Defining jets at the dawn of the LHC

Grégory Soyez

CERN

In collaboration with Gavin Salam, Matteo Cacciari and Juan Rojo

EPFL, Lausanne — January 11 2010

- Jet algorithms and jet definitions
 - basic ideas: why jets? recombinations and cones
 - failures of the 20th-century cone algorithms
 - new algorithms without the failures

- More advanced topics: how to better use the tools we have?
 - jet areas: tool for pileup subtraction
 - new generation of algorithms
 - optimal choice (for kinematic reconstructions)

Unavoidable theory

QCD probability for gluon emission (angle θ and \perp -mom. k_t):

$$dP \propto \alpha_s \, \frac{d\theta}{\theta} \, \frac{dk_t}{k_t}$$

Divergences cancelled by virtual corrections

Motivation: why jets

Collinear divergence \Rightarrow QCD produces "jetty" showers

Example: LEP (OPAL) events

2 jets

3 jets

"Jets" \equiv bunch of collimated particles \cong hard partons

Motivation: why jets

Collinear divergence \Rightarrow QCD produces "jetty" showers

"Jets" \equiv bunch of collimated particles \cong hard partons

BUT

- a "parton" is an ambiguous concept (NLO)
- "collinear" has some arbitraryness

Motivation: why jets

Collinear divergence \Rightarrow QCD produces "jetty" showers

Recombination:

- k_t algorithm
- Cambridge/Aachen alg.

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet
- GetJet

Recombination:

- k_t algorithm
- Cambridge/Aachen alg.

Idea: undo the showering

Successively

- find the closest pair of particles
- recombine them

Distance:

 $\begin{aligned} k_t: \\ d_{i,j} &= \min(k_{t,i}^2, k_{t,j}^2)(\Delta \phi_{i,j}^2 + \Delta y_{i,j}^2) \\ \textbf{Cam/Aachen:} \\ d_{i,j} &= \Delta \phi_{i,j}^2 + \Delta y_{i,j}^2 \end{aligned}$

stop at a distance ${\cal R}$

Idea: dominant flow of energy

Stable cone (radius R): sum of particles in the cone points towards the cone centre

All these are iterative cones:

- start from a seed
- iterate until stable

seeds = {particles, midpoints}

 $Jet \equiv stable \ cone \\ modulo \ overlapping$

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet
- GetJet

Cone with split-merge

Split/merge if the overlap is smaller/larger than a threshold f

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet
- GetJet

Cone with progressive removal

Successively

- iterate from hardest particle
- call that a jet (remove particles)

Basic property: hard circular jets

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet
- GetJet

Recombination:

- k_t algorithm
- Cambridge/Aachen alg.
- √ perturbative behaviour

Cone:

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet
- GetJet

✓UE sensitivity

21st century: how does that picture change?

Ingredient: QCD soft and collinear divergencies

• ∞ (from soft gluons) cancel (inclusive x-section)

Ingredient: QCD soft and collinear divergencies

- Consider an extra (NLO) soft gluon
- Assume LO gives 2 jets \Rightarrow NLO(virt) gives 2 jets

Ingredient: QCD soft and collinear divergencies

- Consider an extra (NLO) soft gluon
- Assume LO gives 2 jets \Rightarrow NLO(virt) gives 2 jets
- NLO(real) gives 2 jets $\Rightarrow \infty$ cancel \Rightarrow finite jet cross-section

Ingredient: QCD soft and collinear divergencies

- Consider an extra (NLO) soft gluon
- Assume LO gives 2 jets \Rightarrow NLO(virt) gives 2 jets
- NLO(real) gives 2 jets $\Rightarrow \infty$ cancel \Rightarrow finite jet cross-section NLO(real) gives 1 jets $\Rightarrow \infty$ do not cancel \Rightarrow infinite jet x-section

Ingredient: QCD soft and collinear divergencies

For pQCD to make sense, the (hard) jets should not change when

- one has a soft emission *i.e.* adds a very soft gluon
- one has a collinear splitting *i.e.* replaces one parton by two at the same place (η, ϕ)

[SNOWMASS Accords, Fermilab, 1990]

Stable cones found

A soft gluon changed the number of jets

 \Rightarrow IR unsafety of JetClu and the ATLAS Cone

A soft gluon changed the number of jets

 \Rightarrow IR unsafety of JetClu and the ATLAS Cone

Fixed by MidPoint

[Blazey et al., 00]

Stable cones found

A soft gluon changed the number of jets

 \Rightarrow IR unsafety of MidPoint (1 order in α_s later than JetClu)

Solution: be sure to find all stable cones

SISCone: Seedless Infrared-Safe Cone algorithm http://projects.hepforge.org/siscone

[G.Salam, G.S., 07]

Idea: enumerate enclosures by enumerating pairs of particles

Collinear (un)safety? the CMS iterative cone

Collinear (un)safety? the CMS iterative cone

A colinear splitting changed the number of jets

 \Rightarrow Collinear unsafety of the CMS iterative cone

Anti-k_t

Come back to recombination-type algorithms:

$$d_{ij} = \min(k_{t,i}^{2p}, k_{t,j}^{2p}) \left(\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2\right)$$

- p = 1: k_t algorithm
- p = 0: Aachen/Cambridge algorithm

Anti-k_t

Come back to recombination-type algorithms:

 $d_{ij} = \min(k_{t,i}^{2p}, k_{t,j}^{2p}) \left(\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2\right)$

- p = 1: k_t algorithm
- p = 0: Aachen/Cambridge algorithm
- p = -1: anti- k_t algorithm [M.Cacciari, G.Salam, G.S., 08]

Why should that be related to the iterative cone ?!?

- "large $k_t \Rightarrow$ small distance"
 - *i.e.* hard partons "eat" everything up to a distance R
 - i.e. circular/regular jets, jet borders unmodified by soft radiation
- infrared and collinear safe

Recombination:

- k_t algorithm
- Cambridge/Aachen alg.
- anti- k_t algorithm

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet
- GetJet
- SISCone

Recombination:

- k_t algorithm
- Cambridge/Aachen alg.
- anti- k_t algorithm \leftarrow

Cone:

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet

- GetJet

SISCone <</p>

4 available safe algorithms

<u>Recombination</u> : k_t algorithm	<u>Cone</u> : ● CDF JetClu	_
Cambridge/Aachen alg.	CDF MidPoint	
Inti-k-algorithm	DO (run II) Cone	
<pre># # FastJet release 2.4 # Written by M. Cacciari, G.P. Salam and G. Soyez # http://www.fastjet.fr #</pre>		
All those algorithms (and much more) implemented (efficiently) in FastJet		
SISCone		

Recombination:

- k_t algorithm
- Cambridge/Aachen alg.
- anti- k_t algorithm \leftarrow

Cone:

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone

anti- k_t adopted as the default

jet algorithm by both CMS and ATLAS

safe algorithms

GetJet

SISCone 🛩

When does IRC safety matters?

Take e.g. the MidPoint cone

9 QCD expansion (one α_s can be replaced by $\alpha_{\rm EW}$)

When does IRC safety matters?

Take e.g. the MidPoint cone

- **•** QCD expansion (one α_s can be replaced by $\alpha_{\rm EW}$)
- IRC unsafety (regulated at the hadronic scale $\sim \Lambda_{\rm QCD}$)
When does IRC safety matters?

Take e.g. the MidPoint cone

- QCD expansion (one α_s can be replaced by $\alpha_{\rm EW}$)
- IRC unsafety (regulated at the hadronic scale $\sim \Lambda_{\rm QCD}$)
- $\alpha_s \log(p_t / \Lambda_{\rm QCD}) \sim 1$
- last meaningful order = α_s^3 or $\alpha_{\rm EW} \alpha_s^2$

When does IRC safety matters?

Take e.g. the MidPoint cone

- **D** QCD expansion (one α_s can be replaced by $\alpha_{\rm EW}$)
- IRC unsafety (regulated at the hadronic scale $\sim \Lambda_{\rm QCD}$)
- $\alpha_s \log(p_t / \Lambda_{\rm QCD}) \sim 1$
- last meaningful order = α_{s}^{3} or $\alpha_{EW} \alpha_{s}^{2}$
- same argument for the Iterative Cone
- I order worse for JetClu or the ATLAS cone

Physical impact

MidPoint/CMS iterative cone unsafe at $\mathcal{O}(\alpha_s^4)$ (or $\mathcal{O}(\alpha_{ew}\alpha_s^3)$)

	IRC-safe until			
Physical observable	JetClu/ATLAS c.	MidPoint/CMS it. c.	SISCone/recomb.	
Inclusive jet cross section	LO	NLO	any	
3-jet cross section	none	LO	any	
W/Z/H + 2 jet cross sect.	none	LO	any	
jet masses in 3 jets	none	none	any	

Example: (Midpoint-SISCone)/SISCone

- Incl. cross-section: a few %
- Masses in 3-jet events: $\sim 45\%$

Physical impact

MidPoint/CMS iterative cone unsafe at $\mathcal{O}(\alpha_s^4)$ (or $\mathcal{O}(\alpha_{ew}\alpha_s^3)$)

	IRC-safe until			
Physical observable	JetClu/ATLAS c.	MidPoint/CMS it. c.	SISCone/recomb.	
Inclusive jet cross section	LO	NLO	any	
3-jet cross section	none	LO	any	
W/Z/H + 2 jet cross sect.	none	LO	any	
jet masses in 3 jets	none	none	any	

- Note: **•** arXiv:0903.0814: W + 2 jets vs. LO QCD using CDF JetClu
 - vs. NLO QCD **a**rXiv:0903.1748: Z + 2 jets
 - arXiv:0903.1801: Z + 2 jets

- using the D0runII cone
- vs. NLO QCD using the CMS iterative cone

Summary of IRC safe algorithms

	Pros	Cons		
k_t	matches QCD branchings	large UE sensitivity		
Cam/Aa	good QCD behaviour	poor UE sensitivity		
	easily look at \neq scales			
anti-k _t	easy algorithm	poor UE sensitivity		
	easy calibration			
SISCone	small UE sensitivity	poor QCD behaviour		

We (finally) have a good set of tools

Can we do better?

A growing list

Many ideas and applications:

- \checkmark jet areas and background subtraction
 - \longrightarrow UE, pileup, heavy-ion background subtraction
- \checkmark jet substructure and filtering

 \longrightarrow see below

- ✓ "best" jet definition
 - \longrightarrow kinematic dijet reconstruction
- ✓ boosted objects tagging

 $\longrightarrow H \rightarrow b\bar{b}$, t, $\tilde{\chi}^1_0 \rightarrow qqq$, ...

I will cover the first three (see *e.g.* Gavin Salam's talk here for the 4th)

New idea #1: filtering

• Proven useful for boosted jet $H \rightarrow b\bar{b}$ tagging

[J.Butterworth, A.Davison, M.Rubin, G.Salam, 08]

Proven useful for kinematic reconstructions

[M.Cacciari, J.Rojo, G.Salam, GS, 08]

New idea #2: jet definition optimisation

Optimisation: underlying idea

Competition between

catching perturbative radiation

Out-of-cone radiation:

$$\langle \delta p_t \rangle \propto -\int_R \frac{d\theta}{\theta} \sim -\log(1/R)$$

not catching soft background radiation (underlying event)

$$\langle \delta p_t
angle \sim$$
 Soft contents \propto jet area $\sim R^2$

the coefficients depend on the algorithm

Optimisation: underlying idea

Competition between

catching perturbative radiation

the coefficients depend on the algorithm

Optimisation: dijet reconstruction

Example process to illustrate various effects:

 $Z' \to q \bar{q} \to 2 ~{\rm jets}$

- $M_{Z'}$ can be varied (between 100 GeV and 4 TeV)
- Also valid for $H \rightarrow gg$ to study gluon jets
- Reconstruction method:
 - get the 2 hardest jets: j_1 and j_2
 - reconstruct the Z': $m_{Z'} = (j_1 + j_2)^2$

Look how the mass peak is reconstructed

• Also $t\bar{t}$ with full hadronic decay for multijet tests

Optimisation: quality measure (1)

Measure of the jet reconstruction efficiency:

- Forget about measures related to parton-jet matching
- Forget about fits depending on the shape of the peak
- ⇒ maximise the signal over background ratio (S/\sqrt{B}) a narrower peak is better.

Optimisation: quality measure (1)

Measure of the jet reconstruction efficiency:

Optimisation: quality measure (2)

Assuming a constant background,

quality measure \longrightarrow effective luminosity ratio

 $\rho_{\mathcal{L}}(\mathrm{JD}_2/\mathrm{JD}_1) = \frac{\mathcal{L} \text{ needed with } \mathrm{JD}_2}{\mathcal{L} \text{ needed with } \mathrm{JD}_1} = \frac{Q_{f=z}^w(\mathrm{JD}_2)}{Q_{f=z}^w(\mathrm{JD}_1)}$

 $\underbrace{\text{e.g.}}_{\substack{\rho_{\mathcal{L}}(JD_2/JD_1) = 2}} \\ \Leftrightarrow JD_2 \text{ requires 2 times the integrated luminosity of } JD_1 \\ \text{ to achieve the same discriminative power.}$

Note: results cross-checked with 2 different definitions of the quality measure

Optimisation: best definition

[M.Cacciari, J.Rojo, G.Salam, GS, 08]

• SISCone and C/A+filt. do slightly better than k_t , C/A or anti- k_t

Optimisation: best definition

[M.Cacciari, J.Rojo, G.Salam, GS, 08]

• SISCone and C/A+filt. do slightly better than k_t , C/A or anti- k_t

Optimisation: consequences

may cost a factor ~ 2 in time for early discoveries at the LHC $\,$

Optimisation: consequences

New idea #3: jet area and soft background subtraction

[M.Cacciari, G.Salam, GS, 08]

Area \equiv region where the jet catches soft particles

- Recipe: add infinitely soft particles (aka ghosts) and see in which jet they are clustered
- <u>2 methods</u>:
 - Passive area: add one ghost at a time and repeat many times
 - Active area: add a set of ghosts and cluster once
- Idea: ghost \approx background particle
 - \Rightarrow active area \approx uniform background passive area \approx pointlike background
- Notes:
 - passive = active for large multiplicities
 - require an IR-safe algorithm!
 - generic/universal definition (e.g. independent of a calorimeter)

Jet area: examples

Example: active area for a simple event

 k_t

anti- k_t

one ghost at every grid cell

Note: analytic control

Example: perturbative expansion of areas (at order α_s)

$$\langle \mathcal{A}(p_t, R) \rangle = \mathcal{A}_0 + \frac{C_{F,A}}{b_0 \pi} \pi R^2 d \log \left(\frac{\alpha_s(Q_0)}{\alpha_s(Rp_t)} \right)$$

• area $\neq \pi R^2$, area \neq const.

 coefficients computable		$\mathcal{A}_0/(\pi R^2)$		d	
		passive	active	passive	active
	k_t	1	0.81	0.56	0.52
	Cam/Aachen	1	0.81	0.08	0.08
	anti- k_t	1	1	0	0
	SISCone	1	1/4	-0.06	0.12

• $Q_0 \equiv \text{IR regulator} \propto \text{background density}$

Pileup subtraction (for uniform backgrounds)

Basic idea: [M.Cacciari, G.Salam, 08]

 $p_{t,\text{subtracted}} = p_{t,\text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$

- Jet area: [M.Cacciari, G.Salam, G.S., 08]
 - region where the jet catches infinitely soft particles (active/passive)
- analytic control and understanding in pQCD • Pileup density per unit area: $\rho_{\text{pileup}} \stackrel{5}{\overset{5}{\text{e}}} 20$ e.g. estimated from the median of $p_{t,\text{jet}}/\text{Area}_{\text{jet}}$ 10

Pileup subtraction (for uniform backgrounds)

Basic idea: [M.Cacciari, G.Salam, 08]

 $p_{t,\text{subtracted}} = p_{t,\text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$

- Jet area: [M.Cacciari, G.Salam, G.S., 08]
 - region where the jet catches infinitely soft particles (active/passive)
 - (active/passive) • analytic control and understanding in pQCD Pileup density per unit area: ρ_{pileup} e.g. estimated from the median of $p_{t,\text{jet}}/\text{Area}_{\text{jet}}$ 15 background jets

0

-4

-2

– p. 31

4

2

0

η

Pileup subtraction (for uniform backgrounds)

Basic idea: [M.Cacciari, G.Salam, 08]

 $p_{t,\text{subtracted}} = p_{t,\text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$

- Jet area: [M.Cacciari, G.Salam, G.S., 08]
 - region where the jet catches infinitely soft particles (active/passive)

Effect on dijet reconstruction

Pileup unsubtracted

pileup subtracted

- \checkmark position reasonnable
- ✓ dispersion reduced (thanks to the event-by-event approach)
- \checkmark used by STAR for the first jet analysis in heavy-ions

Message #1:

Use infrared-and-collinear-safe algorithms

Important to benefit fully from pQCD multilegs/multiloops calculations

Message #2:

```
correct tools \Rightarrow new ideas, new concepts
```

 \Rightarrow new generation of jet definitions

- jet areas \longrightarrow pileup and HI background subtraction
- jet substructure improves reconstruction (Higgs, top, SUSY, ...)

Message #3:

keep some flexibility in the jet definition choice

- optimisation \longrightarrow luminosity gains for LHC searches
- different approaches \longrightarrow better understanding of HI collisions

backup slides

The SISCone search for stable cones

- Solution: use a seedless approach, find ALL stable cones
- Naive approach: check stability of each subset of particle
The SISCone search for stable cones

- Solution: use a seedless approach, find ALL stable cones
- Naive approach: check stability of each subset of particle Complexity is $O(N2^N)$ ⇒ definitely unrealistic: 10^{17} years for N = 100
- Midpoint complexity: $\mathcal{O}(N^3)$

The SISCone search for stable cones

- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}(N^3)$

Idea: use geometric arguments

- Each enclosure can be moved (in any dir.) until it touches a point
- ... then rotated until it touches a second one
- $\Rightarrow \text{Enumerate all pairs of particles} \\ \text{with 2 circle orientations and 4 possible inclusion/exclusion} \\ \longrightarrow \text{find all enclosures} \end{aligned}$

The SISCone search for stable cones

- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}(N^3)$

Idea: use geometric arguments

⇒ Enumerate all pairs of particles
with 2 circle orientations and 4 possible inclusion/exclusion
→ find all enclosures

• Complexity: $\mathcal{O}(N^3)$, with improvements: $\mathcal{O}(N^2 \log(N))$

 \rightarrow C++ implementation: Seedless Infrared-Safe Cone algorithm (SISCone) G.Salam, G.S., JHEP 04 (2007) 086; http://projects.hepforge.org/siscone

NB.: also available from FastJet

[M.Cacciari, G.Salam, G.S.]; http://www.fastjet.fr

Algorithm timings

Recombination algorithms very fast

 SISCone not slower than Midpoint (even with a 1 GeV seed threshold)

[[]M. Cacciari, G. Salam, 06]

A technical point: Back-reaction

Additional soft background has 2 effects:

- Throw soft particles in the hard jet: dealt with by subtraction
- Modify the hard scattering (back-reaction)
 - can be pointlike or diffuse

A technical point: Back-reaction

Additional soft background has 2 effects:

- Throw soft particles in the hard jet: dealt with by subtraction
- Modify the hard scattering (back-reaction)
 - can be pointlike or diffuse
 - tractable analytically (similar to areas)
 - $k_t \gtrsim \text{Cambridge} > \text{SISCone} \gg \text{anti-}k_t$

Example: application to HI collisions

pp + pileup

- Hard event: Pythia(v6.4) or Pythia(v6.4)+PyQuen(v1.5)
- Background: Hydjet(v1.5) (others under study)
- Analysis: FastJet(v2.4) Ideally: smallest Δp_t shift, smallest Δp_t dispersion
- Note: in what follows, R fixed to 0.4

Framework for study

Idea #1: use a local range to compute ρ_{bkg}

- Fluctuating background
 - \longrightarrow determine the background density $ho_{\rm bkg}$
 - from jets in the vicinity of the jet we want to subtract

• Exclude the hardest jets from the determination of $\rho_{\rm bkg}$ \Rightarrow reduce the bias in the computation median

Effect of choosing a local range

- effect \sim 0.5-1 GeV
- differences between local ranges → uncertainty
- for limited acceptance, global range pprox local range
- analytic control would be nice

Results: RHIC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

Results: RHIC kinematics

- average p_t shift: anti- k_t and C/A+filt. Ok
- p_t shift dispersion: C/A+filt. better

Results: RHIC kinematics

- average p_t shift: anti- k_t and C/A+filt. Ok
- p_t shift dispersion: C/A+filt. better
- watch out C/A+filt. average: back-reaction compensated

Results: RHIC kinematics – quenching

Performances not much affected by quenching (need more models)

Results: LHC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

Results: LHC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

• p_t shift dispersion: C/A+filt. better anti- k_t Ok

Results: LHC kinematics – quenching

Large quenching effect but anti- k_t 's rigidity plays for it

