Jets playing hide and seek

Grégory Soyez

Brookhaven National Laboratory

RHIC& AGS User's Meeting — June 1-5 2009 — BNL, Upton, USA

Plan

• e^+e^- collisions:

the most simple case

● *pp* collisions:

jets in hadronic environments \longrightarrow 20 years of jet definitions

pileup:

jets in the background

 \longrightarrow jet areas, background subtraction

• AA:

more background!

 \longrightarrow improved techniques

Foreword: what are jets?

QCD collinear divergence \longrightarrow collimated showers

 $\bullet \quad e e | \theta \quad dP \propto \alpha_s \frac{d\theta}{\theta}$

Example: LEP (OPAL) events

2 jets 3 jets 1 dea: jet \equiv collimated shower \simeq initial hard partons

Foreword: what are jets?

Foreword: an illustrative example

Example process to illustrate various effects:

 $Z' \to q \bar{q} \to 2$ jets

- $M_{Z'} = 300 \text{ GeV} \text{ (width < 1 GeV)}$
- Reconstruction method:
 - get the 2 hardest jets: j_1 and j_2
 - reconstruct the Z': $m_{Z'} = (j_1 + j_2)^2$
- Look how the mass peak is reconstructed

Part 1

e^+e^- collisions: the most simple case

Recombination algorithms

Recipe:

- find the pair (i, j) with
 the smallest d_{ij} distance
- recombine i and j
- repeat (until objects more than R apart)

Distance: k_t algorithm

 $d_{ij} = \min(E_i^2, E_j^2)[1 - \cos(\theta_{ij})]$

$$\mathrm{d}P = \alpha_s \frac{\mathrm{d}\theta}{\theta} \frac{\mathrm{d}p_t}{p_t}$$

without the prefactor: Cambridge/Aachen or Durham algorithm

Part 2

pp collisions: jets in hadronic environments

 $d_{ij} = \min(E_i^2, E_j^2) [1 - \cos(\theta_{ij})] \quad d_{ij} = \min(k_{t,i}^2, k_{t,j}^2) (\Delta y_{ij}^2 + \Delta \phi_{ij}^2)$

Our example: moving to jets in pp

width = 0.9 GeV

width = 19.7 GeV

Our example: moving to jets in pp

width = 14.2 GeV

pp

ho Reduce R

 $1/N \, dN/dm \, (GeV^{-1})$

Our example: moving to jets in pp

 e^+e^-

pp

• Reduce R

Use the cone algorithm

– p. 8

The cone algorithm

- Idea: find directions of energy flow
- <u>Stable cone</u> (fixed radius *R*):
 sum of all constituents points in the direction of the centre
- <u>Search</u>: iterate from initial directions (seeds)
- Stable cones \rightarrow jets: deal with overlaps
 - Solution 1: split/merge depending on the amount of overlap
 Examples: CDF JetClu, CDF MidPoint, D0 runII, ATLAS Cone
 - Solution 2: progressive removal starting from the hardest seed Examples: CMS Iterative Cone Benchmark: circular/rigid jets

Constraints

1990: SNOWMASS accords - constraints to fulfil

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

Infrared and collinear (IRC) safety:

- ✓ recombination algorithms: Ok
- X Cone: problem inherent to the "seeded" search of stable cones

New algorithms

- Cone with split-merge
 - Idea: Find an efficient seedless implementation that provably identifies all stable cones
 - Solution: <u>SISCone</u>: Seedless Infrared-Safe Cone

[G.Salam, GS, 07]

- Cone with progressive removal
 - Idea: keep the rigidity of the jets + restore IRC-safety
 - Solution: <u>anti- k_t </u>:

$$d_{ij} = \min(k_{t,i}^{-2}, k_{t,j}^{-2})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)$$

[M.Cacciari, G.Salam, GS, 08]

Impact of these new algorithms

- CDF MidPoint -
- D0 run II Cone

Impact

Observable	Last meaningful order		
Inclusive jet cross section	NLO		
3 jet cross section	LO (NLO in NLOJet)		
W/Z/H + 2 jet cross sect.	LO (NLO in MCFM)		
jet masses in 3 jets	none (LO in NLOJet)		

SISCone

Impact of these new algorithms

Our example: safe jet definitions

pileup: jets in the background

No pileup

With pileup

Our example: the effect of pileup

With pileup

- X shifted towards larger masses
- X width increased

[M.Cacciari, G.Salam, GS, 08]

Area \equiv region where the jet catches soft particles

- <u>Recipe</u>: add infinitely soft particles (aka <u>ghosts</u>) and see in which jet they are clustered
- <u>2 methods</u>:
 - Passive area: add one ghost at a time and repeat many times
 - Active area: add a set of ghosts and cluster once
- <u>Idea</u>: ghost \approx background particle

 \Rightarrow active area \approx uniform background passive area \approx pointlike background

Notes:

- passive = active for large multiplicities
- require an IR-safe algorithm!

Jet area: examples

Example: active area for a simple event

 k_t

anti- k_t

one ghost at every grid cell

Note: analytic control

Example: perturbative expansion of areas (at order α_s)

$$\langle \mathcal{A}(p_t, R) \rangle = \mathcal{A}_0 + \frac{C_{F,A}}{b_0 \pi} \pi R^2 d \log \left(\frac{\alpha_s(Q_0)}{\alpha_s(Rp_t)} \right)$$

• area $\neq \pi R^2$, area \neq const.

	coefficients computable	$\mathcal{A}_0/(\pi R^2)$		d		
		passive	active	passive	active	
		k_t	1	0.81	0.56	0.52
		Cam/Aachen	1	0.81	0.08	0.08
		anti- k_t	1	1	0	0
		SISCone	1	1/4	-0.06	0.12

• $Q_0 \equiv \text{IR regulator} \propto \text{background density}$

Note: analytic control

Example: perturbative expansion of areas (at order α_s)

$$\langle \mathcal{A}(p_t, R) \rangle = \mathcal{A}_0 + \frac{C_{F,A}}{b_0 \pi} \pi R^2 d \log \left(\frac{\alpha_s(Q_0)}{\alpha_s(Rp_t)} \right)$$

- area $\neq \pi R^2$, area \neq const.
- in agreement with Monte-Carlo simulations

Pileup subtraction

Basic idea: [M.Cacciari, G.Salam, 08]

 $p_{t,\text{subtracted}} = p_{t,\text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$

D_{t,jet} / Area_{jet}

Jet area: [M.Cacciari, G.Salam, G.S., 08]

region where the jet catches infinitely soft particles (active/passive)

Pileup density per unit area: ρ_{pileup} e.g. estimated from the median
of $p_{t,\text{jet}}/\text{Area}_{\text{jet}}$

Pileup subtraction

Basic idea: [M.Cacciari, G.Salam, 08]

 $p_{t,\text{subtracted}} = p_{t,\text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$

- Jet area: [M.Cacciari, G.Salam, G.S., 08]
 - region where the jet catches infinitely soft particles (active/passive)

Pileup subtraction

Basic idea: [M.Cacciari, G.Salam, 08]

 $p_{t,\text{subtracted}} = p_{t,\text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$

- Jet area: [M.Cacciari, G.Salam, G.S., 08]
 - region where the jet catches infinitely soft particles (active/passive)

Our example: subtracting pileup

Pileup unsubtracted

pileup subtracted

- \checkmark position reasonnable
- \checkmark dispersion reduced

Part 4

AA: more background!

Complications

With large fluctuations

Problem:

• Much larger background (\sim 100 GeV/unit area at RHIC, \sim 250 GeV/unit area at the LHC)

Question: how well can we measure the "hard jet" (quenched or not) in the heavy-ion background?

- Hard event: Pythia(v6.4) or Pythia(v6.4)+PyQuen(v1.5)
- Background: Hydjet(v1.5) (others under study)
- Analysis: FastJet(v2.4) Ideally: smallest Δp_t shift, smallest Δp_t dispersion
- Note: in what follows, R fixed to 0.4

Framework for study

Note: in what follows, R fixed to 0.4

A technical point: Back-reaction

Additional soft background has 2 effects:

- Throw soft particles in the hard jet: dealt with by subtraction
- Modify the hard scattering (back-reaction)
 - can be pointlike or diffuse

A technical point: Back-reaction

Additional soft background has 2 effects:

- Throw soft particles in the hard jet: dealt with by subtraction
- Modify the hard scattering (back-reaction)
 - can be pointlike or diffuse
 - tractable analytically (similar to areas)
 - $k_t \gtrsim \text{Cambridge} > \text{SISCone} \gg \text{anti-}k_t$

Idea #1: use a local range to compute ρ_{bkg}

- Fluctuating background
 - \longrightarrow determine the background density $\rho_{\rm bkg}$
 - from jets in the vicinity of the jet we want to subtract

• Exclude the hardest jets from the determination of $\rho_{\rm bkg}$ \Rightarrow reduce the bias in the computation median

Effect of choosing a local range

- effect \sim 0.5-1 GeV
- differences between local ranges —> uncertainty
- for limited acceptance, global range pprox local range
- analytic control would be nice

- cluster with
 Cambridge/Aachen(R)
- for each jet
 - recluster with
 Cambridge/Aachen(R/2)
 - keep the 2 hardest subjets

• Proven useful for boosted jet $H \rightarrow b\overline{b}$ tagging

[J.Butterworth, A.Davison, M.Rubin, G.Salam, 08]

Proven useful for kinematic reconstructions

[M.Cacciari, J.Rojo, G.Salam, GS, 08]

Results: RHIC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

Results: RHIC kinematics

- average p_t shift: anti- k_t and C/A+filt. Ok
- p_t shift dispersion: C/A+filt. better

Results: RHIC kinematics

- average p_t shift: anti- k_t and C/A+filt. Ok
- p_t shift dispersion: C/A+filt. better
- watch out C/A+filt. average: back-reaction compensated

Results: RHIC kinematics – quenching

Performances not much affected by quenching (need more models)

Results: LHC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

Results: LHC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

• p_t shift dispersion: C/A+filt. better anti- k_t Ok

Results: LHC kinematics – quenching

Large quenching effect but anti- k_t 's rigidity plays for it

Conclusions

Cone algorithm: use and infrared-and-collinear-safe one

- Background subtraction: use jet areas
 - properly defined, under analytic control
 - simple and generic subtraction method
- More refined techniques: use local ranges and filtering techniques
 - decrease sensitivity to the background and its fluctuations
 - RHIC and LHC may behave differently
 - Try BOTH anti-k_t (reliable because of its rigidity)
 AND Cambridge/Aachen+filtering (many nice features)