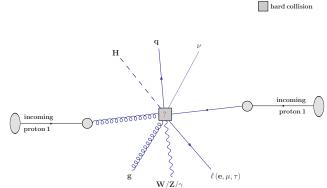
Fun with Jets From Run I to Run II and beyond

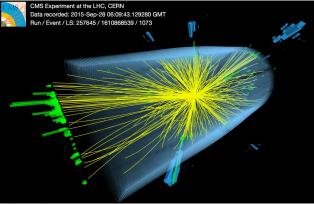
Grégory Soyez


IPhT, CEA Saclay

Manchester May 27 2016

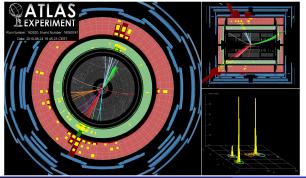
Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo ManchesterMay 27 2016 1 / 46

Anatomy of collider physics

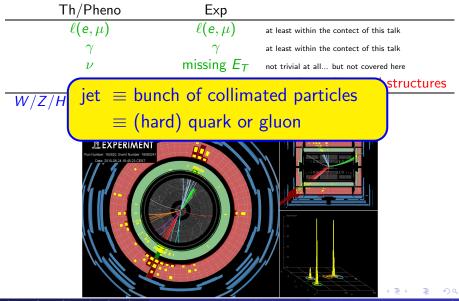

A Theorist's view:

- Learn about fundamental interactions
- Produce standard model particles

Anatomy of collider physics


Experimental realm:

- Learn about fundamental interactions
- Observe energy deposits and charged tracks


Elementary phenomenologist dictionary/view

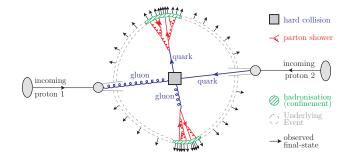
Th/Pheno	Exp	
$\ell(e,\mu)$	$\ell(e,\mu)$	at least within the contect of this talk
γ	γ	at least within the contect of this talk
u	missing <i>E_T</i>	not trivial at all but not covered here
<i>q</i> , <i>g</i>	jets	complex collimated structures
$W/Z/H/top/\tau/BSM/$	decay in the above	

Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo Manc

Elementary phenomenologist dictionary/view

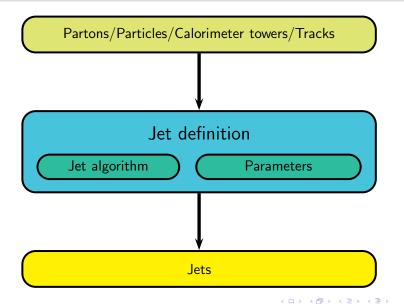
Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo Mar

Jetography


Measure jets \longrightarrow access $q/g \longrightarrow$ learn about fundamental collision

- 2

3 N K 3 N


< □ > < 同

Measure jets \longrightarrow access $q/g \longrightarrow$ learn about fundamental collision

- Jets come from collinear branchings in pQCD
- Parton showers: require state-of-the-art (all-orders) perturbative QCD
- Hadronisation/UE: Non-pertur. effects: limit sensitivity to that

Jet definition

Recombination algorithms

[M.Cacciari, G.Salam, GS, 2008]

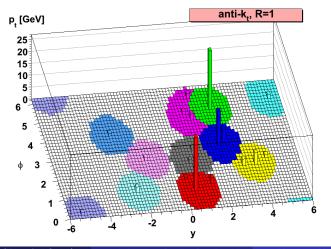
46

$(Anti-k_t)$ algorithm

• From all the objects, define the distances

$$d_{ij} = \min(p_{t,i}^{-2}, p_{t,j}^{-2})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2),$$

$$d_{iB} = p_{t,i}^{-2} R^2$$

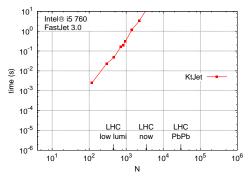

 repeatedly find the minimal distance if d_{ij}: recombine i and j into k = i + j if d_{iB}: call i a jet

• One parameters: *R* ("jet radius").

Notes

- Different R at the LHC. CMS: 0.5,0.7,0.4(soon); ATLAS: 0.4,0.6
- Several nice properties:
 - IRC-safe (i.e. can be computed theoretically in pQCD)
 - produces cone-like (circular) jets
 - fast

Main property: hard jets are circular

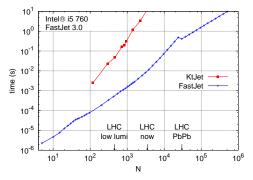


Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo

FastJet

[M.Cacciari, G.Salam, 2005]

[M.Cacciari, G.Salam, GS, 2011]

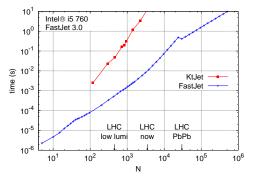


• Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles

FastJet

[M.Cacciari, G.Salam, 2005]

[M.Cacciari, G.Salam, GS, 2011]



Tevatron era: k_t too slow: O(N³) for N particles
Now: (anti-)k_t very fast: O(N²) or even O(N log(N))

FastJet

[M.Cacciari, G.Salam, 2005]

[M.Cacciari, G.Salam, GS, 2011]

• Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles

- Now: $(anti-)k_t$ very fast: $\mathcal{O}(N^2)$ or even $\mathcal{O}(N \log(N))$
- Fastjet 3.1: typically 5-50ms for LHC (with pileup and areas)

Challenge 1: pileup

- Run I: Jet area-median pileup subtraction
- Towards Run II: noise-reduction and SoftKiller

• Challenge 2: jet substructure

- New paradigm for jets
- boosted jet tagging

Pileup mitigation

Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo ManchesterMay 27 2016 11 / 46

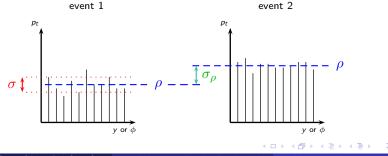
э

Pileup

$Z \to \ell^+ \ell^-$ candidate at ATLAS

Low luminosity (bunch population)

$Z ightarrow \ell^+ \ell^-$ candidate at ATLAS


Low luminosity High luminosity (bunch population) (bunch population)

Pileup complicates things

- many (soft) pp interactions with the hard one (here 25) LHC Run I: \sim 20-25, Run II: \lesssim 60, upgrades: \lesssim 200
- soft background in the whole detector

Pileup mostly characterised by 3 numbers (*):

- ρ : the average activity in an event (per unit area)
- σ : the intra-event fluctuations (per unit area)
- σ_{ρ} : the event-to-event fluctuations of ρ

Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo ManchesterMay 27 2016 13 / 46

Pileup mostly characterised by 3 numbers (*):

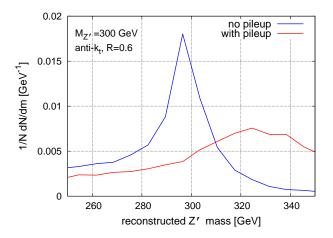
- ρ : the average activity in an event (per unit area)
- σ : the intra-event fluctuations (per unit area)
- σ_{ρ} : the event-to-event fluctuations of ρ

Jet of momentum p_t and area A:

one event:
$$p_t \rightarrow p_t + \rho A \pm \sigma \sqrt{A}$$

event average: $p_t \rightarrow p_t + \langle \rho \rangle A \pm \sigma_{\rho} A \pm \sigma \sqrt{A}$

Pileup mostly characterised by 3 numbers (*):


- ρ : the average activity in an event (per unit area)
- σ : the intra-event fluctuations (per unit area)
- σ_{ρ} : the event-to-event fluctuations of ρ

Jet of momentum p_t and area A:

one event:
$$p_t \rightarrow p_t + \rho A \pm \sigma \sqrt{A}$$

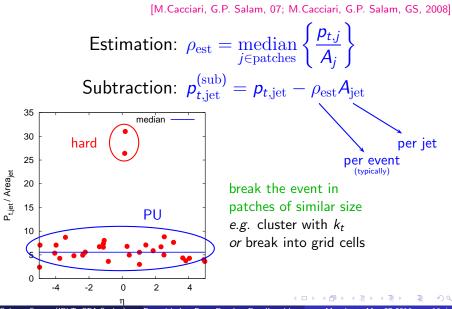
event average: $p_t \rightarrow p_t + \langle \rho \rangle A \pm \sigma_{\rho} A \pm \sigma \sqrt{A}$
 p_t shift p_t smearing
resolution degradation

(*) valid also for the underlying event in heavy-ion collisions

Illustrative example

Proper definition of the ("Active") area of a jet:

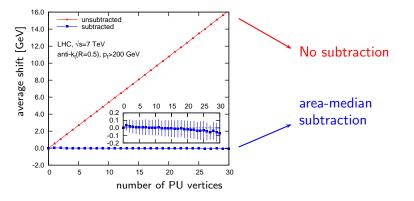
- Add "ghosts" to the event:
 - particles with infinitesimal p_t
 - on a grid (+ small random fluctuations) of cell area a_0


Proper definition of the ("Active") area of a jet:

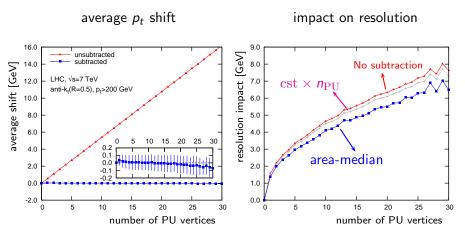
- Add "ghosts" to the event:
 - particles with infinitesimal p_t
 - on a grid (+ small random fluctuations) of cell area a_0
- Include the ghosts in the clustering

Proper definition of the ("Active") area of a jet:

- Add "ghosts" to the event:
 - particles with infinitesimal p_t
 - on a grid (+ small random fluctuations) of cell area a_0
- Include the ghosts in the clustering
- If a jet contains N_g ghosts, its area is $N_g a_0$


Area-median ingredient 2: estimate ρ

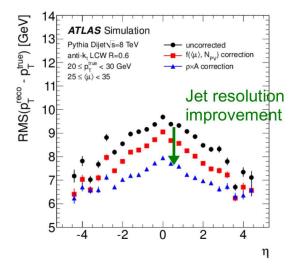
Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo ManchesterMay 27 2016 16 / 46


Subtraction benchmarks

average p_t shift

corrected for shift

Subtraction benchmarks



corrected for shift

resolution improved

Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo ManchesterMay 27 2016 17 / 46

PU subtraction as seen in ATLAS

[B. Petersen, ATLAS Status report for the LHCC, 2013]

Improvements/extensions of the basic method

 Methods to handle positional dependence of ρ Directly relevant for the LHC (*e.g.* rapidity dependence)

[M.Cacciari,G.Salam,GS,2010-2011]

- Subtraction for jet mass and jet shapes Important for jet tagging ("q v. g jet", b jet, top jet, $H \rightarrow b\bar{b}$) [GS,G.Salam,J.Kim,S.Dutta,M.Cacciari,2013] [P.Berta,M.Spousta,D.Miller,R.Leitner,2014]
- Subtraction of fragmentation function (moments) Useful for quenching in *PbPb* collisions

[M.Cacciari, P.Quiroga, G.Salam, GS, 2012]

New techniques

Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo ManchesterMay 27 2016 20 / 46

3

Noise-reduction techniques

Overall idea

- Try to further reduce the impact on resolution $\sigma_{\Delta p_t}$
- Usually at the expense of biases on $\langle \Delta p_t
 angle$
- Requires more delicate tuning

Noise-reduction techniques

Overall idea

- Try to further reduce the impact on resolution $\sigma_{\Delta p_t}$
- Usually at the expense of biases on $\langle \Delta p_t
 angle$
- Requires more delicate tuning

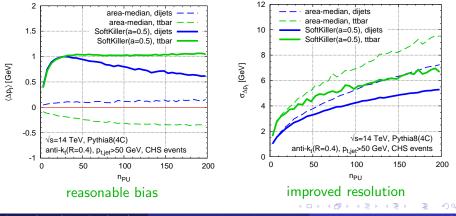
Several methods

SoftKiller: remove low-pt particles

```
[M.Cacciari,G.Salam,GS,14]
```

- PUPPI: from CMS (charged tracks info + assignment probability)
 - [D.Bertolini, P.Harris, M.Low, N.Tran, 14]
- Jet Cleansing: charged tracks + subjets + little extra

[D.Krohn, M.Low, M.Schwartz, L-T.Wang, 13]

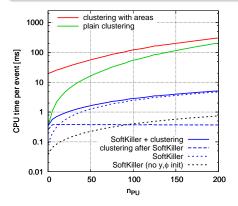

Constituent Subtractor: improvement for mass and shapes

[P.Berta, M.Spousta, D.Miller, R.Leitner, 2014]

SoftKiller

Recipe

Remove the softest particle in the event until $\rho_{est} = 0$ One parameter: *a*, the size of the grid used to estimate ρ



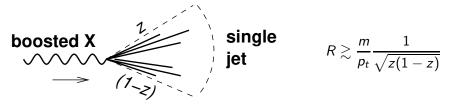
Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo ManchesterMay 27 2016 22 / 46

SoftKiller

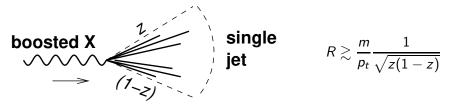
Recipe

Remove the softest particle in the event until $\rho_{est} = 0$ One parameter: *a*, the size of the grid used to estimate ρ

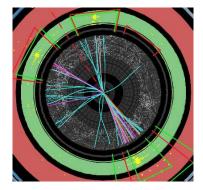
Allows very fast implementation

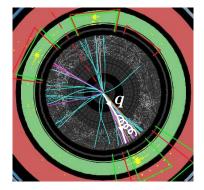

(see SoftKiller fastjet contrib)

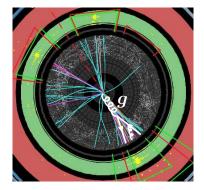
Boosted jets

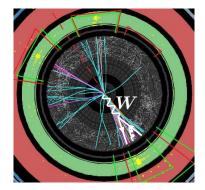

Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo ManchesterMay 27 2016 23 / 46

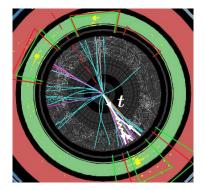
크

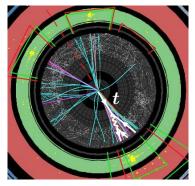

Object X decaying to hadrons


Object X decaying to hadrons

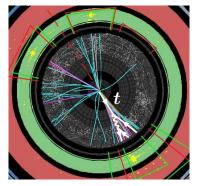

If $p_t \gg m$, reconstructed as a single jet How to disentangle that from a QCD jet?


What jet do we have here? • a quark?


- a quark?
- a gluon?


- a quark?
- a gluon?
- a W/Z (or a Higgs)?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?



- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

Paradigm shift: a jet can be more than a quark or gluon

Boosted jets: applications

Many applications: (examples)

- 2-pronged decay: W/Z
 ightarrow q ar q, H
 ightarrow b ar b
- 3-pronged decay: $t \rightarrow qqb$, $\tilde{\chi} \rightarrow qqq$

Boosted jets: applications

Many applications: (examples)

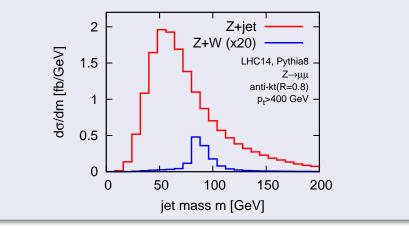
- 2-pronged decay: $W/Z \rightarrow q\bar{q}, H \rightarrow b\bar{b}$
- 3-pronged decay: t
 ightarrow qqb, $\tilde{\chi}
 ightarrow qqq$

Increasingly important:

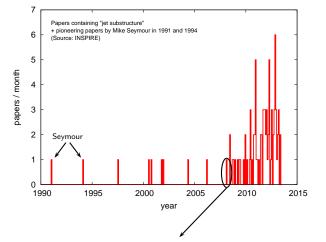
- Increasing LHC energy
- Increasing bounds/scales
- More-and-more discussions about yet higher-energy colliders

More and more boosted jets Needs to be under control

Boosted jets


How to proceed?

Grégory Soyez (IPhT, CEA Saclay) Fun with Jets From Run I to Run II and beyo ManchesterMay 27 2016 27 / 46


3

Naive ideas do not work!

Looking at the jet mass is not enough

A lot of activity since 2008

Jet substructure as a new Higgs search channel at the LHC

Jon Butterworth, Adam Davison, Mathieu Rubin, Gavin Salam, 0802.2470

Many tools:

mass drop; filtering, trimming, pruning; soft drop, Y-splitter; N-subjettiness, planar flow, energy correlations, pull; Q-jets, ScJets; shower deconstruction; template methods; Johns Hopkins top tagger, HEPTopTagger, CASubjet tagging; ...

Many tools:

mass drop; filtering, trimming, pruning; soft drop, Y-splitter; N-subjettiness, planar flow, energy correlations, pull; Q-jets, ScJets; shower deconstruction; template methods; Johns Hopkins top tagger, HEPTopTagger, CASubjet tagging; ...

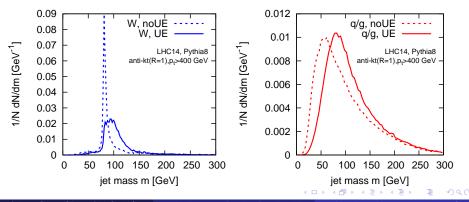
Idea 1: Find $N = 2, 3, \dots$ hard cores

Works because different splitting

QCD jets: $P(z) \propto 1/z$

- \Rightarrow dominated by soft emissions
- \Rightarrow "single" hard core

Many tools:


mass drop; filtering, trimming, pruning; soft drop, Y-splitter; N-subjettiness, planar flow, energy correlations, pull; Q-jets, ScJets; shower deconstruction; template methods; Johns Hopkins top tagger, HEPTopTagger, CASubjet tagging; ...

Idea 1:Idea 2:Find N = 2, 3, ... hard coresConstrain radiation patternsWorks because different splitting
QCD jets: $P(z) \propto 1/z$
 \Rightarrow dominated by soft emissions
 \Rightarrow "single" hard coreWorks because different colours
Radiation pattern is different for
 \circ colourless $W \rightarrow q\bar{q}$
 \circ coloured $g \rightarrow q\bar{q}$

3rd idea: Grooming

Fat Jets

One usually work with large-R jets ($R \sim 0.8 - 1.5$) \Rightarrow large sensitivity to UE (and pileup)

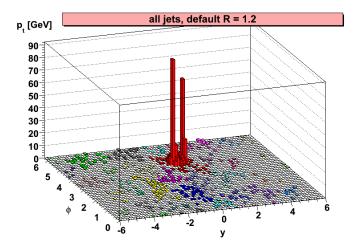
3rd idea: Grooming

Fat Jets

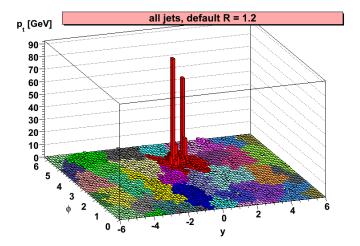
One usually work with large-R jets ($R \sim 0.8 - 1.5$) \Rightarrow large sensitivity to UE (and pileup)

"grooming" techniques reduce sensitivity to soft-and-large-angle

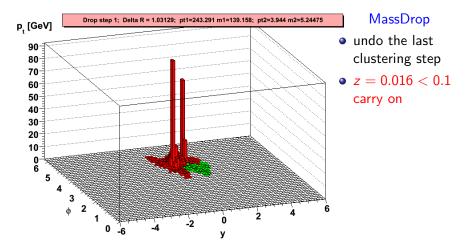
Example 1: Filtering/trimming

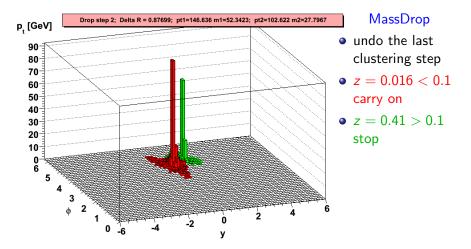

- re-cluster the jet with the k_t algorithm, $R=R_{
 m sub}$
- Filtering: keep the n_{filt} hardest subjets

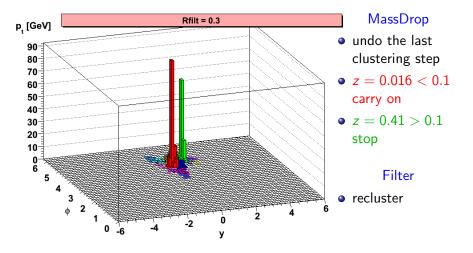
[J.Buterworth, A.Davison, M.Rubin, G.Salam, 08]

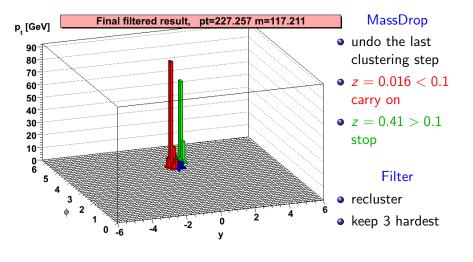

A B K A B K

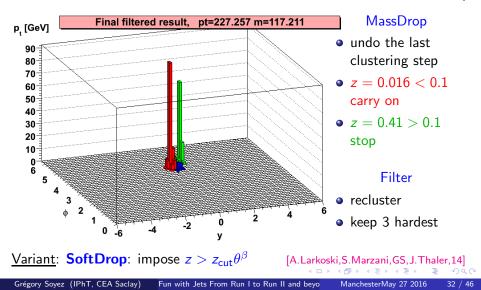
• Trimming: keep subjets with $p_t > f_{trim} p_{t,jet}$ [D.Krohn, J.Thaler, L-T.Wang, 10]


[I Butterworth A Davison, M.Rubin, G.Salam, 08]

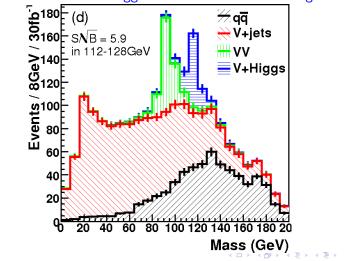

[I Butterworth A Davison, M.Rubin, G.Salam, 08]


[I Butterworth A Davison, M.Rubin, G.Salam, 08]


[I Butterworth A Davison, M.Rubin, G.Salam, 08]


[I Butterworth A Davison, M.Rubin, G.Salam, 08]

[I Butterworth A Davison, M.Rubin, G.Salam, 08]



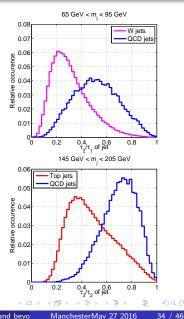
[I Butterworth A Davison, M. Rubin, G. Salam, 08]

[J.Buterworth, A.Davison, M.Rubin, G.Salam, 08]

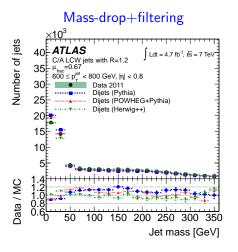
This is the kind of Higgs reconstruction one would get

Constraining radiation: *N*-subjettiness

Given N axes/prongs in a jet (axes) [\neq options, e.g. k_t subjets]

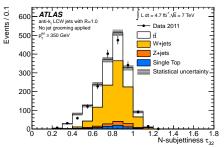

$$\tau_{N}^{(\beta)} = \frac{1}{p_{T} R^{\beta}} \sum_{i \in \text{jet}} p_{t,i} \min(\theta_{i,a_{1}}^{\beta}, \dots, \theta_{i,a_{n}}^{\beta})$$

Constraining radiation: N-subjettiness

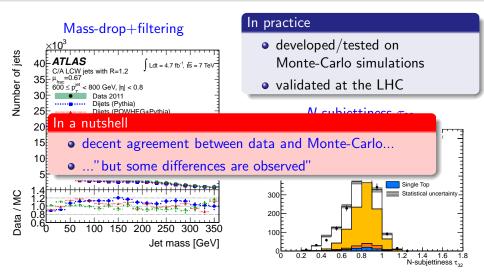

Given N axes/prongs in a jet (axes) [\neq options, e.g. k_t subjets]

$$\tau_{N}^{(\beta)} = \frac{1}{\rho_{T} R^{\beta}} \sum_{i \in jet} \rho_{t,i} \min(\theta_{i,a_{1}}^{\beta}, \dots, \theta_{i,a_{n}}^{\beta})$$

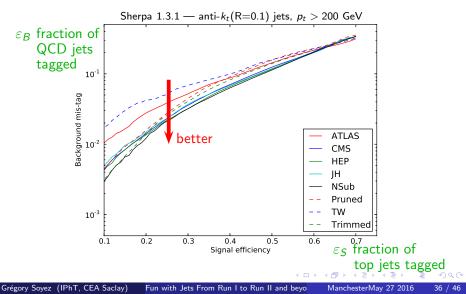
- Measures the radiation from N prongs
- $\tau_{N,N-1} = \tau_N / \tau_{N-1}$ discriminates *N*-prong v. QCD
- τ_{21} smaller for W than for QCD
- τ_{32} smaller for top than for QCD


Monte Carlo v. data

In practice


- developed/tested on Monte-Carlo simulations
- validated at the LHC

N-subjettiness τ_{32}


< 一型

Monte Carlo v. data

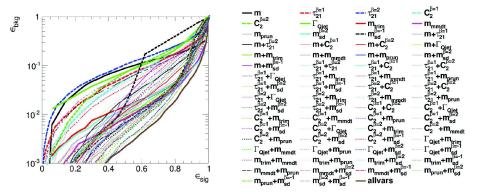
Example 2: top tagging MC study

[Boost 2011 proceedings]

Finding *N* prongs works

Constraining radiation works

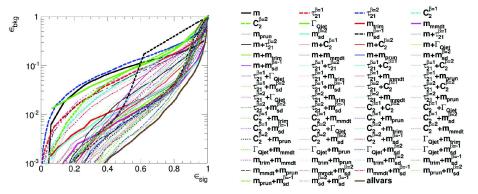
Finding *N* prongs works


Constraining radiation works

Why not combining the two?

... or not?

[Boost 2013 WG]


W v. q jets: combination of "2-core finder" + "radiation constraint"

... or not?

[Boost 2013 WG]

W v. q jets: combination of "2-core finder" + "radiation constraint"

- Combination largely helps
- details not so obvious

STOP and think

can we stop blindly running Monte-Carlo and understand things better (from first-principle QCD)?

Motivation and idea

Empirical Monte-Carlo approach is limited

- Hard to extrapolate parameters
- No understanding of the details

Motivation and idea

Empirical Monte-Carlo approach is limited

- Hard to extrapolate parameters
- No understanding of the details

Analytic/first-principle tools have a larege potential

- Understand the underlying physics
- Infer how to improve things further
- provide robust theory uncertainties (competition with performance?)

Motivation and idea

Empirical Monte-Carlo approach is limited

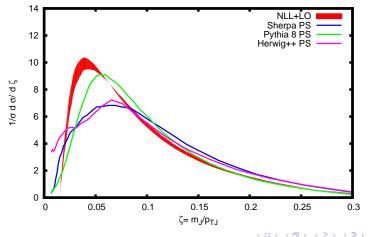
- Hard to extrapolate parameters
- No understanding of the details

Analytic/first-principle tools have a larege potential

- Understand the underlying physics
- Infer how to improve things further
- provide robust theory uncertainties (competition with performance?)

Requires QCD techniques

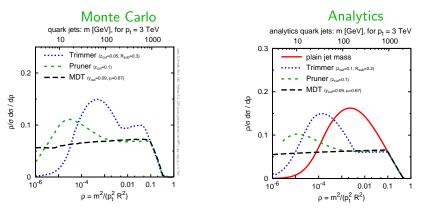
•
$$\rho = m/(p_t R) \ll 1 \Rightarrow$$
 we get $\alpha_S \log^{(2)}(1/\rho)$
 \Rightarrow need resummation


- matching with fixed-order for precision
- some nice QCD structures around the corner

Example 1:: the jet mass

[M.Dasgupta, K.Khelifa-Kerfa, S.Marzani, M.Spannowsky, 2012]

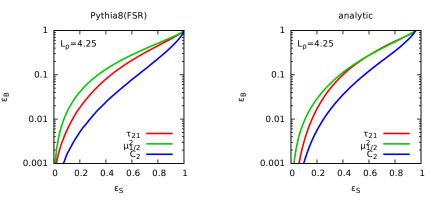
"Plain" Jet mass


Z+jet, R=0.6, p_{TJ} > 200 GeV

Monte-Carlo v. analytic

[M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

First analytic understanding of jet substructure:



Similar behaviour at large mass/small boost (region tested so far)
Significant differences at larger boost

Monte-Carlo v. analytic

 $[\mathsf{M}.\mathsf{Dasgupta},\mathsf{L}.\mathsf{Schunk},\mathsf{GS},\!15]$


First understanding for jet shapes:

Monte-Carlo v. analytic

[M.Dasgupta, A.Powling, L.Schunk, GS, in prep]

Transition towards using that info to build better tools [G.Salam,GS,in prep]

Improvement in discriminative powerand/or reduced sensitivity to NP effects

Summary: take-home messages

• Generic jet concepts

- anti- k_t used almost everywhere, IRC-safe and fast
- alternatives for specific cases

• Pileup mitigation

- Area-median subtraction used in Run I: unbiased and efficient
- New methods (e.g. SoftKiller). Better resolution but more tuning
- Can one get hints from (first-principle) substructure?

Boosted jets

- More and more relevant
- Many techniques around, validated at Run I
- First-principle understanding has a large potential for more surprises

Tools: who? where?

Tool	Who ¹	Where
hline Mass-Drop	†Butterworth, Davison, Rubin, Salam	fj::MassDropTagger
-	†Dasgupta, Fregoso, Marzani, Salam	fj::contrib::ModifiedMassDropTagger
Filtering	†Butterworth, Davison, Rubin, Salam	fj::Filter
Trimming	†Krohn, Thaler, Wang	fj::Filter
Pruning	†Ellis, Vermilion, Walsh	fj::Pruner
SoftDrop	†Larkoski, Marzani, Soyez, Thaler	fj::contrib::SoftDrop
N-subjettiness	†Thaler, Van Tilburg, Vermilion, Wilkinson	fj::contrib::Nsubjettiness
	†Jihun Kim	fj::RestFrameNSubjettinessTagger
Energy correlations	†Larkoski,Salam,Thaler	fj::contrib::EnergyCorrelator
Variable <i>R</i>	†Krohn, Thaler, Wang	fj::contrib::VariableR
ScJets	†Tseng, Evans	fj::contrib::VariableR
Johns Hopkins top tag	†Kaplan, Rehermann, Schwartz, Tweedie	fj::JHTopTagger
Jets without jets	†Bertolini, Chan, Thaler	fj::contrib::
CASubjet tagging	†Salam	fj::CASubJetTagger
Y-splitter	†Butterworth, Cox, Forshaw	fj::ClusterSequence::exclusive_subdmerge()
Planar flow	†Almeida, Lee, Perez, Sterman, Sung, Virzi	3 rd party
Pull	†Gallicchio, Schwartz	3 rd party
Q-jets	†Ellis, Hornig, Krohn, Roy and Schwartz	3 rd party
HEPTopTagger	†Plehn, Salam, Spannowsky, Takeuchi	3 rd party
TemplateTagger	†Backovic, Juknevic, Perez	3 rd party
Shower deconstruction	†Soper, Spannowsky	3 rd party

¹References are incomplete

3 K K 3 K

3