Event Generators for High-Energy Physics

Gregory Soyez

IPhT, CNRS, CEA Saclay

(e)LHCP 2020, May 25-29 2020

Plan

Importance of Event Generators

Event Generators

Simulate events using Monte-Carlo techniques

- All-purpose generators simulating a "full event" Pythia, Herwig, Sherpa
- more specific tools (e.g. fixed-order, parton shower) e.g. aMC@NLO, POWHEG, Vincia, Dire, ...

Event Generators

Simulate events using Monte-Carlo techniques

- All-purpose generators simulating a "full event" Pythia, Herwig, Sherpa
- more specific tools (e.g. fixed-order, parton shower) e.g. aMC@NLO, POWHEG, Vincia, Dire, ...

Main advantage: versatility

- "realistic" and very generic aspects of all-purpose generators (including combination with detector simulation)
- broad range of analyses (any phase-space cut, observable, ...)

Event Generators

Simulate events using Monte-Carlo techniques

- All-purpose generators simulating a "full event" Pythia, Herwig, Sherpa
- more specific tools (e.g. fixed-order, parton shower) e.g. aMC@NLO, POWHEG, Vincia, Dire, ...

Main advantage: versatility

- "realistic" and very generic aspects of all-purpose generators (including combination with detector simulation)
- broad range of analyses (any phase-space cut, observable, ...)

Beware!

each part/component of the "simulation" has its own capabilities/limitations and its own accuracy

Event Generators are among us!

• % of ATLAS+CMS+LHCb papers citing some article/group in Jan '14 → May '20

Event Generators are among us!

• % of ATLAS+CMS+LHCb papers citing an article/group in Jan '14 → Oct '19

Gregory Soyez

LHCP 2020 4 / 18

Simulating a high-energy collision requires several ingredients

- A hard process
- Parton shower (initial and final-state)

5 / 18

Simulating a high-energy collision requires several ingredients

- A hard process
- Parton shower (initial and final-state)

5 / 18

Simulating a high-energy collision requires several ingredients

- A hard process
- Parton shower (initial and final-state)
- Hadronisation

5 / 18

Event Generators

Gregory Soyez

Simulating a high-energy collision requires several ingredients

- A hard process
- Parton shower (initial and final-state)
- Hadronisation
- Multi-parton interactions

Challenges and progress perturbative physics at the hard scale

Recent progress has been phenomenal

- NLO readily available for all processes we want (with rare exceptions)
- NNLO is the next frontier and progress is good

Recent progress has been phenomenal

- NLO readily available for all processes we want (with rare exceptions)
- NNLO is the next frontier and progress is good

To watch for (in the context of fixed-order event generators)

- NNLO = "2-loop virtual" + "real-virtual" + "double real"
- Subtle cancellation of IR singularities (beyond capabilities to calculate the 2-loop part) Still room for improvement

• NNLO is computationally (very) CPU-hungry

< □ > < @ >

Main idea

Connect fixed-order ((N)(N)LO, Hard scales) with parton shower ("intermediate scales")

Recent progress:

- NNLO matching for colour-singlet production
 - MiNNLO_{PS}: POWHEG framework, no reweighting [Monni,Nason,Re,Wiesemann,Zanderighi,19]
 - GenEvA: SCET-based [Bauer, Tackmann, Thaler, 08]
 - UNLOPS: SHERPA framework [Höche, Prestel, 14]
- uncertainty assessment: e.g. [Gellersen, Prestel, 20]

Challenges: pp processes with light jets

Challenges and progress perturbative physics of parton showers

Dipole/Antenna showers

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

(本語)と (4)

Dipole/Antenna showers

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

Dipole/Antenna showers

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

Idea #2:

iterate dipole splittings (populate the full phase space with multiple emissions)

Several challenges:

- ordering variable
- beyond large/leading-N_c
- treat recoil properly
- assess/improve accuracy

< 3 > <

Beyond leading colour

Challenges

- most showers (except Herwig) are leading colour (even at leading-log) (see e.g. [Dasgupta,Dreyer,Hamilton,Monni,Salam,18])
- very complex structure for multiple soft-gluon emissions

Recent progress

- Amplitude-level showers in contrast to approached based on squared matrix-elements see e.g. [Forshaw,Holguin,Plätzer,19]
- Beyond leading-N_c/full colour see e.g. [Nagy,Soper,12], [Höche,Reichelt,20], [Forshaw,Holguin,Plätzer,20]

Electroweak showers

Main challenges

- Splitting functions more involved than standard Altarelli-Parisi
- Explicit dependence on chirality/spin^(*)

Recent progress

Implementation in Vincia, based on the spinor-helicity formalism

[Kleiss, Verheyen, 20]

phenomenological relevance at large p_t

→ Ξ →

< □ > < @ >

(*) Technically, this is also the case for QCD showers

WHAT DOES ACCURACY MEAN?

- parton showers are anchored in perturbative QCD
- disparate scales $Q \gg \Lambda_{QCD} \implies \log resummed to all orders$
- accuracy means logarithmic accuracy well-defined and systematically improvable

WHAT DOES ACCURACY MEAN?

- parton showers are anchored in perturbative QCD
- disparate scales $Q \gg \Lambda_{QCD} \implies \log resummed to all orders$
- accuracy means logarithmic accuracy well-defined and systematically improvable

(Cumulative) distributions can (often) be written as (L = log(v))

$$\Sigma(v) = \exp\left[\underbrace{g_1(\alpha_s L)L}_{\text{leading log}(LL)} + \underbrace{g_2(\alpha_s L)}_{\text{next-to-leading log}(NLL)} + \underbrace{g_3(\alpha_s L)\alpha_s}_{NNLL} + \dots\right]$$

Idea for testing: NLL accuracy requires

$$\frac{\sum_{MC} (\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL} (\lambda = \alpha_s L, \alpha_s)} \stackrel{\alpha_s \to 0}{\longrightarrow} 1$$

at fixed $\lambda = \alpha_s L$

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Example: Cambridge/Aachen(C/A) y_{23}

- e^+e^- event
- cluster with C/A (angular-ordered)
- keep clustering with maximum (relative) transverse momentum: $\sqrt{y_{23}} = \max_i k_{ti}$

Study

 $\frac{\sum_{MC} (\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL} (\lambda = \alpha_s L, \alpha_s)} \text{ for } \alpha_s \to 0.$

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Example: Cambridge/Aachen(C/A) y_{23}

- e^+e^- event
- cluster with C/A (angular-ordered)
- keep clustering with maximum (relative) transverse momentum: $\sqrt{y_{23}} = \max_i k_{ti}$

Study

- $\frac{\sum_{MC} (\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL} (\lambda = \alpha_s L, \alpha_s)} \text{ for } \alpha_s \to 0.$
- $imes\,$ Pythia8 deviates from NLL

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Key element 2: choice of evolution variable

 $v \sim k_{t,ik} \theta_{ik}^{\beta}$ (0 < β < 1) Idea: emissions with commensurate k_t radiated with successively smaller angles

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Example: C/A y_{23} $\sqrt{y_{23}} = \max_i k_{ti}$ Study $\frac{\sum_{MC}(\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda = \alpha_s L, \alpha_s)}$ for $\alpha_s \to 0$.

- $\times~$ Pythia8 deviates from NLL
- ✓ PanLocal($0 < \beta < 1$) OK
- ✓ PanGlobal($0 \le \beta < 1$) OK

Assessing accuracy

Challenges and progress non-perturbative physics at the soft scales

- Model parameters have to be "tuned" (mostly to data)
 - e.g. LEP data strongly constrain hadronisation Dedicated LHC (and Tevatron) measurements for MPI
- Can try to develop theoretical frameworks, use lattice QCD, ...
- Open question: Systematic way of assessing uncertainty?

[Sjostrand, Utheim, 20]

framework for hadron rescatterings in Pythia

- main impact: various "flows" of hadrons
- Possible applications to *pA* and *AA* collisions (e.g. via Angantyr [Bierlich, Gustafson, Lönnblad, Shah, 18])

.

[Hunt-Smith, Skands, 20]

Average p vs Charged Multiplicity Ideal Case π^+ K^+ ф 0.55 $\tau_0 = 2 \text{ GeV}^{-1}$ $\tau_0 = 2 \text{ GeV}^{-1}$ $\tau_0 = 0.536 \text{ GeV}^{-1}$ $\tau_0 = 0.536 \text{ GeV}^-$ Baseline PYTHIA Baseline PYTHIA 0.50 0.45 (Aeg) < 0.40 < [⊤]d > 0.35 0.30 0.25 $\tau_0 = 2 \text{ GeV}^{-1}$ 0 536 GeV ine PYTHA 0.20 10 20 10 20 10 20 Nch Nch Nch

Lund string fragmentation with time-dependent tension (Pythia)

- motivated by lattice considerations
- main impact: larger p_t & more strangeness

LHCP 2020 17 / 18

MCs used everywhere! Immensely relied upon at the LHC

Full event simulation requires coverage of a wide range of scales

Scale	Realm	Progress	Challenges
Hard	Fixed-order	Towards NNLO	More complex colour
	(LO,NLO,NNLO,)	subtraction methods	ampl $ ightarrow d\sigma/dX$
	Matching/merging	MiNNLO	CPU cost?
Parton shower	All-orders (LL,,NLL,NNLL,)	Assessing accuracy NLL-accurate showers Improved colour electroweak showers	new (N)NLL showers better uncertainties
Soft	Non-perturbative	more realistic models	How far can one go?
	models	"collectivity" (cf. <i>AA</i>)	Assess uncertainties?

Common effort needed in the quest towards precision

→ Ξ →