Jet reconstruction in heavy-ion collisions

Grégory Soyez

IPhT, Saclay — CERN

In collaboration with Gavin Salam, Matteo Cacciari and Juan Rojo

BNL — March 12 2010

Plan

Motivations

- Why jets in heavy-ion collisions
- Why "jets in heavy-ion collisions" is a non-trivial problem

Howto

- recap on jets in general
- background subtraction as the main tool (already in use)
- refinements: filtering, local ranges
- Practical application: what kind of precision do we expect?

Motivations

Motivation: why jets in HI

"Jets" ≡ bunch of collimated particles ≅ hard partons
 Example: LEP (OPAL) events

2 jets

3 jets

In other words a jet is a "better" pQCD object than, say, a pion.

 Access to a series of measurements like the jet broadening i.e. information on the HI medium

 $\underset{{\rm p}_{\rm t}[\rm GeV]}{pp} + PU$ siscone (R=0.7) 30-25-20-15-10 5 $\mathbf{P}_{\mathbf{r}_{\mathbf{t}}}[\mathsf{GeV}]}\,AA$ antikt (R=0.6) 30-25-20-15-10 -1

у

0

Huge underlying event background ⇒ hard to see the jets

background per unit area

background per unit area

background fluctuations

For a typical jet with R = 0.4 (and area = πR^2)

 $(\delta p_t)_{\rm RHIC} \approx 45 \pm 5 \, {\rm GeV}$ $(\delta p_t)_{\rm PU,LHC} \approx 20 \text{ GeV}$

range $10 \lesssim p_t \lesssim 50 \text{ GeV}$ $(\delta p_t)_{\rm LHC} \approx 125 \pm 10 \text{ GeV}$ range $50 \leq p_t \leq 500 \text{ GeV}$

Quick summary on jets in general

Jet definitions

"Jets \equiv bunch of collimated particles" is not sufficient in practice

"collinear" has some arbitraryness

Jet definitions

"Jets \equiv bunch of collimated particles" is not sufficient in practice

"collinear" has some arbitraryness

Useful jet algorithms

Only a handful of theoretically well-behaved/infrared-safe algorithm (For hadron collisions):

 $\mathbf{I} \mathbf{k}_t$ algorithm

[Catani, Dokshitzer, Seumour, Webber; Ellis, Soper, 93]

Cambridge/Aachen algorithm

[Dokshitzer,Leder,Moretti,Webber, 97;Wobish, 99]

 \bullet anti- k_t algorithm

[M.Cacciari,G.Salam,GS, 08]

SISCone algorithm

[G.Salam,GS, 07]

Each have their pros and cons!

Useful jet algorithms

Only a handful of theoretically well-behaved/infrared-safe algorithm (For hadron collisions):

• k_t algorithm p = 1

recombine according to QCD soft and collinear divergences

- Cambridge/Aachen algorithm p = 0matches collinear div; simple geometric algorithm
- anti- k_t algorithm p = -1produces circular hard jets; default for CMS and ATLAS

SISCone algorithm

"safe version of the Tevatron's algs"; low background sensitivity

Succesive recombination of the closest pair with $d_{ij} = \min(k_{t,i}^{2p}, k_{t,j}^{2p})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)$

NB: all have a parameter R controlling the size

Useful jet algorithms

Only a handful of theoretically well-behaved/infrared-safe algorithm (For hadron collisions):

 $\mathbf{I} \mathbf{k}_t$ algorithm

recombine according to QCD soft and collinear divergences

- Cambridge/Aachen algorithm matches collinear div; simple geometric algorithm
- anti- k_t algorithm produces circular hard jets; default for CMS and ATLAS

SISCone algorithm

"safe version of the Tevatron's algs"; low background sensitivity

All (and others) implemented in FastJet

[M.Cacciari,G.Salam,GS]

Algorithm timings

Recombination algorithms very fast

[M. Cacciari, G. Salam, 06]

- Heavy-ion collisions: 2000-40000 particles
- area computations (see later): +O(10000) particles

Background effects: 1. pollution

Background particles end up in the jets

Example:

Z'
ightarrow q ar q
ightarrow 2 jets M=300 GeV Reconstruct the dijet invariant mass

- X position shifted, amount $\propto \pi R^2 \,
 ho$
- $\pmb{\mathsf{X}}$ peak smeared because ρ fluctuates between the events

Background effects: 2. back-reaction

Background particles affect the "hard particles" clustering

Background effects: 2. back-reaction

Background particles affect the "hard particles" clustering

- tractable analytically
- $k_t \gtrsim \text{Cambridge} > \text{SISCone} \gg \text{anti-}k_t$

Reconstruction recipe so far: background subtraction using jet areas

[M.Cacciari, G.Salam, GS, 08]

Area \equiv region where the jet catches soft particles

- Recipe: add infinitely soft particles (aka ghosts) and see in which jet they are clustered
- <u>2 methods</u>:
 - Passive area: add one ghost at a time and repeat many times
 - Active area: add a set of ghosts and cluster once
- Idea: ghost \approx background particle
 - \Rightarrow active area \approx uniform background passive area \approx pointlike background
- Notes:
 - passive = active for large multiplicities
 - require an IR-safe algorithm!
 - generic/universal definition (e.g. independent of a calorimeter)

Jet area: examples

Example: active area for a simple event

 k_t

у

anti-k,, R=1

Note: analytic control

Example: perturbative expansion of areas (at order α_s)

$$\langle \mathcal{A}(p_t, R) \rangle = \mathcal{A}_0 + \frac{C_{F,A}}{b_0 \pi} \pi R^2 d \log \left(\frac{\alpha_s(Q_0)}{\alpha_s(Rp_t)} \right)$$

• area $\neq \pi R^2$, area \neq const.

	coefficients computable		$\mathcal{A}_0/(\pi R^2)$		d	
			passive	active	passive	active
		k_t	1	0.81	0.56	0.52
		Cam/Aachen	1	0.81	0.08	0.08
		anti- k_t	1	1	0	0
		SISCone	1	1/4	-0.06	0.12

• $Q_0 \equiv \text{IR regulator} \propto \text{background density}$

Pileup subtraction (for uniform backgrounds)

Basic idea: [M.Cacciari, G.Salam, 08]

 $p_{t,\text{subtracted}} = p_{t,\text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$

- Jet area: [M.Cacciari, G.Salam, G.S., 08]
 - region where the jet catches infinitely soft particles (active/passive)
- analytic control and understanding in pQCD • Pileup density per unit area: ρ_{pileup} • ρ_{pi

Pileup subtraction (for uniform backgrounds)

Basic idea: [M.Cacciari, G.Salam, 08]

 $p_{t,\text{subtracted}} = p_{t,\text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$

- Jet area: [M.Cacciari, G.Salam, G.S., 08]
 - region where the jet catches infinitely soft particles (active/passive)
 - (active/passive) • analytic control and understanding in pQCD Pileup density per unit area: ρ_{pileup} e.g. estimated from the median of $p_{t,\text{jet}}/\text{Area}_{\text{jet}}$ 15 background jets

0

-4

-2

4

2

0

η

Pileup subtraction (for uniform backgrounds)

Basic idea: [M.Cacciari, G.Salam, 08]

 $p_{t,\text{subtracted}} = p_{t,\text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$

- Jet area: [M.Cacciari, G.Salam, G.S., 08]
 - region where the jet catches infinitely soft particles (active/passive)

Effect on dijet reconstruction

Pileup unsubtracted

pileup subtracted

- \checkmark position reasonnable
- ✓ dispersion reduced (thanks to the event-by-event approach)
- \checkmark used by STAR for the first jet analysis in heavy-ions

Improvements: #1 *local ranges*

Idea #1: use a local range to compute ρ_{bkg}

- Fluctuating background
 - \longrightarrow determine the background density $ho_{
 m bkg}$
 - from jets in the vicinity of the jet we want to subtract

Idea #1: use a local range to compute ρ_{bkg}

- Fluctuating background
 - \longrightarrow determine the background density $ho_{
 m bkg}$
 - from jets in the vicinity of the jet we want to subtract

• Exclude the hardest jets from the determination of $\rho_{\rm bkg}$ \Rightarrow reduce the bias in the computation median

$$\frac{\Delta \rho}{\rho} = \frac{0.55 \,\pi R^2}{\mathcal{A}_{\mathcal{R}}} \,\frac{\sigma}{\rho} \,n_{\text{hard}}$$

RHIC: $\sigma \approx 10$, |y| < 1, $R = 0.4 \longrightarrow \Delta \rho \approx 0.22$ GeV LHC: $\sigma \approx 20$, |y| < 2.4, $R = 0.4 \longrightarrow \Delta \rho \approx 0.18$ GeV Improvements: #2 filtering

• Proven useful for boosted jet $H \rightarrow b\bar{b}$ tagging

[J.Butterworth, A.Davison, M.Rubin, G.Salam, 08]

Proven useful for kinematic reconstructions

[M.Cacciari, J.Rojo, G.Salam, GS, 08]

Expected practical effects

- Hard event: Pythia(v6.4) or Pythia(v6.4)+PyQuen(v1.5)
- Background: Hydjet++(v2.1) (cross-checked with others)
- Analysis: FastJet(v2.4) Ideally: smallest Δp_t shift, smallest Δp_t dispersion
- Note: in what follows, R fixed to 0.4

Effect of choosing a local range

- effect \sim 0.5-1 GeV
- differences between local ranges → subtraction uncertainty
- for limited acceptance, global range pprox local range
- hard rejection agrees with analytic estimates

Number of jets in a range

rule of thumb: at least 7-8 jets needed to estimate ρ

Results: RHIC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

Results: RHIC kinematics

- average p_t shift: anti- k_t and C/A+filt. Ok
- p_t shift dispersion: C/A+filt. better

Results: RHIC kinematics

Results: LHC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

Results: LHC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

• p_t shift dispersion: C/A+filt. better anti- k_t Ok

Results: quenching

- Performances not much affected by quenching
- 10 GeV for $p_t = 500$ GeV at the LHC is only a 2% effect
- \bullet anti- k_t 's rigidity in action
- just illustrative: more quenching models needed

Results: centrality dependence

Results: comments

• anti- k_t 's soft-resilience is the reason for $\langle \Delta p_t \rangle \approx 0$

Results: comments

- anti- k_t 's soft-resilience is the reason for $\langle \Delta p_t \rangle \approx 0$
- C/A+filt's smaller area is the reason for smaller dispersion in agreement with the estimate: dispersion $\sim \sqrt{A_{jet}}\sigma_{bkg}$

Results: comments

- anti- k_t 's soft-resilience is the reason for $\langle \Delta p_t \rangle \approx 0$
- C/A+filt's smaller area is the reason for smaller dispersion in agreement with the estimate: dispersion $\sim \sqrt{A_{jet}}\sigma_{bkg}$
- C/A+filt's small $\langle \Delta p_t \rangle$ result from BR and subtraction bias
 - Most of QCD radiation in the hardest subjet
 - Bias: filtering picking the 2nd hardest jet as the hardest background fluctuation
 - Estimate for Gaussian fluctuations:

$$\langle (\Delta p_t)_{\rm filt.} \rangle \approx \frac{3\sqrt{0.55\,\pi (R_{\rm filt}R)^2}}{2\sqrt{\pi}} \sigma \approx 0.56\,R\,\sigma$$

2 GeV at RHIC, 5.8 GeV at the LHC i.e. nice agreement

Effects of shift and dispersion

RHIC pp jet cross-section is well approximated by

$$\left. \frac{d\sigma}{dp_t} \right|_{\text{bare}} = \mu \sigma_0 \, e^{-\mu p_t}$$

Shift $\langle \Delta p_t \rangle$ and dispersion σ (with Gaussian approx.) gives

$$\frac{d\sigma}{dp_t}\Big|_{\text{obs.}} = \left.\frac{d\sigma}{dp_t}\right|_{\text{bare}} e^{\mu\langle\Delta p_t\rangle} e^{\mu^2\sigma^2/2}.$$

• $\mu = 0.3$, $\langle \Delta p_t \rangle = 0$, $\sigma = 7$ gives factor \sim 9

$$\blacksquare$$
 $\mu=0.3$, $\langle \Delta p_t
angle=0$, $\sigma=4.5$ gives factor \sim 2.5

Effects of shift and dispersion

RHIC pp jet cross-section is well approximated by

$$\left. \frac{d\sigma}{dp_t} \right|_{\text{bare}} = \mu \sigma_0 \, e^{-\mu p_t}$$

Shift $\langle \Delta p_t \rangle$ and dispersion σ (with Gaussian approx.) gives

$$\frac{d\sigma}{dp_t}\Big|_{\text{obs.}} = \left.\frac{d\sigma}{dp_t}\right|_{\text{bare}} e^{\mu\langle\Delta p_t\rangle} e^{\mu^2\sigma^2/2}.$$

$$\blacksquare$$
 $\mu=0.3$, $\langle \Delta p_t
angle=0$, $\sigma=7$ gives factor \sim 9

$$\blacksquare$$
 $\mu=0.3$, $\langle \Delta p_t
angle=0$, $\sigma=4.5$ gives factor \sim 2.5

- Unfolding the dispersion is an important source of uncertainty
- C/A+filt would help

Fake jets

Fake jet = "hard" fluctuation of the soft background

Estimate:

- Fakes:
 - Gaussian spectrum with σ from studies above
 - scaled by the number of binary collisions
 - scaled by the number of jets in the acceptance
- Hard cross-section:
 - Pythia simulation
 - (approximately) convoluted with Gaussian fluctuations

Fake jets

Fake jet = "hard" fluctuation of the soft background

Need for a good fake-jet rejection mechanism

Fake jets

Fake jet = "hard" fluctuation of the soft background

- Need for a good fake-jet rejection mechanism
- Significant improvement
- Not much of a problem at the LHC

A word on the RHIC results

Generic method

First jet measurements in heavy-ion collisions

STAR

- k_t and anti- k_t algorithms
- "FastJet's" background subtraction method
- statistical fake jets rejections
- dispersion unfolding from MC in AuAu

PHENIX

- Gaussian filter ([Y.S.Lai, B.A.Cole, 08])
- Gaussian filter for fake jets rejections
- dispersion unfolding from pp in CuCu

Medium modification of jet p₇ spectra

- different sensitivity of algorithms
- R=0.4: indication of energy recovery (cf. pion $R_{\Delta\Delta}$)
- R=0.2 jets suppressed
- → is R=0.4 enough to achieve jet $R_{AA} = 1$?
- significant jet suppression
 - >jet broadening -> energy shift
 - ?feature of fake jet rejection algorithm

Jan Kapitán

35

results (cont'd)

Compute x-section ratio:

 $\frac{\sigma(R}{\sigma(R)} = 0.2)$

- *pp*: less than 1
 out of jet radiation
- AA: less than pp
 broadening

Take a closer look at the ratio in \ensuremath{pp}

– p. 38

Take a closer look at the ratio in \ensuremath{pp}

Take a closer look at the ratio in $\ensuremath{\textit{pp}}$

Take a closer look at the ratio in pp

Take a closer look at the ratio in pp

Take a closer look at the ratio in pp

- Already tested:
 - Jets hard to see in large HI background
 - first measurements recently at RHIC
 - Background subtraction using jet areas plays an important role

- Already tested:
 - Jets hard to see in large HI background
 - first measurements recently at RHIC
 - Background subtraction using jet areas plays an important role
- To be tested:
 - Use of local ranges/hard jet removal \rightarrow subtraction uncertainty
 - algorithm: anti- k_t does a good job, C/A+filt reduces dispersion \Rightarrow probably want to try both
 - Watch out for back-reaction and filter bias
 - Centrality and quekching OK
 - Most of the effects behave as expected analytically

- Already tested:
 - Jets hard to see in large HI background
 - first measurements recently at RHIC
 - Background subtraction using jet areas plays an important role
- To be tested:
 - Use of local ranges/hard jet removal \rightarrow subtraction uncertainty
 - algorithm: anti- k_t does a good job, C/A+filt reduces dispersion \Rightarrow probably want to try both
 - Watch out for back-reaction and filter bias
 - Centrality and quekching OK
 - Most of the effects behave as expected analytically
- measurements

A one-gluon-emission approach not sufficient