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Outline

Jet algorithms

The gluon distribution

Difficulty in inclusive events

Looking at 2+1 jet events

What can we expect?

Forward physics

DGLAP vs. BFKL in Mueller-Navelet jets

DGLAP vs. BFKL in forward jets (saturation?)
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Two classes of algorithms

Class 1: recombination
Successive recombinations of the “closest” pair of particle

Distance:

kt: di,j = min(k2
t,i, k

2
t,j)(∆φ2

i,j + ∆y2
i,j)

Aachen/Cam.: di,j = ∆φ2
i,j + ∆y2

i,j

stop when dmin > R
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Two classes of algorithms

Class 1: recombination
Successive recombinations of the “closest” pair of particle

Distance:

kt: di,j = min(k2
t,i, k

2
t,j)(∆φ2

i,j + ∆y2
i,j)

Aachen/Cam.: di,j = ∆φ2
i,j + ∆y2

i,j

stop when dmin > R

Often used for e±e± or e±p

FastJet : a fast implementation of those algorithms
www.lpthe.jussieu.fr/~salam/fastjet/ [M. Cacciari, G. Salam]
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Two classes of algorithms

Class 2: cone
Find directions of dominant energy flow

for a cone of radius R in the (y, φ) plane, stable cones are such that:
centre of the cone ≡ direction of the total momentum of its particle contents
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Two classes of algorithms

Class 2: cone
Find directions of dominant energy flow

for a cone of radius R in the (y, φ) plane, stable cones are such that:
centre of the cone ≡ direction of the total momentum of its particle contents

Split-merge procedure to deal with overlapping stable cones

Often used for pp

Requirements specified in the Snowmass Accord (Fermilab, 1990)
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Two classes of algorithms

Class 2: cone
Find directions of dominant energy flow

for a cone of radius R in the (y, φ) plane, stable cones are such that:
centre of the cone ≡ direction of the total momentum of its particle contents

Requirements specified in the Snowmass Accord (Fermilab, 1990)

SISCone: first cone algorithms that satisfies all those constraints
SISCone: (noticeably Infrared Safety)
projects.hepforge.org/siscone/ (+ FastJet plugin)

[G. Salam,G. Soyez, 07]
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Gluon distribution from inclusive data

Standard way of extacting the gluon distribution:

consider the inclusive F2 (plus other inclusive quantities as Drell-Yan cross-sections)

pdf parametrised at Q2 = Q2
0 and evolved with DGLAP

At LO:

F2(x, Q2) ∝ xq(x, Q2)

∂log(Q2)q(x, Q2) = αs[Pqq ⊗ q(ξ, Q2) + Pqg ⊗ g(ξ, Q2)]

∂log(Q2)g(x, Q2) = αs[Pgq ⊗ q(ξ, Q2) + Pgg ⊗ g(ξ, Q2)]

The gluon distribution is accessed through the slope of F2, and through a
convolution!
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Gluon distribution from inclusive data

The gluon distribution is accessed through the slope of F2
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Jets in DIS

“1+1 jet” dominated by

i.e. dominated by quarks (gluons at NLO)
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Jets in DIS

“2+1 jets” becomes more interesting

involve quarks and gluons

dominated by gluons at small x
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Jets in DIS

“2+1 jets” becomes more interesting
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a and b from pQCD
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Gluons from 2+1 jets
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Gluons from 2+1 jets

Other possibilities

Diffractive events (gIP )

Leading neutron

One needs to be careful

Effect of hadonisation

Effect of multiple-interactions

Effect of clustering
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Gluons from 2+1 jets
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High luminosity ⇒ low statistical errors

eRHIC:

slightly smaller kinemtical range

eA vs. (A×) ep ⇒ information on shadowing/saturation/multiple
interactions

How low can you go in pT ?
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Forward jets

jet
xj , kt

x, Q2

Tag a forward jet with x ≪ xj .
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Forward jets

jet
xj , kt

x, Q2

Tag a forward jet with x ≪ xj .
If Q2

∼ k2
t ,

DGLAP and fixed-order fail

BFKL works
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[Kepka, Marquet, Peschanski, Royon]

Grégory Soyez EIC Meeting, Stony Brook, USA, December 7-8 2007 jets in EIC – p. 11/12



Forward jets

jet
xj , kt

x, Q2

Tag a forward jet with x ≪ xj .
If Q2

∼ k2
t ,

DGLAP and fixed-order fail

BFKL works
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Question for EIC:
Hints for BFKL, saturation &
multiple interactions effects in
eA collisions?
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Conclusions

What can we learn from jet physics at EIC

gluon PDF
from 2+1 jets
ep vs. eA: shadowing, multiple interactions

BFKL (and saturation) tests from forward jets

...
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