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SOLVING THE BIRTH AND DEATH PROCESSES WITH QUADRATIC
ASYMPTOTICALLY SYMMETRIC TRANSITION RATES*

BERTRAND ROEHNERT AND GALLIANO VALENT#

Abstract. Birth and death processes with quadratic transition rates are considered with the constraint
lim, . A(n)/u(n)=1. The partial differential equation governing the generating function is solved quite
generally and gives an integral representation for it. In the process a generalized Mehler-Fock transform
is defined and inverted. From the generating function we extract the transition probabilities which are
shown to be the solution of the Chapman-Kolmogorov equations. Various approximation schemes are

then devised to deal with large populations and to extract the large time behavior for the transition
probabilities.

1. Introduction. Inthe field of stochastic birth and death processes, little attention
has been given to the case where the transition rates become quadratic with respect
to the population number. To our knowledge the only case completely solved is given
in Karlin (1962) and corresponds to a finite population.

The principal aim of this work is to exhibit the general solution for the transition
rates:

(0) An=a(n’+bn+c), e =a(n’+bn).

These processes will be called quadratic asymptotically symmetric (QAS), and
include the finite population as a particular case.

Let us make some comments on our motivation for studying these processes.

Practical applications. a) Birth and death processes have long been used as a
stochastic model of coupled chemical reactions (McQuarrie (1967)). In recent years,
the so-called ““Brussels group” gave considerable attention to exact and approximate
resolution of some nonlinear birth and death processes related to nonequilibrium
phase transitions in chemical reactions (Lemarchand (1976), Nicolis (1978)).

The most general form of QAS processes corresponds to the following set of
reactions:

ky
1A+2X?B + X,
C+2X?D+3X,
kg
XsE.
kg

Only the concentration of X is variable. The concentration of A and C should satisfy
ki[C]=ki[A]. Of course some reactions could be absent, which corresponds to
particular cases of the QAS process.

b) The particular finite process obtained when A, vanishes for some value n = N
has already proved useful in genetics for the modeling of fertilization and mutation
phenomena in a finite set of gametes. It has been discussed in a different framework
by Karlin (1962). We discuss this point further in § 4.1.
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SOLVING BIRTH AND DEATH PROCESSES 1021

Mathematical considerations. Our motivations for the study of QAS processes
are mathematical ones as well. Indeed, infinite nonlinear birth and death processes
are in general extremely difficult to solve. But we have here several favorable circum-
stances which are worthy of mention:

1) The spectrum of the process is here continuous. This could not be deduced
from some general theorem (Lederman (1954)). One may conjecture that the same
is true for all the processes such that:

An ~ in ~ an’, 0<a=2.
n—+o n-—»ao
In other cases, in particular if the degree of A, and u, is greater than two (even if
these degrees are different), the eigenvalues are discrete. They are then likely to be
the roots of some difficult (probably transcendental) equation. This is in particular
the case for the Schlégel process which is of interest in the study of bifurcation
phenomena (Nicolis (1979)).

2) The infinite set of equations for the moments exhibits in our case a remarkable
property: it is a closed system for QAS processes, and only for them (see § 1.4). Thus
they may (in principle) be computed recursively. In our approach these moments can
be obtained in the following directly from the generating function.

3) From the point of view of partial differential equations, the problem to be
solved in this paper is the resolution of the equation

oG
E’(xlt) =L,G(x1t)

where L, is a generalized hypergeometric differential operator:
2

L.=a(l -—x)[x(l—x)%i+(1+b~—-(1+b)x)%—c]

on the finite interval (0, 1) and with boundary conditions:
G, 0)=Ax), G(1, 1) <00,

Let us recall that this equation frequently occurs in one-dimensional physics: it is the
heat equation or the Schrodinger equation when ¢ becomes imaginary.

Since an exact solution is possible, we get further insight into the structure of the
generating function expansion for a continuous spectrum.

Furthermore, in the course of the resolution a new integral transform emerges
which is a generalization of the Mehler-Fock transform and may be interesting by itself.

Asymptotic approximation of the solutions are given for

at»1 and n>»1.

Such formulas are of frequent use in practical applications of birth and death processes,
since in the real world # is usually very large. It is possible here to check them against
the exact solutions. Let us also notice that these results are rather out of reach for
numerical computer resolution of the Chapman-Kolmogorov equations.

This article has the following structure:

In § 1 we give the necessary definitions and then discuss under what conditions
on the parameters b, b (more precisely 1+ — b = 0) the existence and uniqueness of
the transition probabilities is ensured for all times. At a formal level, the time
dependence of the momenta is discussed, and the generating function technique is
considered: this transforms the original problem into a partial differential equation.
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The main point is to solve this equation by a separation of variables technique,
and expand the generating function on the eigenvectors of some second order differen-
tial operator. The boundary conditions emerge after a heuristic discussion of the
conservation of probabilities at all times.

In § 2 we give the eigenvectors and eigenvalues in closed form.

In § 3 we explain how to get the generating function. This is not a completely
trivial question since it is necessary first to invert a new kind of integral transform
whose kernel is a hypergeometric function, and second to make a process of analytic
continuation.

This gives only a formal answer for the generating function G(x, ). It is then
proved with full mathematical rigor, in Appendices A, B and C, that the generating
function which is so found is indeed a solution of the original partial differential
equation with the appropriate boundary conditions. This proof leaves out of reach
only the limiting case where 1+ 5 —p = 0, but works for 1+ b —b>0.

From the generating function we extract the transition probabilities for which it
is easy to prove that they are a solution of the Chapman-Kolmogorov equations with
prescribed initial population and probability conservation at all times.

From the generating function we compute easily the first moment and obtain
rigorously the same answer as in the formal discussion of § 1.

In § 4, we give a detailed analysis of two simple processes: these are chosen for
their intrinsic simplicity and we show explicitly how the technique of variables separ-
ation works for these cases.

In § 5 we have devised several approximation schemes since our final answer for
the transition probabilities involves an integral of a complicated structure.

In many places we have given only sketchy arguments. The interested reader will
find all the details in the more extended version of Roehner (1980).

1.1. Definitions and hypotheses. We shall deal with homogeneous birth and
death processes (BD) evolving over a denumerable set of states labelled by a positive
integern=0,1,2,: .

Let p,,-.(t) be the transition probabilities from an initial state n, at time 0 to a
final state n at time . In what follows we shall often omit no and write simply p,(¢).

These probabilities must satisfy (see Bailey (1964)) the Chapman-Kolmogorov
equations:

d
(1) pn(t)z—(/\n+:u'n)pn(t)+/\n—lpn—l([)+“n+1pn+l(t), pn(t)zzpn(t)y

with the conventional definition

p.(t)=0 ifn <0,
We take as boundary conditions for t =0
(2) Pr(t=0)= 8 n,.

In order that p,(¢) be interpreted as probabilities at all times, we must have
(3) 2 palt)=1, 1=0.
n=0
Except for the case of finite processes to be considered later on, we shall suppose

that the transition rates are positive functions of » in its whole range, and furthermore
we suppose that o= 0. In this way n = 0 becomes the natural limit of the process.

——
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Since we require the positivity of u, we must have
bz-1
and when A, has two real roots these must be negative.

1.2. Existence and uniqueness. As is known from Bailey (1964 p. 102), a
sufficient condition which ensures the existence and uniqueness of a solution to (1)
with (3) fulfilled, is the divergence of the series

=

@) 5

n=vi

&f
o)‘i

where v, iy are positive integers.

This condition is clearly fulfilled for symmetric processes. For QAS processes we
must study the divergence of the series (4). This can be done using Raabe’s test which
gives the following constraint:

1+b-b
=
2
For a =0 Raabe’s test cannot be used. Nevertheless, Gauss’s convergence test (for

these tests see Gradshteyn (1965)) ensures uniqueness even for a =0.
Hence the existence and uniqueness of the solution of (1) is ensured for a = 0.

a 0.

1.3. Time dependence of the moments. The moments are defined by

n*pa(t), k=0,1,2,---.

0

my(t) =

n

i 18

We suppose their existence. Using (1) we get for the moments:’

(1) = go (An = Hn)Pn (1),

ma(1) =2 {ZO n(An = pn)Pn(t) + go (A + pa)Pn(1),

n

oe} k
A= 3 3 (© )n Tt D a0
n=0i=1 =1

Consider the system of the first two equations: this system is closed if all powers of
n higher than two are absent. This may happen if:

i) A, + w, is at most of degree two: a quadratic process;

ii) A.—u. is at most of degree one: a QAS process.
Now the expression of m(t) makes obvious the closedness of the equations for the
first k moments. This is a characteristic property of QAS processes. The equation for
m, () closes and is easily integrated:

¢ +<n0_ ¢ )e-(2a—1)at, Y

no+cat, a=

B

For a symmetric process m,(t) = ng is time independent.

! This is somewhat heuristic; we shall prove later on that it indeed gives the right answer.
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Let us observe that these expressions are identical to the solution of the deter-
ministic equations:
X(t)=—aa-1)x(t)+ac.
Another interesting feature is displayed by the processes with transition rates:
A.=a(n’+bn), b>0, Un =an’.

a

In this case, m;(t) = ny e**, although we know that

lim po(t) =1

1= +00

from a general theorem (Karlin (1966 p. 205)). This exhibits a drastic difference
between the time evolution of the mean value and the most probable value of the
population.

1.4. Generating function technique.
1) Principle. We define:
(5) Glx,t)= Y p.()x", O=x=1.
n=0

It is easy to show formally that G(x, r) must obey the partial differential equation

o= =9 [ul) (s Jo

where

(x3) =#(n=x35)
x—]=uln->x—1».
H ox H ox

The boundary condition (2) becomes G(x, t = 0) = x ",
The simplest way to solve this equation is to use a separation of variables method.
We define the eigenvectors y,(x) and the eigenvalues s by

(6) (=02 r) “A(x2) ] =spo)

Once these are known, the generating function is given symbolically:

(7) Gx,1)=Y ¢c;e’ys(x)

where the coefficients ¢, can be obtained expanding x"™ on the eigenvectors:
Glx,t=0)=x"=Y c,y,(x).
Ry

ii) Boundary conditions. The eigenvalue problem (6) is defined precisely only
when definite boundary conditions are given.

‘The main point is relation (3) which expresses probability conservation:

Y pa(6)=1, 1=0,
n=0

which implies

(8) lim Gx, t)=1, 1=0.

x—1
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This proves that the series (5) has a unit radius of convergence and defines an ana-
lytic function® for |x|<1 (uniformly for 1= 0). Since G(x, ) is given by the sum of
formula (7):

Gx,1)=Y c;e’yslx),

we are led to impose that y,(x) must be analytic when |x|<1 for all s.
From (7) and (8) we get also
1=coyolx =1+ ¥ c;e’yolx=1) fortz0,

s#0
and if the eigenvalues are all different we must impose
ysiax=1)=0 ifs#0.

This is also suggested by the factor (1 —x) appearing in (6), but this argument is
compelling only if the various derivatives at x =1 exist, which is not obviously true.

We shall take the eigenvalue problem (6) supplemented by two boundary condi-
tions:

i) ys(x) analytic for’ |x|<1;

i) yyx=1)=0if s #0.

Clearly the eigenstates corresponding to s # 0 span a linear vector space.

2. Eigenvalue problem for QAS processes. As explained in § 1.4, we want to

solve

aG a

—=L(x, ——>G,

at ax
with

2
(9) L=a(1—x)[x(1 x) +(1+b—(1+b)x)———c]
For these processes the eigenvalue equation (6) becomes
. d

(10) 1 =02y + (1= x)[1+5-(1+b)xly’ +(s'—x(1—x)y =0, '=d—i,
where s' = —s/a.

We look for a solution of the form
y(x)=(1-x)ulx).
If we impose
(11) r’—2ar+s'=0,
(10) reduces to _
(12) (1= )"+ +b-Q+b+2nx)u' +(s'—c—r(1 +5))u =0,

whose solutions are hypergeometric functions.

At this stage we must recall the positivity condition on u, given in § 1.1, b=-1.
For b = —1 (and more generally a negative integer) we shall give later on a separate
detailed analysis (see § 3.3).

2 Here x is taken as a complex variable.
31f x is taken as a real variable, y,(x) mustbe C* for0=x =R <1.

[ S
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In the following we shall take the condition b > —1. Inspection of the linearly

independent solutions of (12) (see, e.g., Gradshteyn (1965, p. 1046)) gives only one
solution analytic at x = 0. It is

b .
y,(x)z(l—x)'F(r+§+5,r+§-—5; l+b;x>.

In order to make transparent the following formulas we introduce

b 1+6—b 1+b+v.+v_ ——————
= gs a= s =R sy

which are the zeros of A,:
Apn=aln—v)(n—-v).
Using this notation we obtain
v ()= =x)F(r—v_ r—v.; 1+5;x).

As a side remark, when 5=—p with p=1,2,--, the eigenvectors are given by
Gradshteyn (1965, p. 1047)

vi(x)=x"(1-x)F(r+p—-v_,r+p—v.;1+p; x).

(See also § 3.3 for a further discussion of this case at the level of the generating
function.)

At this stage we have imposed only one part of the boundary conditions. It
remains to ensure:

ys(1)=0 ifs#0.

The eigenvectors behavior at x = 1 depends on whether r = a or not.
Case 1. r # a. The behavior for x - 1 of the hypergeometric function is given in
Whittaker (1965, p. 291):

M1+ 5 (2a-2x)
1+b+v_~rT(L+b+v.—r)

146 — . .
+F( b)L2r 2a)(l—x)z""F(l-i-b+1z_—-r, 1+b+vi—r;2a—-r+1;1-x);
Fr—v)litr—v.)

y,(x)=r (1—x)'F(r—V_,r—V+;—V_—,zu—-b.;1—x)

(13)

hence if we take
Rer>0 and Re(2a—-r)>0,

the eigenvectors vanish for x = 1.

These conditions imply a > 0, which makes contact with the discussion on unicity
in § 1.2 even if we do not recover exactly a 0. This result strongly supports the
choice made earlier for the boundary conditions (see § 1.4).

Due to the symmetry r - 2a —r of the eigenvectors, we can constrain the spectral
paramcter r to

0<Rer<a,
and the eigenvalue is given by (11)

s'=r2a-r).
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Case 2. r=a. The behavior at x =1 of the hypergeometric function is given in
Whittaker (1965, p. 299):
r(zr — Vs V—)

v = _"‘)r{r(r—u_)r(r—m T

+regular terms};

hence for r =a >0 we have lim,.; y(x)=0.
Let us notice that r=a =0 is indeed admissable because this corresponds to
s' =0. So we obtain for the spectral parameter:

0=Rer=a

as final constraint.
We have obtained the following eigenvectors:
0=r=a, " . ,
yr (X)=A=-x)F(r—v_,r—v.; 1+5b;x),
s=—ar(2a—r);
r=a-+iu,

=0, a>0, yP)=(1-x)"""Fla~v_+iu,a—v.+iu;1+b;x),

s=—ala’+ud),

with the condition 5 >—1.
Let us mention that these eigenstates are indeed real even if v. become complex.
This can be proved using elementary relations involving the hypergeometric function.

3. Transition probabilities for QAS processes. Once the eigenvectors and the
eigenvalues are obtained, we have to solve the following problem. Given

A(x)=x"°

we must find A, (1) such that:*

20

(14) J B (1) (x) du = A(x).
0

This is a new kind of integral transform for which we need an inversion theorem.
Anticipating this inversion formula, we give the general structure of this integral
transform without any reference to the actual framework. Define:

Kab(LlIx)=(l—x)i“F(a+iu, b+iu;a+b;x);

then we have the reciprocity formulas

oo

E<x>=j () Koy (1| %) it

0

a+iwa—in)b+iw)T(b—iu) ush2mu Vyarb-1
( )I( = +(b) ) u) lsTrzv'r J x - R Ko (] ) .
0

h(u)=F

These relations are only formal: it would be quite interesting to set up by itself
the general theory of this new integral transform.
Let us simply notice that if

b=%,-a=%—,u,, ,LL<0,

* We shall explain later on how the eigenvectors y‘,”(x) appear once equation (14) is inverted.
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the nucleus K,,(u|x) reduces to Legendre functions if we use the relation (Erdélyi
et al. (1953, vol. I, p. 124))

(15) Kl/z-“,l/z(u lx) = r(“#)xulz(l “x)“l/zp‘:x/zﬂu(%i‘_j‘)-
In this case (14) is nothing but a Mehler-Fock transform of order u (see Sneddon
(1972, p. 414) for the definition when u is an integer).

In this work we shall proceed in the following way:

i) We give a formal treatment of the inversion problem for general A(x). This
will be done without any discussions of the necessary restrictions for A(x).

ii) This gives an answer for h,,(u) when A(x)=x". We then prove, with due
respect to mathematical rigor, in Appendix A that relation (14) is indeed true for this
particular case.

iii) In fact, step ii) requires the restrictions

(16) bF>-1, Re(a—v.)>0, a<0.

But we have seen in the discussion in § 1.2 that the *“‘physical” world corresponds to
positive values of a. At this stage a process of analytic continuation with respect to
a will give the general decomposition of x™ on the whole eigenvectors basis, and we
shall see how the eigenvectors yi'’(x) creep in naturally during this process of analytic
continuation.

3.1. Formal inversion of the integral transform. From a general point of view
the inversion of an integral transform is a rather difficult problem. The basic idea for
solving this problem is to find an ‘“‘adapted” integral representation for yZ (x) such
that (14) can be considered as the composition of several classical integral transforms
(by classical we intend those integral transforms available, €.g., in Sneddon (1972)).

T}lis is possible for y‘f)(x): we obtain the composition of a Hankel transform of
order b with a Kontorovich-Lebedev transform. Using the known inversion theorems
will lead to the inversion of (14) in terms of y'2’(x).

We start from the eigenvectors given in § 2 and use formula (3) (Erdélyi et al.
(1953, vol. I, p. 105)) to write them as

)’LZ)(X)‘—‘(l—x)"—"F(a—V_+iu,a —v_—ju;1+85; -1 ad ), b>-1.
—x
Putting ‘
52

SREPY=L

£z0,
the eigenvector becomes

(2)( £
u 1+§2
We use formula (31) (Erdélyi et al. (1953, vol. II, p. 52)):

)=(1+§2)‘"—F(a—u_+iu,a—u_-iu; 1+b;-¢£9).

o]

(17) Fla—v_+iu,a—v_—iu, 1+Z;; ——.fz) =Nu§_"-J‘ 17K ()T (€r) dt
0
valid with

2114 B)

N, =
[(a~v_=*iu)

, Re(a—v.)>0,

Ma-v_xiv)y=Tla—v_+iu) -Tla—v-—iu).
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Inserting this integral representation into (14) gives

[» »)

|

where we have already interchanged the order of integration. One recognizes in the
integral over u a Kontorovich-Lebedev transform, and over r a Hankel transform.

Proceeding formally we use the Hankel inversion theorem in Sneddon (1972,
p. 309):

|

We then apply Kontorovich-Lebedev inversion theorem in Sneddon (1972, p. 361):

© . 2
B (4)NuKan (1) du = £5(1+ 52)"—A(—‘5-——)

t]_ —1+u+—-vﬁd J
b(‘ft)t t 1+§2 ’

0

x . 62
h(n)NK i (t) du=1"""""- L degtt(1 +§2)”—J,,-(§t)A(1 " Ez) d¢.

—_ 8u5h27ru 'x} —v, tv_ * 1+5 é’z > o 2\v_
h(u)-—————szu L t Koi(t) dtJ0 ¢ A<1+§2 Js(&n(1+£7)- dé.
We invert the order of the integrations:
_8u5h27TLl ® 1+l; 2\v_ ( §2 ) Jw —v, tv .
ha) = T [ e A ) de | Katossten d

and use (17) to get yi’ (x) again:

_Bush2mu [T o544 v bu ¢ of &
h(u)—————TrZNuN,u L ET(1+¢€Y) A<1+€z))’u (1+§2>df

with
N, =N, (viev), Re(a—v4)>0.

We return to the original x variable:
T(a—-v. i) (a—v_%iu)
w1 +b)
If A(x)=x" this integral converges only if a <0, hence we have obtained along
this discussion all the restrictions (16).

We shall see in § 3.2 how it is possible to escape to the constraint a <0. The
integral (18) for A(x)=x" can be written:

l -
(18)  h(u)=ush2wu L 1= TTA)y P (x) dx.

Ma—-v.+ i (a—v_+iu)
7T (1+b)

R (u) = ush2mu

<[ a2 L En () ds
0 r=0 r

and each term in the sum is evaluated using Gradshteyn (1965, p. 849):

M(a —v,oxiu)[*a—-v_%iu)

(19)  h, (u)=ush2mu U1 E)

no) [(r—a=+iu)

L, (_1),( T(r—v)T(r—v_)

r

Of course in this way we have obtained at best an ‘“‘educated guess” for h.,(u).
The proof that with the expression (19) for h.,(u) we have :

x"o= J hno(u)yf)(x) du,
0

if (16) are satisfied, is given with full mathematical details in Appendix A.
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3.2. Process of analytic continuation to the physical region a 2 0. From Appendix
B, we know that if conditions (16) are fulfilled then (14) is valid with h.,(u) given by
(19). Putting z = iy,

—z sin 27z

Heo2) =5 200756

Ma-ve+z)la—vi—2z)T@a-v_+z)(@a=v_-—2z)

g Sno\T(r—a+2z)[(r-a-z)
L (_1)< ) Tr—p)T(r—v.)

and

Yz(x)=(1—x)"‘F(a —y_+z,a—-v_—2z; 1+5; —1fx)’

we transform (14) to a contour integral:

+io0

x"“=J ‘ Hﬁ,o(z)Yz(x)%E.

Let us suppose, for the moment, that a <0 (such that |a| is small with respect to
1) and Re v, is negative and sufficiently large to ensure Re (@ —v.)>0).

The integrand is an even function of z; Y,(x) is analytic in z and H ,,(z) has the
following poles (see Fig. 1):

Z=a—l/++p,
z=a-—-v_+p, p=0,1,2,---.
z=—a-+p,

All the other poles are of opposite sign.

When a increases to 0 from small negative values, there is a pinching of the
integration contour between the poles +a which destroys the convergence of the
integral.

Almz
Y. <0
a <o
%: {Z / Re(z\ :O}

-a+1 v, +4 o-y +4
i
l_> é—’ J—‘!:1-9. a~y, a-v,;;_m“ a-). O—V_+:2._“. Rez

-a

N
pinchrng  for
a —>0

FiG. 1
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Hence, before taking the a - 0 limit, we push the contour to the right in order
to avoid the pole z = —a (see Fig. 2). This will give by Cauchy’s theorem a supplemen-
tary contribution related to the residue at the simple pole z = —a.

N

v

©

Y

F1G. 2

Now the a - 0 limit can be taken (because the residue is continuous for a - 0).

One can even increase a to positive values.
But if a - 3, the poles a and 1 —a pinch the contour again. In order to avoid this

new pinching, we push back the contour to Re z =0 (see Fig. 3).

A N
AN
——t = @ 4 =
d A-a a J-d
pinching
for a—>1
5
FiG. 3

We obtain in this way the residues at the poles z = +a, and taking into account
all signs these terms double and give

\ _2 R 2 +{o0
e UONCRER e bIl(-20)Y () +

a formula valid for 0<a <1.
For a =0 the right formula is obtained by the limit a » 0 but with a contour

pushed slightly to the right of a =0.
The relation

—10

Hno(Z)Yz(x)g,

. _ ™
2a sin 2mal(-2a)= _—I‘(Za)

exhibits the well-behaved dependence on a of the residue, even for positive integer
values of 2a.
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When a is increased further, the poles at z = +a keep away from the integration
contour while the poles z = £(1 —a) produce a new pinching for a » 1.

The technique is the same as for a - 0. In this previous case only the r =0 term
in H,,(z) had a pole, when a » 1 the r =0 and r =1 terms have a simple pole.

It is an easy matter to compute the residues, and to obtain

. [a] +i00 dZ
K= 3 Hm-a(z>+j Ha(2) Y. (0,
=0 —ico

where [a] = integer part of a, with

1+12(0—a)sin 2w (l—a)

Hi=(-1) AT(1+5)

(20)

Fl—v)Tl—v)IRa-1-v)I'2a—-1-v_)

(n(,)
inflngD) 1\ F({+r-2a)
X

rgo U= Tr=v)lr—v.)

which is valid when a is not some positive integer.

We observe that if a - p (integer), the residues in H, are well defined, and before
taking this limit one must push the integration contour slightly to the right of Re z =0
as previously explained.

Now we can further enlarge the validity domain of (20) to positive values of
Re v,. This is a consequence of analytic continuation, provided 5 >~1 and Re (a —
v.)>0. Hence if Re v, is positive, one must take large-enough values of a.

Coming back to y = z/i we can write:

[a] «©
o= 3 Hy P00+ [ )y (o) du
=0 0
Since the eigenvalues (see § 2) are:
yi'(x)»>—alRa-1), ylx)>-a’+a’),
the generating function will be given by
a) 2 * —(u2+a)ar
21) Gx,t)= Y Hyi"(x) e"‘~“">°‘+J Boo(t)y 2 (x) e ™20 dy
(=0 0
provided that b>-1, Re (a—v:)>0.
The proof that G(x, ¢) is indeed a solution of the partial differential equation (9)
9G |
—at—=LG, 1z0, 0=x=R<1,
with the boundary condition
G(x,0)=x", O=sx=R<1
and such that

lim G(x, 1)=1, 120

x -1
is given in Appendices A and B. The proof is valid only for a > 0.

3.3. The case where b is a negative integer. If b= -pforp=1,2,3,---,despite
the lack of positivity of u, for n <p, one can imagine a population evolving only with
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n = p. This corresponds to a process whose natural limit (for which w vanishes) is no
more n =0 but rather n = p.

It is easy to show that the probabilities (and also the generating function and the
eigenfunctions) can be deduced from the corresponding ones for an associated process
with, as usual, uo=0. The process p = (A,, u.), n = p, will have as associated process
P'= (An+ps n+p), n =0, with the obvious relations:

yslpl=x"y[p’),  Glpl=x"G[p'].
The first relation was indeed observed in our discussion of the eigenvectors in § 2.

3.4. Mean value and transition probabilities. Once the generating function is
known, we can extract from it the moments:

Se]

me(t)= Y n pn(t)——hm (x—) G(x,1).
n=0
Since the computation for general k is tedious, we shall content ourselves with the
first moment and check that the result agrees with the expression already givenin § 1.4,
We start from:

G(X t)— Z H[y(l) ) —l(2a—l)a1+J’ hno(u)yQ) )e—(a2+u2)aldu.
0
In order to compute safely the derivative for x = 1, we suppose a > 1 since from

Lemma 4 in Appendix B we can bring the x derivative inside the integral over u.
Using formula 20 in (Erdélyi et al. (1953, vol. I, p. 102)) gives for the first moment:

) =g (mem gy mg) T am,

as expected.
The transition probabilities are given by:

n

1
-n(t)=—lim —;
Pro=n (1) nlx=09x

Gx, ).

Using Lemma 3 in Appendix B, we can bring the x derivatives inside the integral
over u. Hence to get the transition probabilities, it is sufficient to expand the eigenstates
around x = 0. We define:

yil(x) = Z Gi.x",  yl(x)= z g (u)x".

This gives for the transition probabilities:’

[a] ©
(22) pno—’n(t):'lzo HIGI',; e—-l(2a—l)al+J. hﬂo(u)gn(u) e"(a2+u2)ar dI,l.
= 0

In order to express the coefficients gn(u), we start from the eigenvectors as given
in § 3.1:

m(x) (l—x)"‘F(a—u +iu,a—-v_—iu; 1+b _x_I)

* With hno(u) and H; given by (19), (20) and G, g.(u) given by (19a), (20a).
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Using the known series for the hypergeometric function, we get:

@\ ® 1) a-v-tiuhla—vo =i o .,k
Yu ( g (1+b~)k X (1 X)
with
Ia+k
(a)k=*'(l—il‘mT), 0k =0, (0)o=1.

Then we expand (1 —x)*~~* using the binomial series:
© oy kX (jtk=1-v\
1-x)""" =% (—U’(V . k)'x’= )) (] : o7 >-x’-
j=0 I j=0 )

Collecting all terms we get:

(20a) gn(u)=

k

(—1)“(n —1—V_)(a —v_+iul(a —v_—iu)x
o k! n—k (1+6), '

BaeE]

Similarly we obtain:

(19a) Gin=

n (—-1)k(n—1—v_)(1—v_)k(2a-—v_—1)k
o k! \ n—k (1+8) '

When v. are complex, the reality of g,(«) and G, is not obvious. Since the eigenstates
are real even if v, are complex we know a priori that g, and G, are indeed real.
Nevertheless, the expressions we have given are not manifestly real. In order to have
a manifestly real formulation, one must start from the eigenstates in the form:

1

5{(1—x)"‘F(a —v_+iu,a—v_—iu, 1+5b;

xl)“"‘“”*)}

X -

y2(x)=

when v. are complex. The manifestly real form of the coefficients g, and G, is simply
obtained by the same substitution in g,(u«) and G,.

Let us now prove that the transition probabilities pn,.(t) given by (22) are mdeed
the solution of the Chapman-Kolmogorov equation (1) with boundary condition (2)
and such that (3) holds.

We have proved in Appendix B that G(x, ) is C* for 0=x =R <1 uniformly
for t = 0. Hence in the partial differential equation (9):

oG d
—= L(x, —) G,
ot ax

we can expand each member in powers of x, and as already explained in § 1.4, we
recover (1) for p,(t). Since we work with x = R <1, the partial differential equation
is valid for a 2 0.

Then expanding the relation proved in Appendix A,

G(x,0)=x

in powers of x gives the boundary condition (2).
The probabilities conservation Zn _o Pn(8)=1for =0 is simply a consequence of

lim G(x,t)=1, =0,

x—1

which is valid (see Appendix B) only for a >0.
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The limiting case a = 0 is out of reach of our analysis and deserves further study.
We have explored numerically the case A, = a(n®+n)u, = an’. The agreement is good
for all probabilities p,(¢).

From formula (22) and if Ao = uo =0, one can easily check that:

lim pa,-olt) =1,

which is in agreement with a general theorem in Karlin (1966).

4. Detailed analysis of two typical processes. In order to illustrate the preceding
general analysis, we shall consider two simple cases of transition rates which exhibit
interesting peculiarities. Even though the generating function can be obtained by
taking the appropriate limits in the general form given in § 3, we think it instructive
to give a direct analysis for these cases.

4.1. Finite processes.

) An=a(mn =N, u, = an’. We take for N some positive integer. If no=N the
population can only envolve between the levels 0 and N. As a consequence of (5)
and (7), we know a priori that the eigenvectors are polynomials. Indeed, from § 2 we
have (Gradshteyn (1965, p. 1010)):

1+
0=r=N+1, y‘,”<x>=(1—x)”P~_,( "),

1—x
2) N 1+x
0=u, Y2 ) =(1-x) P-I/M(-l—:—;)

on which we must expand x™. Since the eigenvectors

1+
(1—x)NP,,<1 x), n=0,1,--,N
— X

are polynomials, they are sufficient for the expansion of x™. We must find the
coefficients such that

N 1+
x=Y c,(1—x)”P1( x);
(=0 1—x

going to the variable z = (1 4+ x)/(1 — x) this becomes
N N
(z=D"z+ 1N =2Y ¥ ¢Pi(z), zzl
{=0

The two members of this equality are analytic with respect to z; hence we make an
analytic continuation to —1=z=+1. In this case we know the scalar product of
Legendre polynomials, which gives:

21+1 ¢t o
= ST J (2 =1)"(z + YN "™Py(z) dz.
-1

We expand the integrand with respect to z + 1:

2[+1 Mo
€1 = SRFT )

k=0

(—2)“(’,’(") fl (z+ DV 'PUz) dz;
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this integral is given in Gradshteyn (1965, p. 797):

~ "o ik no [(N—k)']z
c,—(21+1)k§=jo( 1)<k)(N—k—l)!(ka+1+1)!'

So we obtain the generating function:

1+
Gx,t)= ) c(l —x)Npl(.___x> o ~N—DN+I+Dat
{=0 1—x

which is in agreement with the general formula (21).

The special case treated here suffices to emphasize the great simplicity of the
expansion problem in this case, due to the existence of a scalar product.

2) Relation with Moran processes. The transition probabilities for these processes
have been given in Karlin (1962) in a somewhat different framework.

Their work corresponds to the transition rates:

A, =aln—N)n—v), pn=an{n+b).

In the general formula (22) h,(u) vanishes since we suppose no = N. Taking into
account some compensations between vanishing numerators and denominators gives
for the coefficients H;:

0, N<l<]a],

2(l—a)sin2#x(l—a)
H, =/ TTF(I+5)

Fl-v)lRa-1-v)rRa—1-v.)

(7)
nflng) o N/ T +r-2a) -
\ <X VTS Ty W [+1)-, O=I=N

The coefficients G,,, are given by (20a).
The relation with Karlin and McGregor notation is:

Alyi+y2— . -~
o= (‘)’1 ‘)2’2 1)’ b=N- (1 72) ,
N Yit+7y2—1
yi+y2—1>0.
V_=N, V+=N‘"——:Y_2_—_’
yity2—1

The case where y;+v¥2—1<0 cannot be deduced directly from our general
formula since it corresponds to transition rates

Apn=a(N—-n)n-—-v,), v, <0,

p.,,=an(n+b.), 0=n=N,

and these are not of the form (0).

This is the only case which is not covered by our analysis since it is a genuinely
finite population case. Nevertheless one can obtain the transition probabilities for this
case: the eigenstates are related to Jacobi polynomials, and as in the previous para-
graph, due to the existence of a scalar product for Jacobi polynomials, the expansion
problem is easily solved.
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4.2. A symmetric process A, =u, =an %, From § 2 the eigenvectors are

0=r=i, y‘,“(x)=P_,(1+x),
1—x

1+x

0=u, y(uz)(x):P—-l/2+iu(T—:_—;>-

The expansion of x™ over these functions leads to the integral equation:

* 1+x

x"°=J hno(tt)P-1/2+iu(——) du.
0 1—x

Going to z =(1+x)/(1—x), this becomes

/ z—1\" %
A(z>=(z+1) =j0 Ho ()Pt 2o (2) dit.

We recognize a Mehler—Fock transform whose inversion theorem is given, e.g., in
Sneddon (1972, p. 390). Unfortunately, for z » co:

~lim A(z)=1

and the inversion theorem does not work in this case. This simply means that we must

subtract some terms to improve the decrease for z » 0 of A(z). Among the eigenstates

1
y‘, " we have:

yo (x)=1.

Hence if we consider

-1 no
A@=() -1

which has a good behavior at infinity we can use the inversion theorem:

z—-1\"°
P—1/2+iu(z)[<z " 1) —1} dz.

a0

hno(u) = uthmu J

1

We expand the integrand in inverse powers of (z +1):

ng {

haole) = uthers T (—1)’("10) f P-1/2+iu(Z)(z i 1) dz.

1=
This integral is given in Ditkine (1978):
()
RD 1
Fno() = 2uth 1) —= (I -3+ iu).
olu)=2uthmu El( ) DI (I-3%1iu)
The generating function is

) Lo

Glx,N)=1+2 % J wtharuT2( -+ i )P~1,2+,-,‘(
0

S [ =17

One can check that the appropriate limits in formula (21) give the same result after
some tedious algebraic work.

)e—(u2+l/4)at dLl.
1—x
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Going to the transition probabilities gives for no=1:

1 —1 * —(u2+ at
Pran(t)=8,0-2 ): A (” ) J muthmulT?(k + 2+ iu) e V9% du,
KZo (k1) 0
in agreement with (22). This simplifies for n =0 to:
< h e
Praolt)=1-2 e""'/“J T g gy
0 ch®mu

S. Approximation methods.

5.1. Large time approximation for transition probabilities. The main problem is
to obtain the large time behavior of the integral over u appearing in p,(¢).

This can be done by use of Watson’s lemma as given in Bleistein (1975).

It is first convenient to change the variable to Yv=u which leads for the
integral over u to:

—a2at w ——uat (\/U —alat % —vat

e J. e g,,(\/v) dv=e J- e “f(v) dv.
0 ‘/U 0

It is easy to check that the hypotheses of Watson’s lemma are satisfied. For v -0,

f(v) has a Taylor series in powers of Vo

[e o
f) ~ ¥ e,

=0
The knowledge of the coefficients ¢; gives the asymptotic behavior of the transition
probabilities:
e amtar , —a2ar o T((143)/2)
Pro=n(t) ~ L HiGine Tl@aThary gmate ¥ o————rraa
~©/=p =0 (at)

The computation of the coefficients ¢; is tedious but straightforward. We give only
the first coefficient:

Co=

A 1o 2
n (=1 ( ) ['(r—a
[[a—v)T(a-v )] Z (=1 r [Lir=a)]" (-D)* [(a—-u_)k]z(n—l—u_)

al(1+5) S0 Tr—v)lr-v2) «Z0 k! (1+b6k \ n—k J
Asin § 3.4, when v, are complex, in order to get a manifestly real quantity, one must
make the substitution

' 1
co—>co =3(cotv-e ).

5.2. Large n approximation for the transition probabilities. From the explicit
formula (22) for the transition probabilities, we observe that for large n, G,, and
g.(u) are a sum of alternating sign terms whose number increases with n. This is quite
unpleasant for computational purposes since the final result is obtained as a sum of

large terms among which large compensations occur.
1) The method. Let us consider some function of the form

H(x)=(xo=x)"Fx)= T ax”,
where a is some complex number and such that F(x) is analytic near xo and 0:

F(x)= § , F(x)=§oFk(xo—x)k.
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Expanding in powers of x, F(x) and (xo—x)" gives directly:

(23) ar= % (787D 6u
k=0 k
But this formula is of little practical use since it is an alternating series whose terms
are large. Nevertheless, it is possible to give an asymptotic expansion for a, when n
is large according to Dingle (1973, p. 141).
We again expand H(x):

oo} s el K a+k atk—n n
H= % o0 Fo= 3 Fe L (%7 6™ oy,
k=0 k=0 n=0 n
giving
e +
(23) a, = Z (_1)n(a k>x8+k—an’
k=0 n
a, = (_1)H(Z)XS_H[F0+IQCI"(C! + 1)F1+' .
(24) Fxigela+1) - qulatk)F+- ],
qn(a)= 2 s a #n.
a—n

Here a discussion is needed.

Case 1. « is not a positive integer. We notice that the second and third terms in
(24) are respectively of order 1/n and 1/n%. However, this is not an asymptotic
expansion because we cannot ensure the kth order term to be (1/n)* when k is of
the order of n. Even if it would be the case, since we must then integrate (24) over
u, it is not obvious that the integrated expansion would remain an asymptotic one.
Indeed we are looking for a simplified approximation and then we will check by a
numerical computation that this gives sensible results.

Case 2. a is a positive integer p. Relation (23) shows that the terms for k =
1,2, +,n—p—1vanish, and the first and the second factor are in the ratio n instead
of 1/n as previously. In this case, and if p is not too large, we shall use the expression
(239.

ii) Application to the generating function. We define

G(x! t) = Gs(x! t)+ Gi(x) t))
with

{a] . [o'e]
G,(x, t)= Y, H,e—m“_”“'(l—x)lF(l—-V_,1-V+; 1+b;x)= Y s.x”,
1=0

n=0

o0

Gi(x, 1) = J B (u) e @ (1= x) T MF(a—v_+iu, a — v tiu; 1+6;x)du
0

(s o]
=Y ix"
n=0

The subtraction terms G, (x, t) correspond to integer a = [; hence for s, we take the
formula given in § 3.4. For practical use it is necessary to suppose that [a] is of the
order of some units.
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The evaluation of G;(x, t) is made using (24) with xo = 1. To obtain the coefficients
F. we use relation (13) which relates the hypergeometric function of variable x
and 1 —x:
) (4) = T(1+6)(=2iu)(1—x)*"™

u

= Fla-v_-+iu,a—v.+iu; 1+2iu;1—x)+c.c.
@, — i@ —r— ) (@a—=v-+iu,a—v,.+iu iu x)+c.c

where c.c. means complex conjugate. Hence we have

F(): 1,
F,_l_m-ﬂu+h0ﬂa—v++mh e
“ Tkt (1+2iu); o
which gives for the transition probabilities
(7 < larew? a+iu [(—2iu)
w = hn T(1+5 (a+u)a1_1n( )
: L i+ b)e R W P PR

(25) x[1+Figa(a+1+iu)+- - Jdu+c.c.

Collecting all terms gives:
Pn(t) = 5, (1) +1,(1).

iii) Numerical check. We come back to the symmetric process A, = u, = an® and
no=1. In this case a =5, [a]=0 and the only subtraction term is 1. The general
formula (25) gives:

® ushmu ., [(—2iu) 1/2+iu
n — _2 '[ (u2+1/4)at _ n( )
26 i) 5,(72m) | e Paz—im Y
1/2+iu)?
x[1+(——{~2:2—;l;—)q"(3/2+iu)+---] du +c.c.

The numerical computation results are given in Table 1, and show that already when
n is of order 20 or 30 the first few terms give reasonable results.

TABLE 1
Number of terms Prolt) Paoll) Paolt)
1 1.1 1073 6.0 10°° 9.1 10°°
2 7.8 107* 44 1073 7.0 10°°
3 6.7 107 4.2310°% 6.86 107°
4 7.09107° 4.29107° 6.89107°
“exact” value 7.04107* 4.2710°° 6.89 107

iv) Large n and large time approximation. This case is of particular interest since
it is difficult to grasp by a numerical resolution of the equations (1): the computer
calculation time increases quickly with both n and ¢ Nevertheless, we shall be able
to write down a rather simple limiting expression which combines the preceding two
approximations.

To get rid of the subtraction terms we suppose® 0<a <1 and also no=1 (an
asymptotic formula for large no remains an open problem). We take only the first

® This covers a large class of transition probabilities; among which are A, =pu, =a(n*+bn) and
Ap=a(n"+c), u, =an’,
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term of the 1/n expansion (25). In the integral we make the large ¢ approximation,
that is, we expand the integrand to first order in Vv =u. We obtain:

-a2at

(r=v)alr—vi)a 1
1) = < —+cy——z+
it 145y, nl an)?
with

_VwTl@a—v)lla-v) [(n—a)
T2 T1-v)T(1-v) n!

x[g(n—a)—y¢(—a)—vla-v.)—Yla—-v)—2y],

(vev-—a)l(=a)

Cn

w(x)=-di1n I'(x), vy =—-¢(1).
X

If we go back to the case

A=

2
An=un=an’, ve=v_=0, a=

y

we get a remarkably simple formula:

7 (n—3) e
pn(t)",:flh py (1n(n—l)+61n2—2+y)(—at—)3/—2-

where we used Stirling’s approximation:

yin) ~ In(n=3).

Appendix A. We shall prove that if conditions (16) given in § 3 are satisfied, the
relation

[e o}

x""=J hno(u)y(uz)(x)du, 0=sx<1
o]

holds if h,,(u) is given by formula (19).
LEMMA 1. The relation

o

J ush2mul (A £ in)T2(w £ iu)Kaiw(t) du =27 22T + A)* T K, _\ (1)
4]
holds if Re A>0, Re u >0 and tz0.
Proof. Let us denote
FO=2"*"2 T + A" K, A (o).
For ¢ - 0 it is easy to see, using its definition, that

2sin(u —A)m nson!TA—u+n+1) wson!T(w—A+n+1))

K.-\(t)

If we restrict ourselves to Re u >1 and Re A > 1, then t_lf(t) is continuous for t=0
as well as for its first derivative.” When ¢ - +00, due to the exponential decrease of
|K,_x(0)], 1f(t) and t(d/dt)(¢"'f(1)) are absolutely integrable for ¢ = 0.

7 This remains true if u —A = n is some integer. In this case we use formula 37 in Bateman II (1953,
p. 9) for K. (1).
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According to a theorem due to Lebedev (see Sneddon (1972, p. 361)), we can
conclude that

2 (7 .
(A1) fity=— J Ki.(t)rshorf(r) dr
m Jo
where:
flr)= J —f(t Ddt=2"*"7"T(u+A) J KL (0K () d.
This last integral is given by formula 36 in Erdélyi et al. (1953, vol. 1I, p. 93):
2 . .
(A2) f(r)=%F2<A ig)rz(,,. :tg-)

Inserting A2 into Al gives the lemma after the change of variable 7 = 2u, provided
that ReA>1, Re u >1.

Analytic continuation extends this formula to ReA >0, Re . >0. 0O

LEMMA 2. The integral

0

1=

converges if ReA >0, Re u >0, b>-1,0=0 and £=0.
Proof. We first deal with the ¢ integral:
J5(&1)

L(u, &)= L t7 &

From Lemma 3 in Appendix C we know that L(u, £) is continuous with u. Since
it is multiplied by a function of u which is continuous for u =0 because Re A >0,
Re u >0, the integral I will converge provided that the integrand is sufficiently
" decreasing for u > + 0.

For large u, Lemma 5 in Appendix C gives:

k, -1/2-56 k,
“re A0, £=0

dtJ ush2wu|l* A £ )T (£ iu)| [K (0 alfb(f | du

Kliu(t)' dt.

and the Stirling formula:

2 1
ush2mu|l?A i) (u £ iu)| = u“‘“““"‘(l+0(;));

hence the integrand exhibits an overall exponential decrease ensuring the convergence
of L
THEOREM 1. Ifa <0, 6>—1 and Re (a —v.)>0, we have

x"°=J hoo(u) )y 2 (x) du, 0=sx<1.
[¢]

Proof. We first suppose that v, are real negative numbers. In order to compute

L"" finglrt)y (2,(1§2§2) du

we insert the integral representation (17) for y'2’, which is valid if we suppose bh>-1
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and Re (a —v_)>0. Replacing h,,(u) by its expression we get

r no
21—V*+V_ ng (-1) ( r > [ ) 5
2\-v_ _ . 2 _ .
— (1+¢&9) EO NEEPRETS L ush2mull(a — v, +iu)]|T(r—a +iu)|* du

x j o Ko () 228 g,
0 &

By Lemma 2, this double integral is absolutely convergent (from our definitions
Re (v, —v-)=0) for £ =0 provided that® Re (a —v.)>0. We can first integrate over
u by use of Lemma 1 and obtain

2\—v_
(1+§) r=0 r(f’—V—)

I3 Kr—l-—l;—v_(t) dt’
0

making use of the relation
—20+V+="‘1"‘b.—l/_

of § 2. The remaining integral is given in Erdélyi et al. (1953, vol. 1], formula 39,
p. 93):

no

o o 2\ ~r
3 (e
whose sum is

§2 ng
(17?) =x" = 0sx<l

Analytic continuation extends the validity of this relation to Re (a —v.)>0. In fact,
we need this relation only for 0sx =R <1.

From a more-general standpoint, a thorough study of the integral transform (14)
would be desirable, though difficult. As an interesting byproduct this would settle at
the same time the theory of Mehler-Fock transform of arbitrary order which is included
as a special case.

Nevertheless, one could wonder why we have not combined the general inversion
theorems for Hankel and Kontorovich-Lebedev transforms, in order to have an
inversion theorem with a larger range than {x"}, n € N.

The reason for this is that Hankel’s inversion theorem requires b >—3, which is
clearly too restrictive with respect to 5 > —1. Furthermore, when we use the Kon-
torovich-Lebedev inversion theorem, the conditions under which it is true are so
restrictive that they do not apply to our special case where Ax)=x"!

Appendix B. We shall prove that G(x, 1), given by formula (21) in § 3.2 is, at
least for a > 0, a solution of the partial differential equation:
d

——:L(x,—)G, 0=x=R<1, 0=
at ox

where

3 R - 9
L(x, g;) =a(1—x)[x(1 _x)é;i+(1+b_(1+b)x)ax—c]’

8 Notice that from our definition of v, the condition Re (a — v.)>0 implies Re (a ~v_)>0.
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with the boundary condition
G(x,0)=x", 0=sx=R<1,
subject to the constraint
lxi{’} G, t)=1, t=0.
We introduce the notation

Gix, 1) =G,x, )+ Gilx, t),

where

x t)" Z Hly(l)(x)e—1(2a—l)at’

x

Gix, 1) =J B (u)y 2 (x) p @ttt g

0

LEMMA 3. Ifa =0, G(x, t) is C™ with respect to x and t in the domain: 0 =x =R <
1 and t 2 0. It is legitimate to bring the x and t derivatives inside the mtegral over u and
we have:

lir{)l Gx, t)=x", 0=x=R<1.
{1

Proof. The first part of the lemma is trivial for G,(x, ¢) since each term consists of
(”(x) ~1Q2a=Dat

2

which is the product of a C* function of =0 by a function C* when 0=x=R <1
(even for a =0).
Let us now consider G;(x, t). The eigenvectors

(2) —(a2+u?)at

(x)e
are also C” with respect to x and ¢ in the domain we are considering. We want to study
° 3"

dx ax’ at"

where P, (u) is some nth degree polynomial in 4. We have the inequality

p
}lno(u)y(2)(x) —(a2+udat _hno(u)_x_p_yu)(x)P (u) -(02+u2)a1

hno(u) o y‘f’ (X)P,(u) e 9% =

]h (u)——py‘f’(xwu) .

Furthermore, since for 0=x = R <1}6°(y’ (x)/3x?] is a continuous function of x, there
exists some xg such that:

(2)
ox "y“

=

(X()), 0§X0§R

’ o — 2 (x)
Hence the whole integrand is less than

n(u)=

hno(u) P (H) _pYu (XO) ’

and this is a continuous function of ¥ = 0. Using Lemma 6 in Appendix C we know that

(B1) |55y =_0w")
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for some real constant k. Stirling’s formula gives:

(B2) |hngt)] = _e”™O(u").

We can conclude that n(u) is integrable for u = 0. From this follows the first part of
the lemma.
Since G (x, t) is continuous with respect to ¢ we have:

ling G(x, t)=G(x,0).

Using Theorem 1 in Appendix A and the analytic continuation process in § 3.2 we
obtain:

ling Gix, t)=x"0, 0=x=R<1. O
LEMMA 4. If a>0 G(x, t) is continuous with x for 0= x =1 uniformly for t=0,
and we have

liml Gix,1)=1, t=0.

Proof. First we consider G,(x, ¢). As in Lemma 3, if a>0 y?”(x) is continuous
for 0=x =1 and is multiplied by e "?971 which is also continuous for ¢ = 0.

In Gi(x, t) we know that y{2)(x) is continuous for 0= x =1. As in Lemma 3 we
can write:

() y 2 () e = h )y P (x)], 0=x,<1.

The possibility that x; =1 is excluded since y‘f)(l) =0 and yf)(O) = 1. This function

is continuous for u =0 and integrable by (B1) and (B2).
From the continuity we get:

lim G(x, 1) =lim G, (x, ) = Ho-lim yol(x)=1.

Remark. For a > 1, one can show in the same way that G (x, t)/dx is continuous
for 0=x=1 and for a>2 that this is also true for azG(x,t)/ax2 when O=x=1.
Similarly the derivatives can be brought inside the integral over wu.

THEOREM 2. Ifa>0, G(x,t) given by formula (21) is a solution of:

0G d
_=L(X,_>G, O§X§R<l’ Ogt’
at 0x

with the boundary condition: G(x,0) = x"° and probability conservation:

lim G(x, t)=1, t=0.

x=+1
Proof. The boundary condition and the probability conservation follow from
Lemmas 3 and 4.
The proof of the partial differential equation is a straightforward consequence
of the definition of the eigenstates yﬂ”(x) and y(uz)(x) and of Lemmas 3 and 4, which
enable us to bring the various x and ¢ derivatives inside the integral over w. In this

way the formal proof given in § 1.4 becomes rigorous. 0

Appendix C. We give two lemmas which are used in Appendices A and B. The
proofs involve technicalities and are omitted for the sake of brevity. The interested
reader will find all the details in Roehner (1980).
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LEMMA 5. Consider

AP PRAT)
Lo §)= | | Ko T8 d

For fixed £€=0 and if b>-1, =0, L(u, &) is continuous with respect to u=0.
Furthermore, there exist some real constants ky, ko such that for u -+

AOW )+ Be V7 P0(*),  £>0,

AO(u™), £=0.

LEMMA 6. For fixed x such that 0=x =R <1, there exists some real constant k
for which

n

d (2)
n u X
S (x)

FL 06,
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