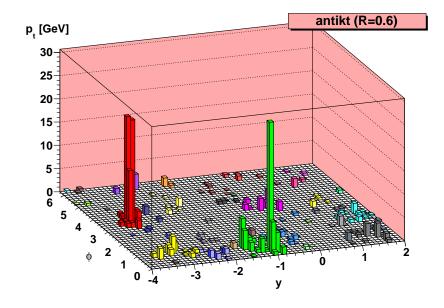
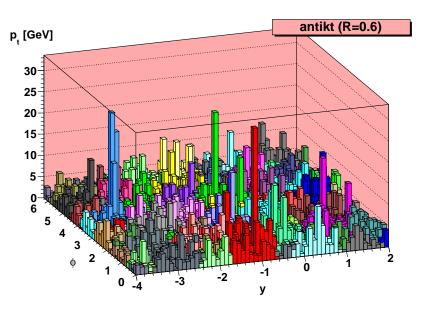
The cookbook for jets in heavy-ion collisions?


Grégory Soyez


CERN & IPhT, CEA Saclay

In collaboration with Gavin Salam, Matteo Cacciari and Juan Rojo

Hot Quarks 2010 — June 21-25 2010

How to "see" jets in a soft background

Valid for many backgrounds

- UE in $pp \ (\sim 1 \text{ GeV})$
- ${\scriptstyle {\rm I}}$ pileup in pp ($\sim 10~{\rm GeV})$
- \blacksquare UE in AA ($\sim 100~{\rm GeV})$

(Hopefully) for everyone

- Standard method
- New hints
- comments for experts

Central formula

One basic formula for **background subtraction for a single event**

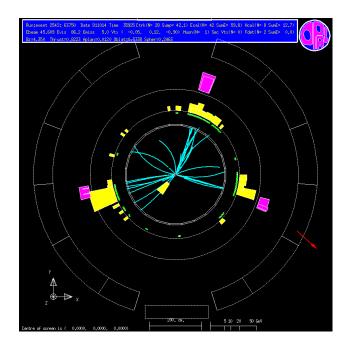
$$p_{t,\text{jet}}^{(\text{sub})} = p_{t,\text{jet}} - \rho_{\text{bkg}}A_{\text{jet}}$$

assumes that the background is uniform

3 things needed:

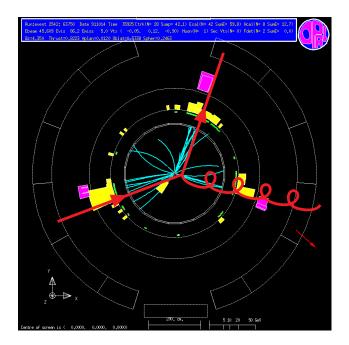
- Define a jet
- Define the area of a jet
- Obtain $\rho_{\rm bkg}$, the background p_t density per unit area

[Cacciari, Salam, 07]

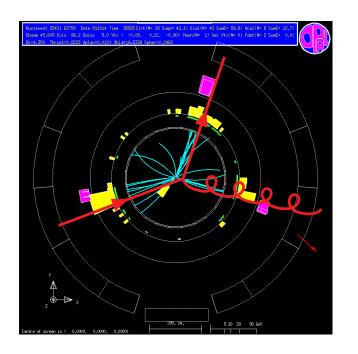

$$p_{t,\text{jet}}^{(\text{sub})} = p_{t,\text{jet}} - \rho_{\text{bkg}} A_{\text{jet}}$$

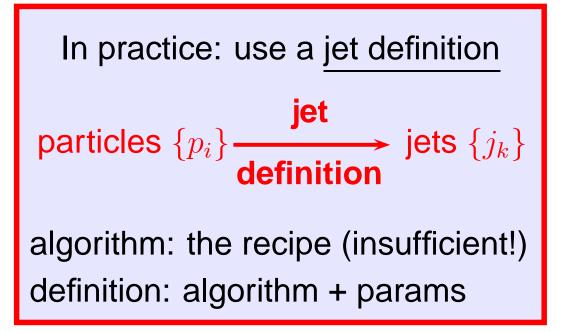
3 things needed:

- Define a jet
- Define the area of a jet
- Obtain $\rho_{\rm bkg}$, the background p_t density per unit area


Jet definitions

"Jets" \equiv bunch of collimated particles \cong hard partons


Jet definitions


"Jets" \equiv bunch of collimated particles \cong hard partons

Jet definitions

"Jets" \equiv bunch of collimated particles \cong hard partons

Jet=hadron is too simplistic: NLO? What opening for "collimated"?

Examples of jet definitions

Recombination: successively recombine the closest pair

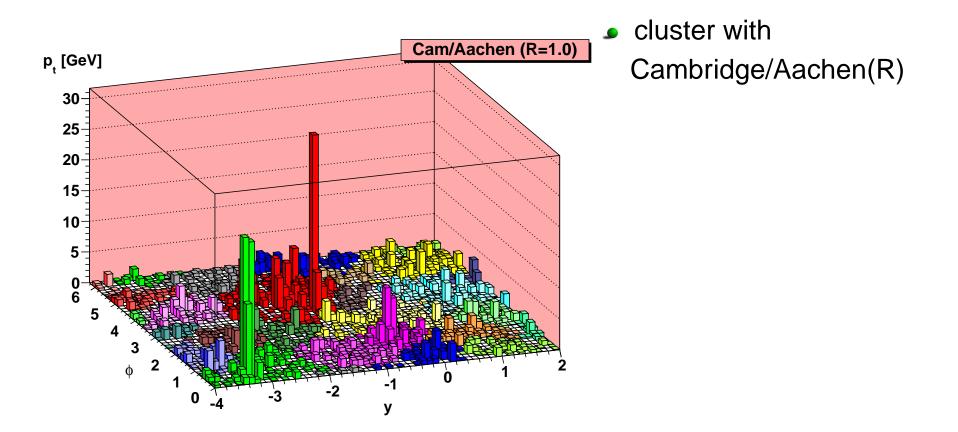
 $d_{ij} = \min(k_{t,i}^{2p}, k_{t,j}^{2p})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)$

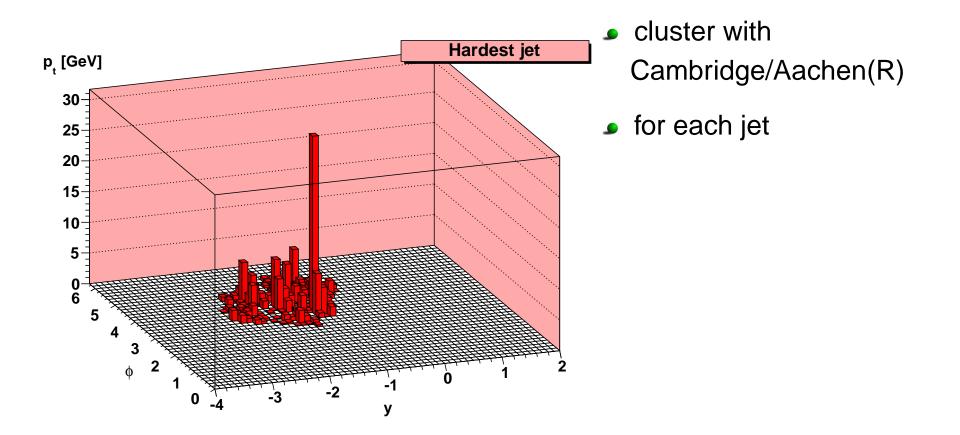
Stop at distance R

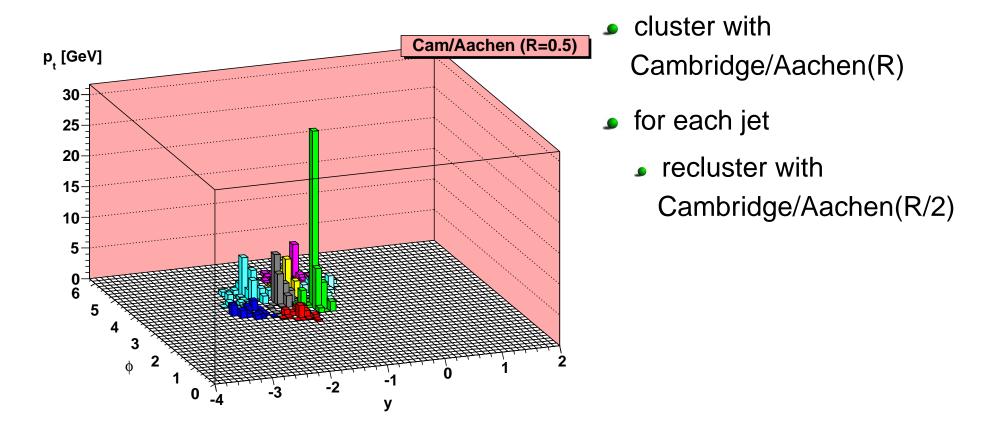
• p = 1: k_t algorithm (very close to QCD)

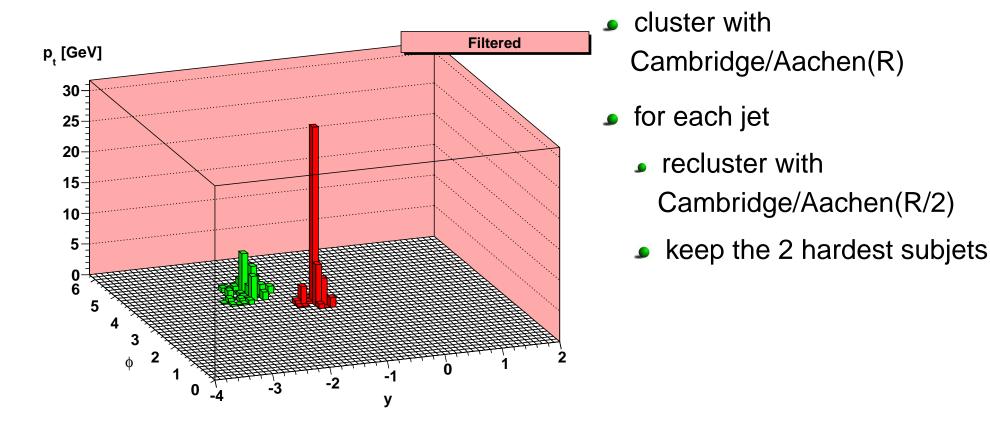
[Catani, Dokshitzer, Seymour, Webber, 93]

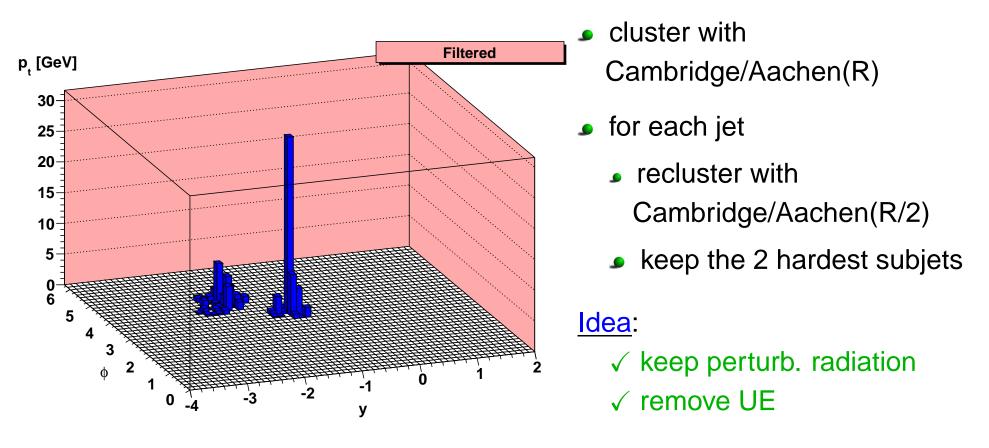
• p = 0: Cambridge/Aachen (C/A) algorithm (substructure studies)


[Dokshitzer, Leder, Moretti, Webber, 93]


• p = -1: anti- k_t algorithm (the default at the LHC)


[Cacciari, Salam, GS, 08]


• Cone: \approx flow of energy in a cone (of fixed *R*) centred on the cone centre: SISCone [Salam, GS, 07]


Final perturbative cross-section: only consider infrared-and-collinear-safe algorithms

• Proven useful for boosted jet $H \rightarrow b\bar{b}$ tagging

[J.Butterworth, A.Davison, M.Rubin, G.Salam, 08]

Proven useful for kinematic reconstructions

[M.Cacciari, J.Rojo, G.Salam, GS, 08]

$$p_{t,\text{jet}}^{(\text{sub})} = p_{t,\text{jet}} - \rho_{\text{bkg}} A_{\text{jet}}$$

3 things needed:

- Define a jet
- Define the area of a jet

• Obtain $\rho_{\rm bkg}$, the background p_t density per unit area

Area definitions

[M.Cacciari, G.Salam, GS, 08]

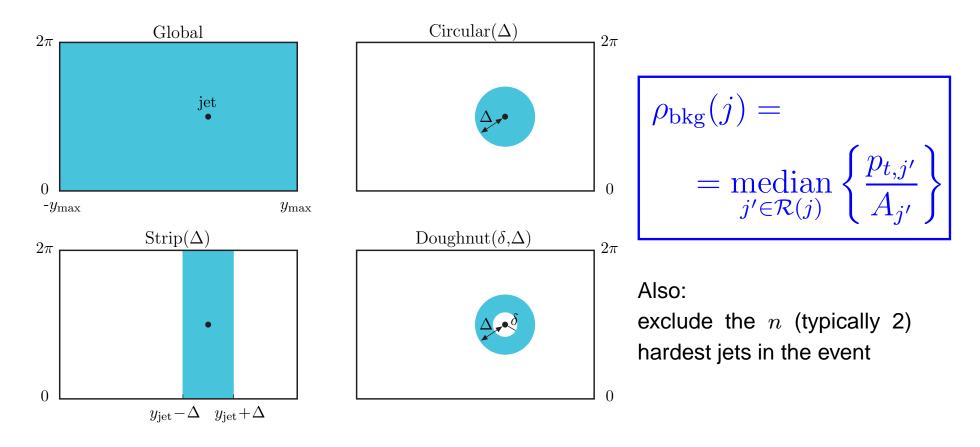
Area \equiv region where the jet catches soft particles

- Recipe: add a dense coverage of infinitely soft particles (ghosts) (active) area = region where a jet catches the ghosts
- **Idea**: ghost \approx background particle
 - \Rightarrow area where catching ghost \equiv area where catching background
- Advantages:
 - generic/universal definition (*e.g.* independent of a calorimeter)
 - allow for analytic computations
- Notes for experts:
 - put ghosts up to at least $y_{jet,max} + R$
 - preferably use a "4-vector" definition of the area (sum ghost 4-momenta)
 - require an IRC-safe algorithm!
 - alternative: passive area (equivalent for large multiplicities)
 - Better handling with active_area_explicit_ghosts

$$p_{t,\text{jet}}^{(\text{sub})} = p_{t,\text{jet}} - \rho_{\text{bkg}} A_{\text{jet}}$$

3 things needed:

- Define a jet
- Define the area of a jet
- Obtain $\rho_{\rm bkg}$, the background p_t density per unit area

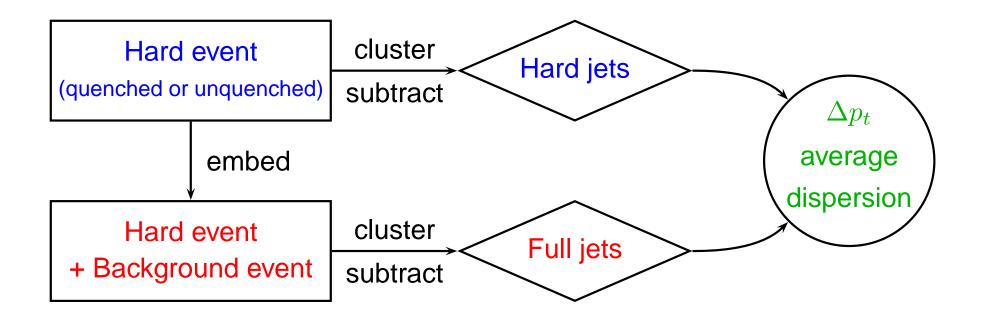

Example: ρ_{bkg} from jets

Recipe for estimating $\rho_{\rm bkg}$:

- Cluster with k_t of C/A with "radius" R_{ρ}
- Estimate $\rho_{\rm bkg}$ using 35 median 30 25 P_{t,jet} / Area_{jet} 20 $\rho_{\rm bkg} = \underset{j \in \rm jets}{\rm median}$ 15 10 5 0 -2 2 -4 0 4 Notes for experts η
 - Other algorithms produce unwanted jets with small area
 - Typically, $R_{
 ho}$ between 0.3 and 0.6 is OK (I'll take 0.5)

New suggestion #2: Use a local range

Fluctuating background (e.g. rapidity dependence) \rightarrow local range

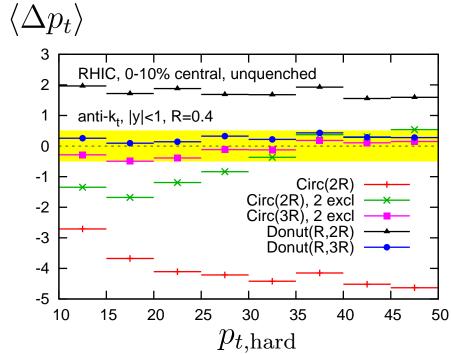


Notes for experts:

- Limited acceptance \equiv local range
- Put ghosts at least up to $|y_{jet,max}| + \Delta + R$

Subtraction efficiency: what precision may we hope for?

[Cacciari, Rojo, Salam, GS, in prep.]

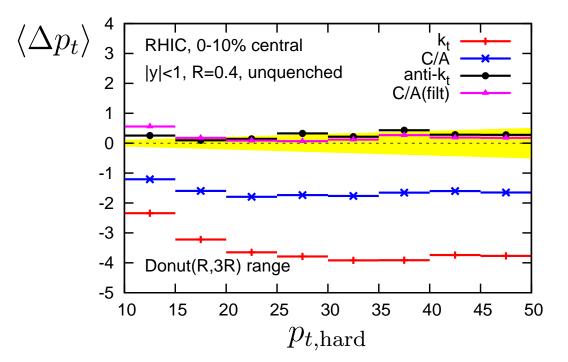


- Hard event: Pythia(v6.4) or Pythia(v6.4)+PyQuen(v1.5)
- Background: Hydjet++(v2.1) (cross-checked with others)
- Analysis: FastJet(v2.4) (http://www.fastjet.fr [Cacciari, Salam, GS]) Ideally: smallest average shift $\langle \Delta p_t \rangle$, smallest dispersion $\sigma_{\Delta p_t}$
- Note: in what follows, R fixed to 0.4

Effect of choosing a local range

Number of jets in a range

	I	I	$\langle \Delta \rangle$		
range	area	$n_{ m jets}$	3		
Circ(2R)	$4\pi R^2$	4.5	2		
Circ(3R)	$9\pi R^2$	10	C		
Donut(R,2R)	$3\pi R^2$	3.5	-1 -2		
Donut(R,3R)	$8\pi R^2$	9	-3		
Strip(2R)	$4\pi R$	11	-4 -5		
$(R = 0.4, R_{\rho} = 0.5)$					

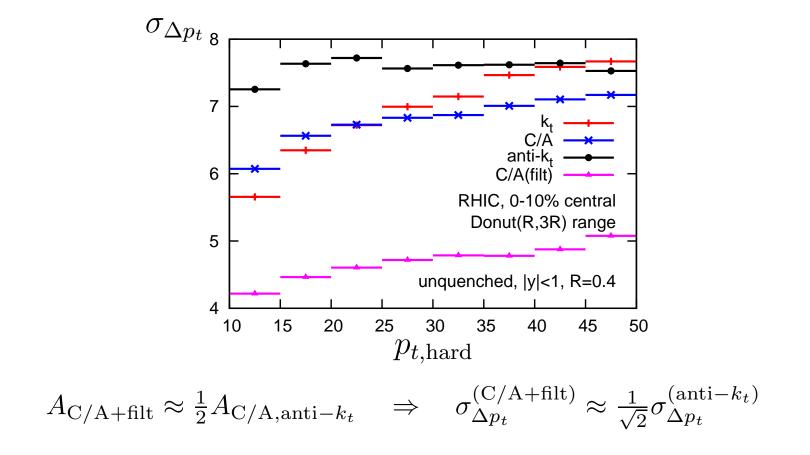


- rule of thumb: at least 8 jets needed to estimate ρ
- different ranges —> estimate of the undertainty

Note for experts: Analytic estimate show that at least 8 jets \Rightarrow less than 10% of $\sigma_{\Delta p_t}$ due to ρ misestimation

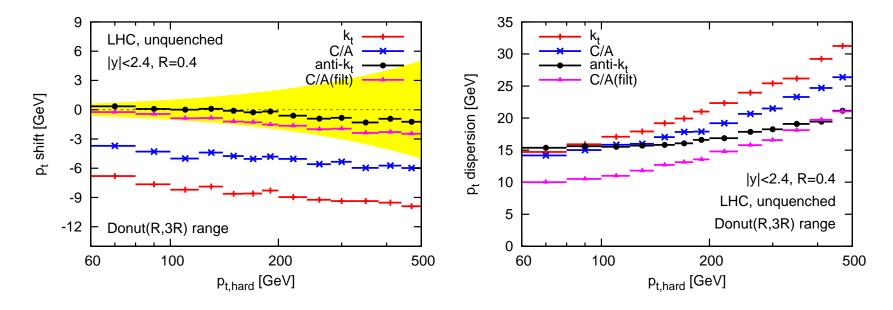
Differences between algorithms

• Average shift: preference for anti- k_t and C/A+filt(*)


500 MeV precision for a contamination of \sim 50 GeV!

Notes for experts:

- C/A & k_t : offset due to back-reaction
- (*) C/A+filt: watch out: cancellation between back-reaction and filtering bias


Differences between algorithms

- Average shift: preference for anti- k_t and C/A+filt
- Dispersion: preference for C/A+filtering

Differences between algorithms

- Average shift: preference for anti- k_t and C/A+filt
- Dispersion: preference for C/A+filtering
- Same conclusions for the LHC (anti- k_t a bit better)

- No subtraction bias due to quenching (at most a 2% effect at the LHC)
- Valid for non-central collisions (smaller background but v_2)

Example: inclusive jet cross-section

Original hard spectrum:

$$\frac{d\sigma^{(0)}}{dp_t} = \mu \sigma_0 \, e^{-p_t/\mu}$$

In the background, after subtraction

$$\frac{d\sigma}{dp_t} = \frac{d\sigma^{(0)}}{dp_t} \otimes \text{Gaussian}(\langle \Delta p_t \rangle, \sigma_{\Delta p_t})$$
$$= \frac{d\sigma^{(0)}}{dp_t} \exp\left(\mu \langle \Delta p_t \rangle + \frac{\mu^2 \sigma_{\Delta p_t}^2}{2}\right)$$

In practice, we have $\mu \approx 0.3 \text{ GeV}^{-1}$ for RHIC

R = 0.4	$\langle \Delta p_t \rangle$	$\sigma_{\Delta p_t}$	$\frac{d\sigma/dp_t}{d\sigma^{(0)}/dp_t}$
anti- k_t	0	7.5	12
C/A+filt	0	4.8	3

Summary

- The recipe: $p_{t,jet}^{(sub)} = p_{t,jet} \rho_{bkg}A_{jet}$
 - Define a jet: use an IRC-safe one
 - Define the area of a jet: ghost-based active area
 - Obtain $\rho_{\rm bkg}$, the background p_t density per unit area: median of $\{pt, j/A_j\}$
- New hints:
 - 1. Use filtering: reduce sensitivity to background (smaller $\sigma_{\Delta p_t}$)
 - 2. Use local ranges:

handle non-uniform backgrounds + estimate subtraction error

- Efficiency:
 - At least \approx 8 jets in a local range
 - anti- k_t and C/A+filt give $\langle \Delta p_t \rangle \approx 0$ ($\langle \Delta p_t \rangle / p_t \lesssim 1\%$)
 - C/A+filt has a reduced $\sigma_{\Delta p_t}$