News in jet algorithms: SISCone and anti- k_{t}

Grégory Soyez

Brookhaven National Laboratory

G.P. Salam, G. Soyez, JHEP 05 (2007) 086 [arXiv:0704.0292]
M. Cacciari, G.P. Salam, G. Soyez, to appear in JHEP [arXiv:0802.1189]

Aim: Study hard processes

- QCD backgrounds, top quark physics
- Higgs, physics beyond the standard model

Define jets: parton \leftrightarrow jet

But: partons are ambiguous

Hence: Multiple definitions of a "jet"

Two classes of algorithms

Class 1: recombination
Successive recombinations of the "closest" pair of particle

- Distance:

$$
\begin{aligned}
\underline{k_{t}}: & d_{i, j}=\min \left(k_{t, i}^{2}, k_{t, j}^{2}\right)\left(\Delta \phi_{i, j}^{2}+\Delta y_{i, j}^{2}\right) \\
\underline{\text { Aachen/Cam.: }} & d_{i, j}=\Delta \phi_{i, j}^{2}+\Delta y_{i, j}^{2}
\end{aligned}
$$

- stop when $d_{\text {min }}>R$

Class 2: cone
Find directions of dominant energy flow \equiv find ALL stable cones

for a cone of fixed radius R in the (y, ϕ) plane: stable cones such that: centre of the cone \equiv direction of the total momentum of its particle contents

Class 2: cone
Find directions of dominant energy flow \equiv find ALL stable cones

for a cone of fixed radius R in the (y, ϕ) plane: stable cones such that: centre of the cone \equiv direction of the total momentum of its particle contents

- Seeded/Iterative approaches:
- seed = initial particle
- seed = midpoint between stable cones found at first step
- One has to deal with overlapping stable cones: 2 subclasses

Class 2(a): cone with split-merge
$\tilde{p}_{t, \text { shared }}>f \tilde{p}_{t, \text { min }}$

$\tilde{p}_{t, \text { shared }} \leq f \tilde{p}_{t, \text { min }}$

ex.: JetClu, MidPoint

Class 2(a): cone with split-merge
$\tilde{p}_{t, \text { shared }}>f \tilde{p}_{t, \text { min }}$

$\tilde{p}_{t, \text { shared }} \leq f \tilde{p}_{t, \text { min }}$

ex.: JetClu, MidPoint

Class 2(b): cone with progressive removal

- iterate from the hardest seed
- remove the stable cone as a jet and start again

ex.: Seeded Cone

SNOWMASS, Tevatron 1990 (i.e. old!):
Any jet algorithm must satisfy

1. Can be practically used in experimental analysis
2. Can be practically used in theoretical computations
3. Can be defined at any order of the perturbation theory
4. Yields finite cross-sections at any order
5. Has a small sensitivity to hadronisation corrections
i.e. usable by theoreticians (e.g. finite perturbative results) and experimentalists (e.g. fast enough)

This talk:

- Iterative cone algorithms miss stable cones \Rightarrow theoretical problems
- That can be solved keeping experimental usefulness

QCD divergences

QCD probability for gluon bremsstrahlung at angle θ and \perp-mom. k_{t} :

$$
d P \propto \alpha_{s} \frac{d \theta}{\theta} \frac{d k_{t}}{k_{t}}
$$

Two divergences:

Collinear

Soft

QCD probability for gluon bremsstrahlung at angle θ and \perp-mom. k_{t} :

$$
d P \propto \alpha_{s} \frac{d \theta}{\theta} \frac{d k_{t}}{k_{t}}
$$

Two divergences:

Collinear

Soft

For QCD expansion to make sense
\Rightarrow The (hard) jets (or stable cones) should not change when

- one has a collinear splitting
i.e. replaces one parton by two at the same place
- one has a soft emission i.e. adds a very soft gluon

IR unsafety of the Midpoint alg

IR unsafety of the Midpoint alg

IR unsafety of the Midpoint alg

IR unsafety of the Midpoint alg

IR unsafety of the Midpoint alg

Stable cones:
Midpoint:

$\{1,2\} \&\{3\} \&\{2,3\}$

IR unsafety of the Midpoint alg

Stable cones:
Midpoint:
$\{1,2\} \&\{3\}$
$\{1,2\} \&\{3\} \&\{2,3\}$

Jets: $(f=0.5)$
Midpoint:
$\{1,2\} \&\{3\}$
\{1,2,3\}

IR unsafety of the Midpoint alg

Stable cones:

Midpoint:
Seedless:
Jets: $(f=0.5)$
Midpoint:
Seedless:
$\{1,2\} \&\{3\}$
$\{1,2,3\}$
$\{1,2\} \&\{3\} \&\{2,3\}$
$\{1,2\} \&\{3\} \&\{2,3\}$

IR unsafety of the Midpoint alg

Stable cones:

Midpoint:
Seedless:
Jets: $(f=0.5)$
Midpoint:
Seedless:
$\{1,2\} \&\{3\}$
$\{1,2,3\}$
$\{1,2\} \&\{3\} \&\{2,3\}$
$\{1,2\} \&\{3\} \&\{2,3\}$

Stable cone missed \longrightarrow IR unsafety of the midpoint algorithm

- Solution: use a seedless approach, find ALL stable cones
- Naive approach: check stability of each subset of particle
- Solution: use a seedless approach, find ALL stable cones
- Naive approach: check stability of each subset of particle Complexity is $\mathcal{O}\left(N 2^{N}\right)$
\Rightarrow definitely unrealistic: 10^{17} years for $N=100$
- Midpoint complexity: $\mathcal{O}\left(N^{3}\right)$
- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}\left(N^{3}\right)$

Idea: use geometric arguments

- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}\left(N^{3}\right)$

Idea: use geometric arguments

- Enumerate enclosures and check if they are stable
- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}\left(N^{3}\right)$

Idea: use geometric arguments

- Enumerate enclosures and check if they are stable
- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}\left(N^{3}\right)$

Idea: use geometric arguments

- Enumerate enclosures and check if they are stable
- Each enclosure can be moved (in any direction) until it touches a point
- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}\left(N^{3}\right)$

Idea: use geometric arguments

- Enumerate enclosures and check if they are stable
- Each enclosure can be moved (in any direction) until it touches a point
- ... then rotated until it touches a second one
- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}\left(N^{3}\right)$

Idea: use geometric arguments
\Rightarrow Enumerate all pairs of particles
with 2 circle orientations and 4 possible inclusion/exclusion
\longrightarrow find all enclosures

- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}\left(N^{3}\right)$

Idea: use geometric arguments
\Rightarrow Enumerate all pairs of particles
with 2 circle orientations and 4 possible inclusion/exclusion
\longrightarrow find all enclosures

- Complexity: $\mathcal{O}\left(N^{3}\right)$, with improvements: $\mathcal{O}\left(N^{2} \log (N)\right)$
- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}\left(N^{3}\right)$

Idea: use geometric arguments
\Rightarrow Enumerate all pairs of particles
with 2 circle orientations and 4 possible inclusion/exclusion
\longrightarrow find all enclosures

- Complexity: $\mathcal{O}\left(N^{3}\right)$, with improvements: $\mathcal{O}\left(N^{2} \log (N)\right)$
\longrightarrow C++ implementation: Seedless Infrared-Safe Cone algorithm (SISCone)
G.Salam, G.S., JHEP 04 (2007) 086; http://projects.hepforge.org/siscone

NB.: also available from FastJet
[M.Cacciari, G.Salam, G.S.]; http://www.lpthe.jussieu.fr/~salam/fastjet

Execution timings

- at least as fast as midpoint cones
- effect from a few percents (incl.) to $\sim 45 \%$ (excl.)

Inclusive (midpoint/SISCone-1)

Masses in 3-jet events

Coll. unsafety of the iterative cone

Coll. unsafety of the iterative cone

Coll. unsafety of the iterative cone

Coll. unsafety of the iterative cone

Coll. unsafety of the iterative cone

- Before collinear spliting: 1 jet
- After collinear spliting: 2 jets
\longrightarrow collinear unsafety of the iterative cone algorithm

Come back to recombination-type algorithms:

$$
d_{i j}=\min \left(k_{t, i}^{2 p}, k_{t, j}^{2 p}\right)\left(\Delta \phi_{i j}^{2}+\Delta \eta_{i j}^{2}\right)
$$

- $p=1$: k_{t} algorithm
- $p=0$: Aachen/Cambridge algorithm

Come back to recombination-type algorithms:

$$
d_{i j}=\min \left(k_{t, i}^{2 p}, k_{t, j}^{2 p}\right)\left(\Delta \phi_{i j}^{2}+\Delta \eta_{i j}^{2}\right)
$$

- $p=1: k_{t}$ algorithm
- $p=0$: Aachen/Cambridge algorithm
- $p=-1$: anti- k_{t} algorithm
[M.Cacciari, G.Salam, G.S.,to appear in JHEP]

Come back to recombination-type algorithms:

$$
d_{i j}=\min \left(k_{t, i}^{2 p}, k_{t, j}^{2 p}\right)\left(\Delta \phi_{i j}^{2}+\Delta \eta_{i j}^{2}\right)
$$

- $p=1: k_{t}$ algorithm
- $p=0$: Aachen/Cambridge algorithm
- $p=-1$: anti- k_{t} algorithm [M.Cacciari, G.Salam, G.S.,to appear in JHEP]

Why should that be related to the iterative cone ?!?

- "large $k_{t} \Rightarrow$ small distance"
i.e. hard partons "eat" everything up to a distance R
i.e. circular/regular jets, jet borders unmodified by soft radiation
- infrared and collinear safe

Hard event + homogeneous soft background

anti- k_{t} is soft-resilient
more in Matteo Cacciari's talk...

Conclusions

- Midpoint and the iterative cone IR or Collinear unsafe (at $\mathcal{O}\left(\alpha_{s}^{4}\right)$)

Observable	1st miss cones at	Last meaningful order
Inclusive jet cross section	NNLO	NLO
3 jet cross section	NLO	LO (NLO in NLOJet)
$W / Z / H+2$ jet cross sect.	NLO	LO (NLO in MCFM)
jet masses in 3 jets	LO	none (LO in NLOJet)

- The IR-unsafety issue will matter at LHC
+ We do not want the theoretical efforts to be wasted
- SISCone is a natural replacement for Midpoint (as fast, IRC safe)
- anti- k_{t} could replace the iterative cone (regular, IRC safe)
- Available from FastJet (http://www.lpthe.jussieu.fr/~salam/fastjet) SISCone: http://projects.hepforge.org/siscone
- Algorithms at play: see Juan Rojo's talk

