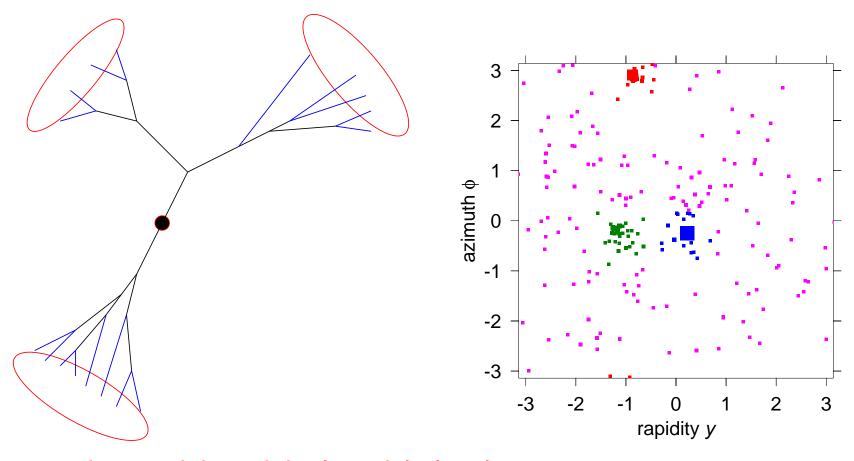
SISCone A Seedless Infrared-Safe Cone jet algorithm

Grégory Soyez

University of Liège

- In collaboration with Gavin Salam
- paper available as JHEP 05 (2007) 086 [arXiv:0704.0292]
- code available at http://projects.hepforge.org/siscone
 FastJet plugin: http://www.lpthe.jussieu.fr/~salam/fastjet

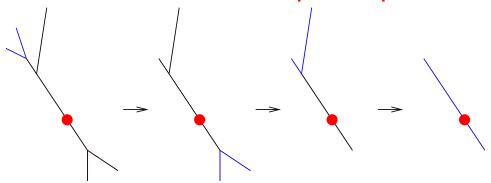
Outline


- Cone jet algorithms
- Infrared-Safety issues:
 - Why is this mandatory?
 - IR unsafety of the midpoint algorithm
- SISCone: a practical solution
- Physical consequences:
 - Algorithm speed
 - Inclusive jet spectrum
 - Jet mass spectrum in multi-jet events
- Conclusions

Why jet algorithms?

Given: set of N particles with their 4-momentum

Why jet algorithms?

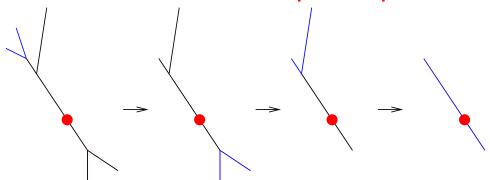

- Given: set of N particles with their 4-momentum
- Quest: clustering those particles into jets

⇒ understand the original particle-level process

Class 1: recombination

Successive recombinations of the "closest" pair of particle

Distance:

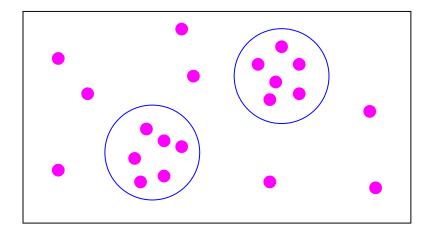

$$\underline{k_t}$$
: $d_{i,j} = \min(k_{t,i}^2, k_{t,j}^2)(\Delta\phi_{i,j}^2 + \Delta y_{i,j}^2)$

Aachen/Cam.:
$$d_{i,j} = \Delta \phi_{i,j}^2 + \Delta y_{i,j}^2$$

• stop when $d_{\mathsf{min}} > R$

Class 1: recombination

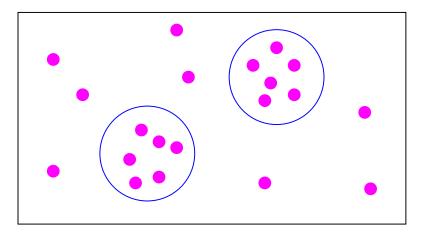
Successive recombinations of the "closest" pair of particle


Distance:

$$\underline{k_t}: \quad d_{i,j} = \min(k_{t,i}^2, k_{t,j}^2)(\Delta \phi_{i,j}^2 + \Delta y_{i,j}^2)$$
 Aachen/Cam.:
$$d_{i,j} = \Delta \phi_{i,j}^2 + \Delta y_{i,j}^2$$

- stop when $d_{min} > R$
- Often used for $e^{\pm}e^{\pm}$ or $e^{\pm}p$
- FastJet: a fast implementation of those algorithms
 www.lpthe.jussieu.fr/~salam/fastjet/ (M. Cacciari, G. Salam)

Class 2: cone


Find directions of dominant energy flow

for a cone of radius R in the (y, ϕ) plane, <u>stable cones</u> are such that: centre of the cone \equiv direction of the total momentum of its particle contents

Class 2: cone

Find directions of dominant energy flow

for a cone of radius R in the (y, ϕ) plane, <u>stable cones</u> are such that: centre of the cone \equiv direction of the total momentum of its particle contents

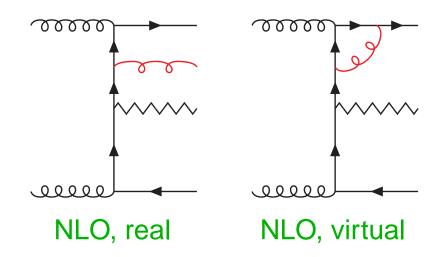
- ullet Often used for pp
- Many cone algorithms: Snowmass, JetClu, PxCone, CDF Midpoint, ...
- BUT none satisfies 1990's requirements

Cone requirements

- Snowmass Accord (FERMILAB, 1990): any jet algorithm must satisfy
 - 1. Can be practically used in experimental analysis
 - 2. Can be practically used in theoretical computations
 - 3. Can be defined at any order of the perturbation theory
 - 4. Yields finite cross-sections at any order
 - 5. Has a small sensitivity to hadronisation corrections

Cone requirements

- Snowmass Accord (FERMILAB, 1990): any jet algorithm must satisfy
 - 1. Can be practically used in experimental analysis
 - 2. Can be practically used in theoretical computations
 - 3. Can be defined at any order of the perturbation theory
 - 4. Yields finite cross-sections at any order
 - 5. Has a small sensitivity to hadronisation corrections
- Previous algorithms:
 - 1, 2 and 4 never satisfied together
 - 5 is unclear (Underlying event and R_{sep} issues discussed later)

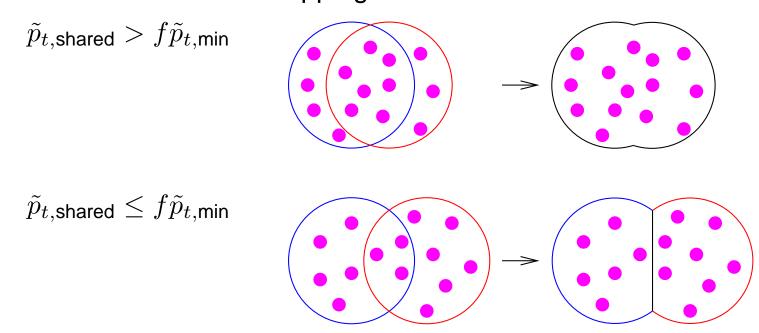

Cone requirements

- Snowmass Accord (FERMILAB, 1990): any jet algorithm must satisfy
 - 1. Can be practically used in experimental analysis
 - 2. Can be practically used in theoretical computations
 - 3. Can be defined at any order of the perturbation theory
 - 4. Yields finite cross-sections at any order
 - 5. Has a small sensitivity to hadronisation corrections
- Previous algorithms:
 - 1, 2 and 4 never satisfied together
 - 5 is unclear (Underlying event and R_{sep} issues discussed later)
- This talk shows how to satisfy all these.

Infrared Safety

Ellipsis: IR safety, i.e. stability upon emission of soft particles, is required for perturbative computations to make sense!

Cancellation of IR divergences between real and virtual emissions of SOFT gluons in QCD



- IF Jet clustering is different in both cases, THEN the cancellation is not done and the result is not consistent with pQCD
 - ⇒ Stable cones must not change upon addition of soft particles
- Note: 100 GeV jet cannot change by adding a 1 GeV particle
 This would break parton/hadron correspondence

Modern cone jet algorithm

Modern cone jet algorithm (Tevatron Run II type):

- Step 1: find ALL stable cones of radius R
- Step 1': if some of the particles are not in stable cones, rerun Step 1 with the remaining ones.
- Step 2: run a split-merge procedure with overlap f to deal with overlapping stable cones

Modern cone jet algorithm

Modern cone jet algorithm (Tevatron Run II type):

- Step 1: find ALL stable cones of radius R
- Step 1': if some of the particles are not in stable cones, rerun Step 1 with the remaining ones.
- Step 2: run a split-merge procedure with overlap f to deal with overlapping stable cones

Parameters:

- Standard parameters: cone radius R, overlap parameter f
- Additional controls: number of passes n_{pass} , stable cone $p_{t,min}$ cut-off

Modern cone jet algorithm

Modern cone jet algorithm (Tevatron Run II type):

- Step 1: find ALL stable cones of radius R
- Step 1': if some of the particles are not in stable cones, rerun Step 1 with the remaining ones.
- Step 2: run a split-merge procedure with overlap f to deal with overlapping stable cones

Parameters:

- Standard parameters: cone radius R, overlap parameter f
- Additional controls: number of passes n_{pass} , stable cone $p_{t,min}$ cut-off

This talk: Why finding all stable cones and how.

→ C++ implementation: Seedless Infrared-Safe Cone algorithm (SISCone)

Typical cone: Midpoint algorithm

Usual seeded method to search stable cones: midpoint cone algorithm

For an initial seed

- 1. sum the momenta of all particles within the cone centred on the seed
- 2. use the direction of that momentum as new seed
- 3. repeat 1 & 2 until stable state cone reached

Typical cone: Midpoint algorithm

Usual seeded method to search stable cones: midpoint cone algorithm

For an initial seed

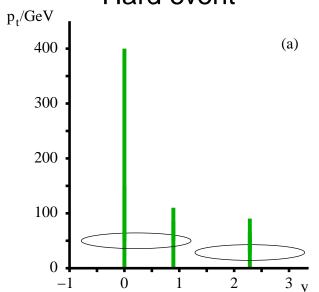
- 1. sum the momenta of all particles within the cone centred on the seed
- 2. use the direction of that momentum as new seed
- 3. repeat 1 & 2 until stable state cone reached

Sets of seeds:

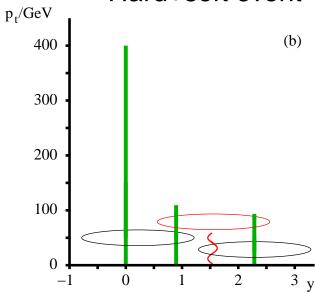
- 1. All particles (above a p_t threshold s)
- 2. Midpoints between stable cones found in 1.

Typical cone: Midpoint algorithm

Usual seeded method to search stable cones: midpoint cone algorithm

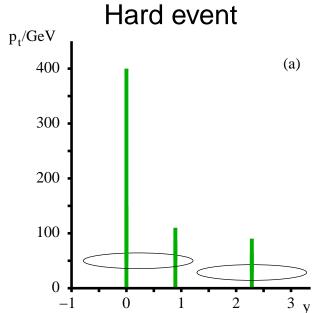

- For an initial seed
 - 1. sum the momenta of all particles within the cone centred on the seed
 - 2. use the direction of that momentum as new seed
 - 3. repeat 1 & 2 until stable state cone reached
- Sets of seeds:
 - 1. All particles (above a p_t threshold s)
 - 2. Midpoints between stable cones found in 1.

Problems:

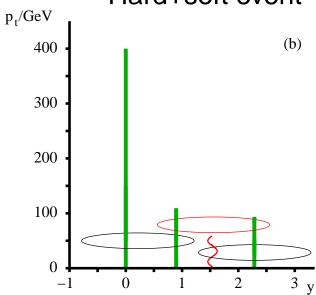

- the p_t threshold s is collinear unsafe
- seeded approach ⇒ stable cones missed ⇒ infrared unsafety

Midpoint IR Unsafety

Hard+soft event



Stable cones:


Midpoint:

{1,2} & {3}

Midpoint IR Unsafety

Hard+soft event

Stable cones:

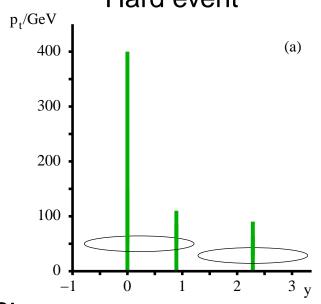
Midpoint:

{1,2} & {3}

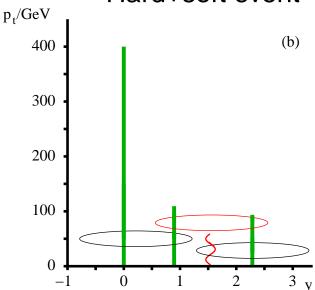
{1,2} & {3} & {2,3}

Jets: (f = 0.5)

Midpoint:


{1,2} & {3}

{1,2,3}


----- IR unsafety of the midpoint algorithm

Midpoint IR Unsafety

Hard+soft event

Stable cones:

Midpoint:

{1,2} & {3}

Seedless:

{1,2} & {3} & {2,3}

{1,2} & {3} & {2,3}

{1,2} & {3} & {2,3}

Jets: (f = 0.5)

Midpoint:

Seedless:

{1,2} & {3}

{1,2,3}

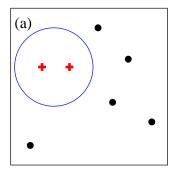
{1,2,3}

{1,2,3}

→ IR unsafety of the midpoint algorithm

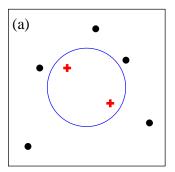
is a seedless solution practical?

- Solution: use a seedless approach
- Naive approach: check stability of each subset of particle

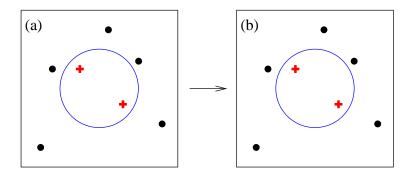

is a seedless solution practical?

- Solution: use a seedless approach
- Naive approach: check stability of each subset of particle Complexity is $\mathcal{O}\left(N2^N\right)$
 - \Rightarrow definitely unrealistic: 10^{17} years for N=100

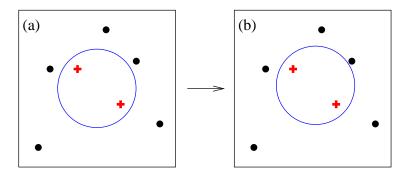
is a seedless solution practical?

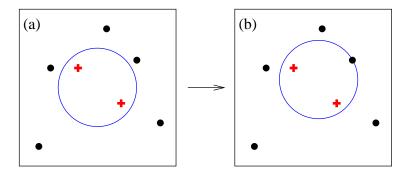

- Solution: use a seedless approach
- Naive approach: check stability of each subset of particle Complexity is $\mathcal{O}\left(N2^N\right)$
 - \Rightarrow definitely unrealistic: 10^{17} years for N=100
- Midpoint complexity:
 - For 1 seed: build and check cone content is $\mathcal{O}(N)$
 - initially N seeds $\Rightarrow \mathcal{O}\left(N\right)$ stable cones $\Rightarrow \mathcal{O}\left(Nn\right)$ new, midpoint, seeds \Rightarrow midpoint complexity is $\mathcal{O}\left(N^2n\right)$
 - with $n \sim N$ the number of points in a circle of radius R
 - Note: the number of stable cones is $\mathcal{O}(N)$

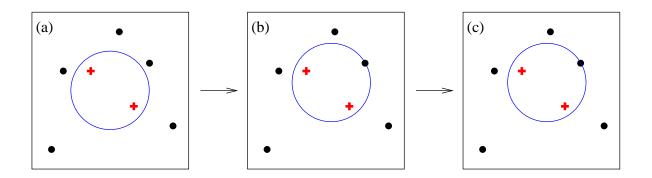
<u>Idea</u>: use geometric arguments

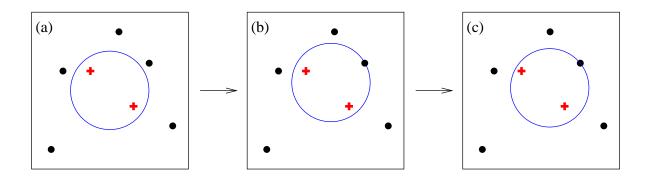


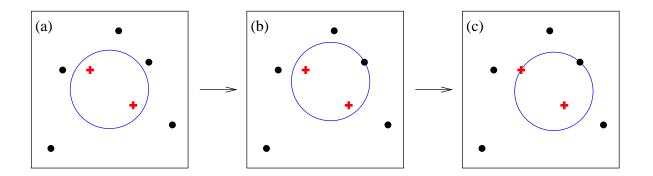
Enumerate enclosures and check if they are stable


<u>Idea</u>: use geometric arguments

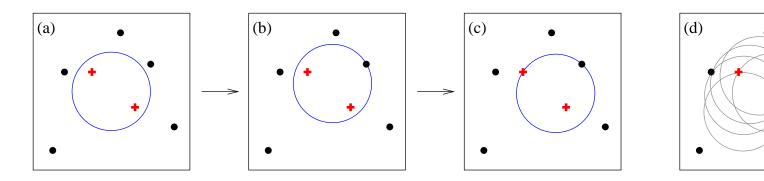

Enumerate enclosures and check if they are stable


- Enumerate enclosures and check if they are stable
- Each enclosure can be moved (in any direction) to touch a point


- Enumerate enclosures and check if they are stable
- Each enclosure can be moved (in any direction) to touch a point


- Enumerate enclosures and check if they are stable
- Each enclosure can be moved (in any direction) to touch a point

- Enumerate enclosures and check if they are stable
- Each enclosure can be moved (in any direction) to touch a point
- ... then rotated to touch a second one



- Enumerate enclosures and check if they are stable
- Each enclosure can be moved (in any direction) to touch a point
- ... then rotated to touch a second one

- Enumerate enclosures and check if they are stable
- Each enclosure can be moved (in any direction) to touch a point
- ... then rotated to touch a second one

Idea: use geometric arguments

- Enumerate enclosures and check if they are stable
- Each enclosure can be moved (in any direction) to touch a point
- ... then rotated to touch a second one
- ⇒ Enumerate all pairs of particles with 2 circle orientations and 4 possible inclusion/exclusion
- → find all enclosures

- ⇒ Enumerate all pairs of particles with 2 circle orientations and 4 possible inclusion/exclusion
- → find all enclosures

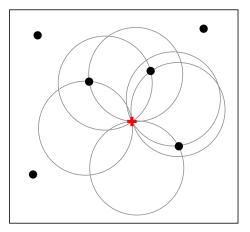
Complexity?

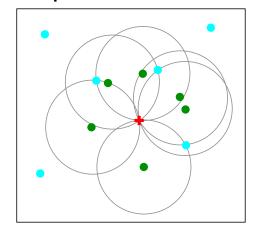
- Enumerate all pairs of particles: $\mathcal{O}(Nn)$
- For each, build content and check stability

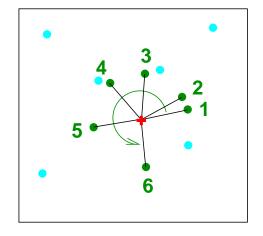
$$\Rightarrow \mathcal{O}\left(N^2n\right)$$

- ⇒ Enumerate all pairs of particles with 2 circle orientations and 4 possible inclusion/exclusion
- → find all enclosures

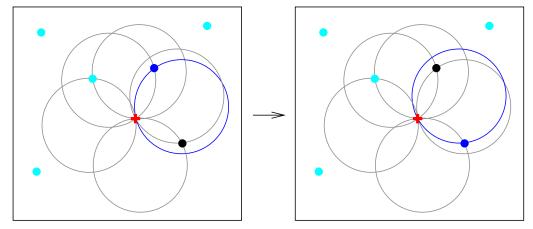
Complexity?


- Enumerate all pairs of particles: $\mathcal{O}(Nn)$
- For each, build content and check stability $\Rightarrow \mathcal{O}(N^2n)$


Same as midpoint... but we'll use more tricks:


- avoid systematic recomputation of cone contents
- limit complete tests of cone stability

Tricks:


For all enclosures around a particle, introduce a traversal order

From one cone to the next one, contents only changed by "border" particles

⇒ avoids recomputing the cone contents at each step

SISCone: seedless solution

Tricks:

- For all enclosures around a particle, introduce a traversal order
 - ⇒ avoids recomputing the cone contents at each step
- Label the particles using a q-bit tag
 - ⇒ checkxor to identify distinct cones
 Introduces a potential "collision" problem

$$q = 96$$
 \Rightarrow $P(\text{collision}) = 10^{-18}$

SISCone: seedless solution

Tricks:

- For all enclosures around a particle, introduce a traversal order
 - ⇒ avoids recomputing the cone contents at each step
- Label the particles using a q-bit tag
 - ⇒ checkxor to identify distinct cones
- Only test "border particles" for stability (cost $\mathcal{O}(1)$)
 - \Rightarrow limits the number of full stability test to $\mathcal{O}\left(N\right)$
 - checkxor → keep trace of stability tests

The SISCone algorithm for stable-cone search

How to efficiently determine all stable cones:

- For each particle i
 - get "partners" and associated cone centres
 - order them by angle
 - for all those candidates cones
 - check stability w.r.t. border particles
 4 possible ∈ or ∉ & keep track of tested cones
 - move to the next cone
- ullet Full stability test for the $\mathcal{O}\left(N\right)$ not-yet-unstable candidated

The SISCone algorithm for stable-cone search

How to efficiently determine all stable cones:

- For each particle i
 - ullet get "partners" and associated cone centres $\mathcal{O}\left(N
 ight)$
 - order them by angle $\mathcal{O}(n \log(n))$
 - for all those candidates cones
 - check stability w.r.t. border particles $\mathcal{O}(1)$ 4 possible \in or \notin & keep track of tested cones
 - move to the next cone $\mathcal{O}(1)$
- Full stability test for the $\mathcal{O}(N)$ not-yet-unstable candidated

The SISCone algorithm for stable-cone search

How to efficiently determine all stable cones:

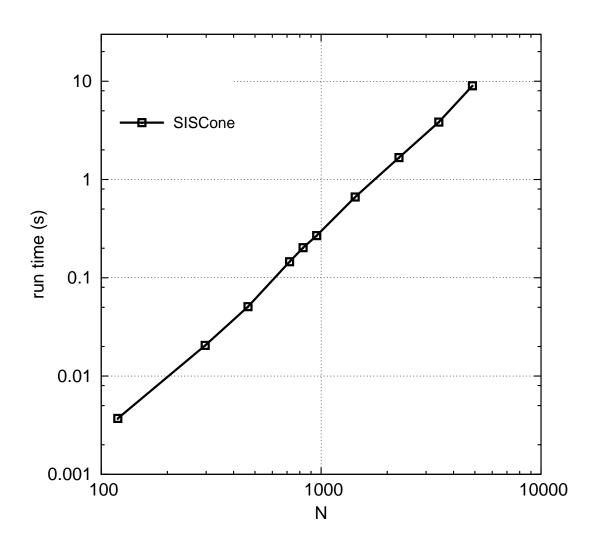
- For each particle i
 - ullet get "partners" and associated cone centres $\mathcal{O}\left(N
 ight)$
 - order them by angle

 $\mathcal{O}\left(n\log(n)\right)$

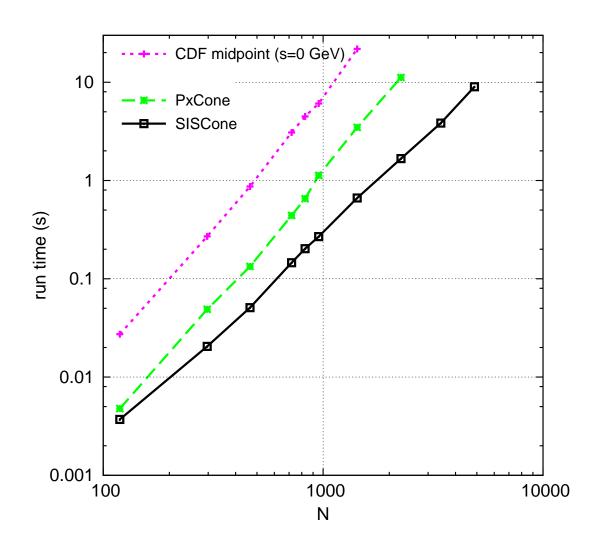
for all those candidates cones

 $O(Nn\log(n)$

- check stability w.r.t. border particles $\mathcal{O}(1)$ 4 possible \in or \notin & keep track of tested cones
- move to the next cone

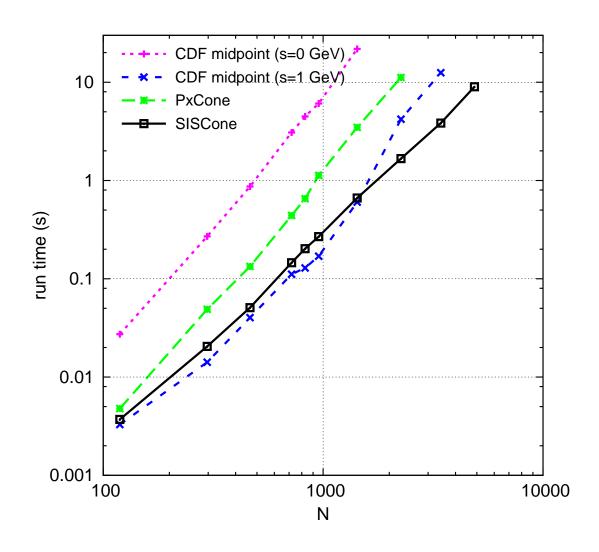

 $\mathcal{O}(1)$

ullet Full stability test for the $\mathcal{O}\left(N
ight)$ not-yet-unstable candidated $\mathcal{O}\left(N^2
ight)$

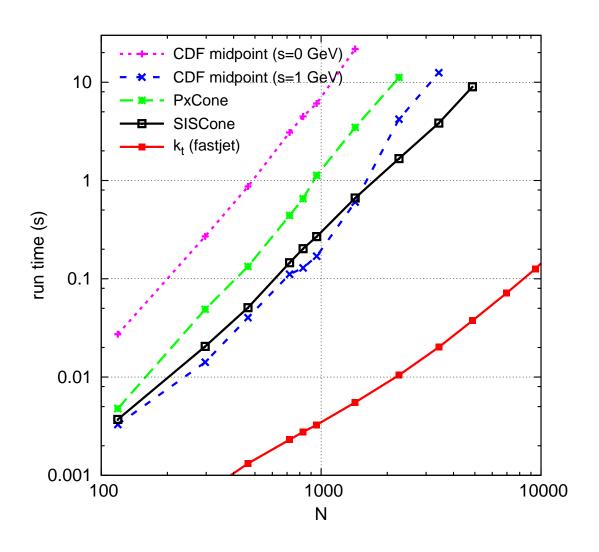

All stable cones found in $\mathcal{O}\left(Nn\log(n)\right)$

SISCone vs. other cone algorithms

implications of a seedless cone



Speed


 faster than midpoint with no seed threshold and IR safe

Speed

- faster than midpoint with no seed threshold and IR safe
- same as midpoint with1 GeV seedand collinear safe

Speed

- faster than midpoint with no seed threshold and IR safe
- same as midpoint with1 GeV seedand collinear safe
- slower that k_t /FastJet affordable for practical usage e.g. at the LHC

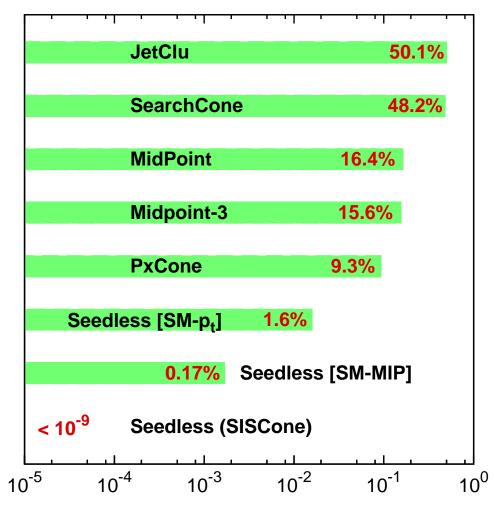
- <u>Hard event</u>: 2-10 particles
- Soft add-on: 1-5 particles
- Run:
 - "hard" only
 - many "hard+soft" trials
 - Search differences

- <u>Hard event</u>: 2-10 particles
- Soft add-on: 1-5 particles
- Run:
 - "hard" only
 - many "hard+soft" trials
 - Search differences

Unsafety level	failure rate
2 hard + 1 soft	$\sim 50\%$

- <u>Hard event</u>: 2-10 particles
- Soft add-on: 1-5 particles
- Run:
 - "hard" only
 - many "hard+soft" trials
 - Search differences

Unsafety level	failure rate
2 hard + 1 soft	$\sim 50\%$
3 hard + 1 soft	$\sim 15\%$


- <u>Hard event</u>: 2-10 particles
- Soft add-on: 1-5 particles
- Run:
 - "hard" only
 - many "hard+soft" trials
 - Search differences

Unsafety level	failure rate
2 hard + 1 soft	$\sim 50\%$
3 hard + 1 soft	$\sim 15\%$

- <u>Hard event</u>: 2-10 particles
- Soft add-on: 1-5 particles
- Run:
 - "hard" only
 - many "hard+soft" trials
 - Search differences

Unsafety level	failure rate
2 hard + 1 soft	$\sim 50\%$
3 hard + 1 soft	$\sim 15\%$
SISCone	IR safe!

NB: small issues in the split-merge

Fraction of hard events failing IR safety test

Consequences on observables

Physical impact: SISCone vs. midpoint(s)?

IR unsafety of midpoint: 3 particles in the same vicinity + 1 to balance p_t \Rightarrow starts at the $2 \rightarrow 4$ level ($\mathcal{O}\left(\alpha_s^4\right)$)

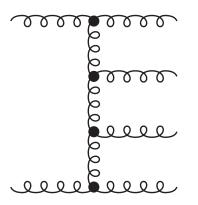
Observable	1st miss cones at	Last meaningful order
Inclusive jet cross section	NNLO	NLO
W/Z/H + 1 jet cross section	NNLO	NLO
3 jet cross section	NLO	LO
W/Z/H + 2 jet cross section	NLO	LO
jet masses in 3 jets	LO	none
masses in $W/Z/H+2$ jets	LO	none

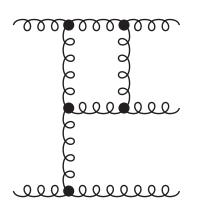
Consequences on observables

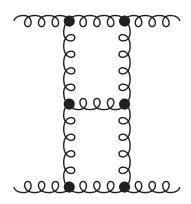
Physical impact: SISCone vs. midpoint(s)?

IR unsafety of midpoint: 3 particles in the same vicinity + 1 to balance p_t \Rightarrow starts at the $2 \rightarrow 4$ level ($\mathcal{O}\left(\alpha_s^4\right)$)

Observable	1st miss cones at	Last meaningful order
Inclusive jet cross section	NNLO	NLO
W/Z/H + 1 jet cross section	NNLO	NLO
3 jet cross section	NLO	LO (NLO in NLOJet)
W/Z/H + 2 jet cross section	NLO	LO (NLO in MCFM)
jet masses in 3 jets	LO	none
masses in $W/Z/H+2$ jets	LO	none

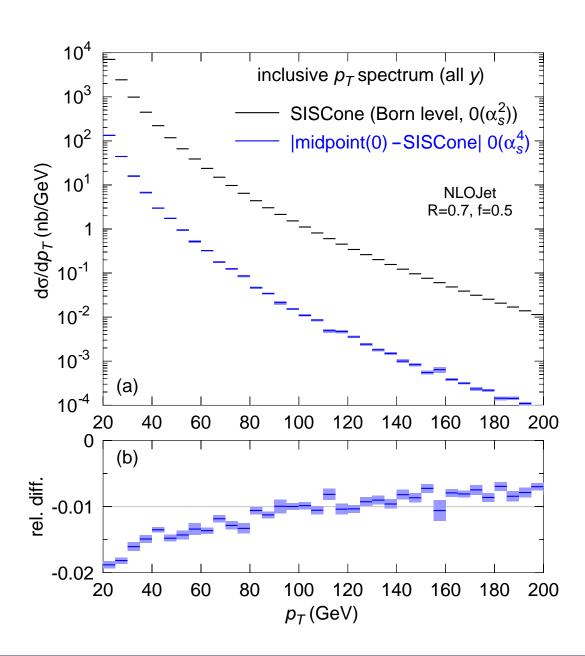

The IR-unsafety issue will matter at LHC


Inclusive jet spectrum: perturbative exp.


SISCone vs. midpoint(s) in inclusive jet spectrum?

- IR unsafety of midpoint: 3 particles in the same vicinity + 1 to balance p_t ⇒ starts at the $2 \to 4$ level ($\mathcal{O}\left(\alpha_s^4\right)$)
- 3 contributions at this order:

 $2 \rightarrow 4$ at LO (tree), $2 \rightarrow 3$ at NLO (1 loop) and $2 \rightarrow 2$ at NNLO (2 loops)

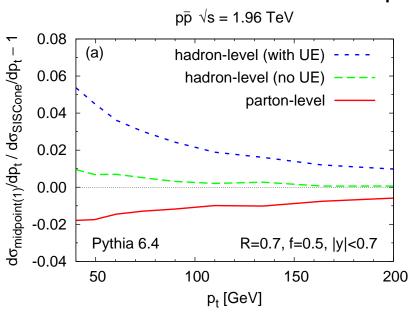


Inclusive jet spectrum: perturbative exp.

SISCone vs. midpoint(s) in inclusive jet spectrum?

- ▶ IR unsafety of midpoint: 3 particles in the same vicinity + 1 to balance p_t ⇒ starts at the $2 \to 4$ level ($\mathcal{O}\left(\alpha_s^4\right)$)
- **೨** 3 contributions at this order: $2 \rightarrow 4$ at LO (tree), $2 \rightarrow 3$ at NLO (1 loop) and $2 \rightarrow 2$ at NNLO (2 loops)
- 2 → 4 at LO is IR divergent BUT the <u>difference</u> between SISCone and midpoint(s) in finite since it is 0 at the 2 → 2 and 2 → 3 levels
- \Rightarrow compute |SISCone-midpoint(s)| for $2 \rightarrow 4$ diagrams
- Compare with the $2 \rightarrow 2$ (LO) spectrum to estimate effect

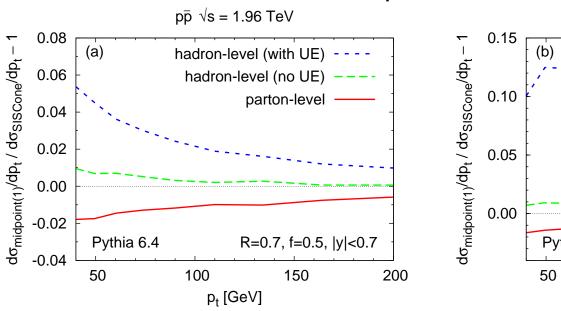
Inclusive jet spectrum: perturbative exp.

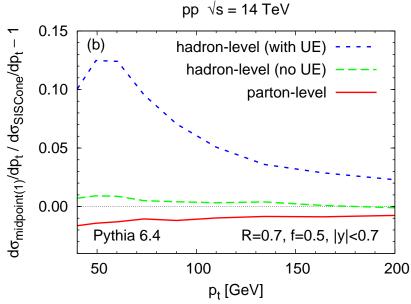


Differences of order 1-2 %

Inclusive jet spectrum: hadron level

Including parton shower, hadronic corrections and/or underlying event:

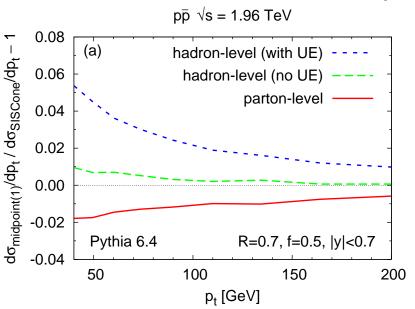

Ratio midpoint/SISCone-1:

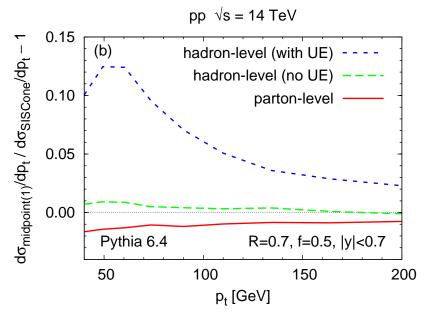


Inclusive jet spectrum: hadron level

Including parton shower, hadronic corrections and/or underlying event:

Ratio midpoint/SISCone-1:




- Differences up to 5% (with a change of sign)
- Raise up to 10% at LHC energy!

Inclusive jet spectrum: hadron level

Including parton shower, hadronic corrections and/or underlying event:

Ratio midpoint/SISCone-1:

- Differences up to 5% (with a change of sign)
- Raise up to 10% at LHC energy!
- Less effect from underlying event in SISCone (i.e. better agreement with parton level)

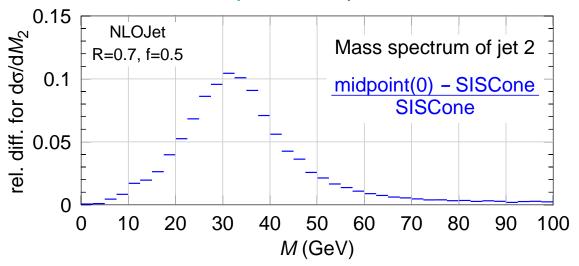
Jet mass spectrum

Inclusive jet spectrum

- \rightarrow effect at NNLO i.e. $\mathcal{O}\left(\alpha_s^2\right)$ w.r.t. LO
- ⇒ want to look at more exclusive processes

Example: mass spectrum in 3-jet events (or W/Z/H+2j)

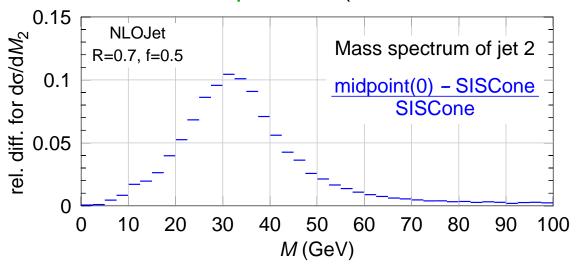
$$\left. \begin{array}{l} 2 \to 2 \text{ has only 2 jets} \\ 2 \to 3 \text{ has zero masses} \end{array} \right\} \Rightarrow \text{ first contribution from } 2 \to 4$$


⇒ Expect modifications at LO!

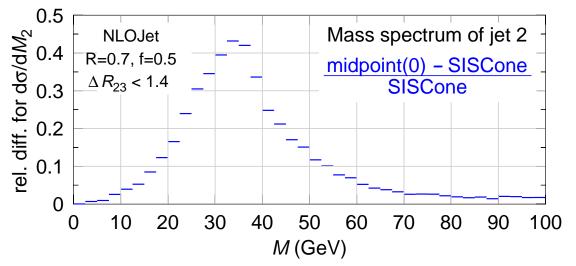
Ratio $\frac{\text{midpoint}-\text{SISCone}}{\text{SISCone}}$ for masses spectra in 3-jet events

cuts: $p_{t,1} \ge 120 \text{ GeV}, p_{t,2} \ge 80 \text{ GeV}, p_{t,3} \ge 40 \text{ GeV}$

Jet mass spectrum: perturbative level

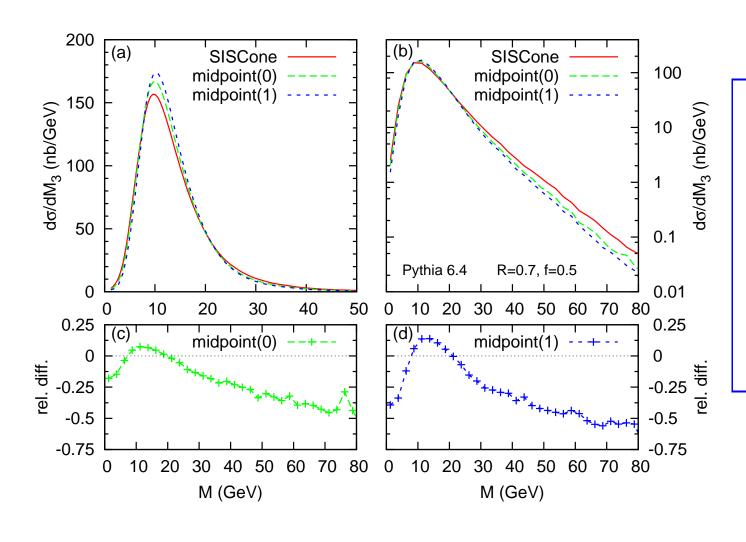

1. Fixed order computation (NLOJet, LO, $2 \rightarrow 4$)

Differences up to 10 %


Jet mass spectrum: perturbative level

1. Fixed order computation (NLOJet, LO, $2 \rightarrow 4$)

Differences up to 10 %


2. Also require jets 2 and 3 within distance $\leq 2R$

Differences up to 40 %

Impact on jet mass spectrum

3. At hadron level (PYTHIA)

- Differences of order 10 %
- seed threshold even worse

SISCone conclusions

- ullet Jets are present everywhere: k_t and cone are widely used
- seeded implementations are IR unsafe (sometimes collinear unsafe)
 IR safety is a prerequisite for perturbative QCD to make sense

We propose a new cone algorithm (SISCone):

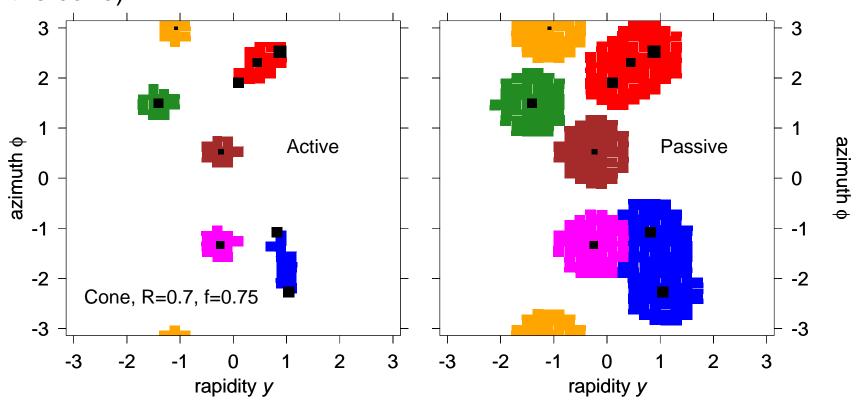
- IR safe (and collinear safe)
- as fast as available cone implementations
- has 10% impact on jet mass spectra (can be up to 40%)
- is less affected by underlying events

Jet area

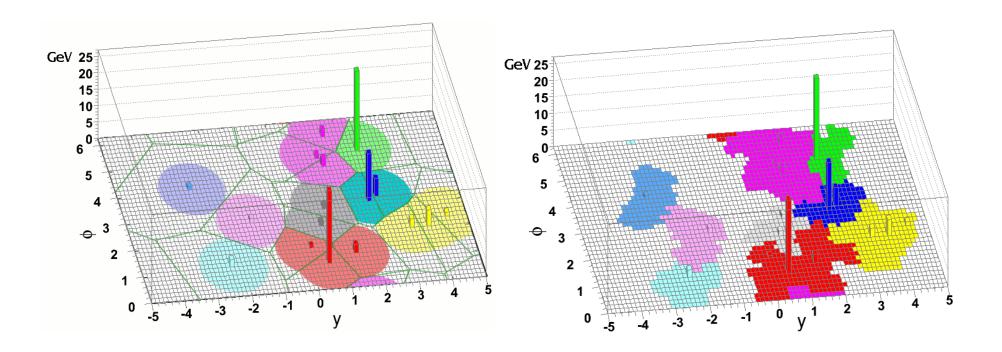
Everyone has an idea of what a jet area is but can we define that properly?

[M. Cacciari, G. Salam, G.S., in preparation]
[M. Cacciari, G. Salam, in preparation]

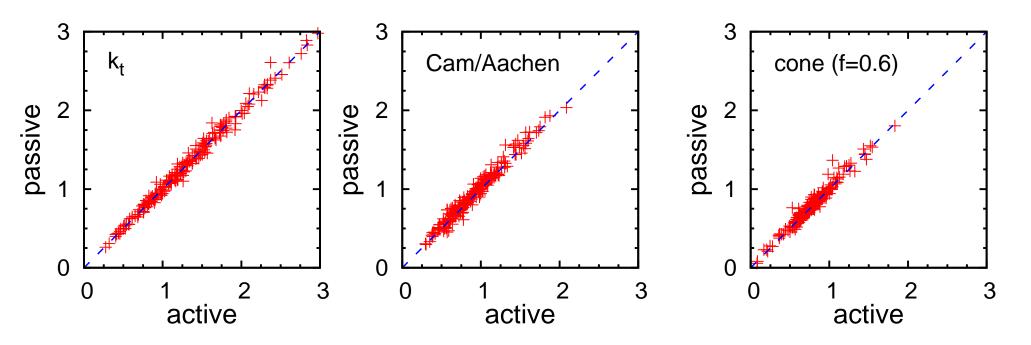
- <u>Idea</u>: add soft particle (ghosts)
 - with IR-safe algorithms such as k_t , Aachen/Cambridge and SISCone, clustering is unchanged
 - look in which jets added particles are catched


- <u>Idea</u>: add soft particle (ghosts)
 - with IR-safe algorithms such as k_t , Aachen/Cambridge and SISCone, clustering is unchanged
 - look in which jets added particles are catched
- Passive area

add one ghost and look where it ends. repeat to cover the (y, ϕ) plane


- <u>Idea</u>: add soft particle (ghosts)
 - with IR-safe algorithms such as k_t , Aachen/Cambridge and SISCone, clustering is unchanged
 - look in which jets added particles are catched
- Passive area add one ghost and look where it ends. repeat to cover the (y, ϕ) plane
- Active area
 add a large amount of ghosts and cluster everything
 also gives purely ghosted jets

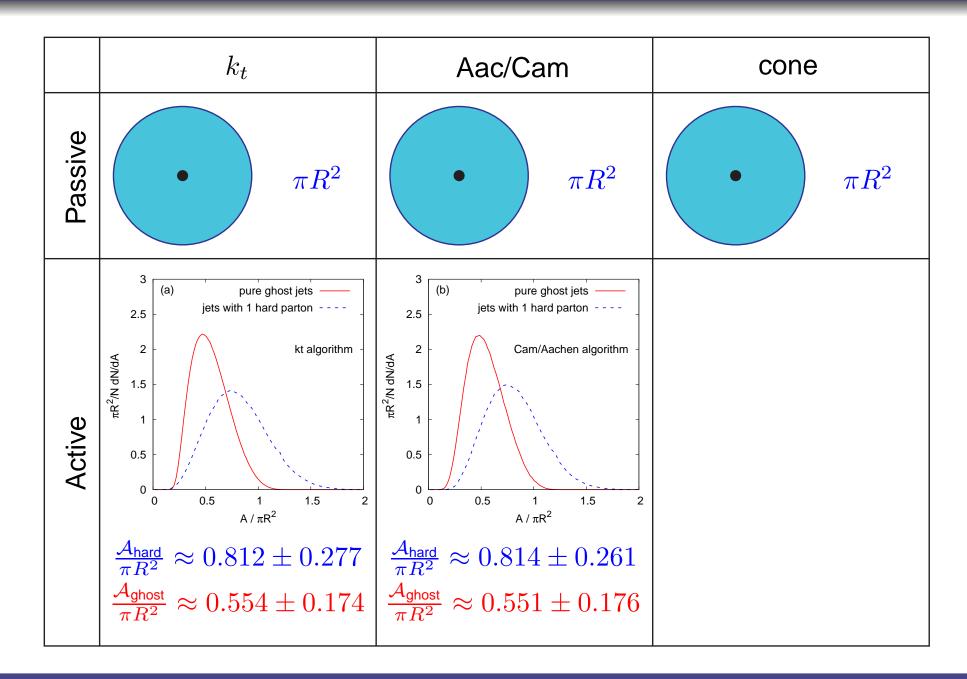
- <u>Idea</u>: add soft particle (ghosts)
 - with IR-safe algorithms such as k_t , Aachen/Cambridge and SISCone, clustering is unchanged
 - look in which jets added particles are catched
- Passive area add one ghost and look where it ends. repeat to cover the (y, ϕ) plane
- Active area
 add a large amount of ghosts and cluster everything
 also gives purely ghosted jets
- Voronoi area
 - \sim Area of the Voronoi cells

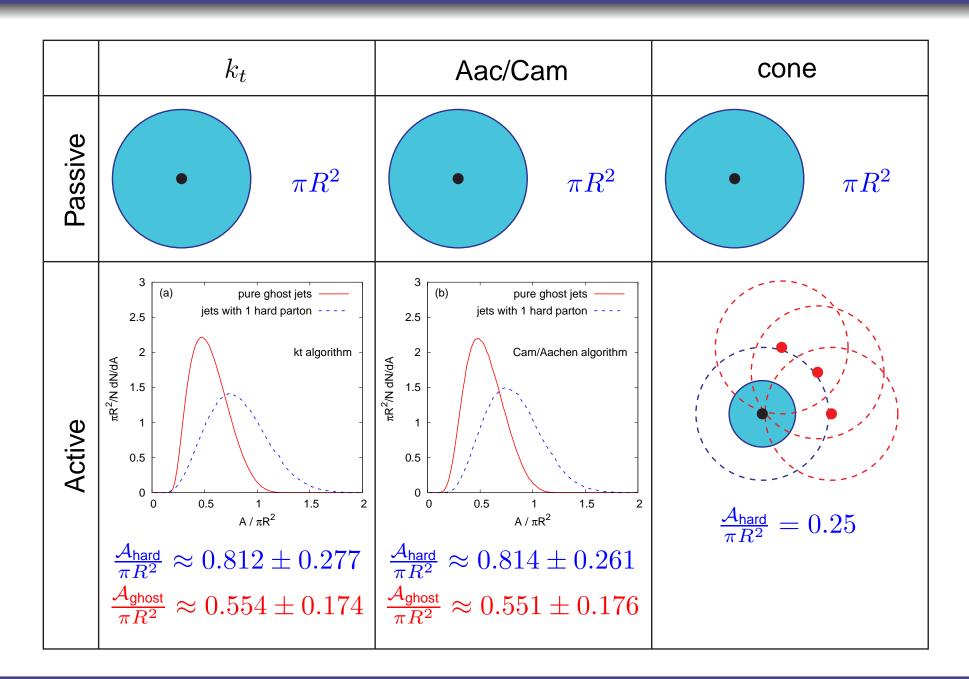

• Small N: active area is usually smaller than passive area (especially for the cone)

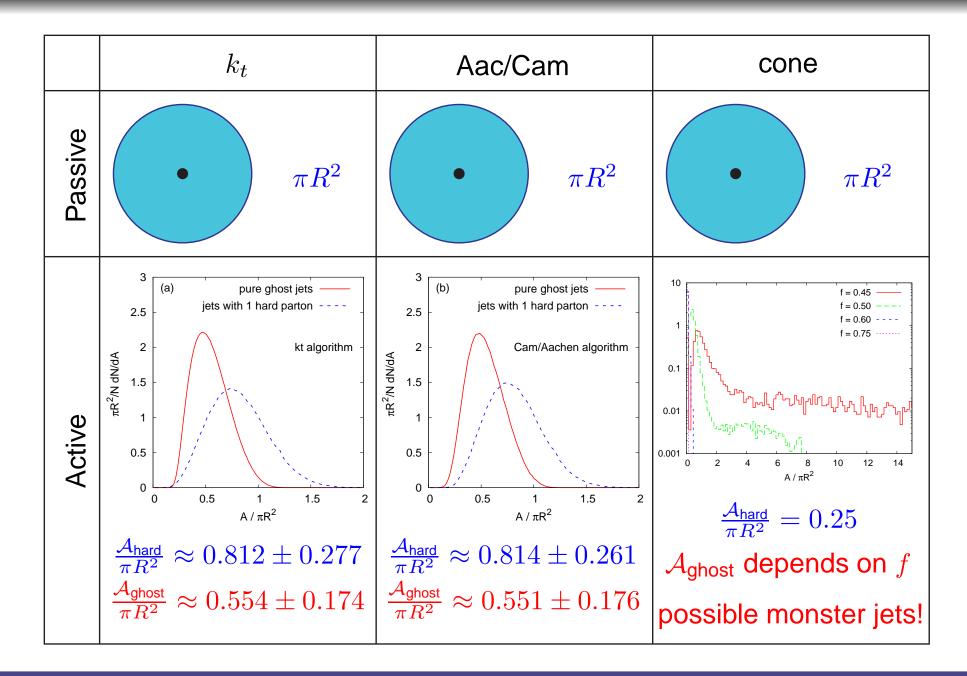
- ullet Small N: active area is usually smaller than passive area (especially for the cone)
- For more dense events (e.g. Pythia with underlying event) they tend to be the same

- Small N: active area is usually smaller than passive area (especially for the cone)
- For more dense events (e.g. Pythia with underlying event) they tend to be the same

	k_t	Aac/Cam	cone
Passive			
Active			

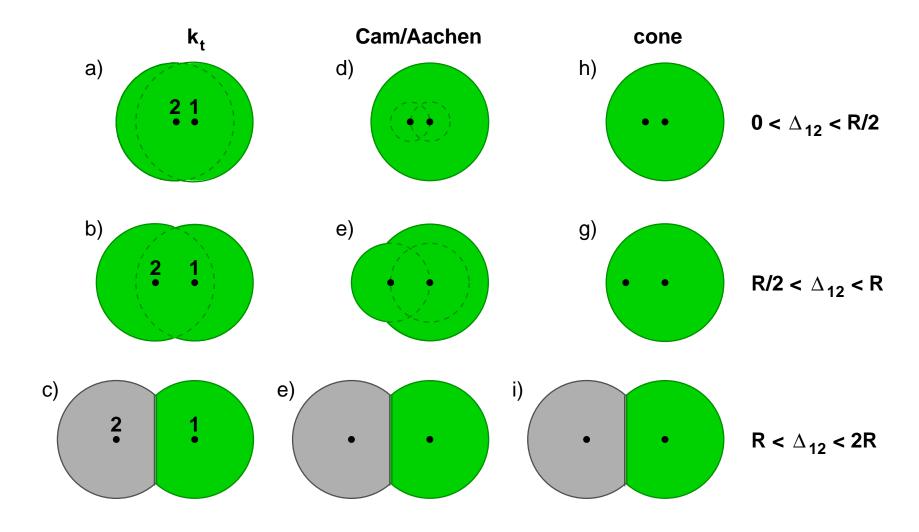

Grégory Soyez ULg, Belgium, August 8th 2007 SISCone – p. 30/37

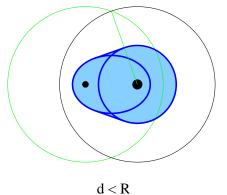

	k_t	Aac/Cam	cone
Passive	πR^2	πR^2	
Active			

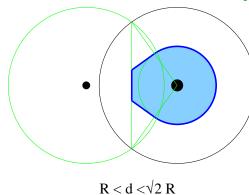

Grégory Soyez ULg, Belgium, August 8th 2007 SISCone – p. 30/37

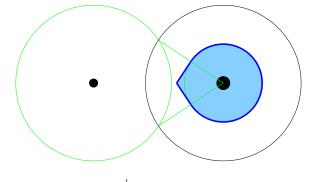
	k_t	Aac/Cam	cone
Passive	πR^2	πR^2	πR^2
Active			

Grégory Soyez ULg, Belgium, August 8th 2007 SISCone – p. 30/37



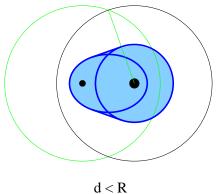

2-particle cases

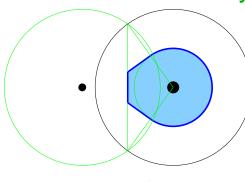

Passive area: 1 hard particle + 1 soft

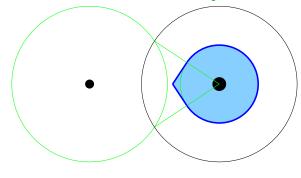


2-particle cases

Active area: 1 hard particle + 1 soft: analytic result for cone only

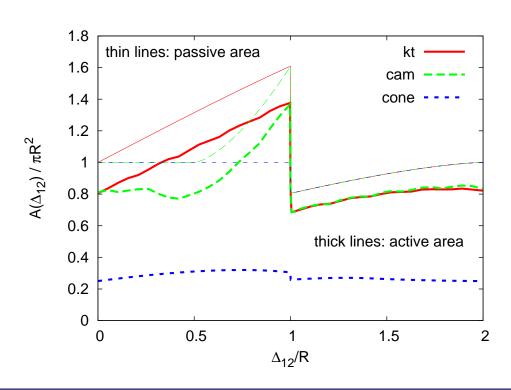






2-particle cases

Active area: 1 hard particle + 1 soft: analytic result for cone only



 $R < d < \sqrt{2} R$

 $\sqrt{2} R < d < 2R$

Alltogether, we have:

- Area \neq cst. πR^2
- Δ_{12} dependence under control

QCD probability of emitting a small-angle soft gluon:

$$\frac{dP}{d\Delta_{12}dp_{t,2}} = C_{F,A} \frac{2\alpha_s}{\pi} \frac{1}{\Delta_{12}} \frac{1}{p_{t,2}}$$

Hence the average area is

$$\langle \mathcal{A}(p_{t,1},R) \rangle = \mathcal{A}_{1\mathsf{hard}}(R) + \int d\Delta \, dp_{t,2} \, \frac{dP}{d\Delta_{12} dp_{t,2}} \left[\mathcal{A}_{\mathsf{hard+1 \, soft}}(\Delta,R) - \pi R^2 \right]$$

QCD probability of emitting a small-angle soft gluon:

$$\frac{dP}{d\Delta_{12}dp_{t,2}} = C_{F,A} \frac{2\alpha_s}{\pi} \frac{1}{\Delta_{12}} \frac{1}{p_{t,2}}$$

Hence the average area is

$$\langle \mathcal{A}(p_{t,1}, R) \rangle = \mathcal{A}_{1\text{hard}}(R) + \int d\Delta \, dp_{t,2} \, \frac{dP}{d\Delta_{12} dp_{t,2}} \left[\mathcal{A}_{\text{hard+1 soft}}(\Delta, R) - \pi R^2 \right]$$

$$= \frac{C_{F,A}}{\pi b_0} \log \left(\frac{\alpha_s(\Lambda)}{\alpha_s(Rp_t)} \right) \pi R^2 \, d$$

Scaling viloation

QCD probability of emitting a small-angle soft gluon:

$$\frac{dP}{d\Delta_{12}dp_{t,2}} = C_{F,A} \frac{2\alpha_s}{\pi} \frac{1}{\Delta_{12}} \frac{1}{p_{t,2}}$$

Hence the average area is

$$\langle \mathcal{A}(p_{t,1}, R) \rangle = \mathcal{A}_{1\text{hard}}(R) + \int d\Delta \, dp_{t,2} \, \frac{dP}{d\Delta_{12} dp_{t,2}} \left[\mathcal{A}_{\text{hard+1 soft}}(\Delta, R) - \pi R^2 \right]$$
$$= \frac{C_{F,A}}{\pi b_0} \log \left(\frac{\alpha_s(\Lambda)}{\alpha_s(Rp_t)} \right) \pi R^2 \, d$$

- Scaling viloation
- gluon > quark

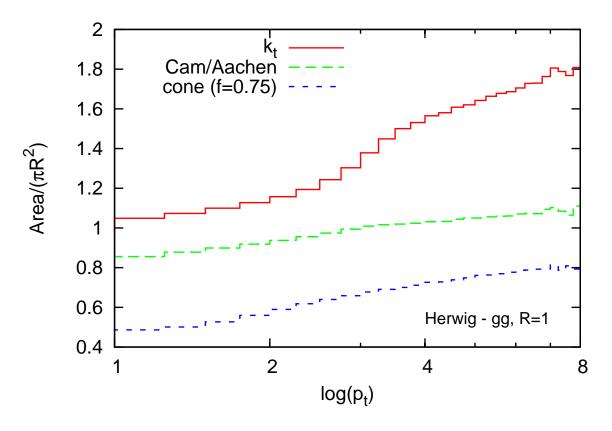
QCD probability of emitting a small-angle soft gluon:

$$\frac{dP}{d\Delta_{12}dp_{t,2}} = C_{F,A} \frac{2\alpha_s}{\pi} \frac{1}{\Delta_{12}} \frac{1}{p_{t,2}}$$

Hence the average area is

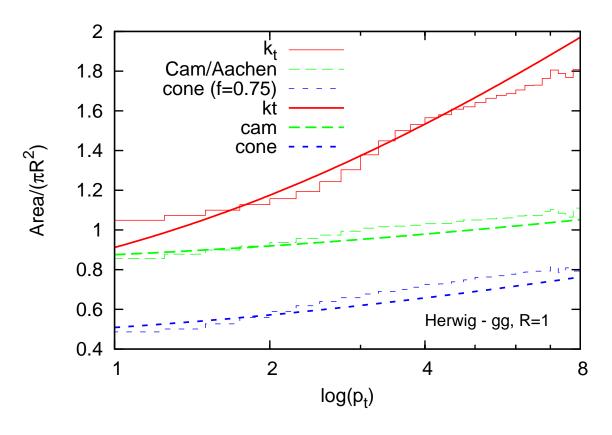
$$\langle \mathcal{A}(p_{t,1}, R) \rangle = \mathcal{A}_{1\text{hard}}(R) + \int d\Delta \, dp_{t,2} \, \frac{dP}{d\Delta_{12} dp_{t,2}} \left[\mathcal{A}_{\text{hard+1 soft}}(\Delta, R) - \pi R^2 \right]$$
$$= \frac{C_{F,A}}{\pi b_0} \log \left(\frac{\alpha_s(\Lambda)}{\alpha_s(Rp_t)} \right) \pi R^2 \, \mathbf{d}$$

- Scaling viloation
- gluon > quark
- with know LO anomalous dimension


d	passive	active
k_t	0.5638	0.519
Cam	0.07918	0.0865
Cone	-0.06378	0.1246

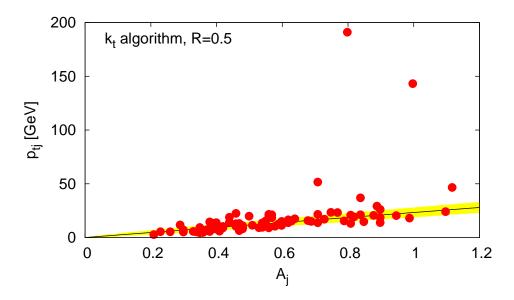
"Real-life" anomalous dimension

Herwig simulations of qq or gg processes at hadron level with underlying event: area vs. p_t of the jet

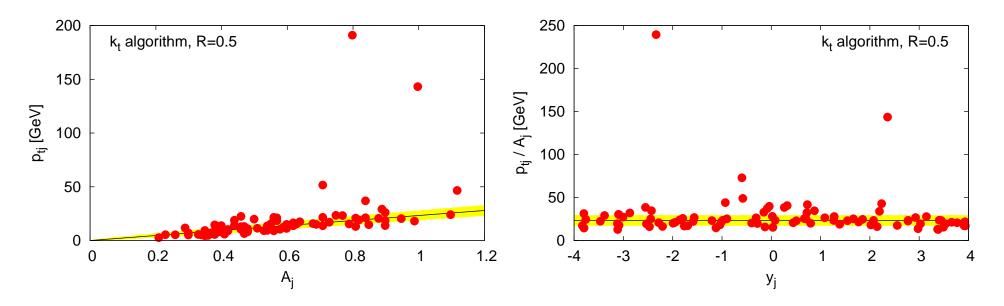

"Real-life" anomalous dimension

Herwig simulations of qq or gg processes at hadron level with underlying event: area vs. p_t of the jet

"Real-life" anomalous dimension

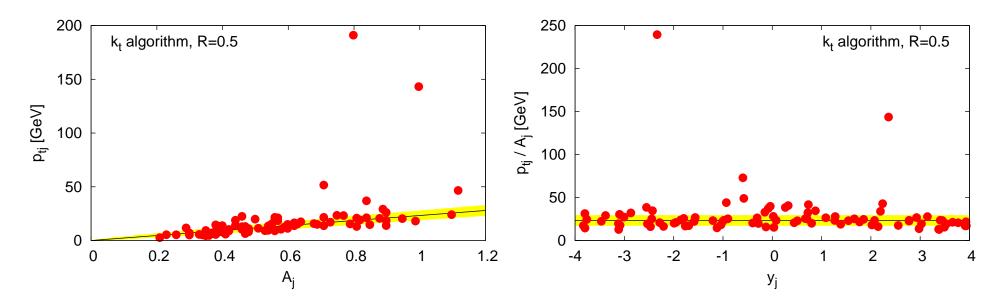

Herwig simulations of qq or gg processes at hadron level with underlying event: area vs. p_t of the jet

- good agreement with LO predictions
- k_t bigger \Rightarrow NLO?

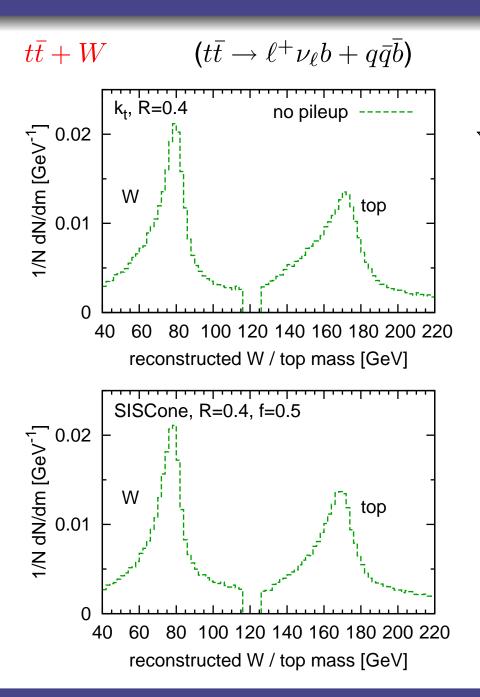

What can area be used for?

Dense event with pile-up:

What can area be used for?


Dense event with pile-up:

- Area $\propto p_t$ of the jet
- p_t /area is constant $\rightarrow \rho$ = median p_t /area

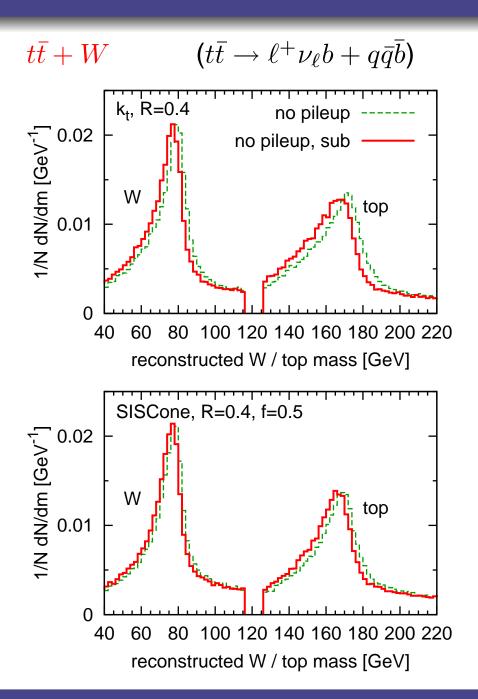

What can area be used for?

Dense event with pile-up:

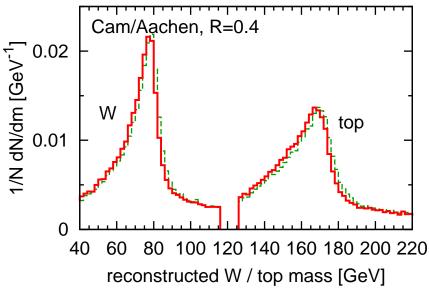
- Area $\propto p_t$ of the jet
- p_t /area is constant $\rightarrow \rho$ = median p_t /area

Area can be used to remove pileup pollution e.g. by removing ρ area

$$(W \to q \bar{q})$$
 Cam/Aachen, R=0.4
$$W = 0.01$$
 W
$$W = 0.01$$

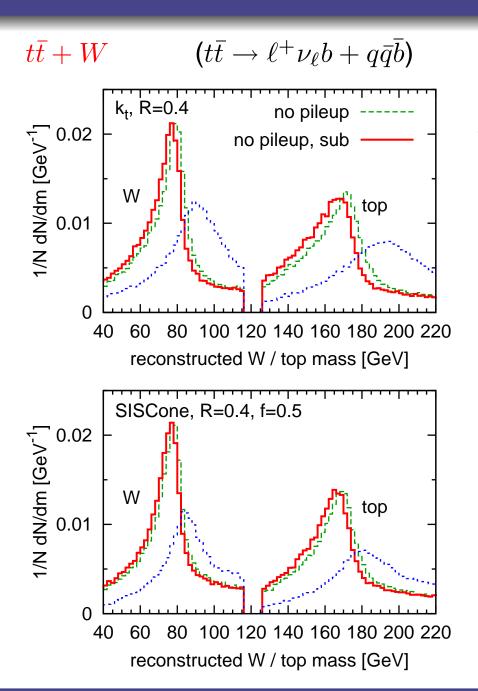

100 120 140 160 180 200 220

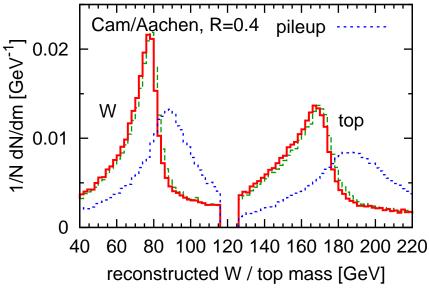
LHC at high lumi
no pileup ⇒ good result


reconstructed W / top mass [GeV]

40

60

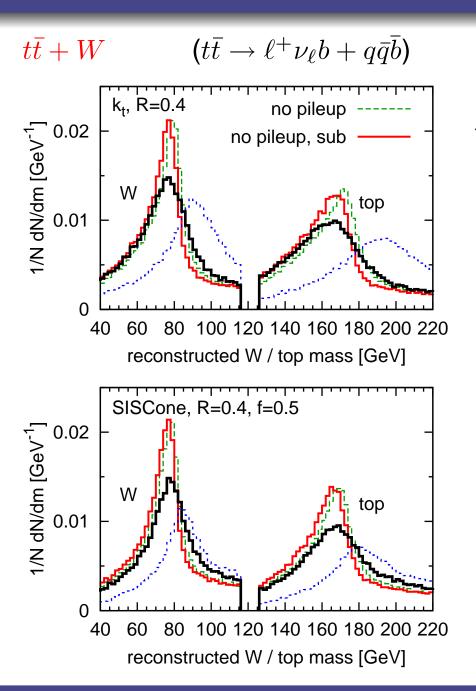

$$(W \rightarrow q\bar{q})$$


LHC at high lumi

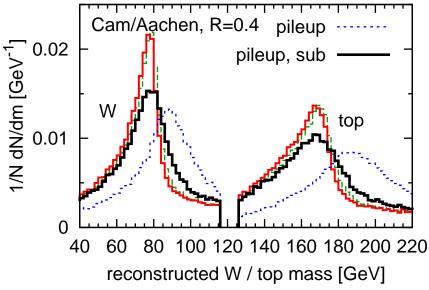
no pileup ⇒ good result

⇒ no subtraction effect

$$(W \rightarrow q\bar{q})$$



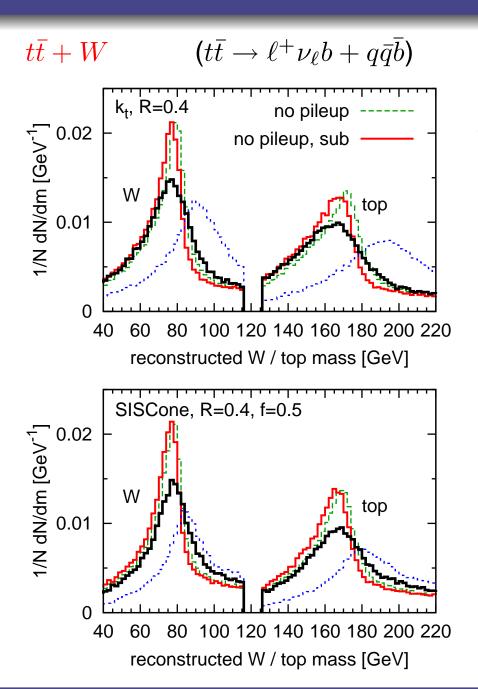
LHC at high lumi


no pileup \Rightarrow good result

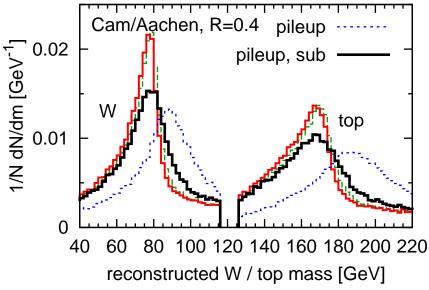
⇒ no subtraction effect

pileup ⇒ poor result

$$(W \rightarrow q\bar{q})$$


LHC at high lumi

no pileup \Rightarrow good result


⇒ no subtraction effect

pileup ⇒ poor result

⇒ subtraction works

$$(W \rightarrow q\bar{q})$$

LHC at high lumi

no pileup \Rightarrow good result

⇒ no subtraction effect

pileup ⇒ poor result

⇒ subtraction works

Background suppresion in heavy ions!

Conclusions

- SISCone: a new cone jet algorithm
 - first to satisfy requirements of the 90's!
 - mandatory for LHC
 - Get it at http://projects.hepforge.org/siscone or http://www.lpthe.jussieu.fr/~salam/fastjet

Conclusions

- SISCone: a new cone jet algorithm
 - first to satisfy requirements of the 90's!
 - mandatory for LHC
 - Get it at http://projects.hepforge.org/siscone or http://www.lpthe.jussieu.fr/~salam/fastjet

Conclusions and perspectives

- SISCone: a new cone jet algorithm
 - first to satisfy requirements of the 90's!
 - mandatory for LHC
 - Get it at http://projects.hepforge.org/siscone
 or http://www.lpthe.jussieu.fr/~salam/fastjet
- **TODO:** in-depth study of k_t /Cam vs. cone.
- New concept: the area of a jet
 - active, passive and Voronoi
 - scaling violations & anomalous dimension
 - pileup effects subtraction, background subtraction in heavy ions
- TODO:
 - anomalous dimension resummation
 - only the beginning...