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Why return to the (conformal) bootstrap?
1 Conformal symmetry very powerful tool that goes largely unused in D > 2.
2 Completely non-perturbative tool to study field theories

I Does not require SUSY, large N, or weak coupling.
3 In D = 2 conformal symmetry enhanced to Virasoro symmetry

I Allows us to completely solve some CFTs (c < 1).
4 Long term hope: generalize this to D > 2?

Approach
I Use only “global” conformal group, valid in all D.
I Study crossing symmetry of a single scalar correlator 〈σσσσ〉.∗

(∗ More recently extended to 4-pt functions of two scalars.)

Results
I Universal constraints (bounds) on spectrum/couplings in σ × σ OPE.
I Ising , O(N) & some susy models seem to saturate these bounds.
I When bounds saturated crossing symmetry fixes full OPE.
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Tentative Outline

1 Overview & Philosophy
2 CFT basics
3 Conformal Blocks
4 Crossing symmetry
5 Geometry of the solution space
6 Linear Programming
7 “Solving” the 3d Ising
8 Other results
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Overview & Philosophy
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CFTs: Experimental Perspective
Overview & Philosophy

What are CFTs and why are they interesting?

I Second order phase transition at the end of a line of first order transitions.
I Same CFT describes many disparate experimental systems.
I e.g. Ising model CFT is universal description of phase transitions with Z2

symmetry.
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CFTs: A Field Theorist’s Perspective
Overview & Philosophy

Very different “UV” theories can share the same IR behaviour.

Example: Ising universality class
I Lattice theory with nearest neighbor interactions

H = −J
∑
<i,j>

sisj

with si = ±1 (only discrete translationl or rotational symmetry).

I Has symmetry broken phase 〈si〉 = ±1 and symmetric phase 〈si〉 = 0.
I Ising model CFT describes theory at critical temperature Tc between two

phases.
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CFTs: A Field Theorist’s Perspective
Overview & Philosophy

Very different “UV” theories can share the same IR behaviour.

Example: Ising universality class
I Scalar QFT (and σ(x) ∈ R)

S =

∫
dDx

[
(∇σ(x))2 + t σ(x)2 + λ4 σ(x)4 + λ6 σ(x)6 + . . .

]
I Z2 symmetry: σ → −σ
I Theory has full rotational/translational invariance.
I Also has symmetric and symmetric broken phase (〈σ〉 6= 0).
I Mass is related to reduced temperature t ∼ T − Tc.
I In the IR flows to same CFT as lattice model!
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Fixed points of Renormalization Group (RG)
Overview & Philosophy

CFTs are fixed points of RG flow∗

I Couplings λi flow under rescalings x→ Λ x.
I Flow described by βi(λi) functions.

βi(λi) =
∂ λi

∂ log Λ

I CFTs correspond to fixed points

βi(λ
∗
i ) = 0 (1)

I Eqns (1) strongy contrain couplings

⇒ CFTs very non-generic
(∗ More generally fixed points have scale invariance but generically this

leads to conformal invariance.)
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Correlation functions & Observables
Overview & Philosophy

QFT
I In a QFT we may have (asymptotic) observables, O ∼ φ~k.
I We compute/observer scattering amplitudes:

〈O~k1
O~k2
O~k3
O~k4
〉 ∼ f (t, λi,~ka,Λ)

I Observables depend on many continuous parameters.
CFT

I Observables are not asymptotic O ∼ φ(x), : φ(x)2 :,Tµν .
I We compute/observer correlation functions:

〈O1O2O3O4〉 ∼ f (λ∗i ,~xa)

I Couplings generically fixed by β-functions.
I No dependence on dimensional-full scale Λ
⇒ far fewer parameters!

I Correlators also strongly constrained by conformal invariance (much more
than scale invariance).
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The Conformal Bootstrap
Overview & Philosophy

Question
CFTs are:

I Universal: realized as RG limits of many disperate theories.
I Strongly constrained by symmetry.

Can we describe their physics intrinsically (i.e. without picking a particular UV
realization)?

(Partial) Answer
Yes!

I In d = 2 infinite classes of CFT can be solved using symmetry alone.
⇒ solved means compute correlators of all local operators.

I In d > 2 no full solution but powerful numerical methods:
1 Can compute low-lying spectrum and couplings using symmetry alone.
2 Method is fully non-perturbative: works for strongly coupled theories!

I Method is conformal bootstrap and will be focus of these lectures.
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Example: the (3d) Ising Model
Intermezzo

E-expansion
Wilson-Fisher set D = 4− E and study critical point of σ4 perturbatively.
Setting E = 1 can compute anomolous dimensions in D = 3:

[σ] = 0.5→ 0.518 . . .

[ε] := [σ2] = 1→ 1.41 . . .

[ε′] := [σ4] = 2→ 3.8 . . .

Using E-expansion, Monte Carlo and other techniques find partial spectrum:

Field: σ ε ε′ Tµν Cµνρλ
Dim (∆): 0.518135(50) 1.41275(25) 3.832(6) 3 5.0208(12)
Spin (l): 0 0 0 2 4

Only 5 operators and no OPE coefficients known for 3d Ising. . .

Lots of room for improvement!
10



“Bootstrapping” the Ising Model
Intermezzo

New (Conformal) Perspective

At fixed point conformal symmetry emerges:
I Strongly constrains data of theory.
I Can we use symmetry to fix e.g. [σ], [ε], [ε′], . . . ?
I Can we also fix interactions this way?
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Preview: Conformal Bootstrap Results
Intermezzo

Our first goal: a completley general exclusion plot for ∆σ & ∆ε.

Allowed values of σ-ε

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Blue = CFT may exists.
White = No CFT exists.

I This exclusion bound applies to any
conformal theories.

I It is completley non-perturbative.

I In generating it we use no Lagrangian or any
data specifying a particular theory.

I Exclusion plots “knows” about Ising model!

I Using bootstrap can compute spectrum &
interactions of many operators for any theory
on the boundary of exclusion bound.

Generating such a plot and using it to (partially) “solve” conformal theories will
be the main focus of this lecture.

12



Preview: Conformal Bootstrap Results
Intermezzo

Our first goal: a completley general exclusion plot for ∆σ & ∆ε.

Allowed values of σ-ε

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Blue = CFT may exists.
White = No CFT exists.

I This exclusion bound applies to any
conformal theories.

I It is completley non-perturbative.

I In generating it we use no Lagrangian or any
data specifying a particular theory.

I Exclusion plots “knows” about Ising model!

I Using bootstrap can compute spectrum &
interactions of many operators for any theory
on the boundary of exclusion bound.

Generating such a plot and using it to (partially) “solve” conformal theories will
be the main focus of this lecture.

12



Preview: Conformal Bootstrap Results
Intermezzo

Our first goal: a completley general exclusion plot for ∆σ & ∆ε.

Allowed values of σ-ε

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Blue = CFT may exists.
White = No CFT exists.

I This exclusion bound applies to any
conformal theories.

I It is completley non-perturbative.

I In generating it we use no Lagrangian or any
data specifying a particular theory.

I Exclusion plots “knows” about Ising model!

I Using bootstrap can compute spectrum &
interactions of many operators for any theory
on the boundary of exclusion bound.

Generating such a plot and using it to (partially) “solve” conformal theories will
be the main focus of this lecture.

12



Preview: Conformal Bootstrap Results
Intermezzo

Our first goal: a completley general exclusion plot for ∆σ & ∆ε.

Allowed values of σ-ε

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Blue = CFT may exists.
White = No CFT exists.

I This exclusion bound applies to any
conformal theories.

I It is completley non-perturbative.

I In generating it we use no Lagrangian or any
data specifying a particular theory.

I Exclusion plots “knows” about Ising model!

I Using bootstrap can compute spectrum &
interactions of many operators for any theory
on the boundary of exclusion bound.

Generating such a plot and using it to (partially) “solve” conformal theories will
be the main focus of this lecture.

12



Preview: Conformal Bootstrap Results
Intermezzo

Our first goal: a completley general exclusion plot for ∆σ & ∆ε.

Allowed values of σ-ε

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Blue = CFT may exists.
White = No CFT exists.

I This exclusion bound applies to any
conformal theories.

I It is completley non-perturbative.

I In generating it we use no Lagrangian or any
data specifying a particular theory.

I Exclusion plots “knows” about Ising model!

I Using bootstrap can compute spectrum &
interactions of many operators for any theory
on the boundary of exclusion bound.

Generating such a plot and using it to (partially) “solve” conformal theories will
be the main focus of this lecture.

12



Preview: Conformal Bootstrap Results
Intermezzo

Our first goal: a completley general exclusion plot for ∆σ & ∆ε.

Allowed values of σ-ε

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Blue = CFT may exists.
White = No CFT exists.

I This exclusion bound applies to any
conformal theories.

I It is completley non-perturbative.

I In generating it we use no Lagrangian or any
data specifying a particular theory.

I Exclusion plots “knows” about Ising model!

I Using bootstrap can compute spectrum &
interactions of many operators for any theory
on the boundary of exclusion bound.

Generating such a plot and using it to (partially) “solve” conformal theories will
be the main focus of this lecture.

12



CFT Basics
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Conformal Symmetry
Useful (incomplete) References

I Slava Rychkov’s d > 2 CFT lecture notes:
https://sites.google.com/site/slavarychkov/CFT_
LECTURES_Rychkov.pdf

I Alessandro Vichi’s PhD thesis:
infoscience.epfl.ch/record/167898/files/EPFL_
TH5116.pdf

I Numerical bootstrap:
http://arxiv.org/abs/0807.0004

I OPE and conformal blocks:
http://arxiv.org/abs/1208.6449
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Conformal Symmetry
CFT Basics

Conformal transformations are angle preserving:

g′µν(x′) = Λ(x)gµν(x)

They generalizes (constant) scale transformations: x→ λ x.
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Conformal Symmetry
CFT Basics

Conformal transformations are angle preserving:

g′µν(x′) = Λ(x)gµν(x)

They generalizes (constant) scale transformations: x→ λ x.

Conformal Algebra
Extension of Poincaré:

SO(1,D− 1)× R1,D−1︸ ︷︷ ︸
Poincare

+ D (Dilatations) + Kµ (Special conformal)

Momentum (Pµ) and special conformal (Kµ) raise/lower level:

[D,Pµ] = i Pµ, [D,Kµ] = −i Kµ

Act like ladder operators to generate new states in a representation.
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Representation Theory
CFT Basics

In a CFT should organize operators into representations of Conformal Group.

Operators
Operators should have definite scaling dimension ∆ and spin l

[D,O] = i ∆O, [Mµν ,O] = i RM · O

with RM a spin-l representation of rotation Mµν .

Primary Operators

Highest weight states, O, are called primary operators. Satisfy:

Primary operators: [Kµ, O] = 0

From a highest weight state can construct an infinite number of descendants:

Descendents: On := Pµ1 . . .Pµn O

Correlators of descendants fixed by conformal symmetry (in terms of primaries).
16
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Conformal Correlators
CFT Basics

I From definition primary operator O transforms under x→ λ x:

O(λx) = λ−∆O(x)

I Two Point Functions
Requiring correlators to be invariant under conf group gives:

〈Oi(x)Oj(0)〉 −−−→
scale

a
x∆i+∆j

−−−→
special

a δij

x2∆i

Set a = 1 as to fix normalization.
I Three Point Functions

〈Oi(xi)Oj(xj)Ok(xk)〉 −−−→
scale

∑
a+b+c=∆1+∆2+∆3

Cijk

xa
ijx

b
ikxc

jk
−−−→
special

Cijk

xδij
ij xδik

ik xδjk
jk

with δij = ∆i + ∆j −∆k and xij = |~xij|.
I Correlators of descendents, ∂µ1 . . . ∂µnO, computed by taking derivs.
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Conformal Correlators & RG
CFT Basics

A more physical way to think about what a primary operator is via RG:
1 CFT should be invariant under RG step: x→ x′ = λ x
2 In scale/conf invariant theory Hamiltonian is invariant: Ĥ → Ĥ′ = Ĥ.
3 Kinetic term in Lagrangian transforms like:

ddx′ (∂x′φ
′(x′))2 −→ ddx (λd−2) (∂xφ

′(x′))2

so invariant if we identify φ′(x′) = λ−
d−2

2 φ(x) (i.e. ∆φ = d−2
2 ).

4 Quantum corrections can modify this giving

O → λ−∆O (2)

5 Recall conf. trans. can be x-dependent: λ(x) (any angle-preserving).
6 If O transforms nicely then ∂O cannot transform like eqn (2).
7 Primaries are fields with nice transformations like eqn (2) and descendent

transformation follows by taking derivs.
18
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1 CFT should be invariant under RG step: x→ x′ = λ x
2 In scale/conf invariant theory Hamiltonian is invariant: Ĥ → Ĥ′ = Ĥ.
3 Kinetic term in Lagrangian transforms like:
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Radial quantization & Operator-State Correspondence
CFT Basics

I In CFT it is natural to use radial quantization.
I “Hamiltonian” is D̂: ~x→ λ~x
I Operators defined on radial slices.

Operator-State Correspondence

I Each operator inserted at origin defines a state:

|O〉 := O(0)|0〉

I Can check D̂|O〉 = ∆O|O〉.
I Complete basis of states spanned by primaries +

descendents inserted at origin.
I 1-1 map between operators & states by radial

quantization centered at operator.
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Operator Product Expansion (OPE)
CFT Basics

Operator Product Expansion

I Acting on primary state |Oj〉 with primary operator
Oi(x) gives new state that can be decomposed in
conformal reps:

Oi(x)|Oj〉 =
∑
α

cijα|Ψα〉

α runs over all eigenstates of D̂.
I Contribution of descendents fixed by symmetry.
I Using Operator-State correspondence this gives

operator product expansion.
I Repackage using diff op D(x, ∂) (fixed by conf

symmetry).
I Cijk are dynamical data of theory (along with ∆i, li).
I OPE only holds if no operator inserted at |y| < |x|.
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Operator Product Expansion (OPE)
CFT Basics

1 How could we determine D(x, δx)?

Use OPE to reduce 3-pt function to sum over 2-pt function

〈O1(x1)O2(x2)O3(x3)〉 =
∑

k

C12k D(x12∂2)〈O2(x2)O3(x3)〉

C123

xδ12
12 xδ13

13 xδ23
23

= C123 D(x12∂2)〈O3(x2)O3(x3)〉

1
xδ12

12 xδ13
13 xδ23

23

= D(x12∂2)

(
1

x2∆3
23

)

Form of D(x, ∂) can be fixed by related 2- and 3-pt function.
2 Now we know everything about OPE and 2/3-pt functions.

What about higher point functions?
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Correlation functions from OPE
CFT Basics

Any n-pt function can be reduced to sums of 2- & 3-pt functions via OPE:

〈 O1(x1)O2(x2)︸ ︷︷ ︸∑
k Ck

12 D(x12,∂x2 )Ok(x2)

O3(x3)O4(x4)︸ ︷︷ ︸∑
l Cl

34 D(x34,∂x4 )(x3)Ol(x4)

〉 =
∑

k,l

Ck
12Cl

34 D(x12, x34, ∂x2 , ∂x4 )〈Ok(x2)Ol(x4)〉

1 For 4-pt function get single sum of two D’s acting on 2-pt function.
2 Conformal symmetry fixes (for O scalar primary of dim ∆):

〈O(x1)O(x2)O(x3)O(x4)〉 =
1

x2∆
12 x2∆

34
g(u, v)

with unknown function g of u =
x2

12x2
34

x2
13x2

24
, v =

x2
14x2

23
x2

13x2
24

.

3 u, v conformally invariant so form of g not fixed.
4 If operators non-scalar or ∆’s not equal technically more complicated (but

conceptually the same).
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Axiomatic Formulation of a CFT
CFT Basics

CFT defined by specifying:
I Spectrum S = {Oi} of primary operators dimensions, spins: (∆i, li)

I Operator Product Expansion (OPE)

Oi(x) · Oj(0) ∼
∑

k

Ck
ij D(x, ∂x)Ok(0)

Oi are primaries. Diff operator D(x, ∂x) encodes descendent contributions.

This data fixes all correlatiors in the CFT:
I 2-pt & 3-pt fixed:

〈OiOj〉 =
δij

x2∆i
, 〈OiOjOk〉 =

Cijk

xδij
ij xδik

ik x
δjk
jk

I Higher pt functions contain no new dynamical info:

〈 O1(x1)O2(x2)︸ ︷︷ ︸∑
k Ck

12 D(x12,∂x2 )Ok(x2)

O3(x3)O4(x4)︸ ︷︷ ︸∑
l Cl

34 D(x34,∂x4 )(x3)Ol(x4)︸ ︷︷ ︸∑
k,l Ck

12Cl
34 D(x12,x34,∂x2 ,∂x4 )〈Ok(x2)Ol(x4)〉

〉
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Central Charge
CFT Basics

What about central charge?
I In d = 2 the central charge, c, is a defining property of CFT.
I In d > 2 no canonical definition of central charge.
I Candidates:

〈T(z)T(0)〉 ∼ c1

z4 , 〈T〉 ∼ c2 R, S = 2π
√

c3 ∆

I In d = 2 all equal: c1 = c2 = c3.
I Definitely not true for d > 2.
I c2 requires non-trivial manifold (non-local).
I c3 holds in thermal state.
I Only c1 is accessible via local correlation functions.
I So we will take c1 as “central charge” for d > 2.
I Appears in φ× φ OPE:

φ× φ ∼ 1 + λεφφ ε+ · · ·+
�� ��λT
φφ Tµν + . . .

I Because T · φ = ∆φφ and we normalize 〈TT〉 ∼ 1.
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Unitarity Constraints
CFT Basics

I We will restrict attention to “unitary” theories.
I Generally we consider Euclidean theories so actually mean reflection

positivity.
I In reflection-positive theory norms of states must be positive.

Combined with conformal algebra unitarity gives constraints on ∆.

||PµPµ|O〉|| = 〈O|KνKνPµPµ|O〉

∝ ∆

(
∆− d − 2

2

)
Here we use K† = P (in radial quantization) and assumed O is a scalar.

Similar arguments give:

∆ ≥ d − 2
2

(l = 0)

∆ ≥ d + l− 2 (l ≥ 0)

The ∆ = 0 solution is conformally invariant vacuum |0〉.
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Conformal Blocks

26



Definition
Conformal Blocks

Recall 4-pt function can be expressed in terms of g(u, v):

〈O(x1)O(x2)O(x3)O(x4)〉 =
1

x2∆
12 x2∆

34
g(u, v)

Can also use OPE to decompose 4-pt into sum:

〈 O1(x1)O2(x2)︸ ︷︷ ︸∑
k Ck

12 D(x12,∂x2 )Ok(x2)

O3(x3)O4(x4)︸ ︷︷ ︸∑
l Cl

34 D(x34,∂x4 )(x3)Ol(x4)

〉 =
∑

k

Ck
12Ck

34 D(x12, x34, ∂x2 , ∂x4 )

(
1

x2∆k
24

)

1 The D’s acting on 2-pt function is called Conformal Block.
2 Convenient to pull out trivial pre-factor and then express g(u, v) in terms of

CB decomposition.
3 The conformal block depends on how we take the OPE

(CB above is in the (1− 2),(3− 4) channel).
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(CB above is in the (1− 2),(3− 4) channel).
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x2∆
12 x2∆

34
g(u, v)
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k Ck
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l Cl
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Coordinate Systems
Conformal Blocks

I Conformal blocks depend on two variables u, v.
I It turns out a more natural coordinate system is

z, z̄ defined via

u = z z̄, v = (1− z)(1− z̄)

I In d = 2 these are just standard complex coords.

In all d conf symm can fix x1, . . . , x4 to be co-planar.
I Use conf symm to fix~x1 = 0,~x3 = 1,~x4 =∞.
I z, z̄ complex coords on plane spanned by

unfixed~x2.
I From definition follows

z, z̄→ 0 ⇒ x12, x34 → 0
z, z̄→ 1 ⇒ x14, x23 → 0

x1

1 2

�1

1

x3

x4 → ∞
x2

z
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Analytic Properties
Conformal Blocks

1 From OPE convergence might not expect
(1− 2), (3− 4) CB to converge if |z| > 1.

2 Actually conf blocks more convergent than
OPE:

I Treat e.g. x1 ↔ x2 symmetrically.
I Reflects freedom to choose origin in raidal

quantization.
3 Conf blocks G(z, z̄) can be extended to full z, z̄

plane by analytic continuation.
4 Analytic continuation has branch cut for z > 1

on real axis.
5 Explicit expressions exist in d = 2, 4.

x1

1 2

�1

1

x3

x4 → ∞
x2

z

Example: conf blocks in d = 4 (for equal external dimensions):

G(z, z̄) =
z z̄

z− z̄
[k∆+l(z)k∆−l−2(z̄)− (z↔ z̄)]

kβ(x) = xβ/2
2F1(β/2, β/2, β; x)
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Crossing Symmetry
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Definition
Crossing Symmetry

OPE decomposition of 4-pt function into CBs is not unique: 〈O1O2O3O4〉

Consistency requires equivalence of two different contractions∑
k

Ck
12Ck

34 G12;34
∆k,lk

(u, v) =
∑

k

Ck
14Ck

23 G14;23
∆k,lk

(u, v)

When operators in correlator identical G12;34 and G14;23 simply related:

I Crossing means exchanging x1 ↔ x3, x2 ↔ x4 or equivilently u↔ v implying

G12;34(u, v) = G14;23(v, u)

I Crossing symmetry give non-perturbative constraints on (∆k,Ck
ij).
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How constraining is crossing symmettry?
Intermezzo: Applications

Is crossing symmetry consistent with a gap?
σ-OPE: σ × σ ∼ 1 + ε+ . . .

Crossing symmetric values of σ-ε

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Blue = solution may exists.
White = No solution exists.

I Assuming above OPE study crossing
symmetry of:

〈σ(x1)σ(x2)σ(x3)σ(x4)〉

I Certain values of ∆σ,∆ε inconsistent with
crossing symmetry.

I Solutions to crossing:

1 white region⇒ 0 solutions.
2 blue region⇒∞ solutions.
3 boundary⇒ 1 solution (unique)!

I Exclusion plots “knows” about Ising model!
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A (More) Practical Formulation
Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

Recall crossing symmetry constraint:

1

x
2∆φ
12 x

2∆φ
34

∑
Ok

(Ck
φφ)2 G12;34

∆k,lk
(u, v) =

1

x
2∆φ
14 x

2∆φ
23

∑
Ok

(Ck
φφ)2 G14;23

∆k,lk
(u, v)
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A (More) Practical Formulation
Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

Express everything in terms of u, v:( v
u

)∆φ ∑
Ok

(Ck
φφ)2 G12;34

∆k,lk
(u, v) =

∑
Ok

(Ck
φφ)2 G14;23

∆k,lk
(u, v)
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A (More) Practical Formulation
Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

Move everything to LHS:

v∆φ
∑
Ok

(Ck
φφ)2 G12;34

∆k,lk
(u, v)− u∆φ

∑
Ok

(Ck
φφ)2 G14;23

∆k,lk
(u, v) = 0
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A (More) Practical Formulation
Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

Express as sum of functions with positive coefficients:∑
Ok

(Ck
φφ)2︸ ︷︷ ︸
pk

[v∆φG∆k,lk (u, v)− u∆φG∆k,ll (v, u)]︸ ︷︷ ︸
Fk(u,v)

= 0
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Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

∑
Ok

(Ck
φφ)2︸ ︷︷ ︸
pk

[v∆φG∆k,lk (u, v)− u∆φG∆k,ll (v, u)]︸ ︷︷ ︸
Fk(u,v)

= 0

Functions Fk(u, v) are formally infinite dimensional vectors.

p1 (F1,F′1,F
′′
1 , . . . )︸ ︷︷ ︸

~v1

+p2 (F2,F′2,F
′′
2 , . . . )︸ ︷︷ ︸

~v2

+p3 (F3,F′3,F
′′
3 , . . . )︸ ︷︷ ︸

~v3

+ · · · = ~0

1 Each compnent is a deriv at a the same point: e.g. F′ := F(2,0)(z∗, z̄∗).

2 Each vector~vk represents the contribution of an operator Ok.
3 Labels k = (∆, l) are continuous (because of ∆).

4 If {~v1,~v2, . . . } span a positive cone there is no solution.
5 Efficient numerical methods to check if set of vectors {~vk} span a cone.

33



A (More) Practical Formulation
Crossing Symmetry

So how do we check crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

∑
Ok

(Ck
φφ)2︸ ︷︷ ︸
pk

[v∆φG∆k,lk (u, v)− u∆φG∆k,ll (v, u)]︸ ︷︷ ︸
Fk(u,v)

= 0

Functions Fk(u, v) are formally infinite dimensional vectors.

p1 (F1,F′1,F
′′
1 , . . . )︸ ︷︷ ︸

~v1

+p2 (F2,F′2,F
′′
2 , . . . )︸ ︷︷ ︸

~v2

+p3 (F3,F′3,F
′′
3 , . . . )︸ ︷︷ ︸

~v3

+ · · · = ~0

1 Each compnent is a deriv at a the same point: e.g. F′ := F(2,0)(z∗, z̄∗).

2 Each vector~vk represents the contribution of an operator Ok.
3 Labels k = (∆, l) are continuous (because of ∆).

4 If {~v1,~v2, . . . } span a positive cone there is no solution.
5 Efficient numerical methods to check if set of vectors {~vk} span a cone.

33



Convergence
Crossing Symmetry

Our goal will be to study/constrain spectrum S of CFTs using sum rule.

Before continuing check: how quickly does conf. block expansion converge?

I Consider free scalar
φ× φ ∼ 1 + φ2 + Tµν + . . . .

I Move contribution of identity, I, to LHS:

FI = −
∑
Ok

(Ck
φφ)2Fk(u, v)

(can normalize so FI = 1)
I Plot how quickly sum converges for free

theory (along z = z̄).
I Note: convergence best around z = z̄ = 1

2 so
choose this point for Taylor expansion.

Can prove that asymptotically tail of sum rule cut off at ∆∗ is bounded by e−∆∗ .
34



Geometry of the Solution Space
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Truncated Sum Rule
Geometry of Solution Space

I To get some insight lets consider a very truncated problem.
I We truncate to ∆ < ∆∗, l < l∗ (this is a justifiable approximation).
I Each order in Taylor expansion (around z = z̄ = 1

2 ) of sum rule gives a
necassary condition for crossing.

I We consider only two Taylor coefficients F(1,1) & F(3,0) (this is not an
approximation)!

I Truncated sum rule becomes:

∑
∆<∆∗,l<l∗

p∆,l

(
F(3,0)

∆,l

F(1,1)
∆,l

)
︸ ︷︷ ︸

~v∆,l

= 0 (3)

I Recall pk = (Ck
φφ)2 > 0 so if {~v∆,l} form a positive cone we’re doomed

(i.e. can’t solve eqn(3)).
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The “Landscape” of CFTs
Geometry of the Solution Space

Constraining the spectrum

Figure : S: a putative spectrum in D = 3

Unitarity Bound

Gap
Ε

Σ

0 2 4
L0

1

2

3

4

5

6
D

I Unitarity implies:

∆ ≥ D− 2
2

(l = 0),

∆ ≥ l + D− 2 (l ≥ 0)

I “Carve” landscape of CFTs
by imposing gap in scalar
sector.

I Fix lightest scalar: σ.

I Vary next scalar: ε.

I Spectrum otherwise
unconstrained: allow any
other operators.
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Constraining Spectrum using Crossing Symmetry
Geometry of Solution Space

Is (truncated) crossing symmetry consistent with a gap?

σ four-point function: 〈σ1σ2σ3σ4〉

Crossing symmetric values of σ-ε

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Blue = solution may exists.
White = No solution exists.

38



Cones in Derivative Space
Geometry of Solution Space

L =0

L = 2

L = 4
L =6

L =8
L =10

-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
F 8 3, 0<

-1.0

-0.5

0.5

F 8 1, 1<

Two-derivative truncation
I Consider 〈σσσσ〉.
I Fix ∆(σ) = 0.515.

I We plot e.g. (F(1,1),F(3,0)).

I Consider putative spectrum {∆k, lk}

∆ = ∆unitarity

l = 0 to 10

I Vectors represent operators.

I All vectors lie inside cone
⇒ Inconsistent spectrum!
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Cones in Derivative Space
Geometry of Solution Space

Derivatives ⇐⇒ Putative Spectrum

L =0

L = 2

L = 4
L =6

L =8
L =10

-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
F 8 3, 0<
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0.5

F 8 1, 1<

Unitarity Bound
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Cones in Derivative Space
Geometry of Solution Space

L =0

L = 2

L = 4
L =6

L =8
L =10

-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
F 8 3, 0<

-1.0

-0.5

0.5

F 8 1, 1<
I Allow even more operators in putative

spectrum.

I Scalar channel plays essential role.
⇒ vectors span plane.
⇒ In particular can find pk ≥ 0∑

k

pk F∆k,lk = 0

⇒ crossing sym. can be satisfied.

Why does this work?
I Cone boundary defined by low-lying

operators.

I Higher ∆, l operators less important.

I Follows from convergence of CB
expansion.
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Cones in Derivative Space
Geometry of Solution Space

Derivatives ⇐⇒ Putative Spectrum
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Cones in Derivative Space
Geometry of Solution Space

L =0

L =2

L =4
L =6

L =8
L =10

L =12
L =14

L =16
L =18

L =20
L =22

L =24
L =26

L =28
L =30

D0 =0.76

D0 =2.091

-1.0 -0.5 0.5
F 8 3 , 0<

-1.0

-0.5

0.5

F 8 1 , 1<

Carving the Landscape of CFTs
1 Plot imposes necessary conditions.
2 Carve “landscape” via exclusion.

Any CFT in D = 3 with dim(σ) = 0.515
must have another scalar with
0.76 ≤ ∆ ≤ 2.091.
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The “Extremal Solution”
Geometry of Solution Space

L =0

L = 2

L = 4
L =6

L =8
L =10

-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
F 8 3, 0<

-1.0

-0.5

0.5

F 8 1, 1<

Uniqueness of “Boundary Solution”
– Consider ∆0 < 0.76

I No combination of vecs give a zero.∑
i

pi ~Fi 6= 0 for pi > 0

– Consider ∆0 > 0.76

I Many ways to form vects to give zero.

I Families of possible {pi}.
I Neither spectrum nor OPE fixed.

– Consider ∆0 = 0.76

I Only one way to form zero.

I Non-zero pi fixed ⇒ unique spectrum.

I Value of pi := (Ck
ii)

2 fixed ⇒ unique OPE.

I Non-zero pi:
∆ ∼ 0.76, L = 0

∆ = 3, L = 2

– NOTE: Num operators ∼ num components of ~Fi
40
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Lessons Learned
Geometry of Solution Space

General properties of the approach:
1 We are never proving that a CFT exists.

I We only check a subset of the constraints coming from a single correlator.
I In d > 2 we do not even know what a sufficient criteria is for CFT to exist!

2 On the other hand we can prove that CFTs cannot exist with certain
properties.

3 By adding more vectors (i.e. allowing more operators in the spectrum) we
can transition from having no solutions to having many possible solutions.

4 In the boundary between these regions we get a unique solution.
5 This “visual” proof was nice for intuition but does not generalize well

when we consider many (� 2) constraints/Taylor coefficients at once.
The next step is to formulate the bootstrap in a more abstract way and apply
standard numerical algorithms (e.g. Linear Programming).
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Linear Programming

42



Direct Method
Bootstrap Formulation

I The problem we want to solve is:∑
∆,l

p∆,lF∆,l(z, z̄) = 0

I Taylor expanding around z = z̄ = 1/2 and requiring each order to vanish gives a
matrix: 

F(0,0)
1 F(0,0)

2 F(0,0)
3

∆−→
F(2,0)

1 F(2,0)
2 F(2,0)

3 · · ·
F(0,2)

1 F(0,2)
2 F(0,2)

3 · · ·

↓ ∂
...

...
. . .


︸ ︷︷ ︸

MS


p1

p2

p3

...


︸ ︷︷ ︸

~p

=


0
0
0
...



which we must solve subject to pi ≥ 0.
I Rows of matrix MS are Taylor coefficeints (labelled by derivaties: ∂m

z ∂
n
z̄ ).

I Columns are operators Ok allowed in spectrum (continuous label k = {∆, l} ∈ S)
I “Matrix” MS depends on the choice of allowed spectrum.
I “Vector” ~p = ((C1

φφ)2, (C2
φφ)2, . . . ) will have mostly zeros:

non-zero pi ⇔ operator (∆i, li) in the φ× φ OPE.
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1 F(0,2)
2 F(0,2)

3 · · ·

↓ ∂
...

...
. . .


︸ ︷︷ ︸

MS


p1

p2

p3

...


︸ ︷︷ ︸

~p

=


0
0
0
...



which we must solve subject to pi ≥ 0.
I Rows of matrix MS are Taylor coefficeints (labelled by derivaties: ∂m

z ∂
n
z̄ ).

I Columns are operators Ok allowed in spectrum (continuous label k = {∆, l} ∈ S)
I “Matrix” MS depends on the choice of allowed spectrum.
I “Vector” ~p = ((C1

φφ)2, (C2
φφ)2, . . . ) will have mostly zeros:

non-zero pi ⇔ operator (∆i, li) in the φ× φ OPE.
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Methodology
Linear Programming

Can rephrase our problem as a linear optimization problem:

Minimize: ~c ·~p,

subject to: MS ·~p ∼ ~b, ~p ≥ 0

Where ∼ can mean either =,≥, or ≤.

I MS is a matrix with columns~vα, the derivs of the Fα.

I ~p = {p0, p1, . . . }, the squared coupling constants Cαφφ.

I In simplest case~c = 0, ~b = 0 and we take MS ·~p = 0.

Some issues with this:

I ∞ number of derivs⇒ truncate to n.

I Couplings p∆,l have a continuous label ∆.

I For n derivs MS is an n×∞ matrix and ~p is∞-vector.

Approach: use Linear Programming (LP)�� ��Modified Simplex Algorithm for (semi-) continuous variables.
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Bounding Operator Dimensions
Linear Programming

How do we produce a plot like this?

1 Fix ∆σ to some value (e.g. 0.6).

2 Fix gap ∆ε = ∆1 (e.g. = 1.6).
3 This defines a putative spectrum

S1 = {∆l=0 ≥ ∆1; ∆l>0 ≥ ∆unitarity}

4 Use LP to find ~p with M = MS1 .
5 If LP find non-zero ~p:
⇒ CFT can exist
increase ∆1 and try again.

6 If LP finds no ~p:
⇒ no CFT exists with ∆ε ≥ ∆1.
decrease ∆1 and try again.

7 Bisecting in ∆1 until we find max
value ∆max

ε (to some resolution).
8 Repeat for the next value of ∆σ .

Ising
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Bounding OPE Coefficients
Linear Programming

What else can we bound?
Bootstrap allows us to:

I Consider arbitrary CFT data S = {(∆i, `i),Cijk}.
I Check if this S is consistent with crossing sym of 〈σσσσ〉.

Any time a bound is saturated can compute full OPE.

Kinds of bounds we can place on S:
I Maximize a gap ∆ε in σ × σ OPE.
I Maximize coefficient of operator

σ × σ ∼ 1 + λεσσ
�� ��ε + · · ·+ λT

σσ Tµν + . . .

Can bound dimension of first scalar on ∆ε (or any `).
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Bounding OPE Coefficients
Linear Programming

What else can we bound?
Bootstrap allows us to:

I Consider arbitrary CFT data S = {(∆i, `i),Cijk}.
I Check if this S is consistent with crossing sym of 〈σσσσ〉.

Any time a bound is saturated can compute full OPE.

Kinds of bounds we can place on S:
I Maximize a gap ∆ε in σ × σ OPE.
I Maximize coefficient of operator

σ × σ ∼ 1 + λεσσ ε+ · · ·+
(

∆σ√
c

)
Tµν + . . .

If operator e.g. Tµν get lower bound on c.
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Bounding OPE Coefficients
Linear Programming

I Instead of bounding ∆ε we can formulate a different LP and bound OPE
coefficients.

I Recall LP forumulation:

Minimize: ~c ·~p,

subject to: MS ·~p = ~b, ~p ≥ 0

I Previously we took~c = 0 and ~b = 0 and varied MS .

I Instead we can fix MS (i.e. fix the spectrum) but take non-zero~c.

I E.g. if we take c∆,l = −1 then LP will maximize OPE coefficient of O∆,l.

When is this useful?

I Maximizing Tµν OPE coeff.

I pTµν = pD,l =
(

∆2
σ

c

)
so equiv to

c-minimization. Ising
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“Solving” the 3d Ising Model?

48



Previous “State-of-the-Art”
“Solving” the 3d Ising Model?

3d Ising model

Using E-expansion, Monte Carlo and other techniques find partial spectrum:

Field: σ ε ε′ Tµν Cµνρλ
Dim (∆): 0.518135(50) 1.41275(25) 3.832(6) 3 5.0208(12)
Spin (l): 0 0 0 2 4

Only 5 operators and no OPE coefficients known for 3d Ising!

Lots of room for improvement!

Our Goal

Compute these anomolous dimensions (and many more) and OPE coefficients
using the bootstrap applied along the boundary curve (i.e. the EFM).
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Spectrum of the 3d Ising Model
“Solving” the 3d Ising Model?

A first problem: what point on the boundary? what is correct value of σ?

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Ising

0.510 0.515 0.520 0.525 0.530
DΣ1.38

1.39

1.40

1.41

1.42

1.43

1.44
DΕ

1 “Kink” is not so sharp when we zoom in.
2 Gets sharper as we add more constraints.

Is there a better way to compute ∆σ for 3d Ising?
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c-minimization
“Solving” the 3d Ising Model?

Our first bound plot was made by maximizing ∆ε.

σ × σ ∼ 1 + λεσσ
�� ��ε + · · ·+ λT

σσ Tµν + . . .

I Look for solutions to crossing that maximize e.g. CT
σσ .

I OPE coefficient of stress tensor fixed by conformal symmetry (in terms of c).
I c canonical stress-tensor normalization: 〈TµνTρσ〉 ∼ c.
I Tµν OPE max⇒ c minimization.

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0
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c-minimization
“Solving” the 3d Ising Model?

Another way to find an extremal solution is to maximize an OPE coefficient.

σ × σ ∼ 1 + λεσσ ε+ · · ·+
�� ��λT
σσ Tµν + . . .

I Look for solutions to crossing that maximize e.g. CT
σσ .

I OPE coefficient of stress tensor fixed by conformal symmetry (in terms of c).
I c canonical stress-tensor normalization: 〈TµνTρσ〉 ∼ c.
I Tµν OPE max⇒ c minimization.
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c-minimization
“Solving” the 3d Ising Model?

Another way to find an extremal solution is to maximize an OPE coefficient.

σ × σ ∼ 1 + λεσσ ε+ · · ·+
(

∆σ√
c

)
Tµν + . . .

In both d = 2, 3 Ising model minimizes c.

Reproduces c = 1
2 in d = 2 to high precision!

d=2

0.12 0.14 0.16 0.18 0.20
∆(σ)

0.50

0.55

0.60

0.65

0.70

c/
c f

re
e

d=2, c lower bound (153 comp.)

0.1248 0.1250

0.5000

0.5002

0.5004

0.5006

d=3

0.5179 0.5180 0.5181 0.5182 0.5183 0.5184 0.5185
∆(σ)

0.9465

0.9466

0.9467

0.9468

0.9469

0.9470

0.9471

0.9472

0.9473

c/
c f

re
e

c lower bound (153,190,231 comp.)

0.51815 0.51820

0.94655

0.94660
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3d Critical Exponents from c-minimization
“Solving” the 3d Ising Model?

Why minimize c?
I c-minimization also maximizes ∆ε ⇒ equivalent approaches.
I Location of “minimum” well defined while “kink” is somewhat ambgious.
I c-minimzation is more numerically stable and philosophically palatable.

Fixing ∆σ to be at min of c we compute exponents using extremizing solution:

0.5179 0.5180 0.5181 0.5182 0.5183 0.5184 0.5185
∆(σ)

0.9465

0.9466

0.9467

0.9468

0.9469

0.9470

0.9471

0.9472

0.9473

c/
c f

re
e

c lower bound (153,190,231 comp.)

0.51815 0.51820

0.94655

0.94660

I Our estimates are 2-3× better than nearest competition.
I Get OPE coefficients to same precision.
I Can also compute higher spin/dimension fields in principle.
I In practice technical difficulties due to approximately conserved currents.
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I Can also compute higher spin/dimension fields in principle.
I In practice technical difficulties due to approximately conserved currents.
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Multi-correlator Bootstrap [Kos, Poland, Simmons-Duffin]
“Solving” the 3d Ising Model?

Similar to old bootstrap bounds but now consider 〈σσσσ〉, 〈σεσε〉, and 〈εεεε〉.

1 Provides access to Z2 odd spectrum.
2 Only assumption: σ is only relevant Z2 scalar.
3 3d Ising model now approx only solution for small σ!
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Origin of the Kink?
(wild speculation)
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Re-arrangment of spectrum?
Origin of the Kink

Spectrum near the kink undergoes rapid re-arrangement.

Plots for next Scalar and Spin 2 Field
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1 “Kink” in (ε, σ) plot due to rapid rearrangement of higher dim spectrum.
2 This is why its important to determine σ to high precision.
3 Does re-arrangement hint at some analytic structure we can use?
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Kinematic Origin of Kinks: Null States?
Origin of the Kink

Can we find a nice explanation of the kink in d = 2?
I In d = 2 Virasoro strongly constrains spectrum.
I Minimal models (c < 1) have few (Virasoro) primaries in short

representations of Virasoro.
I Ising model has only two Virasoro primaries: |σ〉 and |ε〉.
I Virasoro decendent

T ′ = (L−2 + η L2
−1)|ε〉

is a spin 2 SL(2,R) primary for certain values of η.
I Correct value of η depends on c.
I Norm of T ′ fixed by Virasoro.
I T ′ becomes null at c = 1/2 (or ∆σ = 1/8)

〈T ′|T ′〉 = 0

I EFM shows operator decoupling exactly at Ising point.
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Kinematic Origin of Kinks: Null States?
Origin of the Kink

Plot: spin 2 spectrum in d = 2, 3.
Curve shows maximal gap in spin 2 sector (above stress tensor).

Spin 2 Bound in d=3
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Spin 2 Spectrum in d=2

�� ��Is d=3 kink also related to a null state decoupling?
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Interpolating the Kink
Origin of the Kink

How can we understand 3d structures in terms of 2d?

Fractional spacetime dimension
I Conformal blocks analytic function of spacetime dimension d.
I Special structures emerge in d = 1, 2, 4�� ��⇒ lessons for d = 3?
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1 Follow “breaking” of Virasoro from d = 2?

2 Compare with E-expansion.
3 Find kinks for all 1 < d < 4
⇒ easier to extract kinematics�� ��Track spectrum from d = 2 to d = 3?
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Ising Model in Fractional Dimensions
Origin of the Kink
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Other Ideas/Speculation
Origin of the Kink

Constraints from Higher Spin symmetry
1 Anomalous dimension of higher spin currents bounded

δ∆ ≤ 2(∆σ −∆free) ∼ 0.037

E.g. spin 4 has dim 5.02 (conserved current is ∆ = 5).
[Nachtmann, Komargodski & Zhiboedov]

2 Higher spin symmetry only weakly-broken⇒ approx conserved currents.�� ��⇒ Origin of numerical difficulties for L > 2 spectrum

3 In d = 2, 4 higher spin fields conserved⇒ is d = 3 maximal breaking?

“Hidden” Virasoro-like Symmetry in d = 3
1 Ising model has infinite-dim symmetry in d = 2, 4.
2 Constraints give null states: T ′ in d = 2 or 2φ in d = 4.
3 Could this symmetry exist for all 1 < d < 4?
4 Maybe realized by non-local operators (e.g.

√
∂, etc. . . ).
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Other Applications
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N = 4 bounds
Other Applications [Liendo, Rastelli, van Rees]

Setup N = 4 bootstrap. Bounds on leading twist dimension ∆` for ` = 0, 2, 4.
(holds for all values of gYM)

1 Conjecture “corner” corresponds to a self-dual point.
2 Matches some checks computed by resumming perturbative results.
3 Non-perturbative bounds/results at g ∼ O(1).
4 [Alday, Bissi] also conjectured analytic results for OPE.
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Analytic results/conjectures for 6d N = (0, 2) theories
Other Applications [Liendo, Rastelli, van Rees]

Bootstrap in N = (0, 2) theories requires first solving “mini-bootstrap” in a
BPS subsector.

1 BPS subsector defined via cohomology of some charge.
2 Novel twist involving conformal generator.
3 Cohomology be projected onto 2d subspace of R6.
4 Operators in cohomology are chiral, depend only on z ∈ C.
5 This sector has a 2dW-algebra symmetry.
6 W-algebra fixes three point functions of operators in cohomology.
7 By conjecturing algebra for An theories get 3-pt functions for all valus of N!
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Liberation at large spin
Other Applications [Fitzpatrick, Kaplan, Poland, Simmons-Duffin] , [Komargodski, Zhiboedov]

In limit |u| � |v| < 1 leading twist field dominate bootstrap equations.

Bootstrap equation in u→ 0 limit
For every scalar φ of dimension ∆φ

I CFT must contain an infinite tower of operators with dimension
τ → 2∆φ + `.

I Asymtotic estimates holds in `→∞ limit.
I Morally these operators are φ(∂2)n∂µ1 . . . ∂µ`φ.

Another interesting constraint, suggested by Nachtmann (’70s), but derived
more thoroughly by [Komargodski, Zhiboedov] :

Convexity (Nachtmann’s theorem)
Twist, τ` = ∆− `, of leading twist operator

I Is an increasing, convex function of `.
I Asymptotically (in `) approaches 2 τ0.

For e.g. 3d Ising where τ0 is small⇒ approx conserved currents.
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New Methods
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Pros/Cons of our Method
New Methods

Methods explained so far have several good properties:
1 Can make rigorous statements about non-existance of CFTs for various

spectra, S.
2 We have control over our sources of error so can provide systematic error

bounds.
But there are several un-features (i.e. bad things):

1 The method is a “blunt tool”: cannot easy “pick” which theory to study.
2 If theory we’re interested in is not at boundary of solution can’t get unique

spectrum.
3 Computationally intensive: depending on desired accuracy might require

computer cluster.
4 Only applies to unitary CFTs.

In particular if we want to add more correlators (e.g.
〈σεσε〉) our method becomes much more
computationally intensive.
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The Competition: Gliozzi Method
New Methods

Recently F. Gliozzi proposed an alternative formulation of bootstrap.

His proposal has several advantages:
1 Holds for non-unitary theories.
2 Can give spectrum/OPE even for theories not on our boundaries.
3 Computationally much lighter (runs on a laptop).
4 Adding more correlators does not make it much harder.

But also here there are several problems:
1 Method is very non-systematic.
2 Requires much stronger assumption and some input from other methods.
3 Very little control over the error made from approximations.
4 Does not rigorously prove anything.

If could cure some of these problems (i.e. 1 & 3) with the method might be a
much better way to proceed than our bootstrap.
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The Competition: Gliozzi Method
New Methods

Recall in our method we make the following sort of assumptions about the
spectrum:

Figure : a putative spectrum S
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The Competition: Gliozzi Method
New Methods

This yields the following equation we solve (with MS depending on S):
F(0,0)

1 F(0,0)
2 F(0,0)

3
∆−→

F(2,0)
1 F(2,0)

2 F(2,0)
3 · · ·

F(0,2)
1 F(0,2)

2 F(0,2)
3 · · ·

↓ ∂
...

...
. . .


︸ ︷︷ ︸

MS


p1
p2
p3
...


︸ ︷︷ ︸

~p

=


0
0
0
...



Note:
I The columns of the matrix are labeleld by (∆, l) and there is a continuous

infinity of them.
I This system is generally very under-determined.
I Generically there are∞-many solutions to this equation (i.e. for S deep in

allowed region).
I This is because we made very weak assumptions about spectrum (e.g. just

gap ∆ε).
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allowed region).
I This is because we made very weak assumptions about spectrum (e.g. just

gap ∆ε).
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New Methods

Gliozzi makes the following (well motivated??) assumtions:
1 Generically a CFT has a discrete (even sparse) spectrum.
2 Also we might expect that generically there should be unique solution to

crossing (if we know enough about the spectrum).
So he proposes the following:

Our assumptions

σ × σ ∼ 1 + ε+ . . .

And we try to maximize ∆ε while allowing anything in ’. . . ’.

Gliozzi wants to make the following much stronger assumptions:

Gliozzi’s assumptions

σ × σ ∼ 1 + ε+ ε′ + Tµν + Cµνρλ + . . .

Solve for ∆ε,∆ε′ ,∆Cµνρλ by requiring uniqueness and dropping ’. . . ’.
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Gliozzi proposes to solve the following simplified problem:
F(0,0)
ε F(0,0)

ε′ F(0,0)
Tµν F(0,0)

C4

F(2,0)
ε F(2,0)

ε′ F(2,0)
Tµν F(2,0)

C4

F(0,2)
ε F(0,2)

ε′ F(0,2)
Tµν F(0,2)

C4

F(2,2)
ε F(2,2)

ε′ F(2,2)
Tµν F(2,2)

C4

F(4,0)
ε F(4,0)

ε′ F(4,0)
Tµν F(4,0)

C4


︸ ︷︷ ︸

Mσ,ε,ε′,C


pε
pε′

pTµν
pC4


︸ ︷︷ ︸

~p

=


0
0
0
0



I He truncates the spectrum to N discrete operators (here N = 4).
I He truncates derivates to some M ≥ N (here M = 5).
I He keeps n < N free parameters: ∆σ , ∆ε, ∆ε′ , ∆C4 (so here n = 4).
I He calls the CFT “truncatable” if system above admits unique solutions.

Intuition: at a given derivative order, M, there should be a unique (approx)
solution by keeping only first N operators (hence: “truncatable”).
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How do we solve this system?
1 Gliozzi claims crossing symmetry should have a unique solution.
2 If M = N (soM square) uniqueness means det(M) = 0.
3 More generally take M > N and require det(Mi) = 0 withMi square

sub-matrices.
4 Example: M = N + 1.

I Mi are M square sub-matrices given by removing i’th row.
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The Competition: Gliozzi Method
New Methods

So e.g. if we take M = N + 1 get a system of M(= 5 here) equations:

det(Mi) = 0 i = 1, . . . , 5

for n = 4 unknowns (because the det(Mi) depends on ∆σ , ∆ε,∆ε′ ,∆C4 ).
I M eqns for n unknowns is generally over-constrained.
I Gliozzi proposes to solve n eqns at a time (to get unique solutions) and compute

“spread” of solutions.
I E.g. for 3d ising model fixed C4 = 5.022 (as input) and computes ∆σ,∆ε:
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The Competition: Gliozzi Method
New Methods

1 Using this approach computes ∆σ , ∆ε, ∆ε′ , ∆ε′′ , etc. . . in 3d Ising.
2 His solution has one free parameter which he fixes using ∆C4 = 5.022

(input from Monte Carlo).
3 Getting these quantities requires much less computation than our method.

Problem: by throwing away high-dim operators he’s making an error O(e−∆∗)
with ∆∗ ∼ 10. So real equation is:

F(0,0)
ε F(0,0)

ε′ F(0,0)
Tµν F(0,0)

C4

F(2,0)
ε F(2,0)

ε′ F(2,0)
Tµν F(2,0)

C4

F(0,2)
ε F(0,2)

ε′ F(0,2)
Tµν F(0,2)

C4

F(2,2)
ε F(2,2)

ε′ F(2,2)
Tµν F(2,2)

C4

F(4,0)
ε F(4,0)

ε′ F(4,0)
Tµν F(4,0)

C4


︸ ︷︷ ︸

Mε,ε′,C


pε
pε′

pTµν
pC4


︸ ︷︷ ︸

~p

=


α1
α2
α3
α4


︸ ︷︷ ︸

~α

with ||~α|| < e−10.
We have no idea how varying ~α affects values of ∆ε,∆

′
ε, etc. . .
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The Competition: Gliozzi Method
New Methods

1 In Gliozzi method must guess number of operators, N, with ∆ < ∆∗.
2 Wrong guess may give no solutions or too many solutions, etc. . .
3 Need ∆∗ to be small else would have too many parameters.
4 In our approach ∆∗ � 1 (can be 50, 100, etc. . . ).
5 So there are many choices to make in Gliozzi method⇒ more of an art.
6 Also no control over the (relatively) larger error.
7 Solving detMi = 0 non-trivial as we increase M,N and n.

But
1 Can be done with Mathematica on a laptop.
2 Doesn’t assume unitarity at all (he checks it in non-unitary theories).
3 Can easily incorporate additional correlators (just add more rows toM).

So
1 Definitely worth investigating more.
2 Would be great to get better control of error.
3 You’re all encouraged to join in!
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7 Solving detMi = 0 non-trivial as we increase M,N and n.

But
1 Can be done with Mathematica on a laptop.
2 Doesn’t assume unitarity at all (he checks it in non-unitary theories).
3 Can easily incorporate additional correlators (just add more rows toM).

So
1 Definitely worth investigating more.
2 Would be great to get better control of error.
3 You’re all encouraged to join in!
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Bootstrapping Theories with Four
Supercharges (in d = 2− 4)
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Superconformal Blocks
Bootstrapping Theories with Four Supercharges

How can we include SUSY constraints in bootstrap?
1 SUSY relates OPE coefficients of components of SUSY multiplets in some

correlators.
2 This yields superconformal blocks for whole SUSY multiplet:

G∆,l = G∆,l + c1G∆+1,l+1 + c2G∆+1,l−1 + c3G∆+2,l

with c1, c2, c3 fixed by SUSY.
3 SUSY fixes dimensions of protected operators by e.g. a-maximization.
4 SUSY imposes stronger unitarity bounds in terms of R-charge:

∆ ≥ d − 1
2

R

(for scalars in theories with 4 supercharges)
Can now try to bootstrap using these additional constraints.
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The Benefits of SUSY
Bootstrapping Theories with Four Supercharges

In theories with 4 supercharges dimensions of some operators constrained by
SUSY.

I Chiral operator is annihilated by half supercharges.
I SUSY algebra contains U(1) R-charge and ∆ of chiral operator depends

on its R-charge:

∆ =

(
d − 1

2

)
R

I When only one kind of field superpotential can fix R-charge uniquely since
superpotential W must have R-charge 2. E.g.:

W = X3

implies superfield X has R-charge 2/3.
I If more than one field (e.g. XY2) can use a-maximization to compute

R-charge.
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SUSY Constraints
Bootstrapping Theories with Four Supercharges

Lets consider theories with four supercharges in d = 2− 4.
I Let Φ be complex chiral scalar field so ∆ =

( d−1
2

)
R.

I To get strong constraints we consider

Φ× Φ and Φ× Φ̄ OPE in 〈ΦΦ̄ΦΦ̄〉

I Φ carries R-charge so can decompose OPE in reps of R-charge:

Φ× Φ̄ ∼ singlets
Φ× Φ ∼ R-charge 2

I CB decomposition gives different constraints in each R-charge channel.
I Because Φ, Φ̄ not identical can get odd-spin contributions in 〈ΦΦ̄ΦΦ̄〉.
I SUSY (+R-charge) fixes dims of some contributions in Φ× Φ OPE:

Φ× Φ ∼ 1 + Ψd−2∆Φ,0 + Φ2 + . . .

with ∆ ≥ |2∆Φ − (d − 1)|+ l + (d − 1) for ’. . . ’.
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Results
Bootstrapping Theories with Four Supercharges

So what kind of bounds to we get?

I Bounds for d = 2− 4.

I Multiple kinks!!

I Horizontal dashed line:
∆Φ in Wess-Zumino model

I This is SUSY version of φ4

theory!

I ∆Φ fixed because superpotential

W = Φ3

has R = 2 so ∆Φ = d−1
3 .

I So we found SUSY Ising for
d = 2− 4.

I But also two more kinks!

∆[ΦΦ̄] Bound
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Results/Checks
Bootstrapping Theories with Four Supercharges

SUSY also imposes interesting dynamical constraints on theory
I Consider Wess-Zumino model: chiral superfield X = Φ + . . . with cubic

superpotential:
W = X3

I Implies superfield X has R-charge 2/3 and (in d = 3) ∆Φ = R.
I The fact that in e.g. WZ model can compute ∆Φ exaclty means can extract

spectrum easily.
I SUSY eqns ∂W

∂X = 0 implies Φ2 should decouple in theory.
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New Structure
Bootstrapping Theories with Four Supercharges

In non-SUSY 3d Ising found interesting (surprising) kinematical structure.

What about SUSY case?

Bounds on Spin 1∗

0.662 0.664 0.666 0.668 0.670
∆Φ

1

2

3

4

5

6

7

8

9

∆

(∗Because of susy Tµν and T′µν are actually SUSY descendents in spin 1 multiplet.)

SUSY analog of 3d null states!!
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Our (Modified) Simplex Algorithm
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The Standard Simplex Algorithm
Our (Modified) Simplex Algorithm

Recall the original problem we want to solve

Minimize: ~cT ·~x,
subject to: M ·~x = ~b, ~x ≥ 0

Trivial solution is~x = 0 and~y = A−1~b but now must reduce cost:
1 Turning on component xα reduces cost via

~cT
y ·~y = ~cT

y A−1(~b− xα~vα)

2 Choose component α by maximizing~cT
y · A−1~vα (contribution to cost).

3 Increase xα until some component of~y becomes some zero. e.g.

xα vi
α = bi ⇒ yi = 0

4 “Swap in”~vα into i’th column of A.
5 Repeat with new A until all components of~y set to zero.
6 This yields “feasable”~x; can then turn on cx and continue.
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Modifying the Simplex Algorithm
Our (Modified) Simplex Algorithm

Modifications for x continuously labelled, α→ ∆:
I ~y is n-vector and A is n× n matrix so remains discrete.
I x∆ only appears in minimzation stage so we need to maximize:

ρ(∆) = cT
y A−1~v∆

I Various approaches:
1 Branch & bound on ρ(∆).
2 Local quadratic or cubic approximation.

I Technical Issues:
1 ρ(∆) approximated by very high-order polynomial O(∆60).
2 Matrix A becomes ill-conditioned in most physically interesting cases.
3 Numerical precision insufficient⇒MPFR/GMP
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How to get Started Bootstrapping. . .
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Some Resources (code)
How to get Started Bootstrapping. . .

So here are some ways to start:

Conformal Blocks
1 In 2d/4d can use exact expressions (see e.g. arXiv:0807.0004).
2 In general d (or just faster):

I See JuliaBootS (below).
I Use method described in arXiv:1305.1321.

Bootstrapping
1 Mathematica’s LinearProgramming function (good luck!)
2 Mathematica + IBM’s CPLEX LP (email me for mathematica plugin)
3 Mathematica + SDPA (probably the most standard solution now)
4 JuliBootS (open-source Julia implementation of Bootstrap -

arXiv:1412.4127)
5 Our python implementation (to be released soon ?!?!)
6 Roll your own. . .
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Thanks
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Dual Method
Bootstrap Formulation

I We can also formulate the problem in a “dual” way.
I Instead of solving for λ we can look for a diff op α such that:

α(Fi) > 0 ∀Fi

(
α =

∑
n,m

αn,m∂
n
z ∂

m
z̄

)

I Taylor expanding around z = z̄ = 1/2 and requiring each order to vanish
gives a matrix:

F(0,0)
1 F(0,0)

2 F(0,0)
3

∆−→
F(2,0)

1 F(2,0)
2 F(2,0)

3 · · ·
F(0,2)

1 F(0,2)
2 F(0,2)

3 · · ·
↓ ∂

...
...

. . .


︸ ︷︷ ︸

M


λ2

1
λ2

2
λ2

3
...


︸ ︷︷ ︸

~λ

=


0
0
0
...



which we must solve subject to λ2
i ≥ 0.

I Solving for λ2
i is called the Direct Problem.
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