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Time evolution of a system of two valued interacting
elements : a microscopic interpretation of birth and
death equations

BERTRAND ROEHNERY

We consider here one of the simplest possible systems with N interacting particles.
It has the following features : (i) the state variable of each particle takes the values
o¢=F1; (ii) the interaction is chosen in such & way to preserve the symmetry of the
distribution function p(oy, oy .-, on ; £) With respect to the o ; and (iii) the evolution
of the system is defined in & stochastic way by the transition probabilities of each
particle as depending on the state of all other particles. The master equation of
this Markov process is shown to be the equation of & general birth and death process
in one dimension, More precisely, the birth and death process is: linear if the
particles are independent ; quadratic if there is a binary interaction; or cubic if
there is & third-order interaction. We develop the reduced distribution equations
hierarchy (which is the analogue of the BBGKY hierarchy) and we study under
what conditions this hierarchy closes, Then we show that for specific systems
there is a conserved quantity (in the mean) and we discuss for what kind of inter-
cation there is respectively an H-theorem and a postulate of equal a priori probabilities
at equilibrium. It appears in particular that this postulate should not be true in
the strong form in which it is usually stated. ’

1. Introduction ,

Understanding the collective behaviour and time dependency of gystems
involving many interacting elements is the main task of non-equilibrium
statistical mechanics. This question is also crucial in other fields, as indicated
in the following. |

There are always two approaches open to us: we may build solvable
models from.which, despite of their oversimplification of reality, something
can nevertheless be learned {at least on a qualitative level) ; or we may try to
approximate real systems as closely as possible and resort to approximate or
pumerical solution. As far as interacting systems are concerned, it is well

known that the mathematical difficulties become very serious even for the
simplest models, unfortunately making the gap between solvable models and

‘realistic ones very large.

In this article, we shall try the first approach. Actually we are not
considering a specific model, rather a class of models. The distinctive features
of these models are : the elements of the system are two valued spins, although
the generalization to three and higher valued spins will be indicated ; and
the spins will be considered as playing identical roles in the system. Thus,
it is representative of a gas rather than a solid state lattice.

The equation giving the most complete description, that is the Liouville
equation of the system, turns out to be the Kolmogorov equation of & one
dimensional birth and death process.
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1192 B. Roehner

A very stimulating investigation of the time evolution of interacting
spins was presented by Glauber (1963). However the emphasis was rather
on lattice spins (in relation with the Ising model) involving interactions
between nearest neighbours. The Liouville equation of this N spins system
was thus an N-dimensional birth and death process. :

On the other hand, Kac (1967) studied, from the point of view of non-
equilibrium statistical mechanics, a specific model of spin-gas : the so called
MacKean model. This particular case will be considered later.

For the present model, the Liouville equation will more specifically be the
Kolmogorov equation of a linear birth and death process when there is
no interaction between the elements of the system, a quadratic birth and
death process (i.e. a birth and death process with quadratic transition rates
A,, it,) when there is a binary interaction between the elements, or a p-degree
birth and death process when p-order interactions are taken into account,

Of course, these birth and death equations are not equally easy to solve.
The linear birth and death process has a well known and easy solution (Bailey
1964, p. 90) : since it corresponds to a system of independent particles, this
is not surprising. For quadratic processes, an exact solution is known only
in specific cases (see §2). Finally, no solvable process of degree higher than
two is known. Since the case of binary interactions is by far the most
important, it points out the prominent part played by quadratic birth and
death processes. :

Besides this microscopic interpretation of birth and death processes, the
relative simplicity of the Liouville equation will enable us to make observa-
tions about the basic postulates and ideas of statistical mechanics.

Before considering the evolution of a stochastic system, it is usually a
good policy to first look at the corresponding deterministic system. However,
this is not easy here since there is no convenient mathematical description of
a deterministic system oscillating between two states.

The paper has the following structure. In § 2" we develop the Liouville
equation of our system. We then solve completely a simple example before
coming to the general connection with birth and death processes. We indicate
also how our reasoning could be extended to spins taking more than two
values. Then we write the equations for the mean values and the reduced
distribution functions hierarchy. In §3, we discuss the following points :
the existence of conserved quantities ; the possibility of an H-theorem ; and
the validity of the postulate of equal a priori probabilities at equilibrium.
Before proceeding, let us classify interacting systems and take some examples
from physics, neurophysiology and economics.

L.1. Classification of interacting systems
Let x; denote the phase space coordinates of the ¢th element of a system :
I1<i<N. Let wixy, ..., %' ..., Xy/X;, ..., X;, ..., Xy) denote the transition
rate from the state (x,, ..., x,, ..., Xy) to the state (x;, ..., x';, ..., Xy}, X, #x',.
We shall say that an interaction is.a global one element interaction if
N
WiXyy veey X'y orey XpfXpy coey Xgy oons xN)_= Y u(x;, x';)

i=1
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a global binary interaction if

N
Wi(Ky, oeey X gy oy X[ Xy ooy Xy oo Xy) = 2 00X, X5 )
i, d
, J#i
a global three order interaction if
WilRyy ooy Xy ooey Xy [Xps vooy Xy oons Xy) = 2 V(%4 X35 Xy, Xg)
i, .k
i,k
%k

We shall say that an interaction is a local binary interaction if

WKy, ooy X g ooey Xy [Xpy crny Xy oony Xy} = _z(“_) v(X;, X'y 3 X;)
EW;
i
where v(3) denotes the indices set of the elements located in a specific neigh-
bourhood of x;. A similar definition holds of course for local one or three

bodies interactions.

1.2. Examples

Which of those interactions are most common in the three fields mentioned
above ?

In solid state physics, the particles of the system are subject to only small
vibrations about their fixed equilibrium positions on the lattice. Moreover,
the interaction is mainly with a few nearest neighbours and takes the form
of a binary interaction. The interaction is thus a local binary interaction.
For & fluid (gas or liquid) however, due to the mobility of the particles and
to possible long range interaction (especially for electrically charged particles),
every particle may interact with every other. Thus we have a global binary
interaction. : ’

In the human brain considered as a system, the elements are the neurones.
Crudely speaking the neurones have two states : excited or not excited. They
do not have any mobility but each of them is in connection with hundreds of
thousands (let p denote this number) of other neurones. We have thus a
situation which is intermediate between the global and local interaction.
For the interaction to be global, at least in some functional part of the brain,
the number of connections of every neurone should be of the order of magnitude
of the total number of neurones, that is close to one billion. This is not the case.

On the other hand, a local interaction with so many neighbours is difficult
to formalize. The global interaction could possibly be locally a reasonable
approximation for distances less than p3~100a~1 mm (where a is the
dimension of a neurone). For larger distances, there are macroscopic func-
tional patterns and paths (the olfactive or visual nerve for example).

In the world economic network, the elements are the enterprises. For a
span of time of the order of several years, they can be considered as geo-
graphically fixed. The number of enterprises to which one of them ‘is
connected depends of course on its size, but the order of magnitude of this
number is a fraction of one hundredf. The total number and the number

+ A clear indication of those connections s given for the different sectors of
economic activity by input—output tables. g,
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of connecting elements is about four of five orders of magnitude smaller than
in the previous case, but the same crude considerations seem to apply in

respect to the kind of interaction.
In this paper, we shall be concerned exclusively with global interactions.

From the previous discussion it appears that this kind of interaction eccurs for
dense gases and liquids and also locally in the brain or in the economic world.

2. Microscopic interpretation of birth and death processes
2.1. Basic equations
2.1.1. Notations

Consider N elements taking the values : ¢;= F1. The whole system has
2 possible states and each state is completely described by the vector

o=(oy, ..., Oy)

We make the following assumptions for the transitions of this stochastic
system between time ¢ and ¢+ A¢. First, one element is drawn at random
from the set oy, ..., oy : let 4 be its index. This element will experience a
transition from its present state o; to state —o; with the probability

Nw‘i(al’ veey Tpy veny C."N) . At

where w; is a positive function of its arguments.
The following notation will be useful

O',i=(0'1, veay Ty ol O'N)
The probability of a transition from a given state ¢ to a different one (i.e.
to any of the g,) between time ¢ and {+ Al is
N

i=1

We denote the probability for the system to be in state o at time ¢ as
pis; t).

2.1.2. The Kolmogorov equation
‘To get a differential equation for p(e; t) we write the probability con-
servation relation between time ¢ and {+ Al

N N
ple; t+At)y=p(o; t)(l*-At ) ’wi(ﬂ))+N' 2, wile)p(o;; £)
: i=1 - i=1

As At goes to zero, the Kolmogorov equation of this discrete Markov process
is obtained, i.e.
N

N
Blo; t)=—p(s; i) _;1 wy(o) + igl w;(oy)p(o; ; 1)

. M
== pla; t=0)=py(a)
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This equation is also referred to as the master equation of the process (Van
Kampen 1962). We may say that it is the Liouville equation of the system
for the following reasons : the Liouville equation is usually derived from the
evolution equation

x=f(x; f)

taking into account the property that in classical mechanics
div f=0

However, it simply expresses the probability conservation between time ¢
and £+ At and it can be written without any additional condition on f; in
which case it reads

oF X OoF ,

=+ 1:21a—xi;c.ﬁdwf.—O (2)
F(x; tydx is the probability of finding the system in the neighbourhood
dx of x at time . Besides the fact that the state variable is continuous in
one case and discrete in the other, the only difference between eqns. (1) and
(2) Lies in the origin of the stochastic behaviour : for eqn. (2), the evolution
is deterministic but the initial condition is a probabilistic one, while for
eqn. {1), the evolution itself is stochastic (the initial condition may be either
deterministic or probabilistic). ,

It can be argued that eqn. (2) describes a reversible process, ‘whereas the
process described by (2) is usually irreversible (see §3.2). This difference is
however only formal. It is well known (Rice 1965, p. 173) that the coarse
grained Liouville equation (which is the only one having an experimental
meaning) derived from the fine grained equation (2), is irreversible toot.

The reason for the previous discussion is, of course, not only one of
nomenclature : it should emphasize that starting from eqn. (1), we will
follow the usual steps of non-equilibrium classical mechanics comprising, for
example, the BBGKY hierarchy, the Boltzmann equation, etc.

2.2. Particular cases
2.2.1. Independent particles

As a simple example we assume first the w(o) to be independent of o.
Supposing the initial condition is such that p(o; £=0) is a symmetric
function of the variables oy, ..., oy, then p(o; ¢) will be symmetric too. To
prove this property it is sufficient to show that if p(o ; t) is symmetric, then
plo ; ¢+ At} is symmetric also. Now

(o t+At)=p(o; t)(1—N - At - w)+wAt ‘ii p(o;; &)

The last term is obviously symmetric since the interchange of o; and o; will
only interchange p(o;; t) and p(o;; ).

+ The well known fact {Van Kampen 1962, p. 117} that the trajeétories of the
system in phase space are very ragged is another way to express the similarity
‘between random and deterministic systems of a large number of particles.
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Now a function depending symmetrically on two valued wvariables is a
function solely of their sum (Appendix 1)

N
plo; t)=qloy+... +toy; t)-=pn(t)/(n)

n denotes the number of ones in the sequence gy, ..., on and p,(f) is the
probability that » of the o; are equal to one at time .

Due to the symmetry of the function p(e; {), we may assume that its
arguments are always ordered in such a way that the numbers one precede
the numbers minus-one. Thus, the Kolmogorov equation becomes

1o (2)= e o] (2) J oo [/ (1)
ot [annf ()]

resulting in the following linear (and finite) birth and death process
D= —Nwp, +w[N —(n—1}]p, 3 +wn+1)p,, - (3)

The transition rates are

A, =w(N —n)
oy =WN

Remarks
(1) The case w;(¢)=w is not the most general leading to a linear birth and
death process (see § 2.3).

(2) Although this case is almost trivial, it serves to indicate the steps
which will be the same in more complicated situations.

2.2.2. An infinite linear process

What do we have to modify in our assumptlons to get an infinite linear
process instead of a finite one ?

If we let N—o0 in eqn. (3) we observe that the birth term diverges. This
is as expected. Indeed if we start with a (finite) number n of ones, letting
N— o0 introduces an infinite number of minus-ones ; this makes the transi-
tions —1—1 far more frequent than the opposite transitions. To render the
limiting process N— oo possible, we have to weight dlfferently both transi-
tions. Suppose that

n

w,‘:(a'l, ey O 1, —1, Titqs o2 O'N)=A.N“n

Wiy, ..y 054, 1, 0404, .o, ON)=p
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Qince the new transition rates depend only on the sum
0'1+ e T+ U'N

it is clear that we again have the symmetry conservation property. By the
same reasoning as before, we obtain the following equation for p,(f)

Po= — (A4 pnp, + Mn—1)p, 1+ pn+ )Py

Since this equation no longer involves N, the limiting process can be per-
formed without trouble. Of course, the elements of this system are no longer
independent : their transitions are sensitive to the compounding of the whole
population.

In the sequel, we will be concerned with finite birth and death processes
which arise in a more natural way. The previous reasoning could however
be repeated leading in each case to a microscopic interpretation of the corres-
ponding infinite birth and death process.

2.9.3. Generalization to elements taking more than two values

Assume, for definiteness, that o; may take the values: —1,0,1. The
expression of the transition rate must now indicate both the initial value
and the final one. We dencte by '

'w,i(O' ) 0" ’ G)At

, \ \
the probability that o, will change from o to' ¢’ between ¢ and ¢+ At. The
Kolmogorov equation will thus read

N
pla; 1= —[ Y T wion o a)] plo. 1)
N
+ Z Y, wio, 055 o(a))ploio) ; )y (4)
where i=1 o#m
0',5(0') = (013 ey Oy Ty Uiy g5 rees U'N)

This time the symmetric function p(o ; ) will depend on (Appendix 1)
§= 0'1 + oo O'N
T=Ul2+ "o +0'N2

Let 7, denote the number of ones and n, the number of zero. Hence

N
; t)= 2 75 t)= » ) 3 t 5
pla; ty=qls, r; t)=p(ng 7y, 7y )/(non1n2) (5)
The variable n,=N —n,—n, is superfluous but it makes the equations more

symmetric. 4
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Replacing p(o; £) in eqn. (4) by its .expression (5) gives

Plng, ny, Ny 5 £)= —p(ng, Ny, Ny ; E) Z Z wyl(o;, o) )

i=1 o+e;
nqy+1 o
2 p(me—1, 1, mg) Y wi(1, 05 oy(1))
g i=1
ng+1 S
+-2 p(ng—1,ny, ny+ 1) Z wy(—10; a,(—1))
0 t=1
n +1 Mg+ Ny
+2 g+, —1,m5) Y w(0,1; o, (0)
1 t=n¢+1
n +1 No+ Ny
+ 2 p(ng, my—1,mp+1) Y wi(—1,1; oy(—1))
ny i=n,+1
7o+ 1 il
e plngt+1,m,m—1) Y, w0, —1; 6,(0))
g t=nyt+n,+1
n+1 N
1 P(nm n1+1sn2_1)' Z ’w,,;(l, _1.; Gi(l))
'nz i=ne+n+1

As an application of this lengthy formula, we specmhze to the case ‘of

independent particles
1;(cr, o'; o)=w

Introducing the generating function

G2y, 7y, %95 )= Y mte ™ xg"e Png, Ny, g ; )
Moy iy, R
N+ Ryt ng=N

the previous system is seen to be equivalent to the partial differential equation

' oG 0@ 0@ o@
(1 + ) a_%"'(xo‘*‘xz) a_a:1+(x0+x1) E—W_ZNG

The solution of this first order equation is easily obtained by the charac-
 teristic equation method
_G(IUD, xl’ xz ; t) .
=) Y [(2exp (—3t)+ L)ap+ (—exp (—3)+ 1),
Ry M1, Tig

Mo+ My +m,=N

- 4(—exp (—36)+ L)z, Im
x [(—exp (— 3t) + 1)ay + (2 exp (— 3t) + 1)z, + (—exp (— 3t) + L) ™
x [(exp (—3t)+ 1)xy+ (—exp (~—3.t)-|’-1):c1

+ (2 exp (— 3¢) + L)ap]™ - Plng, ny, 1y ; £=0)

This result gives the evolution to equilibrium for a system of N tree valued
spins starting from an arbitrary initial state. As expected, the ethbrlum

state is simply the trinomial distribution.
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3. The general relation between the evolution of a symmetric system of two valued
elements and the birth and death equations

The discussion in § 2.2.1 makes it clear that the Liouville equation of a
symmetric system of two valued elements is quite generally a birth and death
equation of the form (Bailey 1964, p. 101)

ﬁn = (An + F‘n)pn + )‘n—lpn——l + P11 Pns

with
N——?’b n+1
T, (6)
2 wi(o;)

”'“zN—n+1 i=n

What we are going to show now is that the birth and death rates A,, g,
are : linear for independent elements (possibly with an external interaction) ;
quadratic for binary interactions ; and cubic for third-order interactions.

3.1. Preliminaries
First of all, it is clear from the relations (6) defining A, and u, that the
birth and death transition rates for the process

wi{e) =w;0(G) +w,*(o)

are
An= An(l) + ‘\'n(m

F‘n__'_uu’n(l)'l"pn(z)
where A, ®, p,®, k=1, 2 are the transition rates corresponding to the process
w,;*)(a).
Let us consider an interaction term of a fairly general form
wi(e)=a+u(o)U(s")
with
0"1:=(O'1, veey O35 Tignr == D'N)
and U being a symmetrical function of its arguments. The positive number

@ has been introduced merely to secure the positiveness of w;(o).
First we have to check the symmetry conservation property. There are

two kinds of terms

¥ . |
_;1 wq(o) = '§1 u(o;}U(a";) - (7)

N N

;1 w;(6,)p(o; ; t)=L';1 u(—o)U(e’)p(e;; 1) (8)

Inverting o; and o, produces two kinds of modifications :

(i) The terms i=j,k, that is u{a;)U(g’;), u(o)U(0’y) in egn. (7), and
u(—o;)U(a';)p(o; ; ¥), uw(—o,)U(e",)p(o, ; ) in eqn. (8) are simply
interchanged.

(ii) Moreover due to the symmetry of the function U, the other terms
remain equal to themselves in the interchange of o; and m.

5.5. ) ic




1200 B. Roehner

The corresponding birth and death transition rates are obtained in the
same way as in §2.2.1. This yields

A= (N —n)la+u(—1)U(n)]
(9)

pn=nla+u(1)U(n—1)]

where U(n) has the following meaning

Un)=U(1, 1, ..., 1, =1, ..., —1)

]

n times N—-—n-—1
times

3.2. Independent particles with external interaction
This case corresponds to the following transition rate for the i¢th particle
w,(0) = (o)

that is the transition probabilities of a particle depends only on its own state :
this is typical of a system subject only to an external interaction. It is
already clear from eqn. (9) (with U=1) that the corresponding birth and
death process will be a linear one ; actually it is the most general finite process
admitting the reflecting states =0 and n=N.

3.3. Binary interaction
The transition rate for the sth particle is now

w;(o) = Z (o, 03)

j#i
The function (o, o') may be uniquely represented as
v{o, ') =a+bo+co’ +daoo’

The choice of @, b, ¢, d must of course, preserve the positiveness of v(g, o'} ;
in particular @ must be positive. The term bo was considered in the previous case.

Before proceeding, let us give the interpretation of the term a4 doo’
taken alone. If d<0 (and a> [d]), we get for v(c, ¢’)=a+doo’

o(1, Iy <o(l, —1)
o1, N=v(—1, —1)
o(1, —1)=v(—1, 1)

and

A particle is thus less likely having a transition if its neighbours are in the
same state : this is an imitative behaviour. In physical terms, this inter-
action favours the parallel configurations of spins; this results in a ferro-
magnetic tendency of the system. To model the spreading of an epidemic
for example, we could adopt this v(s, ¢’), with o= — 1 meaning illness. How-

ever w(—1,1)<w(l, —1)
seems more reasonable. This can be realized by adding to »(c, ¢o’) a term

blo—a'), b>0
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This indicates the possible role of the term co’ which does not have any
interesting interpretation if taken alone.

If d > 0, the contrary happens : it is a behaviour with a tendency to contra-
diction. In physical terms, this interaction favours the antiparallel con-
figurations, thus implying a tendency to antiferromagnetism.

An easy calculation shows that the corresponding birth and death process
is the most general finite, quadratic process admitting n=0 and n=N as
reflecting states

A,,:(N—n)(an+ﬁ)}
(10)
) Pu=n(&n+/§)
with w=2(c—d), B=({N-1)a—b—c+d)
(11)
g=2(c+d), B=(N—1)(a+b)—(N+l)(c+d)}

The solution of this process is known (Karlin and McGregor 1962) if the
), and p, are asymptotically symmetric, that is if

x=—& and &>0

which results in the condition
¢c=0

It will be shown in § 3.4.3 that this case corresponds precisely to a reduced
distribution function hierarchy which is a closed one. The equilibrium
distribution of the general process (10) has a simple analytical form which
will be considered later in the paper.

The particular case studied by Kac (1977) is

N—n-1

N—n
Py =70 N

which corresponds to the following v(a, o')

’
g [

, i
ve, 0)=1—-2(N—-1)+2N(N_—1)_§F

Kac’s topic was rather the illustration of statistical meehanic’s ideas.
No attempt was made to obtain the exact time dependent solution of this
process.

3.4. T'riple interaction
The transition rate for the ith particle is

w;(o)= E v(a;, 045 O%)
j#i
Ei
J#k
The decomposition of the function v(e, o', ¢") now reads
}U{O', 0", G”) =a + b10‘1 + b202 "I" b30'3 + 01020’3 + 020'10'3 + ‘03010'2 + d01020'3 (12)

3c2
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There is still a one to one relation between the values of the function #
and the coefficients a, b, ¢, but this time the proof involves an eighth-order
determinant. Let us show that it is indeed different from zero. First we

notice that
a=13 Z v{o, o', 6"}

7
a, 4

Thus we need only seven equations. We disregard the equation corres-
ponding to (e, ¢’, ¢")=(1, 1, 1) and we denote by A the matrix of this system.
It happens that the product of A by its transpose is a cyclical matrix. The
corresponding determinant is equal, except of a sign factor, to (Kowalewski
1960, p. 105)

7
I1 7=

i=1

where x,, ..., x, are the seven roots of : x7=1, and
Hx)=T7T—(x+... +2%)

Except for ;=1, we have
6
Y, xF=0=>f(x;)=8
E=0

for «;=1, we have f(x,;})=1. Thus
det (4 A)=det? (4)#£0

For brevity, we will not consider the transition rates A,, p, in the general -
case. We shall be content with the examination of the term

¥(o, o, ¢")=a+dao’c”
the other terms being very similar. This term is of the general form
wi(o)=a+u(o;)U{s’,)
with
_ 1<j<k<¥N

f k=i

Thus the symmetry conservation is automatically satisfied. We have now
to evaluate the function: U(n). In the expression of U(n), there are n
numbers equal to one and N —1—n numbers equal to minus-one. Thus

U(n)=(:)+(N_2l_n)—n(N—- 1-n)

Applying formula (9) yields

A,=(N—n) [—-2dn2+2(N— l)dn+(N_1)2(Nu2) (a—-d)]
N-2

2

P =N [2dn2—2(N+ 1)dn + (a(N-—2)~Fd(N+2))]
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This is a cubic asymptotically symmetric process.

In the general case, we shall obtain the most general cubic process admitting
the reflecting states: n=0 and n=N. However, as we already noticed,
binary interactions seem general enough to represent the interactions oceurring

in nature,

4. The equations for the mean values and the reduced distribution functions
In non-equilibrium statistical mechanics, starting from the Liouville
equation one derives the equations for the reduced distribution functions

F@)xy, ..., x,; )=N{EN-1) .. (N—p+ )| Flay, ..., xy; 1) dr,,, ... d2y
One could as well introduce the p-particles means

m 2(15) =y e By = [ Ty Ty Py o, w5 B Ay dy
L2 ...p

In our case, these two sets of functions are completely equivalent, as will be
shown below, for every integer p.

The equations for the one and two particle means have been given by
Glauber (1963). For the sake of completeness, we shall briefly recall them
here, along with the equations for the reduced distribution functions.

4.1. Equations for the one and two particles means
The one and two particles means are here defined as

mi(t)= Y o;p(a; 1), 1<i<N

myt)= Y, oop(0; 1), 1<i<j<N
where the summation is over all the values of ay, ..., oy. Due to the symmetry
of p(s ; t) all the one (respectively two) particle means will be equal
m(£) =m(t)
m5(t) = myy(t)

To obtain the equation for'ml(t), we start from the Kolmogorov equation (1).
We multiply both sides by o, and sum over gy, ..., on- We get thus

N
Z o plo; t)=— Z ay{o)plo; &) — Z a1 _22 w(o)p(o; 1)
N
+ Y opuy(oy)pler; H+ 2o _}_:.2 wi{o)ple;; 1)
The second terms in each row cancel out and the first one doubles. Thus
iy =(— 2)8; - wy(S))

where the capital letters denote the random variables and ( - » the expectation.
In the same way, we get the equation for the two particles means

Mg ={—2)X8y - Salw,(S) + wy(S))> (13)
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4.2. Equation for the reduced distribulion function
The reduced distribution function of order one and p are defined as

filoy; 1) = Z plo; t

fo, ikon, o0, s )= Y, plo; i)
where gty
‘-"'n,...,a:,,: (03: -.os ON) —(%,,...,0‘1:,.)
Of course, all those functions of the same order are again equal. Hence it is
natural to define the one and p order reduced distribution function as

floy ; t)=N2p(c; t

fplo®; )=N(N-1)...(N-p+1) } plo;?)
where .
o®)=(0y, gy, ..., 0,)

In particular the function fy(¢® ; ?) is closely related to the pair correlation
function (Reed and Gubbins 1973, p. 175) for which direct measurements are
possible.

Obtaining the evolution equation for f,(¢®); ¢) uses the same procedure
as before and we get

fp(a(p); t) .
NN-1)... N—p+ 1)" - t) 121 GE: wy(o)

P
+ '21 X wledp(e;; f)  (14)
= LE'TY T »
To give that equation a more suggestive form, we have to choose a specific
form of the interaction. Let us take a binary interaction

wie)= ¥ vloy, o)
iz
We obtain thus

fol@® 5 )= —fo(e®; 1) i ky(o®) + Zp fola:®) 5 E)hy(o;®)
i=1 i=1
+ Z [ fpsr(e®, o5 1) Z (a;, o)

}Z:pﬂ(o Lo )v(—a,-,a)] (15)

The derivation is given in Appendix 2 along with the definition of the func-
tions #;. Thus we get an equations hierarchy for the functions f; with a
structure very similar to the BBGKY hierarchy of statistical mechanics (Balescu
1975, p. 80), the usual integral over the phase space variable in the right hand
side being replaced by a summation over ¢ which is the phase variable of our
particles.

Before closing these general considerations let us recall that the p-particles
means and the reduced distribution function are tightly related in our case.
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Since the function (1 +o¢o’) equals unity for ¢=o" and zero for o= —¢,
p(e; {) may be written

| —

Il

plo; i)

<

57 3 (Lo .. (1 +oyo'y)ple’; ¢)

-

l:l—i- ; o) + kzl 0,0 My () + ]

k+#1

Using this expression of p(c; ¢) in the definitions of the reduced distri-
bution function, we get

1
filo;; t)=§x,|:2'l+aimi(t)§ 14 Z_mk(t)ZO'k Y l]

ki &k
that is
‘ filog s ) =% +o;m(t))

and in the same way

filog, a5 1) = 11+ o m;(8) + aymyt) + a,04m;(t))

4.3. Particular cases ) .

Tt is interesting to find out for which binary interactions the hierarchy
for the reduced distribution function closes. Let us first examine eqn. (156)
for p=1. Replacing v(a, ¢') by ' '

v(o, ¢')=a+ba +co’ +doo’
the right hand side becomes
a Y, (—faloy, o) +faol — o1, a))—ba, ¥ (foloy, o)+ fo( — 01, 0))

[ 8

+C Z o(—faloy, “)+f2(_0'1a U))_d‘H Z U(fz(o'p U)+f2(—0'1: a})

All terms reduced to f,, except the third. For the equation to be free of
f, requires c=0. We now have the general result expressed in the following
proposition.

Proposition 1
The necessary and sufficient condition for the reduced distributions
hierarchy to close at all orders in the case of a binary interaction is that

v(o, o’)=a+bo+dod’

The proof is given in Appendix 2.

We observed in § 2.3.3 that the only solvable (up to now!) binary inter-
action model is precisely that for which ¢=0. This is not surprising in the
light of the present property. There is a rélated property for the corres-
ponding birth and death process which is a qu?dratic asymptotically symmetric
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one. Namely, it is the only birth and death process for which the set of
evolution equations for the moments

my(t)= Y, n¥p,(t)

closes (Roehner and Valent 1982).

In his paper, Glauber (1963) studied the interaction between nearest
neighbours. It is straightforward to observe that the symmetry conservation
property does not hold in that case. This means that starting with a
symmetric function for p(o; t=0), p(o; t) does not remain symmetric.
This looks at first sight surprising since all elements play individually the
same role (there is no boundary effect for the cyelical condition is assumed
at the end of the chain). However, the actual reason becomes clear if we
look at the equations for the p-particles means. For nearest neighbours
interaction (Glauber 1963) eqn. (13} for the two particles means becomes

gy = — 2+ gy 5y + My g My My )

o (16)
my=1, 1#]

Equation (16) obviously takes two different forms depending on the value of
li—4|. Indeed if |i— j|=1, there are m,; terms (reducing to unity) which is
not the case if ¢ — j| > 2.

Thus, even if all m(f) are equal initially (as a consequence of p(o; t=0)
being symmetric) they will not remain equal. This is of course, directly
related to the kind of interaction considered. In §5.3.2 the consequence of
this fact in relation to the postulate of equal a priori probabilities will be
discussed.

5. Qualitative features of the system’s evolution

Our purpose so far has mainly been to emphasize that this system of
interacting elements bears a close relation to the classical birth and death
equations. However, since it is mathematically almost the simplest system
involving strongly interacting elements, it is fempting to take advantage of
that simplicity to study the general features of the system’s evolution in
time. Although we shall mainly use the language of statistical mechanies,
it should be remembered that such considerations could apply to other fields
too. The identification of possible constants of the motion is the first
important question.

5.1. Existence of constants of the motion

-Since our system is a stochastic one, a possible constant of the motion
h{o) can only be conserved in the mean, that is

Y. #o)p(a ; t)=constant

Due to the symmetry of p(e; {) with respect to the o;, h(c) should be
- a symmetric function too. The conservation condition reads thus

Y h(n) [pn(t) / (ij)] = i h{n)p,, (t) = constant
L] n=0
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The equation of motion of the system is the general birth and death equation

pn: - (/\n+lu'n)p-n+ /\n~1pn—1+lu'n+1pn+l (17)
with
Ay =t =0

going to the derivative in the conservation condition gives. after a few
arrangements ¥
Z (An¢n~“n¢n—l)Pn=0
n=0

¢, =h(n+1)—h(n}

where

Equating all the coefficients of the p, to zero will at least give a sufficient
conservation condition. However, without additional requirements it yields
but a trivial conservation property. Indeed, p,=0 leads to ¢, =0 for all
n; the corresponding conservation relation is thus simply the normalization
of the distribution p,,.

There are (at least) two ways to avoid this difficulty : (i) by admitting
n=0 as an absorbing state; and (i) by a mirror process. Let us consider
the first way.

We assume that Ay=p,=0 and N=co. The conservation condition
becomes ©

Z (And’nuﬂn(ﬁn—l)fpn:o
It is fulfilled if n=1

¢n=M¢1, nx=l

AL Ay
Solving the recurrence relation for A(n) gives

n n—1

hin)=a+b+b Y, e A R
k=1 Al e Ak
(18)

h{l)=a+b
h(0)=a

where a and b are arbitrary constants.
Needless to say, our derivation was rather formal and for the result to be

€0
meaningful, the series Y, h{nr)p,(f) must converge. This is the case in the
following example. n=0

Example
For the infinite process studied in § 2.2.2, we have
A,=A.n
g =p . 1
which give
n__
hn)=a+b+6L =L nz0, p=F
p—1 A

For the sake of simplicity, take a=1 and b=p— 1, then
hin)=p", n >0
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Let us check directly that k(n) is conserved using the known expressions
for p,(t) (Bailey 1964, p. 94); for an initial state ny;=1

Pa(f)=(1—pB)1—-B)B", n=1
Dot} = pB

B is a given function of time, but we do not need its detailed expression. Now
the constant of the motion becomes

[« o]

ZO h{n)p,(t)=pB+(1—pB)(1—PB)p Z=]D (pB)

o=
=p
provided pfB <1, which is true for ¢ < 0.

Now turning to mirror processes. We assume the process to be a finite
one, with the usual condition

Ho=Ay=0
We regroup now the terms =0 and n=N

AoPoPo— BNDPN-1PN (_1 9)

and we want both terms to cancel out. This can be done easily if py(f) =py(t)

for all ¢, which is so if
Ap=HN_p, 120 (20)

Actually, eqn. (20) implies more generally that (Appendix 3): p,(f)=px_n(f),
n>0,{>0. A finite process such that : A, =puy_,, »>0 will be referred to as
& Mmirror process.

Now the terms in eqn. (19) vanish provided ¢y_;=¢, The other terms
may be annulled as before. This gives

oo B
Bt AR ul 3 S
¢n )\1.“ Aﬂ¢0

and we notice that the condition ¢y_, =4, is automatically satisfied.

The constant of the motion {(in the mean) again has the form of eqn. (18)
but this time with the constraint A,=px_,. An example is provided in
Appendix 3.

Let us now identify the quadratic and cubic mirror processes. The
condition (20) leads immediately to the following families of processes

A, =(N—n)an+B), A,=(N—n)on?+fn+y)
tn=n[a(N —n)+ 8], pp=n[a(N—7)2+ B(N —n)+v]

Notice that a mirror process of even degree will be an asymptotically
symmetric process (Roehner and Valent 1982) while the contrary is true for

an odd degree process. :
' To conclude this section, let us state the corresponding result for a system
with binary interactions. Using eqns. (11) we derived the following .pro-
position.
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Proposition 2
For a binary interaction defined by

v(o, o’)=a— Bo+ (N —1)Bco’
(where « and f should be chosen so as to secure positivity of v(e, ¢’)). The
functions A(g, + ... +ay) are conserved in the mean, where

(s+N)2~1

h(8)=a+b+b Z M, 8:-—-N+4, ""'N+6,...,N
k=1 AIAk

M—N+2)=a+b
hM(—N)=a

5.2. Condition for irreversibility of the system’s molion
The question of the existence of a preferred direction of motion is another
important qualitative property of the system’s evolution in time. In physics,
irreversibility is defined through the property of the entropy function to be
steadily increasing. We shall follow this way of thought too. However,
it should be kept in mind that this might not be the only possible approach.
The entropy of the system under consideration is

S() = - Y plo; t)Inp(o; )

With the symmetry assumption for p(c; )} we get

. N
s0=- % nom[.0/(7)] )

To avoid confusion, when dealing with the distribution p,(f) we shall refer
to eqn. (21) as the associate entropy, which is the entropy of p(s ; ) but not
of p,(t).

We are now in a position to study the time evolution of the entropy, not
from an approximate equation such as the Boltzmann equation but from the
exact (stochastic) equation of motion (17). We shall state and prove a
proposition.

Proposition 3

The necessary and sufficient condition for the entropy of the system to be
steadily increasing is that

A= (N —m)p(n+1)
F’n=nP(n)

where p(n) is-a positive function. In the case of a binary interaction (o, o'),

this condition corresponds to the following interaction

v(o, ') =a+bo’

Proof

We first prove that the given form of: A,, , is necessary. Assume an
increasing entropy. Since any initial condition may be chosen, the stationary
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distribution should be the distribution for which the associate entropy is
maximum. To localize this maximum, we write eqn. (21) as

N N N
S — 21 P, 1n p, —py In pg+ 5__:1 p, In (n)

with 5
-ﬁ)=-—l, n=1,..., N
0Py,
Hence 28 ey 1 (N
E:mlnpn+lnpo+n " =0¢pﬂ=2—2-V "

This extremum is indeed a maximum if the second derivatives satisfy the
following inequalities

028 o0ZS
o028 op,* 0py 0P,
= < 0, > O, PN
9Py 028 28
op2 0Py Opg°

This can be easily checked using the following formula (Muir 1960, p. 142)

l1+a, 1 1
1 1
1 it+a, ... 1 | =a,...0q, (1+—+...+—)
. @y thy
1 1+a,
We get thus
028 028 0*8

op,* Op, 0ps  Opy 0P, = ( ___.l,)ﬂ ___..1_ i (N)
: o " (NY o \ ¢
oS o2 Iy ;

/2 op,’
Let us now identify the stationary distribution (Parzen 1962, p. 280)
s wrer Ap
paleo) = 2ot s o)
s ees B

with the binomial distribution that maximizes S. This leads immediately to

A= (N —n)p(n+ 1)}
(22)

= np(n)

where p(n) i3 any positive function.
To prove that this condition is also sufficient, we shall show that it implies

S¢)=0

Due to the normalization condition for the p,

- 5 em (2]
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Taking into account the equations of motion (17)

St = Zio [(An + )P 10 [pn / (f) ]
o) s o ()]

where two obvious index changes have been carried out. We regroup the
A, and the p, terms

N T
: Pn N — Pn n
= l

n=0 —
We use now the inequality

Inzzl—— x>0
x
along with the specific form of A, and u, given by eqn. (22)

.
8> X [V —n)pln+1)p,—pln+ 1wt Dpys +moln)p, |
’ —p®)(N —(n—1))py ;]

It is clear that the right hand side vanishes and hence S@)>0.
To get the last part of Proposition 3, we have to use egns. (11). ]

5.3. Discussion of the postulate of equal a priori probabilities

The postulate of equal @ priori probabilities for all states of an isolated
system is the basis of equilibrium statistical mechanics. It is also invoked
in fields other than physics (Bussiéres 1982, p. 47).

Our N particles system is simple enough for the exact equilibrium distri-
bution to be written out explicitly, at least for a binary interaction. Hence,
it is interesting to see which interactions lead to an eqmllbrlum distribution
compatible with that postulate.

5.3.1. The stationary distribution

We restrict ourselves to the binary interaction case which is most interest-
ing and for which the A,, u, are given by eqns. (10). The stationary condition
results for the generating function

N
p@)= 3 x"p,(o)

n=0

in the differential equation

& (1+§x) ¢"+[a+F—z((N—1)a+B)]¢'—NBp=0
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which is, apart from a variable change, an hypergeometric equation, the

solution to which 1s
2F1(“N,§§ 1+§; —gx-)

P(x)=
oy ('—N, é; 1+§; —i—.f)

It is a polynomial of degree N.

5.3.2. Discussion

Proposition 4
The postulate of equal @ priori equilibrium probabilities is satisfied for the

binary interaction
v(o, o')=a+co’

The postulate of equal @ priori probabilities implies that

plo; 00)=§jgf

1 (N

Sufficient conditions for this are (Gradshteyn 1965, p. 1040)
d=oa, B=B—a
Replacing o, B, & B by their expressions (11) proves the result.

that is

Comments

Again, we have a very limited condition, the same as in Proposition 3.
Actually, it seems obvious to us that the postulate of equal @ priori proba-
bilities cannot be true in the very strong form in which it is usually stated.

Consider for example a spin lattice (in any dimension) with nearest neigh-
bours interaction. We observed already (§ 4.3) that, due to the form of the
interaction, the two particle means m. () behave differently whether i, j
refers to pairs of nearest neighbours or not. Thus it is very unlikely for the
equilibrium state to have the kind of symmetry required by the postulate of
equal probabilities. This intuitive reasoning is substantiated (in one dimen-
sion) by Glauber’s calculation (1963, p. 301)}, where it is found that

my(t) —
t—00

where 7 is a positive number.

The kind of interaction considered in this article being more symmetric,
should be favourable to the equal probabilities postulate. Nevertheless it
holds in very special cases only.

+ The example considers a system interacting with a heat reservoir, but this
assumption does not affect the calculations.
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Actually this is not at all a problem for statistical mechaniocs. The
postulate which can truly be confronted with experimental facts is much less
demanding, since any observation requires many states and particles to be
lumped together. The problem still remains of a redefinition of this postulate.

Appendix 1
We prove that a function F(oy, ..., o,) depending symmetrically on two
valued arguments oy, ..., o, 18 actually a function of the sum s=0,4... + oy,

i.e.
F(C‘rla "ty Un)=f(8)

This can be seen in two different ways.

The first way is to say the function ¥ can assume n+1 values (not
necessarily all distinet) denoted as Fy, ..., F,,,. Now the sum s itself takes
on n+ 1 different values: s,, ..., $,,;- Hence it is easy to define a function
f(s) such that

fls;)=F;

The second reasoning is less general since we assume x; to take the values
F 1, but it shows how to construct the function f(s) effectively.
We assume that F(oy, ..., 0,) is a symmetric polynomial of the ¢;. It is

_known that such a polynomial can be expressed in terms of the fundamental

functions (Fricke 1924)
k=0 .. +0,f
where k is a positive integer. Then, for any &
pop=n and g =01+...+0,

The second reasoning need only be modified slightly if the o; take three
values :

(J',i:'—'l, 0,].

Now the fundamental functions ¢, have two different forms. Since for
Tg== — l, 0, I .

ot =g,

the symmetric polynomial F(oy, ..., a;,) is actually a function of
§=o,+...40,

and

1'=012+ en +Uﬂ2

~ Appendix 2

Replace




1214 ‘ B. Roehner

in eqn. (14) and multiply both sides by N(N —1) ... (N—p+1). Two different
terms then occur depending upon whether j is larger than p or not. For
j=p+1, we get in the right hand side

i=1 J.?‘P+1 o] ' 2hen,

NN-1)..(N-p+1) Y ¥ Z[(_v(ci,c,-)) ) Ap(a;t)

+o(—0y,05) X P(Gi;t)]

.
Lo J T TP vy

Due to the summation over oy, all those N —p terms are equal and this gives

P ,
3 T [ v(o, @)palo®, 05 6+0(=0p Nyia(ei®s @5 1)
ith
W o;®)=(ay, ..., =0y ..., T,)

For 1< j<p, j#t, we obtain in a similar way

1plo® 5 ) T he®) 4 hy(a®: 1) % Ao
i=1 i=1
with hi(oy, ..., 0p) = Y vy, 0y)

1=<j<p
R

Collecting all terms gives eqn. (15).

Assuming now that
v(o, ¢’)=a+bo+dod’

we shall show that the right hand side involves only f,. For the term @ +bo,
fp+1 reduces to f, because of the summation over o.
For doo’, the f,,, terms have the following expression

P
(—d) _Zl o; 3, olfpa(0®), a5 O+ fpia(0®), 05 1))

which clearly reduces to f,(0,%", o ; ¢) where

1 r
g, PV =(0y, ..., 04y, Gjr1s --er Op)

Appendix 3
We first prove that
)‘nzf“'N—n’ n=0,1,..., N (A 1)
implies Palt)=Dyult)y n=0,1,..,N, >0 (A 2)

Assume that (A 2) is satisfied at time ¢, then (A 1) implies that it will hold
also at time {4+ Af, indeed

Pr_nll + Al)=py_, ()1 — Ao O —pn_nAD) + Ay o) APPN_ i (?)
T UN—(—1) A_tpN-(n—l) ®
=pn(t)(l - P’nAt - AnAt) + F’n+1Atpn+1(t) + A'ar.v.—lAtpﬂ—-l(t)

Hence, assuming that (A 2) holds at time {=0, it will be true for all times.
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Now consider the linear mirror process

A,=N—-m
} s

P ="

The function A{r) becomes

o o'S ()]

h(l)=a+b
h(0)=a

(A 4)

The solution of the process (A 3) may be obtained readily by the generating
function method (Bailey 1964, p. 91). This gives

1+ +(1—2x)exp (—2t))N

N
Gz, )= 2;‘0 pn(t)x"=( 5

o 1+ z+ (1 —x)exp (—2f)
*Ho\ TXa+ (L) exp (—2¢)

Assuming, for instance the mirror initial condition
Go(x) = (1 +2V)

leads to the following probabilities exhibiting the mirror property

N\ | N
Palt)= I:(n )/2 ] (AN-nBr 4 A»BN—")

A=1+exp(—2f), B=1—exp(—2f)

where

The conservation of k(n) given by (A 4) may be checked directly if we notice
that k(n)+A(N —n) is independent of z.
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