Solving Conformal Theories with the Bootstrap Overview and Recent Results

Sheer El-Showk

LPTHE, Jussieu

July 28, 2015

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Why return to the (conformal) bootstrap?

- Conformal symmetry very powerful tool that *goes largely unused* in D > 2.
- Ompletely non-perturbative tool to study field theories
 - ► Does not require SUSY, large *N*, or weak coupling.
- Solution In D = 2 conformal symmetry enhanced to *Virasoro* symmetry
 - Allows us to *completely solve* some CFTs (c < 1).
- Long term hope: generalize this to D > 2?

Approach

- ▶ Use only "global" conformal group, valid in all *D*.
- Study crossing symmetry of a *single scalar correlator* $\langle \sigma \sigma \sigma \sigma \rangle$.* (* More recently extended to 4-pt functions of two scalars.)

Results

- Universal constraints (bounds) on spectrum/couplings in $\sigma \times \sigma$ OPE.
- Ising , O(N) & some susy models seem to saturate these bounds.
- ▶ When bounds saturated crossing symmetry fixes full OPE.

Why return to the (conformal) bootstrap?

- Conformal symmetry very powerful tool that *goes largely unused* in D > 2.
- Ompletely non-perturbative tool to study field theories
 - ► Does not require SUSY, large *N*, or weak coupling.
- Solution In D = 2 conformal symmetry enhanced to *Virasoro* symmetry
 - Allows us to *completely solve* some CFTs (c < 1).
- Long term hope: generalize this to D > 2?

Approach

- ▶ Use only "global" conformal group, valid in all *D*.
- Study crossing symmetry of a single scalar correlator (σσσσ).*
 (* More recently extended to 4-pt functions of two scalars.)

Results

- Universal constraints (bounds) on spectrum/couplings in $\sigma \times \sigma$ OPE.
- ▶ Ising , O(N) & some susy models seem to saturate these bounds.
- ▶ When bounds saturated crossing symmetry fixes full OPE.

Why return to the (conformal) bootstrap?

- Conformal symmetry very powerful tool that *goes largely unused* in D > 2.
- Ompletely non-perturbative tool to study field theories
 - ▶ Does not require SUSY, large *N*, or weak coupling.
- Solution In D = 2 conformal symmetry enhanced to *Virasoro* symmetry
 - Allows us to *completely solve* some CFTs (c < 1).
- Long term hope: generalize this to D > 2?

Approach

- ▶ Use only "global" conformal group, valid in all *D*.
- Study crossing symmetry of a single scalar correlator $\langle \sigma \sigma \sigma \sigma \rangle$.*
 - (* More recently extended to 4-pt functions of two scalars.)

Results

- Universal constraints (bounds) on spectrum/couplings in $\sigma \times \sigma$ OPE.
- Ising , O(N) & some susy models seem to saturate these bounds.
- ► When bounds saturated crossing symmetry fixes full OPE.

- Overview & Philosophy
- OFT basics
- Conformal Blocks
- Crossing symmetry
- Geometry of the solution space
- Linear Programming
- Solving" the 3d Ising
- Other results
- Ø Alternative methods: The Gliozzi Method
- **(1)** Bootstrapping Theories with Four Supercharges (in d = 2 4)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Our (Modified) Simplex Algorithm
- Bow to get Started Bootstrapping...

- Overview & Philosophy
- OFT basics
- Conformal Blocks
- Crossing symmetry
- Geometry of the solution space
- Linear Programming
- Solving" the 3d Ising
- Other results
- Iternative methods: The Gliozzi Method
- ⁽⁰⁾ Bootstrapping Theories with Four Supercharges (in d = 2 4)

- Our (Modified) Simplex Algorithm
- Item to get Started Bootstrapping...

- Overview & Philosophy
- OFT basics
- Conformal Blocks
- Crossing symmetry
- Geometry of the solution space
- Linear Programming
- Solving" the 3d Ising
- Other results
- Iternative methods: The Gliozzi Method
- **(1)** Bootstrapping Theories with Four Supercharges (in d = 2 4)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Our (Modified) Simplex Algorithm
- Bow to get Started Bootstrapping...

- Overview & Philosophy
- OFT basics
- Conformal Blocks
- Crossing symmetry
- Solution space
- Linear Programming
- Solving" the 3d Ising
- Other results
- Alternative methods: The Gliozzi Method
- **O** Bootstrapping Theories with Four Supercharges (in d = 2 4)

- Our (Modified) Simplex Algorithm
- How to get Started Bootstrapping...

Overview & Philosophy

4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

CFTs: Experimental Perspective

Overview & Philosophy

What are CFTs and why are they interesting?

- Second order phase transition at the end of a line of first order transitions.
- Same CFT describes many disparate experimental systems.
- ► e.g. Ising model CFT is universal description of phase transitions with Z₂ symmetry.

CFTs: Experimental Perspective

Overview & Philosophy

What are CFTs and why are they interesting?

- Second order phase transition at the end of a line of first order transitions.
- Same CFT describes many disparate experimental systems.
- ► e.g. Ising model CFT is universal description of phase transitions with Z₂ symmetry.

CFTs: A Field Theorist's Perspective

Overview & Philosophy

Very different "UV" theories can share the same IR behaviour.

Example: Ising universality class

Lattice theory with nearest neighbor interactions

$$H = -J \sum_{\langle i,j \rangle} s_i s_j$$

with $s_i = \pm 1$ (only discrete translation or rotational symmetry).

• Has symmetry broken phase $\langle s_i \rangle = \pm 1$ and symmetric phase $\langle s_i \rangle = 0$.

► Ising model CFT describes theory at critical temperature *T_c* between two phases.

CFTs: A Field Theorist's Perspective

Overview & Philosophy

Very different "UV" theories can share the same IR behaviour.

Example: Ising universality class

Scalar QFT (and $\sigma(x) \in \mathbb{R}$)

$$S = \int d^D x \left[(\nabla \sigma(x))^2 + t \, \sigma(x)^2 + \lambda_4 \, \sigma(x)^4 + \lambda_6 \, \sigma(x)^6 + \dots \right]$$

- \mathbb{Z}_2 symmetry: $\sigma \to -\sigma$
- ► Theory has full rotational/translational invariance.
- Also has symmetric and symmetric broken phase ($\langle \sigma \rangle \neq 0$).
- Mass is related to reduced temperature $t \sim T T_c$.
- ▶ In the IR flows to *same* CFT as lattice model!

Fixed points of Renormalization Group (RG)

Overview & Philosophy

CFTs are fixed points of RG flow*

- Couplings λ_i flow under rescalings $x \to \Lambda x$.
- Flow described by $\beta_i(\lambda_i)$ functions.

$$eta_i(\lambda_i) = rac{\partial \, \lambda_i}{\partial \, \log \Lambda}$$

CFTs correspond to fixed points

$$\beta_i(\lambda_i^*) = 0 \tag{1}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

► Eqns (1) strongy contrain couplings
 ⇒ CFTs very non-generic

(* More generally fixed points have *scale invariance* but generically this leads to *conformal invariance*.)

Correlation functions & Observables

Overview & Philosophy

QFT

- In a QFT we may have (asymptotic) observables, $\mathcal{O} \sim \phi_{\vec{k}}$.
- We compute/observer scattering amplitudes:

$$\langle \mathcal{O}_{\vec{k}_1} \mathcal{O}_{\vec{k}_2} \mathcal{O}_{\vec{k}_3} \mathcal{O}_{\vec{k}_4} \rangle \sim f(t, \lambda_i, \vec{k}_a, \Lambda)$$

Observables depend on many continuous parameters.

- Observables are not asymptotic $\mathcal{O} \sim \phi(x), : \phi(x)^2 :, T_{\mu\nu}$.
- We compute/observer correlation functions:

 $\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \rangle \sim f(\lambda_i^*, \vec{x}_a)$

- Couplings generically fixed by β -functions.
- No dependence on dimensional-full scale Λ ⇒ far fewer parameters!
- Correlators also strongly constrained by conformal invariance (much more than scale invariance).

Correlation functions & Observables

Overview & Philosophy

QFT

- In a QFT we may have (asymptotic) observables, $\mathcal{O} \sim \phi_{\vec{k}}$.
- We compute/observer scattering amplitudes:

$$\langle \mathcal{O}_{\vec{k}_1} \mathcal{O}_{\vec{k}_2} \mathcal{O}_{\vec{k}_3} \mathcal{O}_{\vec{k}_4} \rangle \sim f(t, \lambda_i, \vec{k}_a, \Lambda)$$

- ► Observables depend on many continuous parameters. CFT
 - Observables are not asymptotic $\mathcal{O} \sim \phi(x)$, : $\phi(x)^2$:, $T_{\mu\nu}$.
 - We compute/observer correlation functions:

 $\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \rangle \sim f(\lambda_i^*, \vec{x}_a)$

- Couplings generically fixed by β -functions.
- ► No dependence on dimensional-full scale Λ ⇒ far fewer parameters!
- Correlators also strongly constrained by conformal invariance (much more than scale invariance).

Overview & Philosophy

Question

CFTs are:

- Universal: realized as RG limits of many disperate theories.
- Strongly constrained by symmetry.

Can we describe their physics intrinsically (i.e. without picking a particular UV realization)?

(Partial) Answer

Yes!

- In *d* = 2 infinite classes of CFT can be solved using symmetry alone.
 ⇒ solved means compute correlators of all local operators.
- In d > 2 no full solution but powerful numerical methods:
 - Can compute low-lying spectrum and couplings using symmetry alone.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Method is fully non-perturbative: works for strongly coupled theories!
- ▶ Method is conformal bootstrap and will be focus of these lectures.

Overview & Philosophy

Question

CFTs are:

- Universal: realized as RG limits of many disperate theories.
- Strongly constrained by symmetry.

Can we describe their physics intrinsically (i.e. without picking a particular UV realization)?

(Partial) Answer

Yes!

- In d = 2 infinite classes of CFT can be solved using symmetry alone.
 ⇒ solved means compute correlators of all local operators.
- In d > 2 no full solution but powerful numerical methods:
 - Can compute low-lying spectrum and couplings using symmetry alone.
 - In Method is fully non-perturbative: works for strongly coupled theories!

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

э.

• Method is conformal bootstrap and will be focus of these lectures.

Overview & Philosophy

Question

CFTs are:

- Universal: realized as RG limits of many disperate theories.
- Strongly constrained by symmetry.

Can we describe their physics intrinsically (i.e. without picking a particular UV realization)?

(Partial) Answer

Yes!

- In d = 2 infinite classes of CFT can be solved using symmetry alone.
 ⇒ solved means compute correlators of all local operators.
- In d > 2 no full solution but powerful numerical methods:
 - Can compute low-lying spectrum and couplings using symmetry alone.
 - In Method is fully non-perturbative: works for strongly coupled theories!

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

▶ Method is conformal bootstrap and will be focus of these lectures.

Overview & Philosophy

Question

CFTs are:

- Universal: realized as RG limits of many disperate theories.
- Strongly constrained by symmetry.

Can we describe their physics intrinsically (i.e. without picking a particular UV realization)?

(Partial) Answer

Yes!

- In d = 2 infinite classes of CFT can be solved using symmetry alone.
 ⇒ solved means compute correlators of all local operators.
- In d > 2 no full solution but powerful numerical methods:
 - Can compute low-lying spectrum and couplings using symmetry alone.
 - In Method is fully non-perturbative: works for strongly coupled theories!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Method is conformal bootstrap and will be focus of these lectures.

Example: the (3d) Ising Model

Intermezzo

\mathcal{E} -expansion

Wilson-Fisher set $D = 4 - \mathcal{E}$ and study critical point of σ^4 perturbatively. Setting $\mathcal{E} = 1$ can compute anomolous dimensions in D = 3:

$$[\sigma] = 0.5 \rightarrow 0.518\dots$$
$$[\epsilon] := [\sigma^2] = 1 \rightarrow 1.41\dots$$
$$[\epsilon'] := [\sigma^4] = 2 \rightarrow 3.8\dots$$

Using \mathcal{E} -expansion, Monte Carlo and other techniques find partial spectrum:

Field:	σ	ϵ	ϵ'	$T_{\mu\nu}$	$C_{\mu u ho\lambda}$
Dim (Δ):	0.518135(50)	1.41275(25)	3.832(6)	3	5.0208(12)
Spin (l):	0	0	0	2	4

Only 5 operators and no OPE coefficients known for 3d Ising...

Lots of room for improvement!

"Bootstrapping" the Ising Model

Intermezzo

New (Conformal) Perspective

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

At fixed point conformal symmetry emerges:

- Strongly constrains data of theory.
- Can we use symmetry to fix e.g. $[\sigma], [\epsilon], [\epsilon'], \ldots$?
- Can we also fix interactions this way?

Intermezzo

Our first goal: a completely general exclusion plot for $\Delta_{\sigma} \& \Delta_{\epsilon}$.

This exclusion bound applies to any conformal theories.

- ▶ It is completley non-perturbative.
- In generating it we use no Lagrangian or any data specifying a particular theory.
- Exclusion plots "knows" about Ising model!
- Using bootstrap can compute spectrum & interactions of many operators for any theory on the boundary of exclusion bound.

ヘロト ヘアト ヘリト・

э

Intermezzo

Our first goal: a completely general exclusion plot for $\Delta_{\sigma} \& \Delta_{\epsilon}$.

- This exclusion bound applies to any conformal theories.
- It is completley non-perturbative.
- In generating it we use no Lagrangian or any data specifying a particular theory.
- Exclusion plots "knows" about Ising model!
- Using bootstrap can compute spectrum & interactions of many operators for any theory on the boundary of exclusion bound.

ヘロト ヘアト ヘリト・

э

Intermezzo

Our first goal: a completely general exclusion plot for $\Delta_{\sigma} \& \Delta_{\epsilon}$.

- This exclusion bound applies to any conformal theories.
- It is completley non-perturbative.
- In generating it we use no Lagrangian or any data specifying a particular theory.

Exclusion plots "knows" about Ising model!

Using bootstrap can compute spectrum & interactions of many operators for any theory on the boundary of exclusion bound.

イロト 不得 とうほう イヨン

3

Intermezzo

Our first goal: a completely general exclusion plot for $\Delta_{\sigma} \& \Delta_{\epsilon}$.

- This exclusion bound applies to any conformal theories.
- It is completley non-perturbative.
- In generating it we use no Lagrangian or any data specifying a particular theory.
- Exclusion plots "knows" about Ising model!

Using bootstrap can compute spectrum & interactions of many operators for any theory on the boundary of exclusion bound.

イロト 不得 とうほう イヨン

э.

Intermezzo

Our first goal: a completely general exclusion plot for $\Delta_{\sigma} \& \Delta_{\epsilon}$.

- This exclusion bound applies to any conformal theories.
- It is completley non-perturbative.
- In generating it we use no Lagrangian or any data specifying a particular theory.
- Exclusion plots "knows" about Ising model!
- Using bootstrap can compute spectrum & interactions of many operators for any theory on the boundary of exclusion bound.

イロト 不得 とうほう イヨン

3

Intermezzo

Our first goal: a completely general exclusion plot for $\Delta_{\sigma} \& \Delta_{\epsilon}$.

- This exclusion bound applies to any conformal theories.
- It is completley non-perturbative.
- In generating it we use no Lagrangian or any data specifying a particular theory.
- Exclusion plots "knows" about Ising model!
- Using bootstrap can compute spectrum & interactions of many operators for any theory on the boundary of exclusion bound.

CFT Basics

Useful (incomplete) References

Slava Rychkov's d > 2 CFT lecture notes:

https://sites.google.com/site/slavarychkov/CFT_ LECTURES_Rychkov.pdf

- Alessandro Vichi's PhD thesis: infoscience.epfl.ch/record/167898/files/EPFL_ TH5116.pdf
- Numerical bootstrap: http://arxiv.org/abs/0807.0004
- OPE and conformal blocks: http://arxiv.org/abs/1208.6449

CFT Basics

Conformal transformations are angle preserving:

 $g'_{\mu\nu}(x') = \Lambda(x)g_{\mu\nu}(x)$

They generalizes (constant) scale transformations: $x \rightarrow \lambda x$.

CFT Basics

Conformal transformations are angle preserving:

$$g'_{\mu\nu}(x') = \Lambda(x)g_{\mu\nu}(x)$$

They generalizes (constant) scale transformations: $x \rightarrow \lambda x$.

CFT Basics

Conformal transformations are angle preserving:

 $g'_{\mu\nu}(x') = \Lambda(x)g_{\mu\nu}(x)$

They generalizes (constant) scale transformations: $x \rightarrow \lambda x$.

Conformal AlgebraExtension of Poincaré: $\underbrace{SO(1, D-1) \times \mathbb{R}^{1, D-1}}_{Poincare}$ + D (Dilatations) + K_{μ} (Special conformal)

Momentum (P_{μ}) and special conformal (K_{μ}) raise/lower level:

$$[D, P_{\mu}] = i P_{\mu}, \quad [D, K_{\mu}] = -i K_{\mu}$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Act like ladder operators to generate new states in a representation.

Representation Theory

CFT Basics

In a CFT should organize operators into representations of Conformal Group.

Operators

Operators should have definite scaling dimension Δ and spin l

$$[D, \mathcal{O}] = i \Delta \mathcal{O}, \quad [M_{\mu\nu}, \mathcal{O}] = i R_M \cdot \mathcal{O}$$

with R_M a spin-*l* representation of rotation $M_{\mu\nu}$.

Primary OperatorsHighest weight states, \mathcal{O} , are called primary operators. Satisfy:Primary operators: $[K_{\mu}, \mathcal{O}] = 0$ From a highest weight state can construct an infinite number of descendantsDescendents: $\mathcal{O}_n := P_{\mu_1} \dots P_{\mu_n} \mathcal{O}$

Correlators of descendants fixed by conformal symmetry (in terms of primaries).

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Representation Theory

CFT Basics

In a CFT should organize operators into representations of Conformal Group.

Operators

Operators should have definite scaling dimension Δ and spin l

$$[D, \mathcal{O}] = i \Delta \mathcal{O}, \quad [M_{\mu\nu}, \mathcal{O}] = i R_M \cdot \mathcal{O}$$

with R_M a spin-*l* representation of rotation $M_{\mu\nu}$.

Primary Operators

Highest weight states, O, are called primary operators. Satisfy:

Primary operators:
$$[K_{\mu}, \mathcal{O}] = 0$$

From a highest weight state can construct an infinite number of descendants:

Descendents:
$$\mathcal{O}_n := P_{\mu_1} \dots P_{\mu_n} \mathcal{O}$$

Correlators of descendants fixed by conformal symmetry (in terms of primaries).

▲□▶▲□▶▲□▶▲□▶ □ シ۹0

Conformal Correlators

CFT Basics

From definition primary operator \mathcal{O} transforms under $x \to \lambda x$:

 $\mathcal{O}(\lambda x) = \lambda^{-\Delta} \mathcal{O}(x)$

<u>Two Point Functions</u> Requiring correlators to be invariant under conf group gives:

$$\langle \mathcal{O}_i(x)\mathcal{O}_j(0)\rangle \xrightarrow{scale} \frac{a}{x^{\Delta_i + \Delta_j}} \xrightarrow{special} \frac{a\,\delta_i}{x^{2\Delta}}$$

Set a = 1 as to fix normalization.

Three Point Functions

$$\langle \mathcal{O}_{i}(x_{i})\mathcal{O}_{j}(x_{j})\mathcal{O}_{k}(x_{k})\rangle \xrightarrow{scale} \sum_{a+b+c=\Delta_{1}+\Delta_{2}+\Delta_{3}} \frac{C_{ijk}}{x_{ij}^{a}x_{ik}^{b}x_{jk}^{c}} \xrightarrow{special} \frac{C_{ijk}}{x_{ij}^{\delta_{ij}}x_{ik}^{\delta_{ik}}x_{jk}^{\delta_{k}}}$$

with $\delta_{ij} = \Delta_i + \Delta_j - \Delta_k$ and $x_{ij} = |\vec{x}_{ij}|$

► Correlators of descendents, $\partial_{\mu_1} \dots \partial_{\mu_n} \mathcal{O}$, computed by taking derivs.
Conformal Correlators

CFT Basics

From definition primary operator \mathcal{O} transforms under $x \to \lambda x$:

$$\mathcal{O}(\lambda x) = \lambda^{-\Delta} \mathcal{O}(x)$$

 <u>Two Point Functions</u> Requiring correlators to be invariant under conf group gives:

$$\langle \mathcal{O}_i(x)\mathcal{O}_j(0)\rangle \xrightarrow{scale} \frac{a}{x^{\Delta_i + \Delta_j}} \xrightarrow{special} \frac{a\,\delta_{ij}}{x^{2\Delta_i}}$$

Set a = 1 as to fix normalization.

Three Point Functions

$$\langle \mathcal{O}_{i}(x_{i})\mathcal{O}_{j}(x_{j})\mathcal{O}_{k}(x_{k})\rangle \xrightarrow{\text{scale}} \sum_{a+b+c=\Delta_{1}+\Delta_{2}+\Delta_{3}} \frac{C_{ijk}}{x_{ij}^{a}x_{ik}^{b}x_{jk}^{c}} \xrightarrow{\text{special}} \frac{C_{ijk}}{x_{ij}^{\delta_{ij}}x_{ik}^{\delta_{ik}}x_{jk}^{\delta_{k}}}$$

with $\delta_{ij} = \Delta_i + \Delta_j - \Delta_k$ and $x_{ij} = |\vec{x}_{ij}|$.

► Correlators of descendents, $\partial_{\mu_1} \dots \partial_{\mu_n} \mathcal{O}$, computed by taking derivs.

Conformal Correlators

CFT Basics

From definition primary operator \mathcal{O} transforms under $x \to \lambda x$:

$$\mathcal{O}(\lambda x) = \lambda^{-\Delta} \mathcal{O}(x)$$

 <u>Two Point Functions</u> Requiring correlators to be invariant under conf group gives:

$$\langle \mathcal{O}_i(x)\mathcal{O}_j(0)\rangle \xrightarrow{scale} \frac{a}{x^{\Delta_i+\Delta_j}} \xrightarrow{special} \frac{a\,\delta_{ij}}{x^{2\Delta_i}}$$

Set a = 1 as to fix normalization.

Three Point Functions

$$\langle \mathcal{O}_{i}(x_{i})\mathcal{O}_{j}(x_{j})\mathcal{O}_{k}(x_{k})\rangle \xrightarrow{scale} \sum_{a+b+c=\Delta_{1}+\Delta_{2}+\Delta_{3}} \frac{C_{ijk}}{x_{ij}^{a}x_{ik}^{b}x_{jk}^{c}} \xrightarrow{special} \frac{C_{ijk}}{x_{ij}^{\delta_{ij}}x_{ik}^{\delta_{ik}}x_{jk}^{\delta_{kk}}}$$

with $\delta_{ij} = \Delta_i + \Delta_j - \Delta_k$ and $x_{ij} = |\vec{x}_{ij}|$.

► Correlators of descendents, $\partial_{\mu_1} \dots \partial_{\mu_n} \mathcal{O}$, computed by taking derivs.

Conformal Correlators

CFT Basics

From definition primary operator \mathcal{O} transforms under $x \to \lambda x$:

$$\mathcal{O}(\lambda x) = \lambda^{-\Delta} \mathcal{O}(x)$$

 <u>Two Point Functions</u> Requiring correlators to be invariant under conf group gives:

$$\langle \mathcal{O}_i(x)\mathcal{O}_j(0)\rangle \xrightarrow{scale} \frac{a}{x^{\Delta_i+\Delta_j}} \xrightarrow{special} \frac{a\,\delta_{i_j}}{x^{2\Delta_j}}$$

Set a = 1 as to fix normalization.

Three Point Functions

$$\langle \mathcal{O}_{i}(x_{i})\mathcal{O}_{j}(x_{j})\mathcal{O}_{k}(x_{k})\rangle \xrightarrow{scale} \sum_{a+b+c=\Delta_{1}+\Delta_{2}+\Delta_{3}} \frac{C_{ijk}}{x_{ij}^{a}x_{ik}^{b}x_{jk}^{c}} \xrightarrow{special} \frac{C_{ijk}}{x_{ij}^{\delta_{ij}}x_{ik}^{\delta_{ik}}x_{jk}^{\delta_{kk}}}$$

with $\delta_{ij} = \Delta_i + \Delta_j - \Delta_k$ and $x_{ij} = |\vec{x}_{ij}|$.

• Correlators of descendents, $\partial_{\mu_1} \dots \partial_{\mu_n} \mathcal{O}$, computed by taking derivs.

CFT Basics

A more physical way to think about what a primary operator is via RG:

• CFT should be invariant under RG step: $x \to x' = \lambda x$

- (a) In scale/conf invariant theory Hamiltonian is invariant: $\hat{H} \rightarrow \hat{H}' = \hat{H}$.
- 6 Kinetic term in Lagrangian transforms like:

$$d^{d}x' \left(\partial_{x'}\phi'(x')\right)^{2} \longrightarrow d^{d}x \left(\lambda^{d-2}\right) \left(\partial_{x}\phi'(x')\right)^{2}$$

so invariant if we identify $\phi'(x') = \lambda^{-\frac{d-2}{2}}\phi(x)$ (i.e. $\Delta_{\phi} = \frac{d-2}{2}$).

Quantum corrections can modify this giving

$$\mathcal{O} \to \lambda^{-\Delta} \mathcal{O}$$
 (2)

- Solution Recall conf. trans. can be x-dependent: $\lambda(x)$ (any angle-preserving).
- If \mathcal{O} transforms nicely then $\partial \mathcal{O}$ cannot transform like eqn (2).
- Primaries are fields with nice transformations like eqn (2) and descendent transformation follows by taking derivs.

CFT Basics

A more physical way to think about what a primary operator is via RG:

- CFT should be invariant under RG step: $x \to x' = \lambda x$
- **②** In scale/conf invariant theory Hamiltonian is invariant: $\hat{H} \rightarrow \hat{H}' = \hat{H}$.

It inetic term in Lagrangian transforms like:

$$d^{d}x' (\partial_{x'}\phi'(x'))^{2} \longrightarrow d^{d}x (\lambda^{d-2}) (\partial_{x}\phi'(x'))^{2}$$

so invariant if we identify $\phi'(x') = \lambda^{-\frac{d-2}{2}}\phi(x)$ (i.e. $\Delta_{\phi} = \frac{d-2}{2}$).

Quantum corrections can modify this giving

$$\mathcal{O} \to \lambda^{-\Delta} \mathcal{O}$$
 (2)

- Solution Recall conf. trans. can be x-dependent: $\lambda(x)$ (any angle-preserving).
- If \mathcal{O} transforms nicely then $\partial \mathcal{O}$ cannot transform like eqn (2).
- Primaries are fields with nice transformations like eqn (2) and descendent transformation follows by taking derivs.

CFT Basics

A more physical way to think about what a primary operator is via RG:

- CFT should be invariant under RG step: $x \to x' = \lambda x$
- **②** In scale/conf invariant theory Hamiltonian is invariant: $\hat{H} \rightarrow \hat{H}' = \hat{H}$.
- Sinetic term in Lagrangian transforms like:

$$d^d x' \left(\partial_{x'} \phi'(x')\right)^2 \longrightarrow d^d x \left(\lambda^{d-2}\right) \left(\partial_x \phi'(x')\right)^2$$

so invariant if we identify $\phi'(x') = \lambda^{-\frac{d-2}{2}}\phi(x)$ (i.e. $\Delta_{\phi} = \frac{d-2}{2}$).

Quantum corrections can modify this giving

$$\mathcal{O} \to \lambda^{-\Delta} \mathcal{O}$$
 (2)

- Solution Recall conf. trans. can be x-dependent: $\lambda(x)$ (any angle-preserving).
- If \mathcal{O} transforms nicely then $\partial \mathcal{O}$ cannot transform like eqn (2).
- Primaries are fields with nice transformations like eqn (2) and descendent transformation follows by taking derivs.

CFT Basics

A more physical way to think about what a primary operator is via RG:

- CFT should be invariant under RG step: $x \to x' = \lambda x$
- **②** In scale/conf invariant theory Hamiltonian is invariant: $\hat{H} \rightarrow \hat{H}' = \hat{H}$.
- Sinetic term in Lagrangian transforms like:

$$d^d x' \left(\partial_{x'} \phi'(x')\right)^2 \longrightarrow d^d x \left(\lambda^{d-2}\right) \left(\partial_x \phi'(x')\right)^2$$

so invariant if we identify $\phi'(x') = \lambda^{-\frac{d-2}{2}}\phi(x)$ (i.e. $\Delta_{\phi} = \frac{d-2}{2}$).

Quantum corrections can modify this giving

$$\mathcal{O} \to \lambda^{-\Delta} \mathcal{O}$$
 (2)

- Solution Recall conf. trans. can be x-dependent: $\lambda(x)$ (any angle-preserving).
- If \mathcal{O} transforms nicely then $\partial \mathcal{O}$ cannot transform like eqn (2).
- Primaries are fields with nice transformations like eqn (2) and descendent transformation follows by taking derivs.

CFT Basics

A more physical way to think about what a primary operator is via RG:

- CFT should be invariant under RG step: $x \to x' = \lambda x$
- **②** In scale/conf invariant theory Hamiltonian is invariant: $\hat{H} \rightarrow \hat{H}' = \hat{H}$.
- Sinetic term in Lagrangian transforms like:

$$d^d x' \left(\partial_{x'} \phi'(x')\right)^2 \longrightarrow d^d x \left(\lambda^{d-2}\right) \left(\partial_x \phi'(x')\right)^2$$

so invariant if we identify $\phi'(x') = \lambda^{-\frac{d-2}{2}}\phi(x)$ (i.e. $\Delta_{\phi} = \frac{d-2}{2}$).

Quantum corrections can modify this giving

$$\mathcal{O} \to \lambda^{-\Delta} \mathcal{O}$$
 (2)

(a) Recall conf. trans. can be *x*-dependent: $\lambda(x)$ (*any* angle-preserving).

-) If \mathcal{O} transforms nicely then $\partial \mathcal{O}$ cannot transform like eqn (2).
- Primaries are fields with nice transformations like eqn (2) and descendent transformation follows by taking derivs.

CFT Basics

A more physical way to think about what a primary operator is via RG:

- CFT should be invariant under RG step: $x \to x' = \lambda x$
- **②** In scale/conf invariant theory Hamiltonian is invariant: $\hat{H} \rightarrow \hat{H}' = \hat{H}$.
- Sinetic term in Lagrangian transforms like:

$$d^d x' \left(\partial_{x'} \phi'(x')\right)^2 \longrightarrow d^d x \left(\lambda^{d-2}\right) \left(\partial_x \phi'(x')\right)^2$$

so invariant if we identify $\phi'(x') = \lambda^{-\frac{d-2}{2}}\phi(x)$ (i.e. $\Delta_{\phi} = \frac{d-2}{2}$).

Quantum corrections can modify this giving

$$\mathcal{O} \to \lambda^{-\Delta} \mathcal{O}$$
 (2)

- Solution Recall conf. trans. can be x-dependent: $\lambda(x)$ (any angle-preserving).
- **(a)** If \mathcal{O} transforms nicely then $\partial \mathcal{O}$ cannot transform like eqn (2).
- Primaries are fields with nice transformations like eqn (2) and descendent transformation follows by taking derivs.

Radial quantization & Operator-State Correspondence CFT Basics

- ► In CFT it is natural to use radial quantization.
- "Hamiltonian" is \hat{D} : $\vec{x} \to \lambda \vec{x}$
- Operators defined on radial slices.

Operator-State Correspondence

• Each operator inserted at origin defines a state:

 $|\mathcal{O}
angle := \mathcal{O}(0)|0
angle$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Can check $\hat{D}|\mathcal{O}\rangle = \Delta_{\mathcal{O}}|\mathcal{O}\rangle$.
- Complete basis of states spanned by primaries + descendents inserted at origin.
- 1-1 map between operators & states by radial quantization centered at operator.

Radial quantization & Operator-State Correspondence CFT Basics

- ► In CFT it is natural to use radial quantization.
- "Hamiltonian" is \hat{D} : $\vec{x} \to \lambda \vec{x}$
- Operators defined on radial slices.

• Each operator inserted at origin defines a state:

 $|\mathcal{O}
angle := \mathcal{O}(0)|0
angle$

- Can check $\hat{D}|\mathcal{O}\rangle = \Delta_{\mathcal{O}}|\mathcal{O}\rangle$.
- Complete basis of states spanned by primaries + descendents inserted at origin.
- 1-1 map between operators & states by radial quantization centered at operator.

CFT Basics

Operator Product Expansion

Acting on primary state |O_j⟩ with primary operator O_i(x) gives new state that can be decomposed in conformal reps:

$$\mathcal{O}_i(x)|\mathcal{O}_j
angle = \sum_lpha c_{ijlpha}|\Psi_lpha
angle$$

α runs over all eigenstates of \hat{D} .

- Contribution of descendents fixed by symmetry.
- Using Operator-State correspondence this gives operator product expansion.
- ► Repackage using diff op $D(x, \partial)$ (fixed by conf symmetry).
- C_{ijk} are dynamical data of theory (along with Δ_i, l_i).
- OPE only holds if no operator inserted at |y| < |x|.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CFT Basics

Operator Product Expansion

Acting on primary state |O_j⟩ with primary operator O_i(x) gives new state that can be decomposed in conformal reps:

$$\mathcal{O}_i(x)|\mathcal{O}_j\rangle = \sum_k C_{ijk} \left(|\mathcal{O}_k\rangle + a_1|\partial\mathcal{O}_k\rangle + \dots\right)$$

- *i*, *j*, *k* runs over primary operators only.
- Contribution of descendents fixed by symmetry.
- Using Operator-State correspondence this gives operator product expansion.
- ▶ Repackage using diff op $D(x, \partial)$ (fixed by conf symmetry).
- C_{ijk} are dynamical data of theory (along with Δ_i , l_i).
- OPE only holds if no operator inserted at |y| < |x|.

CFT Basics

Operator Product Expansion

Acting on primary state |O_j⟩ with primary operator O_i(x) gives new state that can be decomposed in conformal reps:

$$\mathcal{O}_i(x)\mathcal{O}_j(0) = \sum_k C_{ijk} \left(\mathcal{O}_k(0) + a_1 \partial \mathcal{O}_k(0) + \dots \right)$$

i, *j*, *k* runs over primary operators only.

- Contribution of descendents fixed by symmetry.
- Using Operator-State correspondence this gives operator product expansion.
- ▶ Repackage using diff op $D(x, \partial)$ (fixed by conf symmetry).
- C_{ijk} are dynamical data of theory (along with Δ_i, l_i).
- OPE only holds if no operator inserted at |y| < |x|.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

CFT Basics

Operator Product Expansion

► Acting on primary state |O_j⟩ with primary operator O_i(x) gives new state that can be decomposed in conformal reps:

$$\mathcal{O}_i(x)\mathcal{O}_j(0) = \sum_k C_{ijk} \underbrace{(1+a_1\partial+\dots)}_{=D(x,\partial)} \mathcal{O}_k(0)$$

- i, j, k runs over primary operators only.
- Contribution of descendents fixed by symmetry.
- Using Operator-State correspondence this gives operator product expansion.
- ► Repackage using diff op D(x, ∂) (fixed by conf symmetry).
- C_{ijk} are dynamical data of theory (along with Δ_i, l_i).
- ► OPE only holds if no operator inserted at |y| < |x|.

CFT Basics

Operator Product Expansion

► Acting on primary state |O_j⟩ with primary operator O_i(x) gives new state that can be decomposed in conformal reps:

$$\mathcal{O}_i(x)\mathcal{O}_j(0) = \sum_k C_{ijk} \underbrace{(1+a_1\partial+\dots)}_{=D(x,\partial)} \mathcal{O}_k(0)$$

- Contribution of descendents fixed by symmetry.
- Using Operator-State correspondence this gives operator product expansion.
- ► Repackage using diff op D(x, ∂) (fixed by conf symmetry).
- C_{ijk} are dynamical data of theory (along with Δ_i, l_i).
- OPE only holds if no operator inserted at |y| < |x|.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

CFT Basics

Operator Product Expansion

► Acting on primary state |O_j⟩ with primary operator O_i(x) gives new state that can be decomposed in conformal reps:

$$\mathcal{O}_i(x)\mathcal{O}_j(0) = \sum_k C_{ijk} \underbrace{(1+a_1\partial+\dots)}_{=D(x,\partial)} \mathcal{O}_k(0)$$

- Contribution of descendents fixed by symmetry.
- Using Operator-State correspondence this gives operator product expansion.
- ► Repackage using diff op D(x, ∂) (fixed by conf symmetry).
- C_{ijk} are dynamical data of theory (along with Δ_i, l_i).

- ロト・ 日本・ モー・ モー・ うらく

• OPE only holds if no operator inserted at |y| < |x|.

CFT Basics

• How could we determine $D(x, \delta_x)$?

Use OPE to reduce 3-pt function to sum over 2-pt function

$$\langle \overline{\mathcal{O}_{1}(x_{1})} \overline{\mathcal{O}_{2}(x_{2})} \mathcal{O}_{3}(x_{3}) \rangle = \sum_{k} C_{12k} D(x_{12}\partial_{2}) \langle \mathcal{O}_{2}(x_{2}) \mathcal{O}_{3}(x_{3}) \rangle$$
$$\frac{C_{123}}{x_{12}^{\delta_{12}} x_{13}^{\delta_{13}} x_{23}^{\delta_{23}}} = C_{123} D(x_{12}\partial_{2}) \langle \mathcal{O}_{3}(x_{2}) \mathcal{O}_{3}(x_{3}) \rangle$$
$$\frac{1}{x_{12}^{\delta_{12}} x_{13}^{\delta_{13}} x_{23}^{\delta_{23}}} = D(x_{12}\partial_{2}) \left(\frac{1}{x_{23}^{2\Delta_{3}}}\right)$$

Form of $D(x, \partial)$ can be fixed by related 2- and 3-pt function.

Now we know everything about OPE and 2/3-pt functions

What about higher point functions?

CFT Basics

• How could we determine $D(x, \delta_x)$?

Use OPE to reduce 3-pt function to sum over 2-pt function

$$\langle \overline{\mathcal{O}_{1}(x_{1})} \overline{\mathcal{O}_{2}(x_{2})} \mathcal{O}_{3}(x_{3}) \rangle = \sum_{k} C_{12k} D(x_{12}\partial_{2}) \langle \mathcal{O}_{2}(x_{2}) \mathcal{O}_{3}(x_{3}) \rangle$$
$$\frac{C_{123}}{x_{12}^{\delta_{12}} x_{13}^{\delta_{13}} x_{23}^{\delta_{23}}} = C_{123} D(x_{12}\partial_{2}) \langle \mathcal{O}_{3}(x_{2}) \mathcal{O}_{3}(x_{3}) \rangle$$
$$\frac{1}{x_{12}^{\delta_{12}} x_{13}^{\delta_{13}} x_{23}^{\delta_{23}}} = D(x_{12}\partial_{2}) \left(\frac{1}{x_{23}^{2\Delta_{3}}}\right)$$

Form of D(x, ∂) can be fixed by related 2- and 3-pt function.
Now we know everything about OPE and 2/3-pt functions.

What about higher point functions?

▲□▶▲□▶▲□▶▲□▶ □ のQで

CFT Basics

Any *n*-pt function can be reduced to *sums* of 2- & 3-pt functions via OPE:

$$\langle \underbrace{\mathcal{O}_1(x_1)\mathcal{O}_2(x_2)}_{\sum_k C_{12}^k D(x_{12}, \partial_{x_2})\mathcal{O}_k(x_2) \sum_l C_{34}^j D(x_{34}, \partial_{x_4})(x_3)\mathcal{O}_l(x_4)} \rangle = \sum_{k,l} C_{12}^k C_{34}^l D(x_{12}, x_{34}, \partial_{x_2}, \partial_{x_4}) \langle \mathcal{O}_k(x_2)\mathcal{O}_l(x_4) \rangle$$

• For 4-pt function get single sum of two *D*'s acting on 2-pt function.

(a) Conformal symmetry fixes (for \mathcal{O} scalar primary of dim Δ):

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \frac{1}{x_{12}^{2\Delta}x_{34}^{2\Delta}}g(u,v)$$

with unknown function g of $u = \frac{x_{12}^2 x_{34}^2}{x_{12}^2 x_{24}^2}$, $v = \frac{x_{14}^2 x_{23}^2}{x_{12}^2 x_{24}^2}$.

u, *v* conformally invariant so form of *g* not fixed.

If operators non-scalar or Δ 's not equal technically more complicated (but conceptually the same).

CFT Basics

Any *n*-pt function can be reduced to sums of 2- & 3-pt functions via OPE:

$$\langle \underbrace{\mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})}_{\sum_{k} C_{12}^{k} D(x_{12}, \partial_{x_{2}})\mathcal{O}_{k}(x_{2})} \underbrace{\mathcal{O}_{3}(x_{3})\mathcal{O}_{4}(x_{4})}_{\sum_{l} C_{34}^{k} D(x_{32}, \partial_{x_{2}}, \partial_{x_{4}})} \underbrace{\mathcal{O}_{3}(x_{3})\mathcal{O}_{4}(x_{4})}_{k} \rangle = \sum_{k} C_{12}^{k} C_{34}^{k} D(x_{12}, x_{34}, \partial_{x_{2}}, \partial_{x_{4}}) \left(\frac{1}{x_{24}^{2\Delta_{k}}}\right)$$

For 4-pt function get single sum of two *D*'s acting on 2-pt function.
Conformal symmetry fixes (for *O* scalar primary of dim Δ):

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = rac{1}{x_{12}^{2\Delta}x_{34}^{2\Delta}}g(u,v)$$

with unknown function g of $u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}$, $v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$.

- *u*, *v* conformally invariant so form of *g* not fixed.
- If operators non-scalar or Δ 's not equal technically more complicated (but conceptually the same).

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ● ●

CFT Basics

Any *n*-pt function can be reduced to sums of 2- & 3-pt functions via OPE:

$$\langle \underbrace{\mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})}_{\sum_{k} C_{12}^{k} D(x_{12}, \partial_{x_{2}})\mathcal{O}_{k}(x_{2})} \underbrace{\mathcal{O}_{3}(x_{3})\mathcal{O}_{4}(x_{4})}_{\sum_{l} C_{13}^{k} D(x_{32}, \partial_{x_{2}})\mathcal{O}_{l}(x_{4})} \rangle = \sum_{k} C_{12}^{k} C_{34}^{k} D(x_{12}, x_{34}, \partial_{x_{2}}, \partial_{x_{4}}) \left(\frac{1}{x_{24}^{2\Delta_{k}}}\right)$$

- I For 4-pt function get single sum of two D's acting on 2-pt function.
- **2** Conformal symmetry fixes (for \mathcal{O} scalar primary of dim Δ):

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \frac{1}{x_{12}^{2\Delta}x_{34}^{2\Delta}}g(u,v)$$

with unknown function *g* of $u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}$, $v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$.

- *u*, *v* conformally invariant so form of *g* not fixed.
- If operators non-scalar or Δ 's not equal technically more complicated (but conceptually the same).

CFT Basics

Any *n*-pt function can be reduced to sums of 2- & 3-pt functions via OPE:

$$\langle \underbrace{\mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})}_{\sum_{k} C_{12}^{k} D(x_{12}, \partial_{x_{2}})\mathcal{O}_{k}(x_{2})} \underbrace{\mathcal{O}_{3}(x_{3})\mathcal{O}_{4}(x_{4})}_{\sum_{l} C_{13}^{k} D(x_{32}, \partial_{x_{2}})\mathcal{O}_{l}(x_{4})} \rangle = \sum_{k} C_{12}^{k} C_{34}^{k} D(x_{12}, x_{34}, \partial_{x_{2}}, \partial_{x_{4}}) \left(\frac{1}{x_{24}^{2\Delta_{k}}}\right)$$

- I For 4-pt function get single sum of two D's acting on 2-pt function.
- **2** Conformal symmetry fixes (for \mathcal{O} scalar primary of dim Δ):

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \frac{1}{x_{12}^{2\Delta}x_{34}^{2\Delta}}g(u,v)$$

with unknown function g of $u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}$, $v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$.

- *u*, *v* conformally invariant so form of *g* not fixed.
- If operators non-scalar or Δ's not equal technically more complicated (but conceptually the same).

Axiomatic Formulation of a CFT

CFT Basics

CFT defined by specifying:

- Spectrum $S = \{O_i\}$ of primary operators dimensions, spins: (Δ_i, l_i)
- Operator Product Expansion (OPE)

$$\mathcal{O}_i(x) \cdot \mathcal{O}_j(0) \sim \sum_k C_{ij}^k D(x, \partial_x) \mathcal{O}_k(0)$$

 \mathcal{O}_i are primaries. Diff operator $D(x, \partial_x)$ encodes *descendent* contributions. This data fixes all correlations in the CFT:

▶ 2-pt & 3-pt fixed:

$$\langle \mathcal{O}_i \mathcal{O}_j
angle = rac{\delta_{ij}}{x^{2\Delta_i}}, \qquad \langle \mathcal{O}_i \mathcal{O}_j \mathcal{O}_k
angle = rac{C_{ijk}}{x_{ij}^{\delta_{ij}} x_{ik}^{\delta_{ik}} x_{jk}^{\delta_{ik}}}$$

Higher pt functions contain no new dynamical info:

$$\underbrace{\underbrace{\mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})}_{\sum_{k}\mathcal{O}_{12}^{k}\mathcal{D}(x_{12},\partial_{x_{2}})\mathcal{O}_{k}(x_{2})\sum_{l}\mathcal{O}_{1}^{l}\mathcal{O}_{3}(x_{3})\mathcal{O}_{4}(x_{4})}_{\mathcal{O}_{14}\mathcal{D}(x_{34},\partial_{x_{4}})(x_{3})\mathcal{O}_{l}(x_{4})}}$$

 $\sum_{k,l} C_{12}^k C_{34}^l D(x_{12}, x_{34}, \partial_{x_2}, \partial_{x_4}) \langle \mathcal{O}_k(x_2) \mathcal{O}_l(x_4) \rangle$

Axiomatic Formulation of a CFT

CFT Basics

CFT defined by specifying:

- Spectrum $S = \{O_i\}$ of primary operators dimensions, spins: (Δ_i, l_i)
- Operator Product Expansion (OPE)

$$\mathcal{O}_i(x) \cdot \mathcal{O}_j(0) \sim \sum_k C_{ij}^k D(x, \partial_x) \mathcal{O}_k(0)$$

 \mathcal{O}_i are primaries. Diff operator $D(x, \partial_x)$ encodes *descendent* contributions. This data fixes all correlations in the CFT:

2-pt & 3-pt fixed:

$$\langle \mathcal{O}_i \mathcal{O}_j
angle = rac{\delta_{ij}}{x^{2\Delta_i}}, \qquad \langle \mathcal{O}_i \mathcal{O}_j \mathcal{O}_k
angle = rac{C_{ijk}}{x^{\delta_{ij}}_{ij} x^{\delta_{ik}}_{ik} x^{\delta_{jk}}_{jk}}$$

Higher pt functions contain no new dynamical info:

$$\langle \underbrace{\mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})}_{\sum_{k} C_{12}^{k} D(x_{12}, \partial_{x_{2}})\mathcal{O}_{k}(x_{2}) \sum_{l} C_{34}^{l} D(x_{34}, \partial_{x_{4}})(x_{3})\mathcal{O}_{l}(x_{4})} \rangle = \sum_{k} C_{12}^{k} C_{34}^{k} \underbrace{\mathcal{G}_{\Delta_{k}, l_{k}}(u, v)}_{\text{conformal block}}$$

CFT Basics

What about central charge?

- In d = 2 the central charge, c, is a defining property of CFT.
- In d > 2 no canonical definition of central charge.
- Candidates:

$$\langle T(z)T(0)\rangle \sim \frac{c_1}{z^4}, \qquad \langle T\rangle \sim c_2 R, \qquad S = 2\pi \sqrt{c_3 \Delta}$$

- In d = 2 all equal: $c_1 = c_2 = c_3$.
- Definitely not true for d > 2.
- \triangleright *c*² requires non-trivial manifold (non-local).
- \triangleright c_3 holds in thermal state.
- ▶ Only *c*¹ is accessible via *local correlation functions*.
- So we will take c_1 as "central charge" for d > 2.
- Appears in $\phi \times \phi$ OPE:

$$\phi \times \phi \sim 1 + \lambda_{\phi\phi}^{\epsilon} \epsilon + \dots + \lambda_{\phi\phi}^{T} T_{\mu\nu} + \dots$$

► Because $T \cdot \phi = \Delta_{\phi} \phi$ and we normalize $\langle TT \rangle \sim 1$.

CFT Basics

What about central charge?

- In d = 2 the central charge, c, is a defining property of CFT.
- In d > 2 no canonical definition of central charge.
- Candidates:

$$\langle T(z)T(0)\rangle \sim \frac{c_1}{z^4}, \qquad \langle T\rangle \sim c_2 R, \qquad S = 2\pi \sqrt{c_3 \Delta}$$

- In d = 2 all equal: $c_1 = c_2 = c_3$.
- Definitely not true for d > 2.
- \triangleright *c*² requires non-trivial manifold (non-local).
- \triangleright c_3 holds in thermal state.
- ▶ Only *c*¹ is accessible via *local correlation functions*.
- So we will take c_1 as "central charge" for d > 2.
- Appears in $\phi \times \phi$ OPE:

$$\phi \times \phi \sim 1 + \lambda_{\phi\phi}^{\epsilon} \epsilon + \dots + \lambda_{\phi\phi}^{T} T_{\mu\nu} + \dots$$

► Because $T \cdot \phi = \Delta_{\phi} \phi$ and we normalize $\langle TT \rangle \sim 1$.

CFT Basics

What about central charge?

- In d = 2 the central charge, c, is a defining property of CFT.
- In d > 2 no canonical definition of central charge.
- Candidates:

$$\langle T(z)T(0)\rangle \sim \frac{c_1}{z^4}, \qquad \langle T\rangle \sim c_2 R, \qquad S = 2\pi \sqrt{c_3 \Delta}$$

- In d = 2 all equal: $c_1 = c_2 = c_3$.
- Definitely not true for d > 2.
- \triangleright *c*² requires non-trivial manifold (non-local).
- \triangleright c_3 holds in thermal state.
- ▶ Only *c*¹ is accessible via *local correlation functions*.
- So we will take c_1 as "central charge" for d > 2.
- Appears in $\phi \times \phi$ OPE:

$$\phi \times \phi \sim 1 + \lambda_{\phi\phi}^{\epsilon} \epsilon + \dots + \lambda_{\phi\phi}^{T} T_{\mu\nu} + \dots$$

► Because $T \cdot \phi = \Delta_{\phi} \phi$ and we normalize $\langle TT \rangle \sim 1$.

CFT Basics

What about central charge?

- In d = 2 the central charge, c, is a defining property of CFT.
- In d > 2 no canonical definition of central charge.
- Candidates:

$$\langle T(z)T(0)\rangle \sim \frac{c_1}{z^4}, \qquad \langle T\rangle \sim c_2 R, \qquad S = 2\pi\sqrt{c_3 \Delta}$$

- In d = 2 all equal: $c_1 = c_2 = c_3$.
- Definitely not true for d > 2.
- ► *c*² requires non-trivial manifold (non-local).
- \triangleright c_3 holds in thermal state.
- ▶ Only *c*¹ is accessible via *local correlation functions*.
- So we will take c_1 as "central charge" for d > 2.
- Appears in $\phi \times \phi$ OPE:

$$\phi \times \phi \sim 1 + \lambda_{\phi\phi}^{\epsilon} \epsilon + \dots + \lambda_{\phi\phi}^{T} T_{\mu\nu} + \dots$$

► Because $T \cdot \phi = \Delta_{\phi} \phi$ and we normalize $\langle TT \rangle \sim 1$.

CFT Basics

What about central charge?

- In d = 2 the central charge, c, is a defining property of CFT.
- In d > 2 no canonical definition of central charge.
- Candidates:

$$\langle T(z)T(0)\rangle \sim \frac{c_1}{z^4}, \qquad \langle T\rangle \sim c_2 R, \qquad S = 2\pi \sqrt{c_3 \Delta}$$

- In d = 2 all equal: $c_1 = c_2 = c_3$.
- Definitely not true for d > 2.
- c_2 requires non-trivial manifold (non-local).
- c_3 holds in thermal state.
- Only *c*¹ is accessible via *local correlation functions*.
- So we will take c_1 as "central charge" for d > 2.
- Appears in $\phi \times \phi$ OPE:

$$\phi \times \phi \sim 1 + \lambda_{\phi\phi}^{\epsilon} \epsilon + \dots + \lambda_{\phi\phi}^{T} T_{\mu\nu} + \dots$$

► Because $T \cdot \phi = \Delta_{\phi} \phi$ and we normalize $\langle TT \rangle \sim 1$.

CFT Basics

What about central charge?

- In d = 2 the central charge, c, is a defining property of CFT.
- In d > 2 no canonical definition of central charge.
- Candidates:

$$\langle T(z)T(0)\rangle \sim \frac{c_1}{z^4}, \qquad \langle T\rangle \sim c_2 R, \qquad S = 2\pi\sqrt{c_3 \Delta}$$

- In d = 2 all equal: $c_1 = c_2 = c_3$.
- Definitely not true for d > 2.
- c_2 requires non-trivial manifold (non-local).
- c_3 holds in thermal state.
- Only *c*¹ is accessible via *local correlation functions*.
- So we will take c_1 as "central charge" for d > 2.
- Appears in $\phi \times \phi$ OPE:

$$\phi \times \phi \sim 1 + \lambda_{\phi\phi}^{\epsilon} \epsilon + \dots + \left[\lambda_{\phi\phi}^{T}\right] T_{\mu\nu} + \dots$$

► Because $T \cdot \phi = \Delta_{\phi} \phi$ and we normalize $\langle TT \rangle \sim 1$.

CFT Basics

What about central charge?

- In d = 2 the central charge, c, is a defining property of CFT.
- In d > 2 no canonical definition of central charge.
- Candidates:

$$\langle T(z)T(0)\rangle \sim \frac{c_1}{z^4}, \qquad \langle T\rangle \sim c_2 R, \qquad S = 2\pi \sqrt{c_3 \Delta}$$

- In d = 2 all equal: $c_1 = c_2 = c_3$.
- Definitely not true for d > 2.
- c_2 requires non-trivial manifold (non-local).
- c_3 holds in thermal state.
- Only *c*¹ is accessible via *local correlation functions*.
- So we will take c_1 as "central charge" for d > 2.
- Appears in $\phi \times \phi$ OPE:

$$\phi \times \phi \sim 1 + \lambda_{\phi\phi}^{\epsilon} \epsilon + \dots + \lambda_{\phi\phi}^{T} T_{\mu\nu} + \dots$$

► Because $T \cdot \phi = \Delta_{\phi} \phi$ and we normalize $\langle TT \rangle \sim 1$.

CFT Basics

What about central charge?

- In d = 2 the central charge, c, is a defining property of CFT.
- In d > 2 no canonical definition of central charge.
- Candidates:

$$\langle T(z)T(0)\rangle \sim \frac{c_1}{z^4}, \qquad \langle T\rangle \sim c_2 R, \qquad S = 2\pi\sqrt{c_3 \Delta}$$

- In d = 2 all equal: $c_1 = c_2 = c_3$.
- Definitely not true for d > 2.
- ► *c*² requires non-trivial manifold (non-local).
- c_3 holds in thermal state.
- Only c_1 is accessible via *local correlation functions*.
- So we will take c_1 as "central charge" for d > 2.
- Appears in $\phi \times \phi$ OPE:

$$\phi \times \phi \sim 1 + \lambda_{\phi\phi}^{\epsilon} \epsilon + \dots + \left(\frac{\Delta_{\phi}}{\sqrt{c}}\right) T_{\mu\nu} + \dots$$

► Because $T \cdot \phi = \Delta_{\phi} \phi$ and we normalize $\langle TT \rangle \sim 1$.

Unitarity Constraints

CFT Basics

- We will restrict attention to "unitary" theories.
- Generally we consider Euclidean theories so actually mean reflection positivity.
- ► In reflection-positive theory norms of states must be positive.

Combined with conformal algebra unitarity gives constraints on Δ .

$$\begin{aligned} |P^{\mu}P_{\mu}|\mathcal{O}\rangle|| &= \langle \mathcal{O}|K_{\nu}K^{\nu}P^{\mu}P_{\mu}|\mathcal{O}\rangle\\ &\propto \Delta \left(\Delta - \frac{d-2}{2}\right)\end{aligned}$$

Here we use $K^{\dagger} = P$ (in radial quantization) and assumed O is a scalar. Similar arguments give:

$$\Delta \ge \frac{d-2}{2} \qquad (l=0)$$
$$\Delta \ge d+l-2 \qquad (l\ge 0)$$

The $\Delta = 0$ solution is conformally invariant vacuum $|0\rangle_{CD}$, CD, CD,

Unitarity Constraints

CFT Basics

- We will restrict attention to "unitary" theories.
- Generally we consider Euclidean theories so actually mean reflection positivity.
- ► In reflection-positive theory norms of states must be positive.

Combined with conformal algebra unitarity gives constraints on Δ .

$$egin{aligned} |P^{\mu}P_{\mu}|\mathcal{O}
angle|| &= \langle \mathcal{O}|K_{
u}K^{
u}P^{\mu}P_{\mu}|\mathcal{O}
angle\ &\propto\Delta\left(\Delta-rac{d-2}{2}
ight) \end{aligned}$$

Here we use $K^{\dagger} = P$ (in radial quantization) and assumed O is a scalar.

Similar arguments give:

$$\Delta \ge \frac{d-2}{2} \qquad (l=0)$$

$$\Delta \ge d+l-2 \qquad (l\ge 0)$$

The $\Delta = 0$ solution is conformally invariant vacuum $|0\rangle_{CD}$, CD, CD,

Unitarity Constraints

CFT Basics

- We will restrict attention to "unitary" theories.
- Generally we consider Euclidean theories so actually mean reflection positivity.
- ► In reflection-positive theory norms of states must be positive.

Combined with conformal algebra unitarity gives constraints on Δ .

$$egin{aligned} |P^{\mu}P_{\mu}|\mathcal{O}
angle|| &= \langle \mathcal{O}|K_{
u}K^{
u}P^{\mu}P_{\mu}|\mathcal{O}
angle\ &\propto\Delta\left(\Delta-rac{d-2}{2}
ight) \end{aligned}$$

Here we use $K^{\dagger} = P$ (in radial quantization) and assumed O is a scalar. Similar arguments give:

$$\begin{split} \Delta \geq \frac{d-2}{2} & (l=0) \\ \Delta \geq d+l-2 & (l\geq 0) \end{split}$$

The $\Delta = 0$ solution is conformally invariant vacuum $|0\rangle_{CD}$, where $|0\rangle_{CD}$, we have $|0\rangle_{CD}$.
Conformal Blocks

Conformal Blocks

Recall 4-pt function can be expressed in terms of g(u, v):

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \frac{1}{x_{12}^{2\Delta}x_{34}^{2\Delta}}g(u,v)$$

Can also use OPE to decompose 4-pt into sum:

$$\langle \underbrace{\mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})}_{\sum_{k}C_{12}^{k}D(x_{12},\partial_{x_{2}})\mathcal{O}_{k}(x_{2})} \underbrace{\mathcal{O}_{3}(x_{3})\mathcal{O}_{4}(x_{4})}_{\sum_{l}C_{34}^{l}D(x_{34},\partial_{x_{4}})(x_{3})\mathcal{O}_{l}(x_{4})} \rangle = \sum_{k}C_{12}^{k}C_{34}^{k}D(x_{12},x_{34},\partial_{x_{2}},\partial_{x_{4}})\left(\frac{1}{x_{24}^{2\Delta_{k}}}\right)$$

- The D's acting on 2-pt function is called Conformal Block.
- Convenient to pull out trivial pre-factor and then express g(u, v) in terms of CB decomposition.

The conformal block depends on how we take the OPE (CB above is in the (1-2), (3-4) channel).

Conformal Blocks

Recall 4-pt function can be expressed in terms of g(u, v):

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \frac{1}{x_{12}^{2\Delta}x_{34}^{2\Delta}}g(u,v)$$

Can also use OPE to decompose 4-pt into sum:

$$\langle \underbrace{\mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})}_{\sum_{k}C_{12}^{k}D(x_{12},\partial_{x_{2}})\mathcal{O}_{k}(x_{2})} \underbrace{\mathcal{O}_{3}(x_{3})\mathcal{O}_{4}(x_{4})}_{\sum_{l}C_{13}^{k}A(x_{3},\partial_{x_{4}})(x_{3})\mathcal{O}_{l}(x_{4})} \rangle = \sum_{k}C_{12}^{k}C_{34}^{k}\underbrace{\tilde{\mathcal{O}}_{\Delta_{k},l_{k}}(x_{l})}_{\text{conformal block}}$$

• The *D*'s acting on 2-pt function is called Conformal Block.

Solution Convenient to pull out trivial pre-factor and then express g(u, v) in terms of CB decomposition.

The conformal block depends on how we take the OPE (CB above is in the (1-2), (3-4) channel).

Conformal Blocks

Recall 4-pt function can be expressed in terms of g(u, v):

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \frac{1}{x_{12}^{2\Delta}x_{34}^{2\Delta}}g(u,v)$$

Can also use OPE to decompose 4-pt into sum:

$$\langle \underbrace{\mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})}_{\sum_{k} C_{12}^{k} D(x_{12},\partial_{x_{2}})\mathcal{O}_{k}(x_{2})}_{\sum_{l} C_{14}^{l} D(x_{34},\partial_{x_{4}})(x_{3})\mathcal{O}_{l}(x_{4})} \rangle = \frac{1}{x_{12}^{2\Delta} x_{34}^{2\Delta}} \underbrace{\sum_{k} C_{12}^{k} C_{34}^{k} G_{\Delta_{k},l_{k}}(u,v)}_{g(u,v)}$$

- The *D*'s acting on 2-pt function is called Conformal Block.
- Convenient to pull out trivial pre-factor and then express g(u, v) in terms of CB decomposition.

The conformal block depends on how we take the OPE (CB above is in the (1-2), (3-4) channel).

Conformal Blocks

Recall 4-pt function can be expressed in terms of g(u, v):

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \frac{1}{x_{12}^{2\Delta}x_{34}^{2\Delta}}g(u,v)$$

Can also use OPE to decompose 4-pt into sum:

$$\langle \underbrace{\mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})}_{\sum_{k} C_{12}^{k} D(x_{12},\partial_{x_{2}})\mathcal{O}_{k}(x_{2})}_{\sum_{l} C_{14}^{l} D(x_{34},\partial_{x_{4}})(x_{3})\mathcal{O}_{l}(x_{4})} \rangle = \frac{1}{x_{12}^{2\Delta} x_{34}^{2\Delta}} \underbrace{\sum_{k} C_{12}^{k} C_{34}^{k} G_{\Delta_{k},l_{k}}(u,v)}_{g(u,v)}$$

- The *D*'s acting on 2-pt function is called Conformal Block.
- Convenient to pull out trivial pre-factor and then express g(u, v) in terms of CB decomposition.

The conformal block depends on how we take the OPE (CB above is in the (1 - 2), (3 - 4) channel).

Coordinate Systems

Conformal Blocks

- Conformal blocks depend on two variables *u*, *v*.
- It turns out a more natural coordinate system is z, \overline{z} defined via

$$u = z \bar{z}, \qquad v = (1 - z)(1 - \bar{z})$$

• In d = 2 these are just standard complex coords.

In all *d* conf symm can fix x_1, \ldots, x_4 to be co-planar.

- Use conf symm to fix $\vec{x}_1 = 0$, $\vec{x}_3 = 1$, $\vec{x}_4 = \infty$.
- ► z, \overline{z} complex coords on plane spanned by unfixed \vec{x}_2 .
- From definition follows

$$z, \overline{z} \to 0 \quad \Rightarrow \quad x_{12}, x_{34} \to 0$$
$$z, \overline{z} \to 1 \quad \Rightarrow \quad x_{14}, x_{23} \to 0$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Analytic Properties

Conformal Blocks

- From OPE convergence might not expect (1-2), (3-4) CB to converge if |z| > 1.
- Actually conf blocks more convergent than OPE:
 - Treat e.g. $x_1 \leftrightarrow x_2$ symmetrically.
 - Reflects freedom to choose origin in raidal quantization.
- Conf blocks G(z, z̄) can be extended to full z, z̄ plane by analytic continuation.
- Analytic continuation has branch cut for z > 1 on real axis.
- Solution Explicit expressions exist in d = 2, 4.

Example: conf blocks in d = 4 (for equal external dimensions):

$$G(z,\bar{z}) = \frac{z\bar{z}}{z-\bar{z}} \left[k_{\Delta+l}(z)k_{\Delta-l-2}(\bar{z}) - (z\leftrightarrow\bar{z}) \right]$$

$$k_{\beta}(x) = x^{\beta/2} {}_{2}F_{1}(\beta/2,\beta/2,\beta;x)$$

Crossing Symmetry

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

Crossing Symmetry

Consistency requires equivalence of two different contractions

$$\sum_{k} C_{12}^{k} C_{34}^{k} G_{\Delta_{k}, l_{k}}^{12;34}(u, v) = \sum_{k} C_{14}^{k} C_{23}^{k} G_{\Delta_{k}, l_{k}}^{14;23}(u, v)$$

When operators in correlator identical $G^{12;34}$ and $G^{14;23}$ simply related:

• Crossing means exchanging $x_1 \leftrightarrow x_3$, $x_2 \leftrightarrow x_4$ or equivilently $u \leftrightarrow v$ implying

$$G^{12;34}(u,v) = G^{14;23}(v,u)$$

► Crossing symmetry give non-perturbative constraints on (Δ_k, C_{ij}^k) .

How constraining is crossing symmettry?

Intermezzo: Applications

Is crossing symmetry consistent with a gap? σ -OPE: $\sigma \times \sigma \sim 1 + \epsilon + ...$

 Assuming above OPE study crossing symmetry of:

 $\langle \sigma(x_1)\sigma(x_2)\sigma(x_3)\sigma(x_4)\rangle$

- Certain values of Δ_σ, Δ_ε inconsistent with crossing symmetry.
- Solutions to crossing:
 - white region $\Rightarrow 0$ solutions.
 - 2 blue region $\Rightarrow \infty$ solutions.
 - **(a)** boundary \Rightarrow 1 solution (unique)!
- Exclusion plots "knows" about Ising model!

Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four <u>identical</u> scalars: $\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle$ dim $(\phi) = \Delta_{\phi}$

Recall crossing symmetry constraint:

$$\frac{1}{x_{12}^{2\Delta_{\phi}}x_{34}^{2\Delta_{\phi}}} \sum_{\mathcal{O}_{k}} (C_{\phi\phi}^{k})^{2} G_{\Delta_{k},l_{k}}^{12;34}(u,v) = \frac{1}{x_{14}^{2\Delta_{\phi}}x_{23}^{2\Delta_{\phi}}} \sum_{\mathcal{O}_{k}} (C_{\phi\phi}^{k})^{2} G_{\Delta_{k},l_{k}}^{14;23}(u,v)$$

$$\sum_{k}^{1} \sum_{k} \frac{k}{3} = \sum_{k}^{1} k \frac{k}{3}$$

Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four <u>identical</u> scalars: $\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle$ dim $(\phi) = \Delta_{\phi}$

Express everything in terms of *u*, *v*:

$$\left(\frac{v}{u}\right)^{\Delta_{\phi}} \sum_{\mathcal{O}_{k}} (C_{\phi\phi}^{k})^{2} G_{\Delta_{k},l_{k}}^{12;34}(u,v) = \sum_{\mathcal{O}_{k}} (C_{\phi\phi}^{k})^{2} G_{\Delta_{k},l_{k}}^{14;23}(u,v)$$

Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four <u>identical</u> scalars: $\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle$ dim $(\phi) = \Delta_{\phi}$

Move everything to LHS:

$$v^{\Delta_{\phi}} \sum_{\mathcal{O}_{k}} (C^{k}_{\phi\phi})^{2} G^{12;34}_{\Delta_{k},l_{k}}(u,v) - u^{\Delta_{\phi}} \sum_{\mathcal{O}_{k}} (C^{k}_{\phi\phi})^{2} G^{14;23}_{\Delta_{k},l_{k}}(u,v) = 0$$

Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four <u>identical</u> scalars: $\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle$ dim $(\phi) = \Delta_{\phi}$

Express as sum of functions with positive coefficients:

Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four <u>identical</u> scalars: $\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle$ dim $(\phi) = \Delta_{\phi}$

$$\sum_{\mathcal{O}_k} \underbrace{(C_{\phi\phi}^k)^2}_{p_k} \underbrace{[v^{\Delta_{\phi}} G_{\Delta_k, l_k}(u, v) - u^{\Delta_{\phi}} G_{\Delta_k, l_l}(v, u)]}_{F_k(u, v)} = 0$$

Functions $F_k(u, v)$ are formally infinite dimensional vectors.

$$p_1\underbrace{(F_1,F_1',F_1'',\dots)}_{\vec{v}_1} + p_2\underbrace{(F_2,F_2',F_2'',\dots)}_{\vec{v}_2} + p_3\underbrace{(F_3,F_3',F_3'',\dots)}_{\vec{v}_3} + \dots = \vec{0}$$

• Each compnent is a deriv at a the same point: e.g. $F' := F^{(2,0)}(z^*, \overline{z}^*)$.

2 Each vector \vec{v}_k represents the contribution of an operator \mathcal{O}_k .

- Solution Labels $k = (\Delta, l)$ are continuous (because of Δ).
- If $\{\vec{v}_1, \vec{v}_2, ...\}$ span a positive cone there is no solution.
- Solution Efficient numerical methods to check if set of vectors $\{\vec{v}_k\}$ span a cone.

Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four <u>identical</u> scalars: $\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle$ dim $(\phi) = \Delta_{\phi}$

$$\sum_{\mathcal{O}_k} \underbrace{(C_{\phi\phi}^k)^2}_{p_k} \underbrace{[v^{\Delta_{\phi}} G_{\Delta_k, l_k}(u, v) - u^{\Delta_{\phi}} G_{\Delta_k, l_l}(v, u)]}_{F_k(u, v)} = 0$$

Functions $F_k(u, v)$ are formally infinite dimensional vectors.

$$p_1\underbrace{(F_1,F_1',F_1'',\dots)}_{\vec{v}_1} + p_2\underbrace{(F_2,F_2',F_2'',\dots)}_{\vec{v}_2} + p_3\underbrace{(F_3,F_3',F_3'',\dots)}_{\vec{v}_3} + \dots = \vec{0}$$

• Each compnent is a deriv at a the same point: e.g. $F' := F^{(2,0)}(z^*, \overline{z}^*)$.

2 Each vector \vec{v}_k represents the contribution of an operator \mathcal{O}_k .

- Solution Labels $k = (\Delta, l)$ are continuous (because of Δ).
- If $\{\vec{v}_1, \vec{v}_2, ...\}$ span a positive cone there is no solution.
- Solution Efficient numerical methods to check if set of vectors $\{\vec{v}_k\}$ span a cone.

Convergence

Crossing Symmetry

Our goal will be to study/constrain spectrum S of CFTs using sum rule.

Before continuing check: how quickly does conf. block expansion converge?

- Consider free scalar $\phi \times \phi \sim 1 + \phi^2 + T_{\mu\nu} + \dots$
- ► Move contribution of identity, I, to LHS:

$$F_{\mathbb{I}} = -\sum_{\mathcal{O}_k} (C^k_{\phi\phi})^2 F_k(u,v)$$

(can normalize so $F_{\mathbb{I}} = 1$)

- Plot how quickly sum converges for free theory (along $z = \overline{z}$).
- <u>Note:</u> convergence best around $z = \overline{z} = \frac{1}{2}$ so choose this point for Taylor expansion.

Can prove that asymptotically tail of sum rule cut off at Δ^* is bounded by $e^{-\Delta^*}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Truncated Sum Rule

Geometry of Solution Space

- ► To get some insight lets consider a very truncated problem.
- We truncate to $\Delta < \Delta^*$, $l < l^*$ (this is a justifiable approximation).
- ► Each order in Taylor expansion (around $z = \overline{z} = \frac{1}{2}$) of sum rule gives a necassary condition for crossing.
- We consider only two Taylor coefficients $F^{(1,1)}$ & $F^{(3,0)}$ (this is not an approximation)!
- Truncated sum rule becomes:

$$\sum_{\Delta < \Delta^*, l < l^*} p_{\Delta, l} \underbrace{\begin{pmatrix} F_{\Delta, l}^{(3,0)} \\ F_{\Delta, l}^{(1,1)} \\ \vdots \\ \vec{v}_{\Delta, l} \end{pmatrix}}_{\vec{v}_{\Delta, l}} = 0$$
(3)

► Recall p_k = (C^k_{φφ})² > 0 so if {v_{Δ,l}} form a positive cone we're doomed (i.e. can't solve eqn(3)).

The "Landscape" of CFTs

Geometry of the Solution Space

Constraining the spectrum

Unitarity implies:

$$\begin{split} \Delta \geq \frac{D-2}{2} \quad (l=0), \\ \Delta \geq l+D-2 \quad (l\geq 0) \end{split}$$

- "Carve" landscape of CFTs by imposing gap in scalar sector.
- Fix lightest scalar: σ.
- Vary next scalar: ε.
- Spectrum otherwise unconstrained: allow any other operators.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Constraining Spectrum using Crossing Symmetry

Geometry of Solution Space

 σ four-point function:

э

Geometry of Solution Space

Two-derivative truncation

- Consider $\langle \sigma \sigma \sigma \sigma \rangle$.
- Fix $\Delta(\sigma) = 0.515$.
- We plot e.g. $(F^{(1,1)}, F^{(3,0)})$.
- Consider putative spectrum $\{\Delta_k, l_k\}$

 $\Delta = \Delta_{unitarity}$ l = 0 to 10

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Vectors represent operators.
- ► All vectors lie inside cone ⇒ Inconsistent spectrum!

Geometry of Solution Space

Geometry of Solution Space

- Allow even more operators in putative spectrum.
- Scalar channel plays essential role.
 - \Rightarrow vectors *span* plane.
 - \Rightarrow In particular can find $p_k \ge 0$

$$\sum_{k} p_k F_{\Delta_k, l_k} = 0$$

 \Rightarrow crossing sym. can be satisfied.

Why does this work?

- Cone boundary defined by low-lying operators.
- Higher Δ , *l* operators less important.

イロト 不得 とうほう 不良 とう

э.

Follows from convergence of CB expansion.

Geometry of Solution Space

Geometry of Solution Space

Any CFT in D = 3 with dim $(\sigma) = 0.515$ must have another scalar with $0.76 \le \Delta \le 2.091$.

Geometry of Solution Space

Uniqueness of "Boundary Solution"

- Consider $\Delta_0 < 0.76$
 - No combination of vecs give a zero.

$$\sum_{i} p_i \vec{F}_i \neq 0 \text{ for } p_i > 0$$

- Consider $\Delta_0 > 0.76$
 - Many ways to form vects to give zero.
 - Families of possible $\{p_i\}$.
 - Neither spectrum nor OPE fixed.
- Consider $\Delta_0 = 0.76$
 - Only one way to form zero.
 - Non-zero p_i fixed \Rightarrow unique spectrum.
 - Value of $p_i := (C_{ii}^k)^2$ fixed \Rightarrow unique OPE.

Non-zero p_i : $\Delta \sim 0.76$, L = 0 $\Delta = 3$, L = 2

- NOTE: Num operators ~ num components of \vec{F}_i

Geometry of Solution Space

Uniqueness of "Boundary Solution"

- Consider $\Delta_0 < 0.76$
 - No combination of vecs give a zero.

$$\sum_{i} p_i \, \vec{F}_i \neq 0 \ \text{ for } p_i > 0$$

- Consider $\Delta_0 > 0.76$
 - Many ways to form vects to give zero.
 - ► Families of possible {*p_i*}.
 - Neither spectrum nor OPE fixed.

– Consider $\Delta_0 = 0.76$

- Only one way to form zero.
- Non-zero p_i fixed \Rightarrow unique spectrum.
- Value of $p_i := (C_{ii}^k)^2$ fixed \Rightarrow unique OPE.

Non-zero p_i : $\Delta \sim 0.76$, L = 0 $\Delta = 3$, L = 2

- NOTE: Num operators \sim num components of \vec{F}_i

Geometry of Solution Space

Uniqueness of "Boundary Solution"

- Consider $\Delta_0 < 0.76$
 - No combination of vecs give a zero.

$$\sum_{i} p_i \vec{F}_i \neq 0 \text{ for } p_i > 0$$

- Consider $\Delta_0 > 0.76$
 - Many ways to form vects to give zero.
 - ▶ Families of possible {*p_i*}.
 - Neither spectrum nor OPE fixed.
- Consider $\Delta_0 = 0.76$
 - Only one way to form zero.
 - Non-zero p_i fixed \Rightarrow unique spectrum.
 - Value of $p_i := (C_{ii}^k)^2$ fixed \Rightarrow unique OPE.
 - Non-zero p_i : $\Delta \sim 0.76, \quad L = 0$ $\Delta = 3, \quad L = 2$
- NOTE: Num operators \sim num components of \vec{F}_i

Geometry of Solution Space

Uniqueness of "Boundary Solution"

- Consider $\Delta_0 < 0.76$
 - No combination of vecs give a zero.

$$\sum_{i} p_i \vec{F}_i \neq 0 \text{ for } p_i > 0$$

- Consider $\Delta_0 > 0.76$
 - Many ways to form vects to give zero.
 - ▶ Families of possible {*p_i*}.
 - Neither spectrum nor OPE fixed.
- Consider $\Delta_0 = 0.76$
 - Only one way to form zero.
 - Non-zero p_i fixed \Rightarrow unique spectrum.
 - Value of $p_i := (C_{ii}^k)^2$ fixed \Rightarrow unique OPE.
 - Non-zero p_i : $\begin{array}{cc} \Delta \sim 0.76, & L = 0\\ \Delta = 3, & L = 2 \end{array}$
- NOTE: Num operators \sim num components of \vec{F}_i

▲□▶▲□▶▲□▶▲□▶ □ のQで

General properties of the approach:

- We are never proving that a CFT exists.
 - We only check a *subset* of the constraints coming from a single correlator.
 - In d > 2 we do not even know what a sufficient criteria is for CFT to exist!
- On the other hand we can prove that CFTs cannot exist with certain properties.
- By adding more vectors (i.e. allowing more operators in the spectrum) we can transition from having no solutions to having many possible solutions.
- In the boundary between these regions we get a unique solution.
- Solution This "visual" proof was nice for intuition but does not generalize well when we consider many (≫ 2) constraints/Taylor coefficients at once.

The next step is to formulate the bootstrap in a more abstract way and apply standard numerical algorithms (e.g. Linear Programming).

General properties of the approach:

- We are never proving that a CFT exists.
 - We only check a *subset* of the constraints coming from a single correlator.
 - In d > 2 we do not even know what a sufficient criteria is for CFT to exist!
- On the other hand we can prove that CFTs cannot exist with certain properties.
- By adding more vectors (i.e. allowing more operators in the spectrum) we can transition from having no solutions to having many possible solutions.
- In the boundary between these regions we get a unique solution.
- Solution This "visual" proof was nice for intuition but does not generalize well when we consider many (≫ 2) constraints/Taylor coefficients at once.

The next step is to formulate the bootstrap in a more abstract way and apply standard numerical algorithms (e.g. Linear Programming).

General properties of the approach:

- We are never proving that a CFT exists.
 - We only check a *subset* of the constraints coming from a single correlator.
 - In d > 2 we do not even know what a sufficient criteria is for CFT to exist!
- On the other hand we can prove that CFTs cannot exist with certain properties.
- By adding more vectors (i.e. allowing more operators in the spectrum) we can transition from having no solutions to having many possible solutions.
- In the boundary between these regions we get a unique solution.
- Solution This "visual" proof was nice for intuition but does not generalize well when we consider many (≫ 2) constraints/Taylor coefficients at once.

The next step is to formulate the bootstrap in a more abstract way and apply standard numerical algorithms (e.g. Linear Programming).

General properties of the approach:

- We are never proving that a CFT exists.
 - We only check a *subset* of the constraints coming from a single correlator.
 - In d > 2 we do not even know what a sufficient criteria is for CFT to exist!
- On the other hand we can prove that CFTs cannot exist with certain properties.
- By adding more vectors (i.e. allowing more operators in the spectrum) we can transition from having no solutions to having many possible solutions.
- In the boundary between these regions we get a unique solution.
- Solution This "visual" proof was nice for intuition but does not generalize well when we consider many (≫ 2) constraints/Taylor coefficients at once.

The next step is to formulate the bootstrap in a more abstract way and apply standard numerical algorithms (e.g. Linear Programming).

General properties of the approach:

- We are never proving that a CFT exists.
 - We only check a *subset* of the constraints coming from a single correlator.
 - In d > 2 we do not even know what a sufficient criteria is for CFT to exist!
- On the other hand we can prove that CFTs cannot exist with certain properties.
- By adding more vectors (i.e. allowing more operators in the spectrum) we can transition from having no solutions to having many possible solutions.
- In the boundary between these regions we get a unique solution.
- Solution This "visual" proof was nice for intuition but does not generalize well when we consider many (≫ 2) constraints/Taylor coefficients at once.

The next step is to formulate the bootstrap in a more abstract way and apply standard numerical algorithms (e.g. Linear Programming).

General properties of the approach:

- We are never proving that a CFT exists.
 - We only check a *subset* of the constraints coming from a single correlator.
 - In d > 2 we do not even know what a sufficient criteria is for CFT to exist!
- On the other hand we can prove that CFTs cannot exist with certain properties.
- By adding more vectors (i.e. allowing more operators in the spectrum) we can transition from having no solutions to having many possible solutions.
- In the boundary between these regions we get a unique solution.
- Solution This "visual" proof was nice for intuition but does not generalize well when we consider many (≫ 2) constraints/Taylor coefficients at once.

The next step is to formulate the bootstrap in a more abstract way and apply standard numerical algorithms (e.g. Linear Programming).
Linear Programming

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Bootstrap Formulation

The problem we want to solve is:

$$\sum_{\Delta,l} p_{\Delta,l} F_{\Delta,l}(z,\bar{z}) = 0$$

• Taylor expanding around $z = \overline{z} = 1/2$ and requiring each order to vanish gives a matrix:

$$\underbrace{\begin{pmatrix} F_1^{(0,0)} & F_2^{(0,0)} & F_3^{(0,0)} & \Delta \\ F_1^{(2,0)} & F_2^{(2,0)} & F_3^{(2,0)} & \cdots \\ F_1^{(0,2)} & F_2^{(0,2)} & F_3^{(0,2)} & \cdots \\ \downarrow \partial & \vdots & \vdots & \ddots \\ \end{bmatrix}}_{M_S} \underbrace{\begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \\ \vec{p} \end{pmatrix}}_{\vec{p}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ \vec{p} \end{pmatrix}$$

- ▶ Rows of matrix M_S are Taylor coefficients (labelled by derivaties: $\partial_z^m \partial_{\bar{z}}^n$).
- ▶ Columns are operators \mathcal{O}_k allowed in spectrum (continuous label $k = \{\Delta, l\} \in \mathcal{S}$)
- "Matrix" M_S depends on the choice of allowed spectrum.
- ► "Vector" $\vec{p} = ((C_{\phi\phi}^1)^2, (C_{\phi\phi}^2)^2, ...)$ will have mostly zeros: non-zero $p_i \Leftrightarrow$ operator (Δ_i, l_i) in the $\phi \times \phi$ OPE.

Bootstrap Formulation

The problem we want to solve is:

$$\sum_{\Delta,l} p_{\Delta,l} F_{\Delta,l}(z,\bar{z}) = 0$$

• Taylor expanding around $z = \overline{z} = 1/2$ and requiring each order to vanish gives a matrix:

$$\underbrace{\begin{pmatrix} F_1^{(0,0)} & F_2^{(0,0)} & F_3^{(0,0)} & \Delta \\ F_1^{(2,0)} & F_2^{(2,0)} & F_3^{(2,0)} & \cdots \\ F_1^{(0,2)} & F_2^{(0,2)} & F_3^{(0,2)} & \cdots \\ \downarrow \partial & \vdots & \vdots & \ddots \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & &$$

- Rows of matrix M_S are Taylor coefficients (labelled by derivaties: $\partial_z^m \partial_{\bar{z}}^n$).
- Columns are operators \mathcal{O}_k allowed in spectrum (continuous label $k = \{\Delta, l\} \in \mathcal{S}$)
- "Matrix" M_S depends on the choice of allowed spectrum.
- ► "Vector" $\vec{p} = ((C_{\phi\phi}^1)^2, (C_{\phi\phi}^2)^2, ...)$ will have mostly zeros: non-zero $p_i \Leftrightarrow$ operator (Δ_i, l_i) in the $\phi \times \phi$ OPE.

Bootstrap Formulation

The problem we want to solve is:

$$\sum_{\Delta,l} p_{\Delta,l} F_{\Delta,l}(z,\bar{z}) = 0$$

• Taylor expanding around $z = \overline{z} = 1/2$ and requiring each order to vanish gives a matrix:

$$\underbrace{\begin{pmatrix} F_1^{(0,0)} & F_2^{(0,0)} & F_3^{(0,0)} & \Delta \\ F_1^{(2,0)} & F_2^{(2,0)} & F_3^{(2,0)} & \cdots \\ F_1^{(0,2)} & F_2^{(0,2)} & F_3^{(0,2)} & \cdots \\ \downarrow \partial & \vdots & \vdots & \ddots \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

- Rows of matrix M_S are Taylor coefficients (labelled by derivaties: $\partial_z^m \partial_{\bar{z}}^n$).
- ► Columns are operators \mathcal{O}_k allowed in spectrum (continuous label $k = \{\Delta, l\} \in \mathcal{S}$)
- "Matrix" M_S depends on the choice of allowed spectrum.
- ► "Vector" $\vec{p} = ((C_{\phi\phi}^1)^2, (C_{\phi\phi}^2)^2, ...)$ will have mostly zeros: non-zero $p_i \Leftrightarrow$ operator (Δ_i, l_i) in the $\phi \times \phi$ OPE.

Bootstrap Formulation

The problem we want to solve is:

$$\sum_{\Delta,l} p_{\Delta,l} F_{\Delta,l}(z,\bar{z}) = 0$$

• Taylor expanding around $z = \overline{z} = 1/2$ and requiring each order to vanish gives a matrix:

$$\underbrace{\begin{pmatrix} F_1^{(0,0)} & F_2^{(0,0)} & F_3^{(0,0)} & \Delta \\ F_1^{(2,0)} & F_2^{(2,0)} & F_3^{(2,0)} & \cdots \\ F_1^{(0,2)} & F_2^{(0,2)} & F_3^{(0,2)} & \cdots \\ \downarrow \partial & \vdots & \vdots & \ddots \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

- Rows of matrix M_S are Taylor coefficients (labelled by derivaties: $\partial_z^m \partial_{\bar{z}}^n$).
- ► Columns are operators \mathcal{O}_k allowed in spectrum (continuous label $k = \{\Delta, l\} \in \mathcal{S}$)
- "Matrix" M_S depends on the choice of allowed spectrum.
- ► "Vector" $\vec{p} = ((C_{\phi\phi}^1)^2, (C_{\phi\phi}^2)^2, ...)$ will have mostly zeros: non-zero $p_i \Leftrightarrow$ operator (Δ_i, l_i) in the $\phi \times \phi$ OPE.

Bootstrap Formulation

The problem we want to solve is:

$$\sum_{\Delta,l} p_{\Delta,l} F_{\Delta,l}(z,\bar{z}) = 0$$

• Taylor expanding around $z = \overline{z} = 1/2$ and requiring each order to vanish gives a matrix:

$$\underbrace{\begin{pmatrix} F_1^{(0,0)} & F_2^{(0,0)} & F_3^{(0,0)} & \Delta \\ F_1^{(2,0)} & F_2^{(2,0)} & F_3^{(2,0)} & \cdots \\ F_1^{(0,2)} & F_2^{(0,2)} & F_3^{(0,2)} & \cdots \\ \downarrow \partial & \vdots & \vdots & \ddots \\ \end{bmatrix}}_{M_S} \underbrace{\begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \\ \vec{p} \end{pmatrix}}_{\vec{p}} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ \vec{p} \end{pmatrix}$$

- Rows of matrix M_S are Taylor coefficients (labelled by derivaties: $\partial_z^m \partial_{\bar{z}}^n$).
- ► Columns are operators \mathcal{O}_k allowed in spectrum (continuous label $k = \{\Delta, l\} \in \mathcal{S}$)
- "Matrix" M_S depends on the choice of allowed spectrum.
- ► "Vector" $\vec{p} = ((C_{\phi\phi}^1)^2, (C_{\phi\phi}^2)^2, ...)$ will have mostly zeros: non-zero $p_i \Leftrightarrow$ operator (Δ_i, l_i) in the $\phi \times \phi$ OPE.

Methodology

Linear Programming

Can rephrase our problem as a linear optimization problem:

Where \sim can mean either $=, \geq$, or \leq .

- M_S is a matrix with columns \vec{v}_{α} , the derives of the F_{α} .
- $\vec{p} = \{p_0, p_1, \dots\}$, the squared coupling constants $C^{\alpha}_{\phi\phi}$.
- In simplest case $\vec{c} = 0$, $\vec{b} = 0$ and we take $M_S \cdot \vec{p} = 0$.

Some issues with this:

- ∞ number of derivs \Rightarrow truncate to *n*.
- Couplings $p_{\Delta,l}$ have a continuous label Δ .
- For *n* derives M_S is an $n \times \infty$ matrix and \vec{p} is ∞ -vector.

Approach: use Linear Programming (LP)

Modified Simplex Algorithm for (semi-) continuous variables.

Methodology

Linear Programming

Can rephrase our problem as a linear optimization problem:

Where \sim can mean either $=, \geq$, or \leq .

- M_S is a matrix with columns \vec{v}_{α} , the derives of the F_{α} .
- $\vec{p} = \{p_0, p_1, \dots\}$, the squared coupling constants $C^{\alpha}_{\phi\phi}$.
- In simplest case $\vec{c} = 0$, $\vec{b} = 0$ and we take $M_S \cdot \vec{p} = 0$.

Some issues with this:

- ∞ number of derivs \Rightarrow truncate to *n*.
- Couplings $p_{\Delta,l}$ have a continuous label Δ .
- For *n* derives M_S is an $n \times \infty$ matrix and \vec{p} is ∞ -vector.

Approach: use Linear Programming (LP)

Modified Simplex Algorithm for (semi-) continuous variables.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Methodology

Linear Programming

Can rephrase our problem as a linear optimization problem:

Where \sim can mean either $=, \geq$, or \leq .

- M_S is a matrix with columns \vec{v}_{α} , the derives of the F_{α} .
- $\vec{p} = \{p_0, p_1, \dots\}$, the squared coupling constants $C^{\alpha}_{\phi\phi}$.
- In simplest case $\vec{c} = 0$, $\vec{b} = 0$ and we take $M_S \cdot \vec{p} = 0$.

Some issues with this:

- ∞ number of derivs \Rightarrow truncate to *n*.
- Couplings $p_{\Delta,l}$ have a continuous label Δ .
- For *n* derives M_S is an $n \times \infty$ matrix and \vec{p} is ∞ -vector.

Approach: use Linear Programming (LP)

Modified Simplex Algorithm for (semi-) continuous variables.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Linear Programming

How do we produce a plot like this?

- Fix Δ_{σ} to some value (e.g. 0.6).
- 2 Fix gap $\Delta_{\epsilon} = \Delta_1$ (e.g. = 1.6).
- This defines a putative spectrum

 $S_1 = \{\Delta_{l=0} \ge \Delta_1; \quad \Delta_{l>0} \ge \Delta_{\text{unitarity}}\}$

- Use LP to find \vec{p} with $M = M_{S_1}$.
- If LP find non-zero p
 :
 ⇒ CFT can exist increase ∆₁ and try again.
- If LP finds no p
 :
 ⇒ no CFT exists with Δ_ε ≥ Δ₁.
 decrease Δ₁ and try again.
- O Bisecting in Δ_1 until we find max value Δ_{ϵ}^{max} (to some resolution).
- Solution Repeat for the next value of Δ_{σ} .

Linear Programming

How do we produce a plot like this?

- Fix Δ_{σ} to some value (e.g. 0.6).
- 2 Fix gap $\Delta_{\epsilon} = \Delta_1$ (e.g. = 1.6).
- S This defines a putative spectrum

$$S_1 = \{\Delta_{l=0} \ge \Delta_1; \quad \Delta_{l>0} \ge \Delta_{\text{unitarity}}\}$$

- Use LP to find \vec{p} with $M = M_{S_1}$.
- If LP find non-zero p
 :
 ⇒ CFT can exist increase ∆₁ and try again.
- If LP finds no p
 :
 ⇒ no CFT exists with Δ_ε ≥ Δ₁.
 decrease Δ₁ and try again.
- Bisecting in Δ_1 until we find max value Δ_{ϵ}^{max} (to some resolution).
- Repeat for the next value of Δ_{σ} .

Linear Programming

How do we produce a plot like this?

- Fix Δ_{σ} to some value (e.g. 0.6).
- 2 Fix gap $\Delta_{\epsilon} = \Delta_1$ (e.g. = 1.6).
- S This defines a putative spectrum

$$\mathcal{S}_1 = \{\Delta_{l=0} \ge \Delta_1; \quad \Delta_{l>0} \ge \Delta_{unitarity}\}$$

- Use LP to find \vec{p} with $M = M_{S_1}$.
- If LP find non-zero p
 :
 ⇒ CFT can exist increase ∆₁ and try again.
- If LP finds no p
 :
 ⇒ no CFT exists with Δ_ε ≥ Δ₁.
 decrease Δ₁ and try again.
- Bisecting in Δ_1 until we find max value Δ_{ϵ}^{max} (to some resolution).
- Repeat for the next value of Δ_{σ} .

Linear Programming

How do we produce a plot like this?

- Fix Δ_{σ} to some value (e.g. 0.6).
- 2 Fix gap $\Delta_{\epsilon} = \Delta_1$ (e.g. = 1.6).
- S This defines a putative spectrum

$$\mathcal{S}_1 = \{\Delta_{l=0} \ge \Delta_1; \quad \Delta_{l>0} \ge \Delta_{unitarity}\}$$

- Use LP to find \vec{p} with $M = M_{S_1}$.
- If LP find non-zero p
 :
 ⇒ CFT can exist increase Δ₁ and try again.
- If LP finds no \vec{p} : \Rightarrow no CFT exists with $\Delta_{\epsilon} \ge \Delta_1$. decrease Δ_1 and try again.
- Bisecting in Δ_1 until we find max value Δ_{ϵ}^{max} (to some resolution).
- Repeat for the next value of Δ_{σ} .

Linear Programming

How do we produce a plot like this?

- Fix Δ_{σ} to some value (e.g. 0.6).
- 2 Fix gap $\Delta_{\epsilon} = \Delta_1$ (e.g. = 1.6).
- S This defines a putative spectrum

$$\mathcal{S}_1 = \{\Delta_{l=0} \ge \Delta_1; \quad \Delta_{l>0} \ge \Delta_{unitarity}\}$$

- Use LP to find \vec{p} with $M = M_{S_1}$.
- If LP find non-zero p
 :
 ⇒ CFT can exist increase Δ₁ and try again.
- If LP finds no \vec{p} : \Rightarrow no CFT exists with $\Delta_{\epsilon} \ge \Delta_1$. decrease Δ_1 and try again.
- Bisecting in Δ_1 until we find max value Δ_{ϵ}^{max} (to some resolution).
- Repeat for the next value of Δ_{σ} .

Figure : a putative spectrum S

Linear Programming

How do we produce a plot like this?

- Fix Δ_{σ} to some value (e.g. 0.6).
- 2 Fix gap $\Delta_{\epsilon} = \Delta_1$ (e.g. = 1.6).
- S This defines a putative spectrum

$$\mathcal{S}_1 = \{\Delta_{l=0} \ge \Delta_1; \quad \Delta_{l>0} \ge \Delta_{unitarity}\}$$

- Use LP to find \vec{p} with $M = M_{S_1}$.
- If LP find non-zero p
 : ⇒ CFT can exist increase Δ₁ and try again.
- If LP finds no \vec{p} : \Rightarrow no CFT exists with $\Delta_{\epsilon} \ge \Delta_1$. decrease Δ_1 and try again.
- Bisecting in Δ₁ until we find max value Δ^{max}_ε (to some resolution).
 - Repeat for the next value of Δ_{σ} .

Figure : a putative spectrum S

Linear Programming

How do we produce a plot like this?

- Fix Δ_{σ} to some value (e.g. 0.6).
- 2 Fix gap $\Delta_{\epsilon} = \Delta_1$ (e.g. = 1.6).
- S This defines a putative spectrum

$$\mathcal{S}_1 = \{\Delta_{l=0} \ge \Delta_1; \quad \Delta_{l>0} \ge \Delta_{ ext{unitarity}}\}$$

- Use LP to find \vec{p} with $M = M_{S_1}$.
- If LP find non-zero p
 :
 ⇒ CFT can exist increase Δ₁ and try again.
- If LP finds no \vec{p} : \Rightarrow no CFT exists with $\Delta_{\epsilon} \ge \Delta_1$. decrease Δ_1 and try again.
- **O** Bisecting in Δ_1 until we find max value Δ_{ϵ}^{max} (to some resolution).
- Solution Repeat for the next value of Δ_{σ} .

Linear Programming

What else can we bound?

Bootstrap allows us to:

- Consider arbitrary CFT data $S = \{(\Delta_i, \ell_i), C_{ijk}\}.$
- Check if this S is consistent with crossing sym of $\langle \sigma \sigma \sigma \sigma \rangle$. Any time a bound is saturated can compute full OPE.

Kinds of bounds we can place on S:

- Maximize a gap Δ_{ϵ} in $\sigma \times \sigma$ OPE.
- Maximize coefficient of operator

$$\sigma \times \sigma \sim 1 + \lambda_{\sigma\sigma}^{\epsilon} \epsilon + \dots + \lambda_{\sigma\sigma}^{T} T_{\mu\nu} + \dots$$

Can bound dimension of first scalar on Δ_{ϵ} (or any ℓ).

Linear Programming

What else can we bound?

Bootstrap allows us to:

- Consider arbitrary CFT data $S = \{(\Delta_i, \ell_i), C_{ijk}\}.$
- Check if this S is consistent with crossing sym of $\langle \sigma \sigma \sigma \sigma \rangle$. Any time a bound is saturated can compute full OPE.

Kinds of bounds we can place on S:

- Maximize a gap Δ_{ϵ} in $\sigma \times \sigma$ OPE.
- Maximize coefficient of operator

$$\sigma \times \sigma \sim 1 + \lambda_{\sigma\sigma}^{\epsilon} \epsilon + \dots + \left[\lambda_{\sigma\sigma}^{T} \right] T_{\mu\nu} + \dots$$

Can bound (maximize) OPE coefficient of any operator.

Linear Programming

What else can we bound?

Bootstrap allows us to:

- Consider arbitrary CFT data $S = \{(\Delta_i, \ell_i), C_{ijk}\}.$
- Check if this S is consistent with crossing sym of $\langle \sigma \sigma \sigma \sigma \rangle$. Any time a bound is saturated can compute full OPE.

Kinds of bounds we can place on S:

- Maximize a gap Δ_{ϵ} in $\sigma \times \sigma$ OPE.
- Maximize coefficient of operator

$$\sigma \times \sigma \sim 1 + \lambda_{\sigma\sigma}^{\epsilon} \epsilon + \dots + \left(\frac{\Delta_{\sigma}}{\sqrt{c}}\right) T_{\mu\nu} + \dots$$

If operator e.g. $T_{\mu\nu}$ get *lower bound* on *c*.

Linear Programming

- Instead of bounding Δ_{ϵ} we can formulate a different LP and bound OPE coefficients.
- Recall LP forumulation:

$$\begin{array}{ll} \text{Minimize:} & \vec{c} \cdot \vec{p}, \\ \text{subject to:} & M_{\mathcal{S}} \cdot \vec{p} = \vec{b}, & \vec{p} \geq 0 \end{array}$$

• Previously we took
$$\vec{c} = 0$$
 and $\vec{b} = 0$ and varied M_S .

- ▶ Instead we can fix M_S (i.e. fix the spectrum) but take non-zero \vec{c} .
- ▶ E.g. if we take $c_{\Delta,l} = -1$ then LP will maximize OPE coefficient of $\mathcal{O}_{\Delta,l}$.

Men is this useful? Maximizing $T_{\mu\nu}$ OPE coeff.

•
$$p_{T_{\mu\nu}} = p_{D,l} = \left(\frac{-\sigma}{c}\right)$$
 so equiv to
c-minimization.

47

Linear Programming

- Instead of bounding Δ_{ϵ} we can formulate a different LP and bound OPE coefficients.
- Recall LP forumulation:

$$\begin{array}{ll} \text{Minimize:} & \vec{c} \cdot \vec{p}, \\ \text{subject to:} & M_{\mathcal{S}} \cdot \vec{p} = \vec{b}, & \vec{p} \geq 0 \end{array}$$

• Previously we took
$$\vec{c} = 0$$
 and $\vec{b} = 0$ and varied M_S .

- ▶ Instead we can fix M_S (i.e. fix the spectrum) but take non-zero \vec{c} .
- ▶ E.g. if we take $c_{\Delta,l} = -1$ then LP will maximize OPE coefficient of $\mathcal{O}_{\Delta,l}$.

When is this useful?

• Maximizing $T_{\mu\nu}$ OPE coeff.

•
$$p_{T_{\mu\nu}} = p_{D,l} = \left(\frac{\Delta_{\sigma}^2}{c}\right)$$
 so equiv to *c*-minimization.

"Solving" the 3d Ising Model?

Previous "State-of-the-Art"

"Solving" the 3d Ising Model?

3d Ising model

Using \mathcal{E} -expansion, Monte Carlo and other techniques find partial spectrum:

Field:	σ	ϵ	ϵ'	$T_{\mu\nu}$	$C_{\mu u ho\lambda}$
Dim (Δ):	0.518135(50)	1.41275(25)	3.832(6)	3	5.0208(12)
Spin (l):	0	0	0	2	4

Only 5 operators and no OPE coefficients known for 3d Ising!

Lots of room for improvement!

Our Goal

Compute these anomolous dimensions (and many more) and OPE coefficients using the bootstrap applied along the boundary curve (i.e. the EFM).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectrum of the 3d Ising Model

"Solving" the 3d Ising Model?

A first problem: what point on the boundary? what is correct value of σ ?

- "Kink" is not so sharp when we zoom in.
- Octs sharper as we add more constraints.

Is there a better way to compute Δ_{σ} for 3d Ising?

イロト イポト イヨト イヨト

"Solving" the 3d Ising Model?

Our first bound plot was made by maximizing Δ_{ϵ} .

$$\sigma \times \sigma \sim 1 + \lambda_{\sigma\sigma}^{\epsilon} \epsilon + \dots + \lambda_{\sigma\sigma}^{T} T_{\mu\nu} + \dots$$

- Look for solutions to crossing that maximize e.g. $C_{\sigma\sigma}^T$.
- OPE coefficient of stress tensor fixed by conformal symmetry (in terms of *c*).
- *c* canonical stress-tensor normalization: $\langle T_{\mu\nu}T_{\rho\sigma}\rangle \sim c$.
- $T_{\mu\nu}$ OPE max $\Rightarrow c$ minimization.

"Solving" the 3d Ising Model?

Another way to find an extremal solution is to maximize an OPE coefficient.

$$\sigma \times \sigma \sim 1 + \lambda_{\sigma\sigma}^{\epsilon} \epsilon + \dots + \lambda_{\sigma\sigma}^{T} T_{\mu\nu} + \dots$$

- Look for solutions to crossing that maximize e.g. $C_{\sigma\sigma}^{T}$.
- OPE coefficient of stress tensor fixed by conformal symmetry (in terms of *c*).

- *c* canonical stress-tensor normalization: $\langle T_{\mu\nu}T_{\rho\sigma}\rangle \sim c$.
- $T_{\mu\nu}$ OPE max $\Rightarrow c$ minimization.

"Solving" the 3d Ising Model?

Another way to find an extremal solution is to maximize an OPE coefficient.

$$\sigma \times \sigma \sim 1 + \lambda_{\sigma\sigma}^{\epsilon} \epsilon + \dots + \left(\frac{\Delta_{\sigma}}{\sqrt{c}}\right) T_{\mu\nu} + \dots$$

- Look for solutions to crossing that maximize e.g. $C_{\sigma\sigma}^{T}$.
- OPE coefficient of stress tensor fixed by conformal symmetry (in terms of *c*).

- *c* canonical stress-tensor normalization: $\langle T_{\mu\nu}T_{\rho\sigma}\rangle \sim c$.
- $T_{\mu\nu}$ OPE max $\Rightarrow c$ minimization.

"Solving" the 3d Ising Model?

Another way to find an extremal solution is to maximize an OPE coefficient.

$$\sigma imes \sigma \sim 1 + \lambda_{\sigma\sigma}^{\epsilon} \epsilon + \dots + \left(\frac{\Delta_{\sigma}}{\sqrt{c}}\right) T_{\mu\nu} + \dots$$

- Look for solutions to crossing that maximize e.g. $C_{\sigma\sigma}^{T}$.
- OPE coefficient of stress tensor fixed by conformal symmetry (in terms of *c*).
- *c* canonical stress-tensor normalization: $\langle T_{\mu\nu}T_{\rho\sigma}\rangle \sim c$.
- $T_{\mu\nu}$ OPE max $\Rightarrow c$ minimization.

"Solving" the 3d Ising Model?

Another way to find an extremal solution is to maximize an OPE coefficient.

$$\sigma \times \sigma \sim 1 + \lambda_{\sigma\sigma}^{\epsilon} \epsilon + \dots + \left(\frac{\Delta_{\sigma}}{\sqrt{c}}\right) T_{\mu\nu} + \dots$$

In both d = 2, 3 Ising model *minimizes c*.

Reproduces $c = \frac{1}{2}$ in d = 2 to high precision!

"Solving" the 3d Ising Model?

Why minimize c?

- *c*-minimization also maximizes $\Delta_{\epsilon} \Rightarrow$ equivalent approaches.
- ► Location of "minimum" well defined while "kink" is somewhat ambgious.
- ► *c*-minimzation is more numerically stable and philosophically palatable.

- Our estimates are 2-3× better than nearest competition.
- Get OPE coefficients to same precision.
- Can also compute higher spin/dimension fields in principle.
- In practice technical difficulties due to approximately conserved currents.

"Solving" the 3d Ising Model?

Why minimize c?

- *c*-minimization also maximizes $\Delta_{\epsilon} \Rightarrow$ equivalent approaches.
- ► Location of "minimum" well defined while "kink" is somewhat ambgious.
- ► *c*-minimzation is more numerically stable and philosophically palatable.

Fixing Δ_{σ} to be at min of c we compute exponents using extremizing solution:

name	Δ	OPE coefficient
σ	0.518154(15)	
ϵ	1.41267(13)	$f_{\sigma\sigma\epsilon}^2 = 1.10636(9)$
ϵ'	3.8303(18)	$f^2_{\sigma\sigma\epsilon'} = 0.002810(6)$
T	3	$c/c_{\rm free} = 0.946534(11)$
T'	5.500(15)	$f_{\sigma\sigma T'}^2 = 2.97(2) \times 10^{-4}$

• Our estimates are $2-3 \times$ better than nearest competition.

- Get OPE coefficients to same precision.
- Can also compute higher spin/dimension fields in principle.
- ► In practice technical difficulties due to *approximately conserved currents*.

"Solving" the 3d Ising Model?

Why minimize c?

- *c*-minimization also maximizes $\Delta_{\epsilon} \Rightarrow$ equivalent approaches.
- ► Location of "minimum" well defined while "kink" is somewhat ambgious.
- ► *c*-minimzation is more numerically stable and philosophically palatable.

name	Δ	OPE coefficient
σ	0.518154(15)	
ϵ	1.41267(13)	$f_{\sigma\sigma\epsilon}^2 = 1.10636(9)$
ϵ'	3.8303(18)	$f^2_{\sigma\sigma\epsilon'} = 0.002810(6)$
T	3	$c/c_{\rm free} = 0.946534(11)$
T'	5.500(15)	$f_{\sigma\sigma T'}^2 = 2.97(2) \times 10^{-4}$

- Our estimates are $2-3 \times$ better than nearest competition.
- Get OPE coefficients to same precision.
- Can also compute higher spin/dimension fields *in principle*.
- ► In practice technical difficulties due to *approximately conserved currents*.

"Solving" the 3d Ising Model?

Why minimize c?

- *c*-minimization also maximizes $\Delta_{\epsilon} \Rightarrow$ equivalent approaches.
- ► Location of "minimum" well defined while "kink" is somewhat ambgious.
- ► *c*-minimzation is more numerically stable and philosophically palatable.

name	Δ	OPE coefficient
σ	0.518154(15)	
ϵ	1.41267(13)	$f_{\sigma\sigma\epsilon}^2 = 1.10636(9)$
ϵ'	3.8303(18)	$f^2_{\sigma\sigma\epsilon'} = 0.002810(6)$
T	3	$c/c_{\rm free} = 0.946534(11)$
T'	5.500(15)	$f_{\sigma\sigma T'}^2 = 2.97(2) \times 10^{-4}$

- Our estimates are $2-3 \times$ better than nearest competition.
- Get OPE coefficients to same precision.
- Can also compute higher spin/dimension fields *in principle*.
- ▶ In practice technical difficulties due to *approximately conserved currents*.

"Solving" the 3d Ising Model?

Why minimize c?

- *c*-minimization also maximizes $\Delta_{\epsilon} \Rightarrow$ equivalent approaches.
- ► Location of "minimum" well defined while "kink" is somewhat ambgious.
- ► *c*-minimzation is more numerically stable and philosophically palatable.

name	Δ	OPE coefficient
σ	0.518154(15)	
ϵ	1.41267(13)	$f_{\sigma\sigma\epsilon}^2 = 1.10636(9)$
ϵ'	3.8303(18)	$f^2_{\sigma\sigma\epsilon'} = 0.002810(6)$
T	3	$c/c_{\rm free} = 0.946534(11)$
T'	5.500(15)	$f_{\sigma\sigma T'}^2 = 2.97(2) \times 10^{-4}$

- Our estimates are $2-3 \times$ better than nearest competition.
- Get OPE coefficients to same precision.
- Can also compute higher spin/dimension fields *in principle*.
- In practice technical difficulties due to approximately conserved currents.

Multi-correlator Bootstrap [Kos, Poland, Simmons-Duffin]

"Solving" the 3d Ising Model?

Similar to old bootstrap bounds but now consider $\langle \sigma \sigma \sigma \sigma \rangle$, $\langle \sigma \epsilon \sigma \epsilon \rangle$, and $\langle \epsilon \epsilon \epsilon \epsilon \rangle$.

イロト イポト イヨト イヨト

э

- Provides access to \mathbb{Z}_2 odd spectrum.
- **Only assumption:** σ is only *relevant* \mathbb{Z}_2 scalar.
- 3 3d Ising model now approx *only* solution for small σ !

Origin of the Kink?

(wild speculation)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●
Re-arrangment of spectrum?

Origin of the Kink

Spectrum near the kink undergoes rapid re-arrangement.

Plots for next Scalar and Spin 2 Field

• "Kink" in (ϵ, σ) plot due to rapid rearrangement of *higher dim spectrum*.

э

- **2** This is why its important to determine σ to high precision.
- Does re-arrangement hint at some analytic structure we can use?

Kinematic Origin of Kinks: Null States?

Origin of the Kink

Can we find a nice explanation of the kink in d = 2?

- In d = 2 Virasoro strongly constrains spectrum.
- Minimal models (c < 1) have few (Virasoro) primaries in short representations of Virasoro.
- Ising model has only two Virasoro primaries: $|\sigma\rangle$ and $|\epsilon\rangle$.
- Virasoro decendent

$$T' = (L_{-2} + \eta L_{-1}^2) |\epsilon\rangle$$

is a spin 2 SL(2,R) primary for certain values of η .

- Correct value of η depends on c.
- ▶ Norm of T' fixed by Virasoro.
- T' becomes null at c = 1/2 (or $\Delta_{\sigma} = 1/8$)

$$\langle T'|T'\rangle = 0$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► EFM shows operator decoupling exactly at Ising point.

Kinematic Origin of Kinks: Null States?

Origin of the Kink

Can we find a nice explanation of the kink in d = 2?

- In d = 2 Virasoro strongly constrains spectrum.
- Minimal models (c < 1) have few (Virasoro) primaries in short representations of Virasoro.
- Ising model has only two Virasoro primaries: $|\sigma\rangle$ and $|\epsilon\rangle$.
- Virasoro decendent

$$T' = (L_{-2} + \eta L_{-1}^2) |\epsilon\rangle$$

is a spin 2 SL(2,R) primary for certain values of η .

- Correct value of η depends on c.
- ▶ Norm of T' fixed by Virasoro.
- T' becomes null at c = 1/2 (or $\Delta_{\sigma} = 1/8$)

$$\langle T'|T'\rangle = 0$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► EFM shows operator decoupling exactly at Ising point.

Kinematic Origin of Kinks: Null States?

Origin of the Kink

Interpolating the Kink

Origin of the Kink

How can we understand 3d structures in terms of 2d?

Fractional spacetime dimension

- Conformal blocks analytic function of spacetime dimension *d*.
- Special structures emerge in d = 1, 2, 4

 \Rightarrow lessons for d = 3?

Upper bound on first scalar operator dimension

- **)** Follow "breaking" of Virasoro from d = 2?
- **2** Compare with \mathcal{E} -expansion.
- Find kinks for all 1 < d < 4 ⇒ easier to extract kinematics

Track spectrum from d = 2 to d = 3?

Ising Model in Fractional Dimensions

Origin of the Kink

59

Other Ideas/Speculation

Origin of the Kink

Constraints from Higher Spin symmetry

Anomalous dimension of higher spin currents bounded

$$\delta\Delta \leq 2(\Delta_{\sigma} - \Delta_{\rm free}) \sim 0.037$$

E.g. spin 4 has dim 5.02 (conserved current is $\Delta = 5$).

[Nachtmann, Komargodski & Zhiboedov]

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- e Higher spin symmetry only weakly-broken ⇒ approx conserved currents.
 ⇒ Origin of numerical difficulties for L > 2 spectrum
- So In d = 2, 4 higher spin fields conserved \Rightarrow is d = 3 maximal breaking?

Hidden" Virasoro-like Symmetry in d = 3

- Ising model has infinite-dim symmetry in d = 2, 4.
- (a) Constraints give null states: T' in d = 2 or $\Box \phi$ in d = 4.
- Oculd this symmetry exist for all 1 < d < 4?
-) Maybe realized by non-local operators (e.g. $\sqrt{\partial}$, etc...).

Other Ideas/Speculation

Origin of the Kink

Constraints from Higher Spin symmetry

Anomalous dimension of higher spin currents bounded

$$\delta\Delta \leq 2(\Delta_{\sigma} - \Delta_{\rm free}) \sim 0.037$$

E.g. spin 4 has dim 5.02 (conserved current is $\Delta = 5$).

[Nachtmann, Komargodski & Zhiboedov]

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- light spin symmetry only weakly-broken ⇒ approx conserved currents.
 ⇒ Origin of numerical difficulties for L > 2 spectrum
- In d = 2, 4 higher spin fields conserved \Rightarrow is d = 3 maximal breaking?

'Hidden'' Virasoro-like Symmetry in d = 3

- Ising model has infinite-dim symmetry in d = 2, 4.
- (a) Constraints give null states: T' in d = 2 or $\Box \phi$ in d = 4.
- Solution Could this symmetry exist for all 1 < d < 4?
- Solution Maybe realized by non-local operators (e.g. $\sqrt{\partial}$, etc...).

Other Ideas/Speculation

Origin of the Kink

Constraints from Higher Spin symmetry

Anomalous dimension of higher spin currents bounded

$$\delta\Delta \leq 2(\Delta_{\sigma} - \Delta_{\rm free}) \sim 0.037$$

E.g. spin 4 has dim 5.02 (conserved current is $\Delta = 5$).

[Nachtmann, Komargodski & Zhiboedov]

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- Higher spin symmetry only weakly-broken \Rightarrow approx conserved currents. (⇒ Origin of numerical difficulties for L > 2 spectrum)
- In d = 2, 4 higher spin fields conserved \Rightarrow is d = 3 maximal breaking?

"Hidden" Virasoro-like Symmetry in d = 3

- Ising model has infinite-dim symmetry in d = 2, 4.
- Solution Constraints give null states: T' in d = 2 or $\Box \phi$ in d = 4.
- Solution \mathbf{S} Could this symmetry exist for all 1 < d < 4?
- Solution Maybe realized by non-local operators (e.g. $\sqrt{\partial}$, etc...).

Other Applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$\mathcal{N}=4 \text{ bounds}$

Other Applications [Liendo, Rastelli, van Rees]

Setup $\mathcal{N} = 4$ bootstrap. Bounds on leading twist dimension Δ_{ℓ} for $\ell = 0, 2, 4$. (holds for all values of g_{YM})

- Conjecture "corner" corresponds to a self-dual point.
- Matches some checks computed by resumming perturbative results.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Solution Non-perturbative bounds/results at $g \sim \mathcal{O}(1)$.
- [Alday, Bissi] also conjectured analytic results for OPE.

Analytic results/conjectures for 6d $\mathcal{N} = (0, 2)$ theories

Other Applications [Liendo, Rastelli, van Rees]

Bootstrap in $\mathcal{N} = (0, 2)$ theories requires first solving "mini-bootstrap" in a BPS subsector.

- BPS subsector defined via cohomology of some charge.
- Ovel twist involving conformal generator.
- Solution Solution Sector Cohomology be projected onto 2d subspace of \mathbb{R}^6 .
- Operators in cohomology are chiral, depend only on $z \in \mathbb{C}$.
- S This sector has a 2d W-algebra symmetry.
- **W**-algebra fixes three point functions of operators in cohomology.
- **(2)** By conjecturing algebra for A_n theories get 3-pt functions for all values of N!

Liberation at large spin

Other Applications [Fitzpatrick, Kaplan, Poland, Simmons-Duffin], [Komargodski, Zhiboedov]

In limit $|u| \ll |v| < 1$ leading twist field dominate bootstrap equations.

Bootstrap equation in $u \rightarrow 0$ limit

For every scalar ϕ of dimension Δ_{ϕ}

- CFT must contain an infinite tower of operators with dimension $\tau \rightarrow 2\Delta_{\phi} + \ell$.
- Asymtotic estimates holds in $\ell \to \infty$ limit.
- Morally these operators are $\phi(\partial^2)^n \partial_{\mu_1} \dots \partial_{\mu_\ell} \phi$.

Another interesting constraint, suggested by Nachtmann ('70s), but derived more thoroughly by [Komargodski, Zhiboedov] :

Convexity (Nachtmann's theorem)

Twist, $\tau_{\ell} = \Delta - \ell$, of leading twist operator

- Is an increasing, convex function of ℓ .
- Asymptotically (in ℓ) approaches $2 \tau_0$.

For e.g. 3d Ising where τ_0 is small \Rightarrow approx conserved currents.

Liberation at large spin

Other Applications [Fitzpatrick, Kaplan, Poland, Simmons-Duffin], [Komargodski, Zhiboedov]

In limit $|u| \ll |v| < 1$ leading twist field dominate bootstrap equations.

Bootstrap equation in $u \rightarrow 0$ limit

For every scalar ϕ of dimension Δ_{ϕ}

- CFT must contain an infinite tower of operators with dimension $\tau \rightarrow 2\Delta_{\phi} + \ell$.
- Asymtotic estimates holds in $\ell \to \infty$ limit.
- Morally these operators are $\phi(\partial^2)^n \partial_{\mu_1} \dots \partial_{\mu_\ell} \phi$.

Another interesting constraint, suggested by Nachtmann ('70s), but derived more thoroughly by [Komargodski, Zhiboedov] :

Convexity (Nachtmann's theorem)

Twist, $\tau_{\ell} = \Delta - \ell$, of leading twist operator

- Is an increasing, convex function of ℓ .
- Asymptotically (in ℓ) approaches $2 \tau_0$.

For e.g. 3d Ising where τ_0 is small \Rightarrow approx conserved currents.

New Methods

New Methods

Methods explained so far have several good properties:

- Can make rigorous statements about non-existance of CFTs for various spectra, S.
- We have control over our sources of error so can provide systematic error bounds.

But there are several un-features (i.e. bad things):

- The method is a "blunt tool": cannot easy "pick" which theory to study.
- If theory we're interested in is not at boundary of solution can't get unique spectrum.
- Computationally intensive: depending on desired accuracy might require computer cluster.
- Only applies to unitary CFTs.

New Methods

Methods explained so far have several good properties:

- Can make rigorous statements about non-existance of CFTs for various spectra, S.
- We have control over our sources of error so can provide systematic error bounds.

But there are several un-features (i.e. bad things):

- The method is a "blunt tool": cannot easy "pick" which theory to study.
- If theory we're interested in is not at boundary of solution can't get unique spectrum.
- Computationally intensive: depending on desired accuracy might require computer cluster.
- Only applies to unitary CFTs.

New Methods

Methods explained so far have several good properties:

- Can make rigorous statements about non-existance of CFTs for various spectra, S.
- We have control over our sources of error so can provide systematic error bounds.

But there are several un-features (i.e. bad things):

- The method is a "blunt tool": cannot easy "pick" which theory to study.
- If theory we're interested in is not at boundary of solution can't get unique spectrum.
- Computationally intensive: depending on desired accuracy might require computer cluster.
- Only applies to unitary CFTs.

New Methods

Methods explained so far have several good properties:

- Can make rigorous statements about non-existance of CFTs for various spectra, S.
- We have control over our sources of error so can provide systematic error bounds.

But there are several un-features (i.e. bad things):

- The method is a "blunt tool": cannot easy "pick" which theory to study.
- If theory we're interested in is not at boundary of solution can't get unique spectrum.
- Computationally intensive: depending on desired accuracy might require computer cluster.
- Only applies to unitary CFTs.

New Methods

Methods explained so far have several good properties:

- Can make rigorous statements about non-existance of CFTs for various spectra, S.
- We have control over our sources of error so can provide systematic error bounds.

But there are several un-features (i.e. bad things):

- The method is a "blunt tool": cannot easy "pick" which theory to study.
- If theory we're interested in is not at boundary of solution can't get unique spectrum.
- Computationally intensive: depending on desired accuracy might require computer cluster.
- Only applies to unitary CFTs.

New Methods

Methods explained so far have several good properties:

- Can make rigorous statements about non-existance of CFTs for various spectra, S.
- We have control over our sources of error so can provide systematic error bounds.

But there are several un-features (i.e. bad things):

- The method is a "blunt tool": cannot easy "pick" which theory to study.
- If theory we're interested in is not at boundary of solution can't get unique spectrum.
- Computationally intensive: depending on desired accuracy might require computer cluster.
- Only applies to unitary CFTs.

New Methods

Methods explained so far have several good properties:

- Can make rigorous statements about non-existance of CFTs for various spectra, S.
- We have control over our sources of error so can provide systematic error bounds.

But there are several un-features (i.e. bad things):

- The method is a "blunt tool": cannot easy "pick" which theory to study.
- If theory we're interested in is not at boundary of solution can't get unique spectrum.
- Computationally intensive: depending on desired accuracy might require computer cluster.
- Only applies to unitary CFTs.

New Methods

Methods explained so far have several good properties:

- Can make rigorous statements about non-existance of CFTs for various spectra, S.
- We have control over our sources of error so can provide systematic error bounds.

But there are several un-features (i.e. bad things):

- The method is a "blunt tool": cannot easy "pick" which theory to study.
- If theory we're interested in is not at boundary of solution can't get unique spectrum.
- Computationally intensive: depending on desired accuracy might require computer cluster.
- Only applies to unitary CFTs.

New Methods

Methods explained so far have several good properties:

- Can make rigorous statements about non-existance of CFTs for various spectra, S.
- We have control over our sources of error so can provide systematic error bounds.

But there are several un-features (i.e. bad things):

- The method is a "blunt tool": cannot easy "pick" which theory to study.
- If theory we're interested in is not at boundary of solution can't get unique spectrum.
- Computationally intensive: depending on desired accuracy might require computer cluster.
- Only applies to unitary CFTs.

New Methods

Recently F. Gliozzi proposed an *alternative* formulation of bootstrap.

His proposal has several advantages:

- In Holds for non-unitary theories.
- Or an give spectrum/OPE even for theories not on our boundaries.
- Somputationally much lighter (runs on a laptop).
- Adding more correlators does not make it much harder.

But also here there are several problems:

- Method is very non-systematic.
- Requires much stronger assumption and some input from other methods.
- Very little control over the error made from approximations.
- Oces not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a much better way to proceed than our bootstrap.

New Methods

Recently F. Gliozzi proposed an *alternative* formulation of bootstrap.

His proposal has several advantages:

- Holds for non-unitary theories.
- ② Can give spectrum/OPE even for theories not on our boundaries.
- Somputationally much lighter (runs on a laptop).
- Adding more correlators does not make it much harder.

But also here there are several problems:

- Method is very non-systematic.
- Requires much stronger assumption and some input from other methods.
- Very little control over the error made from approximations.
- Oces not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a much better way to proceed than our bootstrap.

New Methods

Recently F. Gliozzi proposed an *alternative* formulation of bootstrap.

His proposal has several advantages:

- Holds for non-unitary theories.
- ② Can give spectrum/OPE even for theories not on our boundaries.
- Or mutationally much lighter (runs on a laptop).
- Adding more correlators does not make it much harder.

But also here there are several problems:

- Method is very non-systematic.
- Requires much stronger assumption and some input from other methods.
- Very little control over the error made from approximations.
- Oces not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a much better way to proceed than our bootstrap.

New Methods

Recently F. Gliozzi proposed an *alternative* formulation of bootstrap.

His proposal has several advantages:

- Holds for non-unitary theories.
- ② Can give spectrum/OPE even for theories not on our boundaries.
- S Computationally much lighter (runs on a laptop).
- Adding more correlators does not make it much harder.

But also here there are several problems:

- Method is very non-systematic.
- ② Requires much stronger assumption and some input from other methods.
- Very little control over the error made from approximations.
- Oces not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a much better way to proceed than our bootstrap.

New Methods

Recently F. Gliozzi proposed an *alternative* formulation of bootstrap.

His proposal has several advantages:

- Holds for non-unitary theories.
- ② Can give spectrum/OPE even for theories not on our boundaries.
- Somputationally much lighter (runs on a laptop).
- Adding more correlators does not make it much harder.

But also here there are several problems:

- Method is very non-systematic.
- ② Requires much stronger assumption and some input from other methods.
- Very little control over the error made from approximations.
- Oces not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a much better way to proceed than our bootstrap.

New Methods

Recently F. Gliozzi proposed an *alternative* formulation of bootstrap.

His proposal has several advantages:

- Holds for non-unitary theories.
- ② Can give spectrum/OPE even for theories not on our boundaries.
- Somputationally much lighter (runs on a laptop).
- Adding more correlators does not make it much harder.

But also here there are several problems:

- Method is very non-systematic.
- Requires much stronger assumption and some input from other methods.
- Very little control over the error made from approximations.
- Oces not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a much better way to proceed than our bootstrap.

New Methods

Recently F. Gliozzi proposed an *alternative* formulation of bootstrap.

His proposal has several advantages:

- Holds for non-unitary theories.
- ② Can give spectrum/OPE even for theories not on our boundaries.
- Somputationally much lighter (runs on a laptop).
- Adding more correlators does not make it much harder.

But also here there are several problems:

- Method is very non-systematic.
- **I** Requires much stronger assumption and some input from other methods.
- Very little control over the error made from approximations.
- Does not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a much better way to proceed than our bootstrap.

New Methods

Recently F. Gliozzi proposed an *alternative* formulation of bootstrap.

His proposal has several advantages:

- Holds for non-unitary theories.
- ② Can give spectrum/OPE even for theories not on our boundaries.
- Somputationally much lighter (runs on a laptop).
- Adding more correlators does not make it much harder.

But also here there are several problems:

- Method is very non-systematic.
- I Requires much stronger assumption and some input from other methods.
- Very little control over the error made from approximations.
- Does not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a much better way to proceed than our bootstrap.

New Methods

Recently F. Gliozzi proposed an *alternative* formulation of bootstrap.

His proposal has several advantages:

- Holds for non-unitary theories.
- ② Can give spectrum/OPE even for theories not on our boundaries.
- Somputationally much lighter (runs on a laptop).
- Adding more correlators does not make it much harder.

But also here there are several problems:

- Method is very non-systematic.
- I Requires much stronger assumption and some input from other methods.
- Very little control over the error made from approximations.
- Oces not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a much better way to proceed than our bootstrap.

New Methods

Recently F. Gliozzi proposed an *alternative* formulation of bootstrap.

His proposal has several advantages:

- Holds for non-unitary theories.
- ② Can give spectrum/OPE even for theories not on our boundaries.
- Somputationally much lighter (runs on a laptop).
- Adding more correlators does not make it much harder.

But also here there are several problems:

- Method is very non-systematic.
- I Requires much stronger assumption and some input from other methods.
- Very little control over the error made from approximations.
- Obes not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a much better way to proceed than our bootstrap.

New Methods

Recently F. Gliozzi proposed an *alternative* formulation of bootstrap.

His proposal has several advantages:

- Holds for non-unitary theories.
- ② Can give spectrum/OPE even for theories not on our boundaries.
- Somputationally much lighter (runs on a laptop).
- Adding more correlators does not make it much harder.

But also here there are several problems:

- Method is very non-systematic.
- I Requires much stronger assumption and some input from other methods.
- Solution Very little control over the error made from approximations.
- Obes not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a much better way to proceed than our bootstrap.

New Methods

Recall in our method we make the following sort of assumptions about the spectrum:

▲□▶▲□▶▲□▶▲□▶ □ のQで
New Methods

This yields the following equation we solve (with M_S depending on S):

$$\underbrace{\begin{pmatrix} F_1^{(0,0)} & F_2^{(0,0)} & F_3^{(0,0)} & \stackrel{\Delta}{\to} \\ F_1^{(2,0)} & F_2^{(2,0)} & F_3^{(2,0)} & \cdots \\ F_1^{(0,2)} & F_2^{(0,2)} & F_3^{(0,2)} & \cdots \\ \downarrow \partial & \vdots & \vdots & \ddots \end{pmatrix}}_{M_{\mathcal{S}}} \underbrace{\begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \end{pmatrix}}_{\vec{p}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{pmatrix}$$

- ► The columns of the matrix are labeled by (∆, l) and there is a continuous infinity of them.
- ► This system is generally very under-determined.
- Generically there are ∞ -many solutions to this equation (i.e. for S deep in allowed region).
- This is because we made very weak assumptions about spectrum (e.g. just gap Δ_{ϵ}).

New Methods

This yields the following equation we solve (with M_S depending on S):

$$\underbrace{\begin{pmatrix} F_1^{(0,0)} & F_2^{(0,0)} & F_3^{(0,0)} & \stackrel{\Delta}{\to} \\ F_1^{(2,0)} & F_2^{(2,0)} & F_3^{(2,0)} & \cdots \\ F_1^{(0,2)} & F_2^{(0,2)} & F_3^{(0,2)} & \cdots \\ \downarrow \partial & \vdots & \vdots & \ddots \end{pmatrix}}_{M_{\mathcal{S}}} \underbrace{\begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \end{pmatrix}}_{\vec{p}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{pmatrix}$$

- ► The columns of the matrix are labeled by (∆, l) and there is a continuous infinity of them.
- ► This system is generally very under-determined.
- Generically there are ∞ -many solutions to this equation (i.e. for S deep in allowed region).
- This is because we made very weak assumptions about spectrum (e.g. just gap Δ_{ϵ}).

New Methods

This yields the following equation we solve (with M_S depending on S):

$$\underbrace{\begin{pmatrix} F_1^{(0,0)} & F_2^{(0,0)} & F_3^{(0,0)} & \stackrel{\Delta}{\to} \\ F_1^{(2,0)} & F_2^{(2,0)} & F_3^{(2,0)} & \cdots \\ F_1^{(0,2)} & F_2^{(0,2)} & F_3^{(0,2)} & \cdots \\ \downarrow \partial & \vdots & \vdots & \ddots \end{pmatrix}}_{M_{\mathcal{S}}} \underbrace{\begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \end{pmatrix}}_{\vec{p}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{pmatrix}$$

- ► The columns of the matrix are labeled by (∆, l) and there is a continuous infinity of them.
- This system is generally very under-determined.
- Generically there are ∞ -many solutions to this equation (i.e. for S deep in allowed region).
- This is because we made very weak assumptions about spectrum (e.g. just gap Δ_{ϵ}).

New Methods

This yields the following equation we solve (with M_S depending on S):

$$\underbrace{\begin{pmatrix} F_1^{(0,0)} & F_2^{(0,0)} & F_3^{(0,0)} & \stackrel{\Delta}{\to} \\ F_1^{(2,0)} & F_2^{(2,0)} & F_3^{(2,0)} & \cdots \\ F_1^{(0,2)} & F_2^{(0,2)} & F_3^{(0,2)} & \cdots \\ \downarrow \partial & \vdots & \vdots & \ddots \end{pmatrix}}_{M_{\mathcal{S}}} \underbrace{\begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \end{pmatrix}}_{\vec{p}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{pmatrix}$$

- ► The columns of the matrix are labeled by (∆, l) and there is a continuous infinity of them.
- This system is generally very under-determined.
- Generically there are ∞ -many solutions to this equation (i.e. for S deep in allowed region).
- This is because we made very weak assumptions about spectrum (e.g. just gap Δ_{ϵ}).

New Methods

This yields the following equation we solve (with M_S depending on S):

$$\underbrace{\begin{pmatrix} F_1^{(0,0)} & F_2^{(0,0)} & F_3^{(0,0)} & \stackrel{\Delta}{\to} \\ F_1^{(2,0)} & F_2^{(2,0)} & F_3^{(2,0)} & \cdots \\ F_1^{(0,2)} & F_2^{(0,2)} & F_3^{(0,2)} & \cdots \\ \downarrow \partial & \vdots & \vdots & \ddots \end{pmatrix}}_{M_{\mathcal{S}}} \underbrace{\begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \end{pmatrix}}_{\vec{p}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{pmatrix}$$

- ► The columns of the matrix are labeled by (∆, l) and there is a continuous infinity of them.
- This system is generally very under-determined.
- Generically there are ∞ -many solutions to this equation (i.e. for S deep in allowed region).
- This is because we made very weak assumptions about spectrum (e.g. just gap Δ_{ϵ}).

New Methods

Gliozzi makes the following (well motivated??) assumtions:

- Generically a CFT has a discrete (even sparse) spectrum.
- Also we might expect that generically there should be unique solution to crossing (if we know enough about the spectrum).

So he proposes the following:

```
Our assumptions
```

 $\sigma \times \sigma \sim 1 + \epsilon + \dots$

And we try to maximize Δ_{ϵ} while allowing anything in '...'.

Gliozzi wants to make the following much stronger assumptions:

Gliozzi's assumptions

 $\sigma \times \sigma \sim 1 + \epsilon + \epsilon' + T_{\mu\nu} + C_{\mu\nu\rho\lambda} + \dots$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ● ●

Solve for $\Delta_{\epsilon}, \Delta_{\epsilon'}, \Delta_{C_{\mu\nu\rho\lambda}}$ by requiring uniqueness and dropping '...'.

New Methods

Gliozzi makes the following (well motivated??) assumtions:

- Generically a CFT has a discrete (even sparse) spectrum.
- Also we might expect that generically there should be unique solution to crossing (if we know enough about the spectrum).

So he proposes the following:

Our assumptions

 $\sigma \times \sigma \sim 1 + \epsilon + \dots$

And we try to maximize Δ_{ϵ} while allowing anything in '...'.

Gliozzi wants to make the following much stronger assumptions:

Gliozzi's assumptions

 $\sigma \times \sigma \sim 1 + \epsilon + \epsilon' + T_{\mu\nu} + C_{\mu\nu\rho\lambda} + \dots$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Solve for $\Delta_{\epsilon}, \Delta_{\epsilon'}, \Delta_{C_{\mu\nu\rho\lambda}}$ by requiring uniqueness and dropping '...'.

New Methods

Gliozzi makes the following (well motivated??) assumtions:

- Generically a CFT has a discrete (even sparse) spectrum.
- Also we might expect that generically there should be unique solution to crossing (if we know enough about the spectrum).

So he proposes the following:

Our assumptions

 $\sigma \times \sigma \sim 1 + \epsilon + \dots$

And we try to maximize Δ_{ϵ} while allowing anything in '...'.

Gliozzi wants to make the following much stronger assumptions:

Gliozzi's assumptions

$$\sigma \times \sigma \sim 1 + \epsilon + \epsilon' + T_{\mu\nu} + C_{\mu\nu\rho\lambda} + \dots$$

Solve for $\Delta_{\epsilon}, \Delta_{\epsilon'}, \Delta_{C_{\mu\nu\rho\lambda}}$ by requiring uniqueness and dropping '...'.

New Methods

Gliozzi proposes to solve the following simplified problem:

- He truncates the spectrum to N discrete operators (here N = 4).
- He truncates derivates to some $M \ge N$ (here M = 5).
- He keeps n < N free parameters: $\Delta_{\sigma}, \Delta_{\epsilon}, \Delta_{\epsilon'}, \Delta_{C_4}$ (so here n = 4).
- ▶ He calls the CFT "truncatable" if system above admits unique solutions.

イロト 不得 トイヨト イヨト 三日

New Methods

Gliozzi proposes to solve the following simplified problem:

$$\underbrace{\begin{pmatrix} F_{\epsilon}^{(0,0)} & F_{\epsilon'}^{(0,0)} & F_{T_{\mu\nu}}^{(0,0)} & F_{C_4}^{(0,0)} \\ F_{\epsilon}^{(2,0)} & F_{\epsilon'}^{(2,0)} & F_{T_{\mu\nu}}^{(2,0)} & F_{C_4}^{(2,0)} \\ F_{\epsilon}^{(0,2)} & F_{\epsilon'}^{(0,2)} & F_{T_{\mu\nu}}^{(0,2)} & F_{C_4}^{(0,2)} \\ F_{\epsilon}^{(2,2)} & F_{\epsilon'}^{(2,2)} & F_{T_{\mu\nu}}^{(2,2)} & F_{C_4}^{(2,2)} \\ F_{\epsilon}^{(4,0)} & F_{\epsilon'}^{(4,0)} & F_{T_{\mu\nu}}^{(4,0)} & F_{C_4}^{(4,0)} \end{pmatrix}} \underbrace{\begin{pmatrix} P_{\epsilon} \\ P_{\epsilon'} \\ P_{T_{\mu\nu}} \\ P_{C_4} \end{pmatrix}}_{\vec{p}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

• He truncates the spectrum to N discrete operators (here N = 4).

- He truncates derivates to some $M \ge N$ (here M = 5).
- He keeps n < N free parameters: $\Delta_{\sigma}, \Delta_{\epsilon}, \Delta_{\epsilon'}, \Delta_{C_4}$ (so here n = 4).
- ▶ He calls the CFT "truncatable" if system above admits unique solutions.

イロト 不得 トイヨト イヨト 三日

New Methods

Gliozzi proposes to solve the following simplified problem:

$$\underbrace{\begin{pmatrix} F_{\epsilon}^{(0,0)} & F_{\epsilon'}^{(0,0)} & F_{T_{\mu\nu}}^{(0,0)} & F_{C_4}^{(0,0)} \\ F_{\epsilon}^{(2,0)} & F_{\epsilon'}^{(2,0)} & F_{T_{\mu\nu}}^{(2,0)} & F_{C_4}^{(2,0)} \\ F_{\epsilon}^{(0,2)} & F_{\epsilon'}^{(0,2)} & F_{T_{\mu\nu}}^{(0,2)} & F_{C_4}^{(0,2)} \\ F_{\epsilon}^{(2,2)} & F_{\epsilon'}^{(2,2)} & F_{C_4}^{(2,2)} & F_{C_4}^{(2,2)} \\ F_{\epsilon}^{(4,0)} & F_{\epsilon'}^{(4,0)} & F_{T_{\mu\nu}}^{(4,0)} & F_{C_4}^{(4,0)} \end{pmatrix}}_{\mathcal{M}_{\tau} \in \mathcal{C}_{\tau}^{\ell, C}} \underbrace{\begin{pmatrix} P_{\epsilon} \\ P_{\epsilon'} \\ P_{T_{\mu\nu}} \\ P_{C_4} \end{pmatrix}}_{\vec{p}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

• He truncates the spectrum to N discrete operators (here N = 4).

- He truncates derivates to some $M \ge N$ (here M = 5).
- He keeps n < N free parameters: $\Delta_{\sigma}, \Delta_{\epsilon}, \Delta_{\epsilon'}, \Delta_{C_4}$ (so here n = 4).
- ▶ He calls the CFT "truncatable" if system above admits unique solutions.

New Methods

Gliozzi proposes to solve the following simplified problem:

$$\underbrace{\begin{pmatrix} F_{\epsilon}^{(0,0)} & F_{\epsilon'}^{(0,0)} & F_{T_{\mu\nu}}^{(0,0)} & F_{C_4}^{(0,0)} \\ F_{\epsilon}^{(2,0)} & F_{\epsilon'}^{(2,0)} & F_{T_{\mu\nu}}^{(2,0)} & F_{C_4}^{(2,0)} \\ F_{\epsilon}^{(0,2)} & F_{\epsilon'}^{(0,2)} & F_{T_{\mu\nu}}^{(0,2)} & F_{C_4}^{(0,2)} \\ F_{\epsilon}^{(2,2)} & F_{\epsilon'}^{(2,2)} & F_{C_4}^{(2,2)} & F_{C_4}^{(2,2)} \\ F_{\epsilon}^{(4,0)} & F_{\epsilon'}^{(4,0)} & F_{T_{\mu\nu}}^{(4,0)} & F_{C_4}^{(4,0)} \end{pmatrix}}_{\mathcal{M}_{\tau} \in \epsilon' C} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

• He truncates the spectrum to N discrete operators (here N = 4).

- He truncates derivates to some $M \ge N$ (here M = 5).
- He keeps n < N free parameters: Δ_{σ} , Δ_{ϵ} , $\Delta_{\epsilon'}$, Δ_{C_4} (so here n = 4).
- ▶ He calls the CFT "truncatable" if system above admits unique solutions.

New Methods

Gliozzi proposes to solve the following simplified problem:

$$\underbrace{\begin{pmatrix} F_{\epsilon}^{(0,0)} & F_{\epsilon'}^{(0,0)} & F_{T_{\mu\nu}}^{(0,0)} & F_{C_4}^{(0,0)} \\ F_{\epsilon}^{(2,0)} & F_{\epsilon'}^{(2,0)} & F_{C_4}^{(2,0)} \\ F_{\epsilon}^{(0,2)} & F_{\epsilon'}^{(0,2)} & F_{T_{\mu\nu}}^{(0,2)} & F_{C_4}^{(0,2)} \\ F_{\epsilon}^{(2,2)} & F_{\epsilon'}^{(2,2)} & F_{T_{\mu\nu}}^{(2,2)} & F_{C_4}^{(2,2)} \\ F_{\epsilon}^{(4,0)} & F_{\epsilon'}^{(4,0)} & F_{T_{\mu\nu}}^{(4,0)} & F_{C_4}^{(4,0)} \end{pmatrix}}_{\mathcal{M}_{\sigma} \in \epsilon' \, C} \underbrace{\begin{pmatrix} P_{\epsilon} \\ P_{\epsilon'} \\ P_{T_{\mu\nu}} \\ P_{C_4} \end{pmatrix}}_{\mathcal{M}_{\sigma} \in \epsilon' \, C}$$

• He truncates the spectrum to N discrete operators (here N = 4).

- He truncates derivates to some $M \ge N$ (here M = 5).
- He keeps n < N free parameters: Δ_{σ} , Δ_{ϵ} , $\Delta_{\epsilon'}$, Δ_{C_4} (so here n = 4).
- ► He calls the CFT "truncatable" if system above admits unique solutions.

New Methods

Gliozzi proposes to solve the following simplified problem:

$$\underbrace{\begin{pmatrix} F_{\epsilon}^{(0,0)} & F_{\epsilon'}^{(0,0)} & F_{T_{\mu\nu}}^{(0,0)} & F_{C_4}^{(0,0)} \\ F_{\epsilon}^{(2,0)} & F_{\epsilon'}^{(2,0)} & F_{C_4}^{(2,0)} \\ F_{\epsilon}^{(0,2)} & F_{\epsilon'}^{(0,2)} & F_{T_{\mu\nu}}^{(0,2)} & F_{C_4}^{(0,2)} \\ F_{\epsilon}^{(2,2)} & F_{\epsilon'}^{(2,2)} & F_{T_{\mu\nu}}^{(2,2)} & F_{C_4}^{(2,2)} \\ F_{\epsilon}^{(4,0)} & F_{\epsilon'}^{(4,0)} & F_{T_{\mu\nu}}^{(4,0)} & F_{C_4}^{(4,0)} \end{pmatrix}}_{\mathcal{M}_{\sigma} \in \epsilon' \, C} \underbrace{\begin{pmatrix} P_{\epsilon} \\ P_{\epsilon'} \\ P_{T_{\mu\nu}} \\ P_{C_4} \end{pmatrix}}_{\mathcal{M}_{\sigma} \in \epsilon' \, C}$$

• He truncates the spectrum to N discrete operators (here N = 4).

- He truncates derivates to some $M \ge N$ (here M = 5).
- He keeps n < N free parameters: Δ_{σ} , Δ_{ϵ} , $\Delta_{\epsilon'}$, Δ_{C_4} (so here n = 4).
- ► He calls the CFT "truncatable" if system above admits unique solutions.

New Methods

Gliozzi proposes to solve the following simplified problem:

$$\underbrace{\begin{pmatrix} F_{\epsilon}^{(0,0)} & F_{\epsilon'}^{(0,0)} & F_{T_{\mu\nu}}^{(0,0)} & F_{C_4}^{(0,0)} \\ F_{\epsilon}^{(2,0)} & F_{\epsilon'}^{(2,0)} & F_{T_{\mu\nu}}^{(2,0)} & F_{C_4}^{(2,0)} \\ F_{\epsilon}^{(0,2)} & F_{\epsilon'}^{(0,2)} & F_{T_{\mu\nu}}^{(0,2)} & F_{C_4}^{(0,2)} \\ F_{\epsilon}^{(2,2)} & F_{\epsilon'}^{(2,2)} & F_{C_4}^{(2,2)} \\ F_{\epsilon}^{(4,0)} & F_{\epsilon'}^{(4,0)} & F_{T_{\mu\nu}}^{(4,0)} & F_{C_4}^{(4,0)} \end{pmatrix}}_{\mathcal{M}_{\sigma} \in \epsilon' C} \underbrace{\begin{pmatrix} P_{\epsilon} \\ P_{\epsilon'} \\ P_{T_{\mu\nu}} \\ P_{C_4} \end{pmatrix}}_{\mathcal{M}_{\sigma} \in \epsilon' C}$$

How do we solve this system?

- Gliozzi claims crossing symmetry should have a unique solution.
- If M = N (so \mathcal{M} square) uniqueness means det $(\mathcal{M}) = 0$.
- More generally take M > N and require det(M_i) = 0 with M_i square sub-matrices.

• Example:
$$M = N + 1$$
.

► \mathcal{M}_i are *M* square sub-matrices given by removing *i*'th row.

New Methods

Gliozzi proposes to solve the following simplified problem:

$$\underbrace{\begin{pmatrix} F_{\epsilon}^{(0,0)} & F_{\epsilon'}^{(0,0)} & F_{T_{\mu\nu}}^{(0,0)} & F_{C_4}^{(0,0)} \\ F_{\epsilon}^{(2,0)} & F_{\epsilon'}^{(2,0)} & F_{T_{\mu\nu}}^{(2,0)} & F_{C_4}^{(2,0)} \\ F_{\epsilon}^{(0,2)} & F_{\epsilon'}^{(0,2)} & F_{T_{\mu\nu}}^{(0,2)} & F_{C_4}^{(0,2)} \\ F_{\epsilon}^{(4,0)} & F_{\epsilon'}^{(4,0)} & F_{C_4}^{(4,0)} & \\ F_{\epsilon'}^{(4,0)} & F_{\epsilon'}^{(4,0)} & F_{C_4}^{(4,0)} & \\ \hline \mathcal{M}_{\sigma,\epsilon,\epsilon',C} & & \\ \hline \end{pmatrix}} \underbrace{\begin{pmatrix} p_{\epsilon} \\ p_{\epsilon'} \\ p_{T_{\mu\nu}} \\ p_{C_4} \\ \hline p_{\tau} \\ p_{\tau} \\ \hline p_{\tau} \\ \hline \end{pmatrix}}_{\vec{p}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix}$$

How do we solve this system?

- Gliozzi claims crossing symmetry should have a unique solution.
- **2** If M = N (so \mathcal{M} square) uniqueness means det $(\mathcal{M}) = 0$.
- More generally take M > N and require det(M_i) = 0 with M_i square sub-matrices.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Example: M = N + 1.
 - \mathcal{M}_i are *M* square sub-matrices given by removing *i*'th row.

New Methods

So e.g. if we take M = N + 1 get a system of M (= 5 here) equations:

 $\det(\mathcal{M}_i)=0 \qquad i=1,\ldots,5$

for n = 4 unknowns (because the det (\mathcal{M}_i) depends on $\Delta_{\sigma}, \Delta_{\epsilon}, \Delta_{\epsilon'}, \Delta_{C_4}$).

- ▶ *M* eqns for *n* unknowns is generally over-constrained.
- Gliozzi proposes to solve n eqns at a time (to get unique solutions) and compute "spread" of solutions.
- E.g. for 3d ising model fixed $C_4 = 5.022$ (as input) and computes $\Delta_{\sigma}, \Delta_{\epsilon}$:

New Methods

So e.g. if we take M = N + 1 get a system of M (= 5 here) equations:

 $\det(\mathcal{M}_i)=0 \qquad i=1,\ldots,5$

for n = 4 unknowns (because the det (\mathcal{M}_i) depends on $\Delta_{\sigma}, \Delta_{\epsilon}, \Delta_{\epsilon'}, \Delta_{C_4}$).

- ► *M* eqns for *n* unknowns is generally over-constrained.
- Gliozzi proposes to solve n eqns at a time (to get unique solutions) and compute "spread" of solutions.
- E.g. for 3d ising model fixed $C_4 = 5.022$ (as input) and computes $\Delta_{\sigma}, \Delta_{\epsilon}$:

New Methods

So e.g. if we take M = N + 1 get a system of M (= 5 here) equations:

 $\det(\mathcal{M}_i)=0 \qquad i=1,\ldots,5$

for n = 4 unknowns (because the det (\mathcal{M}_i) depends on $\Delta_{\sigma}, \Delta_{\epsilon}, \Delta_{\epsilon'}, \Delta_{C_4}$).

- ► *M* eqns for *n* unknowns is generally over-constrained.
- Gliozzi proposes to solve n eqns at a time (to get unique solutions) and compute "spread" of solutions.

E.g. for 3d ising model fixed $C_4 = 5.022$ (as input) and computes $\Delta_{\sigma}, \Delta_{\epsilon}$:

New Methods

So e.g. if we take M = N + 1 get a system of M (= 5 here) equations:

 $\det(\mathcal{M}_i)=0 \qquad i=1,\ldots,5$

for n = 4 unknowns (because the det (\mathcal{M}_i) depends on $\Delta_{\sigma}, \Delta_{\epsilon}, \Delta_{\epsilon'}, \Delta_{C_4}$).

- ► *M* eqns for *n* unknowns is generally over-constrained.
- Gliozzi proposes to solve n eqns at a time (to get unique solutions) and compute "spread" of solutions.
- E.g. for 3d ising model fixed $C_4 = 5.022$ (as input) and computes $\Delta_{\sigma}, \Delta_{\epsilon}$:

New Methods

- Using this approach computes Δ_{σ} , Δ_{ϵ} , $\Delta_{\epsilon'}$, $\Delta_{\epsilon''}$, etc... in 3d Ising.
- His solution has one free parameter which he fixes using $\Delta_{C_4} = 5.022$ (input from Monte Carlo).
- Getting these quantities requires much less computation than our method.
- **Problem:** by throwing away high-dim operators he's making an error $O(e^{-\Delta_*})$ with $\Delta_* \sim 10$. So real equation is:

with $||\vec{\alpha}|| < e^{-10}$.

We have no idea how varying $\vec{\alpha}$ affects values of $\Delta_{\epsilon}, \Delta'_{\alpha}$ etc. $\vec{\alpha}$, $\vec{$

New Methods

- Using this approach computes Δ_{σ} , Δ_{ϵ} , $\Delta_{\epsilon'}$, $\Delta_{\epsilon''}$, etc... in 3d Ising.
- His solution has one free parameter which he fixes using $\Delta_{C_4} = 5.022$ (input from Monte Carlo).
- Getting these quantities requires much less computation than our method.

Problem: by throwing away high-dim operators he's making an error $O(e^{-\Delta_*})$ with $\Delta_* \sim 10$. So real equation is:

$$\underbrace{\begin{pmatrix} F_{\epsilon}^{(0,0)} & F_{\epsilon'}^{(0,0)} & F_{T_{\mu\nu}}^{(0,0)} & F_{C_4}^{(0,0)} \\ F_{\epsilon}^{(2,0)} & F_{\epsilon'}^{(2,0)} & F_{T_{\mu\nu}}^{(2,0)} & F_{C_4}^{(2,0)} \\ F_{\epsilon}^{(0,2)} & F_{\epsilon'}^{(0,2)} & F_{T_{\mu\nu}}^{(0,2)} & F_{C_4}^{(0,2)} \\ F_{\epsilon'}^{(2,2)} & F_{\epsilon'}^{(2,2)} & F_{T_{\mu\nu}}^{(2,2)} & F_{C_4}^{(2,2)} \\ F_{\epsilon'}^{(4,0)} & F_{\epsilon'}^{(4,0)} & F_{T_{\mu\nu}}^{(4,0)} & F_{C_4}^{(4,0)} \end{pmatrix}}_{\mathcal{M}_{\epsilon,\epsilon',C}} \underbrace{\begin{pmatrix} p_{\epsilon} \\ p_{\epsilon'} \\ p_{T_{\mu\nu}} \\ p_{C_4} \end{pmatrix}}_{\vec{p}} = \underbrace{\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix}}_{\vec{\alpha}}$$

with $||\vec{\alpha}|| < e^{-10}$.

•

New Methods

- Using this approach computes Δ_{σ} , Δ_{ϵ} , $\Delta_{\epsilon'}$, $\Delta_{\epsilon''}$, etc... in 3d Ising.
- His solution has one free parameter which he fixes using $\Delta_{C_4} = 5.022$ (input from Monte Carlo).
- Getting these quantities requires much less computation than our method.

Problem: by throwing away high-dim operators he's making an error $O(e^{-\Delta_*})$ with $\Delta_* \sim 10$. So real equation is:

$$\underbrace{\begin{pmatrix} F_{\epsilon}^{(0,0)} & F_{\epsilon'}^{(0,0)} & F_{T_{\mu\nu}}^{(0,0)} & F_{C_4}^{(0,0)} \\ F_{\epsilon}^{(2,0)} & F_{\epsilon'}^{(2,0)} & F_{T_{\mu\nu}}^{(2,0)} & F_{C_4}^{(2,0)} \\ F_{\epsilon}^{(0,2)} & F_{\epsilon'}^{(0,2)} & F_{T_{\mu\nu}}^{(0,2)} & F_{C_4}^{(0,2)} \\ F_{\epsilon}^{(4,0)} & F_{\epsilon'}^{(4,0)} & F_{T_{\mu\nu}}^{(4,0)} & F_{C_4}^{(4,0)} \\ \hline \mathcal{M}_{\epsilon,\epsilon',C} & & & \\ \hline \end{array}} \underbrace{\begin{pmatrix} p_{\epsilon} \\ p_{\epsilon'} \\ p_{T_{\mu\nu}} \\ p_{C_4} \\ \hline p_{\ell} \\ p_{\ell} \\ \hline p_{\ell} \\ p_{\ell} \\ \hline p_{\ell} \\ \hline p_{\ell} \\ \hline p_{\ell} \\ \hline p_{\ell} \hline p_{\ell} \\ p_{\ell} \hline p_{\ell} \\ \hline p_{\ell} \hline p_{\ell} \\ \hline p_{\ell} \hline p_{\ell}$$

with $||\vec{\alpha}|| < e^{-10}$. We have no idea how varying $\vec{\alpha}$ affects values of $\Delta_{\epsilon}, \Delta'_{\epsilon}$, etc...

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- (a) Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- (a) So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- () Also no control over the (relatively) larger error.
- O Solving det $\mathcal{M}_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Ocesn't assume unitarity at all (he checks it in non-unitary theories).
- Can easily incorporate additional correlators (just add more rows to \mathcal{M}).

- Definitely worth investigating more.
- Would be great to get better control of error.
- You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
-) Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- (a) So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- O Also no control over the (relatively) larger error.
- O Solving det $M_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Ocesn't assume unitarity at all (he checks it in non-unitary theories).
- Can easily incorporate additional correlators (just add more rows to \mathcal{M}).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Definitely worth investigating more.
- Would be great to get better control of error.
- You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- **(a)** Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- (a) So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- O Also no control over the (relatively) larger error.
- O Solving det $\mathcal{M}_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Doesn't assume unitarity at all (he checks it in non-unitary theories).
- Can easily incorporate additional correlators (just add more rows to \mathcal{M}).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Definitely worth investigating more.
- Would be great to get better control of error.
- You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- **③** Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- (a) So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- Also no control over the (relatively) larger error.
- O Solving det $M_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Doesn't assume unitarity at all (he checks it in non-unitary theories).
- Can easily incorporate additional correlators (just add more rows to \mathcal{M}).

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

- Definitely worth investigating more.
- Would be great to get better control of error.
- You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- **(a)** Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- Also no control over the (relatively) larger error.
- O Solving det $\mathcal{M}_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Operation Doesn't assume unitarity at all (he checks it in non-unitary theories).
- Can easily incorporate additional correlators (just add more rows to \mathcal{M}).

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

- Definitely worth investigating more.
- Would be great to get better control of error.
- You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- **(a)** Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- Also no control over the (relatively) larger error.
- Solving det $\mathcal{M}_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Operation Doesn't assume unitarity at all (he checks it in non-unitary theories).
- $\textcircled{\sc opt}$ Can easily incorporate additional correlators (just add more rows to $\mathcal{M}).$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

- Definitely worth investigating more.
- Would be great to get better control of error.
- You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- **(a)** Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- Also no control over the (relatively) larger error.
- Solving det $M_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Operation Doesn't assume unitarity at all (he checks it in non-unitary theories).
- Can easily incorporate additional correlators (just add more rows to \mathcal{M}).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Definitely worth investigating more.
- Would be great to get better control of error.
- You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- **(a)** Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- Also no control over the (relatively) larger error.
- Solving det $M_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Ooesn't assume unitarity at all (he checks it in non-unitary theories).
- So Can easily incorporate additional correlators (just add more rows to \mathcal{M}).

- Definitely worth investigating more.
- Would be great to get better control of error.
- You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- **(a)** Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- Also no control over the (relatively) larger error.
- Solving det $M_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Obesn't assume unitarity at all (he checks it in non-unitary theories).
- So Can easily incorporate additional correlators (just add more rows to \mathcal{M}).

- Definitely worth investigating more.
- Would be great to get better control of error.
- You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- **(a)** Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- Also no control over the (relatively) larger error.
- Solving det $M_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Obesn't assume unitarity at all (he checks it in non-unitary theories).
- Can easily incorporate additional correlators (just add more rows to *M*).

- Definitely worth investigating more.
- Would be great to get better control of error.
- You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- **(a)** Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- Also no control over the (relatively) larger error.
- Solving det $M_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Obesn't assume unitarity at all (he checks it in non-unitary theories).

- Definitely worth investigating more.
 - Would be great to get better control of error.
 - You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- **(a)** Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- Also no control over the (relatively) larger error.
- Solving det $M_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Obesn't assume unitarity at all (he checks it in non-unitary theories).

- O Definitely worth investigating more.
- Would be great to get better control of error.
 - You're all encouraged to join in!

New Methods

- In Gliozzi method must guess number of operators, N, with $\Delta < \Delta_*$.
- Wrong guess may give no solutions or too many solutions, etc...
- **(a)** Need Δ_* to be small else would have too many parameters.
- In our approach $\Delta_* \gg 1$ (can be 50, 100, etc...).
- So there are many choices to make in Gliozzi method \Rightarrow more of an art.
- Also no control over the (relatively) larger error.
- Solving det $M_i = 0$ non-trivial as we increase M, N and n.

But

- Can be done with Mathematica on a laptop.
- Obesn't assume unitarity at all (he checks it in non-unitary theories).

- Definitely worth investigating more.
- Would be great to get better control of error.
- You're all encouraged to join in!
Bootstrapping Theories with Four Supercharges (in d = 2 - 4)

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Bootstrapping Theories with Four Supercharges

How can we include SUSY constraints in bootstrap?

- SUSY relates OPE coefficients of components of SUSY multiplets in some correlators.
- This yields superconformal blocks for whole SUSY multiplet:

$$\mathcal{G}_{\Delta,l} = G_{\Delta,l} + c_1 G_{\Delta+1,l+1} + c_2 G_{\Delta+1,l-1} + c_3 G_{\Delta+2,l}$$

with c_1, c_2, c_3 fixed by SUSY.

- SUSY fixes dimensions of protected operators by e.g. *a*-maximization.
- SUSY imposes stronger unitarity bounds in terms of R-charge:

$$\Delta \ge \frac{d-1}{2}I$$

(for scalars in theories with 4 supercharges)

Bootstrapping Theories with Four Supercharges

How can we include SUSY constraints in bootstrap?

- SUSY relates OPE coefficients of components of SUSY multiplets in some correlators.
- (a) This yields superconformal blocks for whole SUSY multiplet:

$$\mathcal{G}_{\Delta,l} = G_{\Delta,l} + c_1 G_{\Delta+1,l+1} + c_2 G_{\Delta+1,l-1} + c_3 G_{\Delta+2,l}$$

with c_1, c_2, c_3 fixed by SUSY.

- SUSY fixes dimensions of protected operators by e.g. *a*-maximization.
- SUSY imposes stronger unitarity bounds in terms of R-charge:

$$\Delta \ge \frac{d-1}{2}I$$

(for scalars in theories with 4 supercharges)

Bootstrapping Theories with Four Supercharges

How can we include SUSY constraints in bootstrap?

- SUSY relates OPE coefficients of components of SUSY multiplets in some correlators.
- This yields superconformal blocks for whole SUSY multiplet:

$$\mathcal{G}_{\Delta,l} = G_{\Delta,l} + c_1 G_{\Delta+1,l+1} + c_2 G_{\Delta+1,l-1} + c_3 G_{\Delta+2,l}$$

with c_1, c_2, c_3 fixed by SUSY.

- SUSY fixes dimensions of protected operators by e.g. *a*-maximization.
- SUSY imposes stronger unitarity bounds in terms of R-charge:

$$\Delta \ge \frac{d-1}{2}I$$

(for scalars in theories with 4 supercharges)

Bootstrapping Theories with Four Supercharges

How can we include SUSY constraints in bootstrap?

- SUSY relates OPE coefficients of components of SUSY multiplets in some correlators.
- This yields superconformal blocks for whole SUSY multiplet:

$$\mathcal{G}_{\Delta,l} = G_{\Delta,l} + c_1 G_{\Delta+1,l+1} + c_2 G_{\Delta+1,l-1} + c_3 G_{\Delta+2,l}$$

with c_1, c_2, c_3 fixed by SUSY.

SUSY fixes dimensions of protected operators by e.g. *a*-maximization.

SUSY imposes stronger unitarity bounds in terms of R-charge:

$$\Delta \geq \frac{d-1}{2} R$$

(for scalars in theories with 4 supercharges)

Bootstrapping Theories with Four Supercharges

How can we include SUSY constraints in bootstrap?

- SUSY relates OPE coefficients of components of SUSY multiplets in some correlators.
- This yields superconformal blocks for whole SUSY multiplet:

$$\mathcal{G}_{\Delta,l} = G_{\Delta,l} + c_1 G_{\Delta+1,l+1} + c_2 G_{\Delta+1,l-1} + c_3 G_{\Delta+2,l}$$

with c_1, c_2, c_3 fixed by SUSY.

- SUSY fixes dimensions of protected operators by e.g. *a*-maximization.
- SUSY imposes stronger unitarity bounds in terms of R-charge:

$$\Delta \geq \frac{d-1}{2} K$$

(for scalars in theories with 4 supercharges)

Bootstrapping Theories with Four Supercharges

How can we include SUSY constraints in bootstrap?

- SUSY relates OPE coefficients of components of SUSY multiplets in some correlators.
- This yields superconformal blocks for whole SUSY multiplet:

$$\mathcal{G}_{\Delta,l} = G_{\Delta,l} + c_1 G_{\Delta+1,l+1} + c_2 G_{\Delta+1,l-1} + c_3 G_{\Delta+2,l}$$

with c_1, c_2, c_3 fixed by SUSY.

- SUSY fixes dimensions of protected operators by e.g. *a*-maximization.
- SUSY imposes stronger unitarity bounds in terms of R-charge:

$$\Delta \geq \frac{d-1}{2} K$$

(for scalars in theories with 4 supercharges)

Bootstrapping Theories with Four Supercharges

In theories with 4 supercharges dimensions of some operators constrained by SUSY.

- Chiral operator is annihilated by half supercharges.
- SUSY algebra contains U(1) R-charge and Δ of chiral operator depends on its R-charge:

$$\Delta = \left(\frac{d-1}{2}\right) R$$

▶ When only one kind of field superpotential can fix R-charge uniquely since superpotential *W* must have *R*-charge 2. E.g.:

$$W = X^3$$

implies superfield X has R-charge 2/3.

► If more than one field (e.g. *XY*²) can use *a*-maximization to compute R-charge.

Bootstrapping Theories with Four Supercharges

In theories with 4 supercharges dimensions of some operators constrained by SUSY.

- Chiral operator is annihilated by half supercharges.
- ► SUSY algebra contains U(1) R-charge and ∆ of chiral operator depends on its R-charge:

$$\Delta = \left(\frac{d-1}{2}\right) R$$

▶ When only one kind of field superpotential can fix R-charge uniquely since superpotential *W* must have *R*-charge 2. E.g.:

$$W = X^3$$

implies superfield X has R-charge 2/3.

▶ If more than one field (e.g. *XY*²) can use *a*-maximization to compute R-charge.

Bootstrapping Theories with Four Supercharges

In theories with 4 supercharges dimensions of some operators constrained by SUSY.

- Chiral operator is annihilated by half supercharges.
- ► SUSY algebra contains U(1) R-charge and ∆ of chiral operator depends on its R-charge:

$$\Delta = \left(\frac{d-1}{2}\right) R$$

When only one kind of field superpotential can fix R-charge uniquely since superpotential W must have R-charge 2. E.g.:

$$W = X^3$$

implies superfield X has R-charge 2/3.

▶ If more than one field (e.g. *XY*²) can use *a*-maximization to compute R-charge.

Bootstrapping Theories with Four Supercharges

In theories with 4 supercharges dimensions of some operators constrained by SUSY.

- Chiral operator is annihilated by half supercharges.
- ► SUSY algebra contains U(1) R-charge and ∆ of chiral operator depends on its R-charge:

$$\Delta = \left(\frac{d-1}{2}\right) R$$

▶ When only one kind of field superpotential can fix R-charge uniquely since superpotential *W* must have *R*-charge 2. E.g.:

$$W = X^3$$

implies superfield X has R-charge 2/3.

► If more than one field (e.g. *XY*²) can use *a*-maximization to compute R-charge.

SUSY Constraints

Bootstrapping Theories with Four Supercharges

Lets consider theories with four supercharges in d = 2 - 4.

- Let Φ be complex chiral scalar field so $\Delta = \left(\frac{d-1}{2}\right) R$.
- To get strong constraints we consider

$$\Phi \times \Phi$$
 and $\Phi \times \overline{\Phi}$ OPE in $\langle \Phi \overline{\Phi} \Phi \overline{\Phi} \rangle$

• Φ carries *R*-charge so can decompose OPE in reps of *R*-charge:

 $\Phi \times \overline{\Phi} \sim \text{singlets}$ $\Phi \times \Phi \sim \text{R-charge 2}$

- ► CB decomposition gives different constraints in each *R*-charge channel.
- Because Φ , $\overline{\Phi}$ not identical can get odd-spin contributions in $\langle \Phi \overline{\Phi} \Phi \overline{\Phi} \rangle$.
- SUSY (+R-charge) fixes dims of some contributions in $\Phi \times \Phi$ OPE:

$$\Phi \times \Phi \sim 1 + \Psi_{d-2\Delta_{\Phi},0} + \Phi^2 + \dots$$

with $\Delta \ge |2\Delta_{\Phi} - (d-1)| + l + (d-1)$ for '...'

SUSY Constraints

Bootstrapping Theories with Four Supercharges

Lets consider theories with four supercharges in d = 2 - 4.

- Let Φ be complex chiral scalar field so $\Delta = \left(\frac{d-1}{2}\right) R$.
- To get strong constraints we consider

$$\Phi \times \Phi \text{ and } \Phi \times \overline{\Phi} \text{ OPE in } \langle \Phi \overline{\Phi} \Phi \overline{\Phi} \rangle$$

• Φ carries *R*-charge so can decompose OPE in reps of *R*-charge:

 $\Phi \times \overline{\Phi} \sim \text{singlets}$ $\Phi \times \Phi \sim \text{R-charge 2}$

- ► CB decomposition gives different constraints in each *R*-charge channel.
- Because Φ , $\overline{\Phi}$ not identical can get odd-spin contributions in $\langle \Phi \overline{\Phi} \Phi \overline{\Phi} \rangle$.
- SUSY (+R-charge) fixes dims of some contributions in $\Phi \times \Phi$ OPE:

$$\Phi \times \Phi \sim 1 + \Psi_{d-2\Delta_{\Phi},0} + \Phi^2 + \dots$$

with $\Delta \ge |2\Delta_{\Phi} - (d-1)| + l + (d-1)$ for '...'.

SUSY Constraints

Bootstrapping Theories with Four Supercharges

Lets consider theories with four supercharges in d = 2 - 4.

- Let Φ be complex chiral scalar field so $\Delta = \left(\frac{d-1}{2}\right) R$.
- To get strong constraints we consider

$$\Phi \times \Phi \text{ and } \Phi \times \overline{\Phi} \text{ OPE in } \langle \Phi \overline{\Phi} \Phi \overline{\Phi} \rangle$$

• Φ carries *R*-charge so can decompose OPE in reps of *R*-charge:

 $\Phi \times \overline{\Phi} \sim \text{singlets}$ $\Phi \times \Phi \sim \text{R-charge 2}$

- ► CB decomposition gives different constraints in each *R*-charge channel.
- Because Φ , $\overline{\Phi}$ not identical can get odd-spin contributions in $\langle \Phi \overline{\Phi} \Phi \overline{\Phi} \rangle$.
- SUSY (+R-charge) fixes dims of some contributions in $\Phi \times \Phi$ OPE:

$$\Phi \times \Phi \sim 1 + \Psi_{d-2\Delta_{\Phi},0} + \Phi^2 + \dots$$

. ▲□▶▲@▶▲콜▶▲콜▶ 콜 - 의익()

with $\Delta \ge |2\Delta_{\Phi} - (d-1)| + l + (d-1)$ for '...'.

Bootstrapping Theories with Four Supercharges

So what kind of bounds to we get?

- Bounds for d = 2 4.
- Multiple kinks!!
- ► Horizontal dashed line: Δ_Φ in Wess-Zumino model
- This is SUSY version of \u03c6⁴ theory!
- Δ_{Φ} fixed because superpotential

$$W = \Phi^2$$

has R = 2 so $\Delta_{\Phi} = \frac{d-1}{3}$.

So we found SUSY Ising for d = 2 - 4.

イロト 不得 とうほう イヨン

-

But also two more kinks!

Bootstrapping Theories with Four Supercharges

So what kind of bounds to we get?

- Bounds for d = 2 4.
- Multiple kinks!!
- Horizontal dashed line: Δ_{Φ} in Wess-Zumino model
- This is SUSY version of \u03c6⁴ theory!
- Δ_{Φ} fixed because superpotential

$$W = \Phi^3$$

has R = 2 so $\Delta_{\Phi} = \frac{d-1}{3}$.

So we found SUSY Ising for d = 2 - 4.

▲□▶▲□▶▲□▶▲□▶ □ のQで

But also two more kinks!

Bootstrapping Theories with Four Supercharges

So what kind of bounds to we get?

- ▶ Bounds for d = 2 4.
- Multiple kinks!!
- ► Horizontal dashed line: Δ_Φ in Wess-Zumino model
- This is SUSY version of \u03c6⁴ theory!
- Δ_{Φ} fixed because superpotential

$$W = \Phi^3$$

has R = 2 so $\Delta_{\Phi} = \frac{d-1}{3}$.

- So we found SUSY Ising for d = 2 4.
- But also two more kinks!

Central Charge Bound

イロト 不得 トイヨト イヨト ニヨー

Bootstrapping Theories with Four Supercharges

So what kind of bounds to we get?

- ▶ Bounds for d = 2 4.
- Multiple kinks!!
- Horizontal dashed line: Δ_{Φ} in Wess-Zumino model
- This is SUSY version of \u03c6⁴ theory!
- Δ_{Φ} fixed because superpotential

$$W = \Phi^3$$

has R = 2 so $\Delta_{\Phi} = \frac{d-1}{3}$.

- So we found SUSY Ising for d = 2 4.
- But also two more kinks!

Central Charge Bound (zoomed)

▲□▶▲□▶▲□▶▲□▶ □ のQで

79

Results/Checks

Bootstrapping Theories with Four Supercharges

SUSY also imposes interesting dynamical constraints on theory

Consider Wess-Zumino model: chiral superfield $X = \Phi + \dots$ with cubic superpotential:

$$W = X^3$$

- Implies superfield X has R-charge 2/3 and (in d = 3) $\Delta_{\Phi} = R$.
- The fact that in e.g. WZ model can compute Δ_{Φ} exactly means can extract spectrum easily.
- SUSY eqns $\frac{\partial W}{\partial X} = 0$ implies Φ^2 should decouple in theory.

New Structure

Bootstrapping Theories with Four Supercharges

In non-SUSY 3d Ising found interesting (surprising) kinematical structure.

What about SUSY case?

(*Because of susy $T_{\mu\nu}$ and $T'_{\mu\nu}$ are actually SUSY descendents in spin 1 multiplet.)

SUSY analog of 3d null states!!

▲□▶▲□▶▲□▶▲□▶ □ のQで

New Structure

Bootstrapping Theories with Four Supercharges

In non-SUSY 3d Ising found interesting (surprising) kinematical structure. What about SUSY case?

(*Because of susy $T_{\mu\nu}$ and $T'_{\mu\nu}$ are actually SUSY descendents in spin 1 multiplet.)

SUSY analog of 3d null states!!

イロト 不得 とうほう イヨン

= 900

New Structure

Bootstrapping Theories with Four Supercharges

In non-SUSY 3d Ising found interesting (surprising) kinematical structure. What about SUSY case?

(*Because of susy $T_{\mu\nu}$ and $T'_{\mu\nu}$ are actually SUSY descendents in spin 1 multiplet.)

SUSY analog of 3d null states!!

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

э.

Our (Modified) Simplex Algorithm

Our (Modified) Simplex Algorithm

Recall the original problem we want to solve

Minimize:
$$\vec{c}^T \cdot \vec{x}$$
,
subject to: $M \cdot \vec{x} = \vec{b}$, $\vec{x} \ge 0$

Trivial solution is $\vec{x} = 0$ and $\vec{y} = A^{-1}\vec{b}$ but now must reduce cost:

1 Turning on component x_{α} reduces cost via

$$\vec{c}_y^T \cdot \vec{y} = \vec{c}_y^T A^{-1} (\vec{b} - x_\alpha \, \vec{v}_\alpha)$$

Choose component α by maximizing $\vec{c}_y^T \cdot A^{-1} \vec{v}_{\alpha}$ (contribution to cost).

$$x_{\alpha} v_{\alpha}^{i} = b^{i} \qquad \Rightarrow y^{i} = 0$$

- "Swap in" \vec{v}_{α} into *i*'th column of *A*.
- Solution Repeat with new A until all components of \vec{y} set to zero.
 - This yields "feasable" \vec{x} ; can then turn on c_x and continue.

Our (Modified) Simplex Algorithm

Introduce *n* "slack" variables *y* with costs $\vec{c}_y^T = (1, ..., 1)$ and solve:

Trivial solution is $\vec{x} = 0$ and $\vec{y} = A^{-1}\vec{b}$ but now must reduce cost:

D Turning on component x_{α} reduces cost via

$$\vec{c}_y^T \cdot \vec{y} = \vec{c}_y^T A^{-1} (\vec{b} - x_\alpha \, \vec{v}_\alpha)$$

Choose component α by maximizing $\vec{c}_y^T \cdot A^{-1} \vec{v}_{\alpha}$ (contribution to cost).

$$x_{\alpha} v^{i}_{\alpha} = b^{i} \qquad \Rightarrow y^{i} = 0$$

• "Swap in" \vec{v}_{α} into *i*'th column of *A*.

(a) Repeat with new A until all components of \vec{y} set to zero.

This yields "feasable" \vec{x} ; can then turn on c_x and continue.

Our (Modified) Simplex Algorithm

Introduce *n* "slack" variables *y* with costs $\vec{c}_y^T = (1, ..., 1)$ and solve:

Trivial solution is $\vec{x} = 0$ and $\vec{y} = A^{-1}\vec{b}$ but now must reduce cost:

Turning on component x_{α} reduces cost via

$$\vec{c}_y^T \cdot \vec{y} = \vec{c}_y^T A^{-1} (\vec{b} - x_\alpha \, \vec{v}_\alpha)$$

Choose component α by maximizing c^T_y · A⁻¹ v_α (contribution to cost).
Increase x_α until some component of v becomes some zero, e.g.

$$x_{\alpha} v_{\alpha}^{i} = b^{i} \qquad \Rightarrow y^{i} = 0$$

• "Swap in" \vec{v}_{α} into *i*'th column of *A*.

Solution Repeat with new A until all components of \vec{y} set to zero.

This yields "feasable" \vec{x} ; can then turn on c_x and continue.

Our (Modified) Simplex Algorithm

Introduce *n* "slack" variables *y* with costs $\vec{c}_y^T = (1, ..., 1)$ and solve:

Trivial solution is $\vec{x} = 0$ and $\vec{y} = A^{-1}\vec{b}$ but now must reduce cost:

• Turning on component x_{α} reduces cost via

$$\vec{c}_y^T \cdot \vec{y} = \vec{c}_y^T A^{-1} (\vec{b} - x_\alpha \, \vec{v}_\alpha)$$

Choose component α by maximizing c^T_y · A⁻¹v_α (contribution to cost).
Increase x_α until some component of y becomes some zero. e.g.

$$x_{\alpha} v_{\alpha}^{i} = b^{i} \qquad \Rightarrow y^{i} = 0$$

• "Swap in" \vec{v}_{α} into *i*'th column of *A*.

- **(a)** Repeat with new A until all components of \vec{y} set to zero.
- This yields "feasable" \vec{x} ; can then turn on c_x and continue.

Our (Modified) Simplex Algorithm

Introduce *n* "slack" variables *y* with costs $\vec{c}_y^T = (1, ..., 1)$ and solve:

Trivial solution is $\vec{x} = 0$ and $\vec{y} = A^{-1}\vec{b}$ but now must reduce cost:

• Turning on component x_{α} reduces cost via

$$\vec{c}_y^T \cdot \vec{y} = \vec{c}_y^T A^{-1} (\vec{b} - x_\alpha \, \vec{v}_\alpha)$$

Choose component α by maximizing c^T_y · A⁻¹v_α (contribution to cost).
Increase x_α until some component of y becomes some zero. e.g.

$$x_{\alpha} v_{\alpha}^{i} = b^{i} \qquad \Rightarrow y^{i} = 0$$

- "Swap in" \vec{v}_{α} into *i*'th column of *A*.
- Solution Repeat with new A until all components of \vec{y} set to zero.
 - This yields "feasable" \vec{x} ; can then turn on c_x and continue.

Our (Modified) Simplex Algorithm

Introduce *n* "slack" variables *y* with costs $\vec{c}_y^T = (1, ..., 1)$ and solve:

Trivial solution is $\vec{x} = 0$ and $\vec{y} = A^{-1}\vec{b}$ but now must reduce cost:

• Turning on component x_{α} reduces cost via

$$\vec{c}_y^T \cdot \vec{y} = \vec{c}_y^T A^{-1} (\vec{b} - x_\alpha \, \vec{v}_\alpha)$$

Choose component α by maximizing c^T_y · A⁻¹v_α (contribution to cost).
Increase x_α until some component of y becomes some zero. e.g.

$$x_{\alpha} v_{\alpha}^{i} = b^{i} \qquad \Rightarrow y^{i} = 0$$

• "Swap in" \vec{v}_{α} into *i* th column of A.

Solution Repeat with new A until all components of \vec{y} set to zero.

This yields "feasable" \vec{x} ; can then turn on c_x and continue.

Our (Modified) Simplex Algorithm

Introduce *n* "slack" variables *y* with costs $\vec{c}_y^T = (1, ..., 1)$ and solve:

Trivial solution is $\vec{x} = 0$ and $\vec{y} = A^{-1}\vec{b}$ but now must reduce cost:

• Turning on component x_{α} reduces cost via

$$\vec{c}_y^T \cdot \vec{y} = \vec{c}_y^T A^{-1} (\vec{b} - x_\alpha \, \vec{v}_\alpha)$$

Choose component α by maximizing c^T_y · A⁻¹v_α (contribution to cost).
Increase x_α until some component of y becomes some zero. e.g.

$$x_{\alpha} v_{\alpha}^{i} = b^{i} \qquad \Rightarrow y^{i} = 0$$

• "Swap in" \vec{v}_{α} into *i*'th column of *A*.

Repeat with new A until all components of \vec{y} set to zero.

) This yields "feasable" \vec{x} ; can then turn on c_x and continue.

Our (Modified) Simplex Algorithm

Introduce *n* "slack" variables *y* with costs $\vec{c}_y^T = (1, ..., 1)$ and solve:

Trivial solution is $\vec{x} = 0$ and $\vec{y} = A^{-1}\vec{b}$ but now must reduce cost:

• Turning on component x_{α} reduces cost via

$$\vec{c}_y^T \cdot \vec{y} = \vec{c}_y^T A^{-1} (\vec{b} - x_\alpha \, \vec{v}_\alpha)$$

Choose component α by maximizing c^T_y · A⁻¹v_α (contribution to cost).
Increase x_α until some component of y becomes some zero. e.g.

$$x_{\alpha} v_{\alpha}^{i} = b^{i} \qquad \Rightarrow y^{i} = 0$$

- "Swap in" \vec{v}_{α} into *i*'th column of *A*.
- Solution Repeat with new A until all components of \vec{y} set to zero.
- This yields "feasable" \vec{x} ; can then turn on c_x and continue.

Our (Modified) Simplex Algorithm

Introduce *n* "slack" variables *y* with costs $\vec{c}_y^T = (1, ..., 1)$ and solve:

Trivial solution is $\vec{x} = 0$ and $\vec{y} = A^{-1}\vec{b}$ but now must reduce cost:

• Turning on component x_{α} reduces cost via

$$\vec{c}_y^T \cdot \vec{y} = \vec{c}_y^T A^{-1} (\vec{b} - x_\alpha \, \vec{v}_\alpha)$$

Choose component α by maximizing c^T_y · A⁻¹v_α (contribution to cost).
Increase x_α until some component of y becomes some zero. e.g.

$$x_{\alpha} v_{\alpha}^{i} = b^{i} \qquad \Rightarrow y^{i} = 0$$

- "Swap in" \vec{v}_{α} into *i*'th column of *A*.
- Solution Repeat with new A until all components of \vec{y} set to zero.
- This yields "feasable" \vec{x} ; can then turn on c_x and continue.

Modifying the Simplex Algorithm

Our (Modified) Simplex Algorithm

Modifications for *x* continuously labelled, $\alpha \rightarrow \Delta$:

- \vec{y} is *n*-vector and *A* is $n \times n$ matrix so remains discrete.
- x_{Δ} only appears in minimization stage so we need to maximize:

$$\rho(\Delta) = c_y^T A^{-1} \vec{v}_\Delta$$

- Various approaches:
 - **1** Branch & bound on $\rho(\Delta)$.
 - Local quadratic or cubic approximation.
- Technical Issues:
 - $\rho(\Delta)$ approximated by very high-order polynomial $O(\Delta^{60})$.
 - Matrix *A* becomes ill-conditioned in most physically interesting cases.
 - Sumerical precision insufficient ⇒ MPFR/GMP

How to get Started Bootstrapping...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Some Resources (code)

How to get Started Bootstrapping...

So here are some ways to start:

Conformal Blocks

- In 2d/4d can use exact expressions (see e.g. arXiv:0807.0004).
- In general *d* (or just faster):
 - See JuliaBootS (below).
 - Use method described in arXiv:1305.1321.

Bootstrapping

- Mathematica's LinearProgramming function (good luck!)
- Mathematica + IBM's CPLEX LP (email me for mathematica plugin)

- Solution now) Mathematica + SDPA (probably the most standard solution now)
- JuliBootS (open-source Julia implementation of Bootstrap arXiv:1412.4127)
- Our python implementation (to be released soon ?!?!)
- 6 Roll your own...

Thanks
Dual Method

Bootstrap Formulation

- We can also formulate the problem in a "dual" way.
- Instead of solving for λ we can look for a diff op α such that:

$$\alpha(F_i) > 0 \qquad \forall F_i \qquad \left(\alpha = \sum_{n,m} \alpha_{n,m} \partial_z^n \partial_{\overline{z}}^m\right)$$

► Taylor expanding around $z = \overline{z} = 1/2$ and requiring each order to vanish gives a matrix:

$$\underbrace{\begin{pmatrix} F_1^{(0,0)} & F_2^{(0,0)} & F_3^{(0,0)} & \Delta \\ F_1^{(2,0)} & F_2^{(2,0)} & F_3^{(2,0)} & \cdots \\ F_1^{(0,2)} & F_2^{(0,2)} & F_3^{(0,2)} & \cdots \\ \downarrow \partial & \vdots & \vdots & \ddots \\ M & & & & & \\ \hline M & & & & & \\ \hline \end{array}}_{M} \underbrace{\begin{pmatrix} \lambda_1^2 \\ \lambda_2^2 \\ \lambda_3^2 \\ \vdots \\ \hline \\ \vec{\lambda} \end{pmatrix}}_{\vec{\lambda}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ \end{bmatrix}$$

- コン・4回シュービン・4回シューレー

which we must solve subject to $\lambda_i^2 \ge 0$.

Solving for λ_i^2 is called the **Direct Problem**.