy/precision
more realistic medium description (expansion, geometry, ...)

More implementations in dedicated HI Monte Carlo generators

Benefit from work in generators in pp collisions
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Parton shower in HI: double-logarithmic limit

How to combine (angular-ordered) “vacuum” splittings
with (not-angular-ordered) medium-induced emissions?

Idea: compare the transverse momenta over the formation time: tf = 2
ωθ2

k2
⊥,vac = ω2θ2

k2
⊥,med = q̂tf =

2q̂

ωθ2

At leading log, 2 possible cases:

k2
⊥,vac � k2

⊥,med: standard vacuum emissions (angular-ordered)(∗)

k2
⊥,vac � k2

⊥,med: medium-induced emission

transition at k2
⊥,med = k2

⊥,vac i.e. ω3θ4 = 2q̂

[P.Caucal,E.Iancu,A.H.Mueller,GS,17] ((∗) includes details about colour coherence)
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Factorised physical picture

3-stage picture (at double-log):

in-medium angular-ordered vacuum emissions

each parton sources MIEs propagating through the medium

out-medium VLEs with first emission at any angle
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anti-kt(R = 0.4), |yjet| < 2.8
= 1, t0 = 1/Qs, q0t0 = Q2

s

jet RAA (expanding medium, EPPS16NLO)
Qs = 1.2 GeV, L = 4 fm, med = 0.35
Qs = 1.4 GeV, L = 4 fm, med = 0.28
Qs = 1.6 GeV, L = 4 fm, med = 0.23
Qs = 2.0 GeV, L = 4 fm, med = 0.17

includes nuclear PDFs and expanding medium
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Open questions

A few ideas to keep in sight for future developments

Helpful to thing in terms of ordered scales

Q �
√

q̂L� T

to factorise different effects in a systematic way

Can one devise accuracy tests similar to the ones discussed for pp?
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Jet substructure
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Substructure opens (almost) endless options

Brief history

1980 Birth
2008 Re-birth (BDRS)

2008-13 Main techniques
2013 First analytics

2013- New techniques
2018 Deep-learning
2018 Heavy-ions

Main interest

Offers a differential view of
a jet’s radiation pattern

What existing techniques are good for

Study the dynamics of the QCD branchings
in many differnet ways

Caveat: substructure tools affect
quenching effects in non-trivial ways

Where existing techniques are limited

Jet quenching effects are different from pp
parton shower: angular-ordering violations,
different phase-space, ...

Caveat: delicate to find observables which
isolate a given quenching effect
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Substructure example: radiation in the Lund plane

Myriads of tools available. I will focus on a visually simple one
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Substructure example: radiation in the Lund plane

Myriads of tools available. I will focus on a visually simple one

The (primary) Lund jet plane

Cluster the jet with
Cambridge/Aachen
(i.e. orderd in angles)

Iteratively undo last clustering
(following hardest subjet)

measure kt and ∆R of
branching

One (of many) nice properties:
separate different physical regions
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Lund plane in heavy ions

Lund plane potentially interesting in heavy-ion collisions

picture not 100% clear

some effects

quark v. gluon Eloss

decoherence
in/out interface
medium induced

beyond primary plane?

correlations?

ratio ρPbPb/ρpp
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Substructure: (non) angular ordering and C/A clustering

In pp, C/A is natural since it respects (strong) angular ordering

Imagine a leading parton p0 + a largest-kt emission p1

kt clusteringp0

p1

with p0

with p1

with p0 or p1

“wrong” clustering can happen
at double-logaccuracy

C/A clusteringp0

p1

with p0

with p1

with p0 or p1

clustering as expected
except in “single-log” region
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Substructure in heavy-ions

What are the appropriate substructure tools in HI?

Large part of the phase-space dominated by vacuum

I Can be an advantage: use substructure to select the vacum
configuration that propagates through the mediun

I C/A still appears as a natural choice (for clustering-based tools)

Different ordering can be probed

I C/A declusterings gives an ordered list of declusterings (or a full tree);
these can be ordered as we please (cf. e.g. dynamical grooming)

I the first clustering is unaffected ⇒ different algorithms can be used
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Substructure in heavy-ions

Idea: correlate jet quenching with substructure variables
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smaller θg ⇒ less sources
⇒ less Eloss

transition at θg ∼ θc
(decoherence angle)

Gregory Soyez Jets in and out the medium CERN - HI/QCD 28 / 29



Final words

genuine connections between pp and HI collisions

Where HI could think pp

large phase-space for
“pp physics”

be quantitative
I assess accuracy
I inlcude uncertainties

Where pp could think HI

rich QCD pheno of QGP
interactions

interesting challenges to think
about e.g. using substructure
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