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Why jet algorithms?

Given: set of N particles with their 4-momentum
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Why jet algorithms?

Given: set of N particles with their 4-momentum

Quest: clustering those particles into jets
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⇒ understand the original particle-level process
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Two classes of algorithms

Class 1: recombination
Successive recombinations of the “closest” pair of particle

Distance:

kt: di,j = min(k2
t,i, k

2
t,j)(∆φ2

i,j + ∆y2
i,j)

Aachen/Cam.: di,j = ∆φ2
i,j + ∆y2

i,j

stop when dmin > R
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Two classes of algorithms

Class 1: recombination
Successive recombinations of the “closest” pair of particle

Distance:

kt: di,j = min(k2
t,i, k

2
t,j)(∆φ2

i,j + ∆y2
i,j)

Aachen/Cam.: di,j = ∆φ2
i,j + ∆y2

i,j

stop when dmin > R

Often used for e±e± or e±p

FastJet : a fast implementation of those algorithms
www.lpthe.jussieu.fr/~salam/fastjet/ (M. Cacciari, G. Salam)
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Two classes of algorithms

Class 2: cone
Find directions of dominant energy flow

for a cone of radius R in the (y, φ) plane, stable cones are such that:
centre of the cone ≡ direction of the total momentum of its particle contents
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Two classes of algorithms

Class 2: cone
Find directions of dominant energy flow

for a cone of radius R in the (y, φ) plane, stable cones are such that:
centre of the cone ≡ direction of the total momentum of its particle contents

Often used for pp

Many cone algorithms: Snowmass, JetClu, PxCone, CDF Midpoint, ...

BUT none satisfies 1990’s requirements
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Cone requirements

Snowmass Accord (FERMILAB, 1990):
any jet algorithm must satisfy

1. Can be practically used in experimental analysis

2. Can be practically used in theoretical computations

3. Can be defined at any order of the perturbation theory

4. Yields finite cross-sections at any order

5. Has a small sensitivity to hadronisation corrections
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Cone requirements

Snowmass Accord (FERMILAB, 1990):
any jet algorithm must satisfy

1. Can be practically used in experimental analysis

2. Can be practically used in theoretical computations

3. Can be defined at any order of the perturbation theory

4. Yields finite cross-sections at any order

5. Has a small sensitivity to hadronisation corrections

Previous algorithms:

1, 2 and 4 never satisfied together

5 is unclear (Underlying event and Rsep issues discussed later)
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Cone requirements

Snowmass Accord (FERMILAB, 1990):
any jet algorithm must satisfy

1. Can be practically used in experimental analysis

2. Can be practically used in theoretical computations

3. Can be defined at any order of the perturbation theory

4. Yields finite cross-sections at any order

5. Has a small sensitivity to hadronisation corrections

Previous algorithms:

1, 2 and 4 never satisfied together

5 is unclear (Underlying event and Rsep issues discussed later)

This talk shows how to satisfy all these.
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Infrared Safety

Ellipsis: IR safety, i.e. stability upon emission of soft particles,
Ellipsis: is required for perturbative computations to make sense!

Cancellation of IR divergences
between real and virtual emissions
of SOFT gluons in QCD

NLO, real NLO, virtual

IF Jet clustering is different in both cases, THEN the cancellation is not
done and the result is not consistent with pQCD

⇒ Stable cones must not change upon addition of soft particles

Note: 100 GeV jet cannot change by adding a 1 GeV particle
Note: This would break parton/hadron correspondence
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Modern cone jet algorithm

Modern cone jet algorithm (Tevatron Run II type):

Step 1: find ALL stable cones of radius R

Step 1’: if some of the particles are not in stable cones,
Step 1’: rerun Step 1 with the remaining ones.

Step 2: run a split-merge procedure with overlap f

Step 2: to deal with overlapping stable cones

p̃t,shared > fp̃t,min

p̃t,shared ≤ fp̃t,min

Grégory Soyez BNL, USA, June 12th 2007 SISCone – p. 8/37

C++


Modern cone jet algorithm

Modern cone jet algorithm (Tevatron Run II type):

Step 1: find ALL stable cones of radius R

Step 1’: if some of the particles are not in stable cones,
Step 1’: rerun Step 1 with the remaining ones.

Step 2: run a split-merge procedure with overlap f

Step 2: to deal with overlapping stable cones

Parameters:

Standard parameters: cone radius R, overlap parameter f

Additional controls: number of passes npass, stable cone pt,min cut-off
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Modern cone jet algorithm

Modern cone jet algorithm (Tevatron Run II type):

Step 1: find ALL stable cones of radius R

Step 1’: if some of the particles are not in stable cones,
Step 1’: rerun Step 1 with the remaining ones.

Step 2: run a split-merge procedure with overlap f

Step 2: to deal with overlapping stable cones

Parameters:

Standard parameters: cone radius R, overlap parameter f

Additional controls: number of passes npass, stable cone pt,min cut-off

This talk: Why finding all stable cones and how.
−→ C++ implementation: Seedless Infrared-Safe Cone algorithm (SISCone)
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Typical cone: Midpoint algorithm

Usual seeded method to search stable cones: midpoint cone algorithm

For an initial seed
1. sum the momenta of all particles within the cone centred on the seed
2. use the direction of that momentum as new seed
3. repeat 1 & 2 until stable state cone reached
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Typical cone: Midpoint algorithm

Usual seeded method to search stable cones: midpoint cone algorithm

For an initial seed
1. sum the momenta of all particles within the cone centred on the seed
2. use the direction of that momentum as new seed
3. repeat 1 & 2 until stable state cone reached

Sets of seeds:
1. All particles (above a pt threshold s)
2. Midpoints between stable cones found in 1.
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Typical cone: Midpoint algorithm

Usual seeded method to search stable cones: midpoint cone algorithm

For an initial seed
1. sum the momenta of all particles within the cone centred on the seed
2. use the direction of that momentum as new seed
3. repeat 1 & 2 until stable state cone reached

Sets of seeds:
1. All particles (above a pt threshold s)
2. Midpoints between stable cones found in 1.

Problems:

the pt threshold s is collinear unsafe

seeded approach ⇒ stable cones missed ⇒ infrared unsafety
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Midpoint IR Unsafety

Hard event Hard+soft event
pt/GeV pt/GeV

(a) (b)

0
y0 1 2 3−1
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Stable cones:
Midpoint: {1,2} & {3} {1,2} & {3} & {2,3}
Seedless: {1,2} & {3} & {2,3} {1,2} & {3} & {2,3}

Jets: (f = 0.5)
Midpoint: {1,2} & {3} {1,2,3}
Seedless: {1,2,3} {1,2,3}
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−→ IR unsafety of the midpoint algorithm
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is a seedless solution practical?

Solution: use a seedless approach

Naive approach: check stability of each subset of particle
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is a seedless solution practical?

Solution: use a seedless approach

Naive approach: check stability of each subset of particle
Complexity is O

(

N2N
)

⇒ definitely unrealistic: 1017 years for N = 100
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is a seedless solution practical?

Solution: use a seedless approach

Naive approach: check stability of each subset of particle
Complexity is O

(

N2N
)

⇒ definitely unrealistic: 1017 years for N = 100

Midpoint complexity:

For 1 seed: build and check cone content is O (N)

initially N seeds ⇒ O (N) stable cones
initially N seeds ⇒ O (Nn) new, midpoint, seeds
initially N seeds ⇒ midpoint complexity is O

(

N2n
)

with n ∼ N the number of points in a circle of radius R

Note: the number of stable cones is O (N)
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SISCone: seedless solution

Idea: use geometric arguments

(a)

Enumerate enclosures and check if they are stable
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SISCone: seedless solution

Idea: use geometric arguments

(b)(a)

Enumerate enclosures and check if they are stable

Each enclosure can be moved (in any direction) to touch a point
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SISCone: seedless solution

Idea: use geometric arguments

(c)(b)(a)

Enumerate enclosures and check if they are stable

Each enclosure can be moved (in any direction) to touch a point

... then rotated to touch a second one
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SISCone: seedless solution

Idea: use geometric arguments

(c)(b)(a)

Enumerate enclosures and check if they are stable

Each enclosure can be moved (in any direction) to touch a point

... then rotated to touch a second one
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SISCone: seedless solution

Idea: use geometric arguments

(a) (b) (c) (d)

Enumerate enclosures and check if they are stable

Each enclosure can be moved (in any direction) to touch a point

... then rotated to touch a second one

⇒ Enumerate all pairs of particles
⇒ with 2 circle orientations and 4 possible inclusion/exclusion
−→ find all enclosures
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SISCone: seedless solution

⇒ Enumerate all pairs of particles
⇒ with 2 circle orientations and 4 possible inclusion/exclusion
−→ find all enclosures

Complexity?

Enumerate all pairs of particles: O (Nn)

For each, buid content and check stability
⇒ O

(

N2n
)
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SISCone: seedless solution

⇒ Enumerate all pairs of particles
⇒ with 2 circle orientations and 4 possible inclusion/exclusion
−→ find all enclosures

Complexity?

Enumerate all pairs of particles: O (Nn)

For each, buid content and check stability
⇒ O

(

N2n
)

Same as midpoint... but we’ll use more tricks:

avoid systematic recomputation of cone contents

limit complete tests of cone stability
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SISCone: seedless solution

Tricks:

For all enclosures around a particle, introduce a traversal order

1
2

3

6

4

5

From one cone to the next one, contents only changed by “border” particles

⇒ avoids recomputing the cone contents at each step
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SISCone: seedless solution

Tricks:

For all enclosures around a particle, introduce a traversal order
⇒ avoids recomputing the cone contents at each step

Label the particles using a q-bit tag
⇒ checkxor to identify distinct cones
Introduces a potential “collision” problem

q = 96 ⇒ P (collision) = 10−18
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SISCone: seedless solution

Tricks:

For all enclosures around a particle, introduce a traversal order
⇒ avoids recomputing the cone contents at each step

Label the particles using a q-bit tag
⇒ checkxor to identify distinct cones

Only test “border particles” for stability (cost O (1))
⇒ limits the number of full stability test to O (N)

checkxor −→ keep trace of stability tests
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The SISCone algorithm for stable-cone search

How to efficiently determine all stable cones:

For each particle i

get “partners” and associated cone centres

order them by angle

for all those candidates cones
check stability w.r.t. border particles
4 possible ∈ or /∈ & keep track of tested cones
move to the next cone

Full stability test for the O (N) not-yet-unstable candidated
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The SISCone algorithm for stable-cone search

How to efficiently determine all stable cones:

For each particle i

get “partners” and associated cone centres

order them by angle

for all those candidates cones
check stability w.r.t. border particles
4 possible ∈ or /∈ & keep track of tested cones
move to the next cone

Full stability test for the O (N) not-yet-unstable candidated

O (N)

O (n log(n))

O (1)

O (1)
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The SISCone algorithm for stable-cone search

How to efficiently determine all stable cones:

For each particle i

get “partners” and associated cone centres

order them by angle

for all those candidates cones
check stability w.r.t. border particles
4 possible ∈ or /∈ & keep track of tested cones
move to the next cone

Full stability test for the O (N) not-yet-unstable candidated

O (N)

O (n log(n))

O (1)

O (1)

O (Nn log(n))

O
(

N2
)

All stable cones found in O (Nn log(n))
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SISCone vs. other cone algorithms

implications of a seedless cone
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with no seed threshold
and IR safe
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Speed
ru

n 
tim
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N

CDF midpoint (s=0 GeV)

CDF midpoint (s=1 GeV)

PxCone

SISCone
kt (fastjet)

 0.001

 0.01

 0.1

 1

 10

 100  1000  10000

faster than midpoint
with no seed threshold
and IR safe

same as midpoint with
1 GeV seed
and collinear safe

slower that kt/FastJet
affordable for practical
usage e.g. at the LHC
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IR Unsafety failure rates

Hard event: 2-10 particles

Soft add-on: 1-5 particles

Run:

“hard” only

many “hard+soft” trials

Search differences
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IR Unsafety failure rates

Hard event: 2-10 particles

Soft add-on: 1-5 particles

Run:

“hard” only

many “hard+soft” trials

Search differences

Unsafety level failure rate

2 hard + 1 soft ∼ 50%

3 hard + 1 soft ∼ 15%

SISCone IR safe !

10-5 10-4 10-3 10-2 10-1 100

Fraction of hard events failing IR safety test

JetClu

SearchCone

50.1%

48.2%
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IR Unsafety failure rates

Hard event: 2-10 particles

Soft add-on: 1-5 particles

Run:

“hard” only

many “hard+soft” trials

Search differences

Unsafety level failure rate

2 hard + 1 soft ∼ 50%

3 hard + 1 soft ∼ 15%

SISCone IR safe !

10-5 10-4 10-3 10-2 10-1 100

Fraction of hard events failing IR safety test

JetClu

SearchCone

PxCone

MidPoint

Midpoint-3

50.1%

48.2%

16.4%

15.6%

9.3%
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IR Unsafety failure rates

Hard event: 2-10 particles

Soft add-on: 1-5 particles

Run:

“hard” only

many “hard+soft” trials

Search differences

Unsafety level failure rate

2 hard + 1 soft ∼ 50%

3 hard + 1 soft ∼ 15%

SISCone IR safe !

NB: small issues in the split-merge
10-5 10-4 10-3 10-2 10-1 100

Fraction of hard events failing IR safety test

JetClu

SearchCone

PxCone

MidPoint

Midpoint-3

Seedless [SM-pt]

Seedless [SM-MIP]

50.1%

48.2%

16.4%

15.6%

9.3%

1.6%

0.17%

Grégory Soyez BNL, USA, June 12th 2007 SISCone – p. 18/37



IR Unsafety failure rates

Hard event: 2-10 particles

Soft add-on: 1-5 particles

Run:

“hard” only

many “hard+soft” trials

Search differences

Unsafety level failure rate

2 hard + 1 soft ∼ 50%

3 hard + 1 soft ∼ 15%

SISCone IR safe !

NB: small issues in the split-merge
10-5 10-4 10-3 10-2 10-1 100

Fraction of hard events failing IR safety test

JetClu

SearchCone

PxCone

MidPoint

Midpoint-3

Seedless [SM-pt]

Seedless [SM-MIP]

Seedless (SISCone)

50.1%

48.2%

16.4%

15.6%

9.3%

1.6%

0.17%

< 10-9

Grégory Soyez BNL, USA, June 12th 2007 SISCone – p. 18/37



Consequences on observables

Physical impact: SISCone vs. midpoint(s) ?

IR unsafety of midpoint: 3 particles in the same vicinity + 1 to balance pt

⇒ starts at the 2 → 4 level (O
(

α4
s

)

)

Observable 1st miss cones at Last meaningful order

Inclusive jet cross section NNLO NLO

W/Z/H + 1 jet cross section NNLO NLO

3 jet cross section NLO LO

W/Z/H + 2 jet cross section NLO LO

jet masses in 3 jets LO none

masses in W/Z/H + 2 jets LO none
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Consequences on observables

Physical impact: SISCone vs. midpoint(s) ?

IR unsafety of midpoint: 3 particles in the same vicinity + 1 to balance pt

⇒ starts at the 2 → 4 level (O
(

α4
s

)

)

Observable 1st miss cones at Last meaningful order

Inclusive jet cross section NNLO NLO

W/Z/H + 1 jet cross section NNLO NLO

3 jet cross section NLO LO (NLO in NLOJet)

W/Z/H + 2 jet cross section NLO LO (NLO in MCFM)

jet masses in 3 jets LO none

masses in W/Z/H + 2 jets LO none

The IR-unsafety issue will matter at LHC
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Inclusive jet spectrum: perturbative exp.

SISCone vs. midpoint(s) in inclusive jet spectrum?

IR unsafety of midpoint: 3 particles in the same vicinity + 1 to balance pt

⇒ starts at the 2 → 4 level (O
(

α4
s

)

)

3 contributions at this order:
2 → 4 at LO (tree), 2 → 3 at NLO (1 loop) and 2 → 2 at NNLO (2 loops)
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Inclusive jet spectrum: perturbative exp.

SISCone vs. midpoint(s) in inclusive jet spectrum?

IR unsafety of midpoint: 3 particles in the same vicinity + 1 to balance pt

⇒ starts at the 2 → 4 level (O
(

α4
s

)

)

3 contributions at this order:
2 → 4 at LO (tree), 2 → 3 at NLO (1 loop) and 2 → 2 at NNLO (2 loops)

2 → 4 at LO is IR divergent
BUT the difference between SISCone and midpoint(s) in finite since it is 0
at the 2 → 2 and 2 → 3 levels

⇒ compute |SISCone-midpoint(s)| for 2 → 4 diagrams

Compare with the 2 → 2 (LO) spectrum to estimate effect
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Inclusive jet spectrum: perturbative exp.

20 40 60 80 100 120 140 160 180 200
10-4
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10-2

10-1

1
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dσ
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p T
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/G
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)

inclusive pT spectrum (all y)

SISCone (Born level, 0(αs
2))

|midpoint(0) -- SISCone| 0(αs
4)

(a)

NLOJet
R=0.7, f=0.5

20 40 60 80 100 120 140 160 180 200
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l. 
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20 40 60 80 100 120 140 160 180 200
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Differences of order 1-2 %
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Inclusive jet spectrum: hadron level

Including parton shower, hadronic corrections and/or underlying event:

Ratio midpoint/SISCone-1:

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

 50  100  150  200

dσ
m

id
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t(

1)
/d

p t
 / 

dσ
S

IS
C

on
e/

dp
t −

 1

pt [GeV]

pp−  √s = 1.96 TeV

R=0.7, f=0.5, |y|<0.7Pythia 6.4

(a) hadron-level (with UE)

hadron-level (no UE)
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Inclusive jet spectrum: hadron level

Including parton shower, hadronic corrections and/or underlying event:
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Raise up to 10% at LHC energy!

Grégory Soyez BNL, USA, June 12th 2007 SISCone – p. 22/37



Inclusive jet spectrum: hadron level

Including parton shower, hadronic corrections and/or underlying event:

Ratio midpoint/SISCone-1:

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

 50  100  150  200

dσ
m

id
po

in
t(

1)
/d

p t
 / 

dσ
S

IS
C

on
e/

dp
t −

 1

pt [GeV]

pp−  √s = 1.96 TeV

R=0.7, f=0.5, |y|<0.7Pythia 6.4

(a) hadron-level (with UE)

hadron-level (no UE)

parton-level

0.00

0.05

0.10

0.15

 50  100  150  200

dσ
m

id
po

in
t(

1)
/d

p t
 / 

dσ
S

IS
C

on
e/

dp
t −

 1

pt [GeV]

pp    √s = 14 TeV

R=0.7, f=0.5, |y|<0.7Pythia 6.4

(b) hadron-level (with UE)

hadron-level (no UE)

parton-level

Differences up to 5% (with a change of sign)
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Less effect from underlying event in SISCone
(i.e. better agreement with parton level)
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Jet mass spectrum

Inclusive jet spectrum

→ effect at NNLO i.e. O
(

α2
s

)

w.r.t. LO

⇒ want to look at more exclusive processes

Example: mass spectrum in 3-jet events (or W/Z/H+2j)

2 → 2 has only 2 jets

2 → 3 has zero masses







⇒ first contribution from 2 → 4

⇒ Expect modifications at LO!

Ratio midpoint−SISCone
SISCone for masses spectra in 3-jet events

cuts: pt,1 ≥ 120 GeV, pt,2 ≥ 80 GeV, pt,3 ≥ 40 GeV
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Jet mass spectrum: perturbative level

1. Fixed order computation (NLOJet, LO, 2 → 4)
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Impact on jet mass spectrum

3. At hadron level (PYTHIA)
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SISCone conclusions

Jets are present everywhere: kt and cone are widely used

seeded implementations are IR unsafe (sometimes collinear unsafe)
IR safety is a prerequisite for perturbative QCD to make sense

We propose a new cone algorithm (SISCone):

IR safe (and collinear safe)

as fast as available cone implementations

has 10% impact on jet mass spectra (can be up to 40%)

is less affected by underlying events
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Jet area

Everyone has an idea of what a jet area is
but can we define that properly?

[M. Cacciari, G. Salam, G.S., in preparation]

[M. Cacciari, G. Salam, in preparation]
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Area definition

Idea: add soft particle (ghosts)

with IR-safe algorithms such as kt, Aachen/Cambridge and SISCone,
clustering is unchanged

look in which jets added particles are catched
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Area definition

Idea: add soft particle (ghosts)

with IR-safe algorithms such as kt, Aachen/Cambridge and SISCone,
clustering is unchanged

look in which jets added particles are catched

Passive area
add one ghost and look where it ends. repeat to cover the (y, φ) plane

Active area
add a large amount of ghosts and cluster everything
also gives purely ghosted jets

Voronoi area
∼ Area of the Voronoi cells

Grégory Soyez BNL, USA, June 12th 2007 SISCone – p. 28/37



Area definition

Small N : active area is usually smaller than passive area (especially for
the cone)
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Area definition

Small N : active area is usually smaller than passive area (especially for
the cone)

For more dense events (e.g. Pythia with underlying event) they tend to be
the same
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Area definition

Small N : active area is usually smaller than passive area (especially for
the cone)

For more dense events (e.g. Pythia with underlying event) they tend to be
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Examples: 1-particle cases
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2-particle cases

Passive area: 1 hard particle + 1 soft
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2-particle cases

Active area: 1 hard particle + 1 soft: analytic result for cone only

d < R R < d < √2 R √2 R < d < 2R
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2-particle cases

Active area: 1 hard particle + 1 soft: analytic result for cone only

d < R R < d < √2 R √2 R < d < 2R

Alltogether, we have:

Area 6= cst. πR2

∆12 dependence
under control
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Area scaling violations

QCD probability of emitting a small-angle soft gluon:
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with know LO anomalous dimension

d passive active

kt 0.5638 0.519

Cam 0.07918 0.0865

Cone -0.06378 0.1246
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“Real-life” anomalous dimension

Herwig simulations of qq or gg processes at hadron level with underlying event:
area vs. pt of the jet
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“Real-life” anomalous dimension

Herwig simulations of qq or gg processes at hadron level with underlying event:
area vs. pt of the jet
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What can area be used for?

Dense event with pile-up:
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Area can be used to remove pileup pollution
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Subtraction in action

tt̄ + W (tt̄ → ℓ+νℓb + qq̄b̄) (W → qq̄)
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Subtraction in action
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pileup ⇒ poor result

⇒ subtraction works
Background suppresion in heavy ions!
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Conclusions

SISCone: a new cone jet algorithm

first to satisfy requirements of the 90’s!

mandatory for LHC

Get it at http://projects.hepforge.org/siscone
or http://www.lpthe.jussieu.fr/~salam/fastjet
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New concept: the area of a jet

active, passive and Voronoi

scaling violations & anomalous dimension

pileup effects subtraction, background subtraction in heavy ions
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Conclusions and perspectives

SISCone: a new cone jet algorithm

first to satisfy requirements of the 90’s!

mandatory for LHC

Get it at http://projects.hepforge.org/siscone
or http://www.lpthe.jussieu.fr/~salam/fastjet

TODO: in-depth study of kt/Cam vs. cone.

New concept: the area of a jet

active, passive and Voronoi

scaling violations & anomalous dimension

pileup effects subtraction, background subtraction in heavy ions

TODO:

anomalous dimension resummation

only the beginning...
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