Invariant patterns of wheat price series
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LPTHE, Université Paris VII

We show that, despite of their apparent randomness, price fluctua-
tions on different markets follow quite similar and stable patterns. We
show that their dispersion remains confined between rather narrow
bounds. We analyse the autocorrelation function. It has an exponen-
tial decrease and the variation of its relaxation time gives a measure
of the economic system’s memory. We then show that the distribution
of prices follows a lognormal distribution and that the distribution of
pairs of prices follows a two dimensional lognormal distribution.

Les séries de prix d’un produit agricole présentent un aspect trés
chaotique. On montre que I'analyse permet néanmoins de faire ap-
paraitre des caractéristiques statistiques permanentes. Ainsi la dis-
persion du logarithme des prix reste comprise entre des bornes rela-
tivement étroites. Le terme dominant de la fonction d’ autocorrélation
est caractérisé par une constante de temps comprise entre cing et
vingt mois. La distribution des prix et des couples de prix peut étre
ajustée par une loi log-normale.

I. — INTRODUCTION

1. The scope of this paper

1.1. — Why studying single price series ?

In two previous articles (Roehner 1989), which we shall subse-
quently name article I and II, we were interested in the interdepen-
dence between wheat price series on different markets. This interde-
pendence carries, in our opinion, most significant informations about
economic exchanges. ’
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In turning now to analysing single series, our endeavor is mainly
one of statistical clarification. This task is however extremely impor-
tant because it is the first stage required for the construction of any
model; indeed, when trying a mathematical description of prices, of
their changes and of their interdependence one needs at first knowl-
edge of the characteristics of single price distributions. This is prob-
ably the reason why attention was given to the subject by many
authors; let us in particular mention : Working (1934), Mandelbrot
(1962, 1963), Fama (1965), Granger and Morgenstern (1970), Roll
(1970) Fama’s article, in particular is a very careful and lucid analy-
sis of the observed distribution of Stock price changes. In section IV
we shall further comment on it.

With the exception of the first, all papers mentionned are concerned
with speculative prices namely Stock Market or Commodity Market
prices. In this paper we shall consider mainly nineteen-century wheat
prices. Speculation already exited at that time : it consisted however in
commercial transactions rather than in operations on financial markets.
So the speculative component of the prices which will be analysed here
is probably smaller than for the prices mentionned above.

1.2. — Which characteristics of price series should be considered ?

Instead of simply refering to such standard texts as for instence
Burns and Mitchell (1946), Kendall and Stuart (1966), Box and
Jenkins (1976), we shall start from scratch again to make the paper
almost self contained, mainly for the benefit of economist historians.

First of all, let us again emphasize that we shall consider logarithms
of prices as the relevant quantities rather than the prices themselves.
This point was explained in article I. In Fama (1965) and in Granger
and Morgenstern (1970) the same point of view is adopted

So we shall consider the following time series '

P(t) = log(t)),t : discrete time variable.

This time-series can be considered as a realization of a stochastic
process which we shall denote by P(t). Now, what are the relevant
characteristics of that stochastic process?

We shall consider three sorts of characteristics :

1) The dispersion characteristics giving an evaluation of the way
the process deviates from its average value. See section II.

2) The autocorrelation function A(t) which provides an estimation
of the memory of the process : the more quickly it goes to zero, the
shorter the system memory and vice versa. See section III.

3) The prices distribution function of first and second order along
with the distribution of price changes during a given time interval
(t1,1t2). See section IV. '
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1.3. — The moving window technique

Let us now explain the procedure to be followed to compute those
characteristics. We shall use again, as in article I and II, the moving
window method; we denote by 2W the amplitude of that moving
window. Thus we shall consider, for any time ¢, the prices falling in
the interval (t — W, t + W) (figure 1).

Figure 1
The moving window procedure giving the evolution of numerical

characteristics of the time series p().
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For the variance D?(t;) at time ¢;, we shall have :

D2(t1)='2‘1w7 Y. PO- 2—;—, >, A

te(t1 —Wit1 +W) ‘ te(t,—W,t1+W)

Now, how large should we take the amplitude W ?

For the statistics to be sufficient, we shall require that the moving
window contains of the order of hundred prices; to be specific, let us
say 300 prices. Let § denote the periodicity of the time series, that is
one day, on¢ week or one month. Thus :

2W ~ 300.0

If 6 is one month, we see that W will be of the order of ten years.
If we want to observe the evolution of the dispersion over a few
decades we see that we need a time series covering at least six or
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seven decades. We are thus led to discuss the kind of time series that
are required here.

2. What kind of time series do we need ?

2.1. — Prices of one product on one market

a) First of all the time series should concern the prices of a single
product on a single place. Series of price indexes or of price averages
over several markets are obtained through various sorts of averaging
procedures which could only introduce extra-bias in the analysis of
statistical characteristics.

Of course, any observed price is already in a sense time-averaged.
Even daily Stock prices represent the average of the different cotations
that are performed every day. The kind of averaging that we have in an
index is however much more disturbing since many different products
are lumped together; thus the short term fluctuations of the index are
a complex result of the weighted average of many individual, non
synchronized fluctuations. The same can be said for national prices or
regional prices that average prices over several markets in the same
country or region. The question of the correlation of prices on various
markets was discussed at length in article I and II and we saw that
even at the beginning of the 20th century, fluctuations on markets
distant from more than 100 km present significant differences.

b) The second most important requirement is that we only want
to consider market prices. Prices coming from accounting books of
private or public institutions usually present slower variations than
market prices, because the prices are often the result of medium term
agreements between seller and buyer.

2.2. — Stationarity

Another important condition in the perspective of our analysis
in stationarity. Indeed we shall determine the characteristics of the
stochastic process P(t) through successive time realizations; in other
words we assume ergodicity ; now stationarity is a necessary condition
for ergodicity. This excludes in particular periods of price inflation.
Fortunately, the 19th century was a period of stable prices. The
inflationary process only started from 1918 on, in the wake of the
first World War.

The period 1540-1590 experienced a fast price increase. Since this
period is however rather short, the bias it will introduce in the analysis
of our wide range series (see table 1) will be limited.

2.3. — Consequences of blancks and requirement as to time coverage

Needless to say, we would like the time-series to have as few-
missing figures as possible. It is however possible to somewhat qualify
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this requirement. Indeed, the computation of the dispersion or of the
distribution function is not too much affected by a few gaps. On the
contrary, in the calculation of the autocorrelation, even a few blanks
would introduce uncontrolable bias. That is the reason why our results
for the autocorrelation usually extend over smaller time intervals than
the one for dispersion.

As already noted, the time series should cover a period of time
at least several times larger than the moving window 2W. If one
considers daily reported Stock Market prices as in Fama (1965), a
time series covering a few years can be considered as sufficient. If,
on the other hand one considers wheat market prices that are reported
every month, one needs time-series extending over at least sixty years.

Table I summarizes the time-series we shall use along with their
sources. Besides the series of cereal prices, we mentionned two series
giving monthly precipitations. Our objective is to compare them to
cereal prices because rain was during the nineteen century and before
the main determinant of crop yields (see article II). We shall see that
their statistical characteristics are somewhat similar, with the important
exception of the autocorrelation : not surprisingly, cereal prices show
a much longer memory than precipitation data.

The paper will proceed along following lines :

— in section II, we define the dispersion characteristics we shall use
and we explain why they are, in a sense, “universal” characteristics.
We shall see that dispersion has a tendency to decrease slowly during
the whole 19th century.

— in section III, we introduce the autocorrelation and we show that
it can be fairly well fitted through one decreasing exponential. Next,
we observe the evolution of the corresponding exponent.

— in section III, we show that the distribution function of the
logarithms of prices can be fairly well approximated by a normal
distribution. We shall see that this remains true for the distribution of
pairs. Hence the distribution of differences of logarithm of prices will
be normal too.

To end up, we study the distribution of price changes and compare
our results with those of previous authors.

I. — PRICE DISPERSION

1. Dispersion characteristics

1.1. — Definitions

The most obvious dispersion characteristics is the variance and its
square-root the standard deviation. The formula for the variance was
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TABLEAU I
Price series analysed in this paper

Market Period Product Source

19th Century series
Bruxelles (Belgium) 1801-1884 | wheat Verlinden (1959) Vol. 3
Bruges (Belgium) 1800-1889 | wheat Verlinden (1959) Vol. 4
Grabow (Germany) 1785-1870 | wheat Beitrage zur Statitik
Mecklenburgs (1873)
Parchim (Germany) 1800-1870 | wheat | idem

Miinchen (Germany) 1790-1855 | wheat | Seuffert (1857)
Miinchen (Germany) 1790-1855 | rye idem

Wide range series

Ko6ln (Germany) 1532-1796 | wheat Ebeling, Irsigler (1976)
KoIn (Germany) 1532-1796 | rye idem

Ko6ln (Germany) 1532-1796 | oats idem

Koln (Germany) 1532-1796 | barley | idem

Paris (France) 1521-1698 | wheat Baulant, Meuvret (1960)
Toulouse (France) 1486-1849 | wheat Fréche (1967)
Precipitation

Konigsberg (Germany) | 1848-1923 | rain Clayton (1944)
Utrecht (Netherlands) | 1849-1920 | rain idem

already written down in section 1-2, let us write it here in the following
alternative form :

sy L o
D) =gy 3 b=

where m(t) denotes the mean of the logarithms of prices. Another
possible characterization is the so-called arithmetical deviation :

D) =5 2 I -m)

te(ty—W,ta+W)
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It is less popular than the standard deviation because it is not that
easy to handle analytically. From a statistical point of view it offers
however two advantages :

1) Its evaluation requires less computional work.

2) Its evolution is usually smoother, since it involves the deviations
to the power one, whereas the deviations to the power two occur in
the standard deviation.

2.2. — Scale invariance

The previous measures have the important property of being inde-
pendent of the unit of measure. Indeed if one multiplies all prices in
the interval (¢, — W,t; + W) by a same number k, the differences
P(t) — m(t) remain unchanged.

Hence, it does make sense to compare the magnitude of D(t) or
D;(t) from one market to another without at all caring about the
currency or the cubic measure which was in use; provided of course,
that those currency and cubic measure remain the same on each market
during the whole period which is considered.

In the same way it makes sense to compare the standard (or the
arithmetical) deviation of the logarithms of prices for two periods of
the same time-series, where the currency or cubic measure are not the
same, provided we leave aside the interval (t. — W,t. + W) which
contains the transition point ¢, between both measurement systems.
It is well known by price historians that converting from ancient
measurement systems to modem ones is often a troublesome question.
The previous remark shows that much can be learned about price series
even without that conversion.

2. Statistical observations

2.1. — Magnitude of the standard deviation

Figure 2a depicts the evolution of the standard deviation for the
19th century series. Figure 2b gives the same evolution for the wide
range series. The width of the moving window is 2W = 30 years. It
will remain the same subsequently.

a) By mere inspection of both figures, we see that all curves have a
very-similar evolution and remain confined in a rather narrow interval
between 0.20 and 0.40. This is a noteworthy result. This confirms
in particular that the rules governing the fixation and registration of
market prices were rather similar in Belgium, France and Germany.

b) The dispersion of the logarithms of precipitations falls outside
the interval for prices.
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Figure 2a
Standard deviation of the logarithms of prices for nineteen
century series (curves for Bruges and Parchim, very close respectively
to the curves for Bruxelles and grabov, are omitted
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Figure 2b
Standard deviation of the logarithms of prices for wide range series;
dots : Paris, thin line : Toulouse, heavy line : K6In
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0.62 < s.d. of precipitations < 0.71
in Utrecht
0.62 < s.d. of precipitations < 0.78
in Konigsberg

This confirms on a quantitative basis the mere observation that
precipitations data are much more irregular from month to month
than prices. We shall encounter the same effect in the next section,
when computing the autocorrelation. Let us notice that it is again
because of the scale invariance mentionned previously, that comparing
precipitations dispersion with prices dispersion makes sense.

2.2. — Dispersion trend

Let us now consider Figure 2a and 2b separately. Figure 2a shows a
slow decreasing trend which is certainly to be attributed to the market
integration process which was the main subject of articles I and IL
The comparison of the Miinchen curve for wheat on one hand and rye
on the other, shows that the dispersion was larger for rye. We already
explained that point in paper I.

2.3. — Magnitude of the arithmetic deviation

Very similar results are obtained for the arithmetic deviation. The
variation bounds are the following :

wheat : 0.14 < D, (t) < 0.38 -
rye :0.27 < Dy(t) < 041

Nineteen century price series
(1800 — 1900)

precipitations : :
(1850-1920) 0.47 < D4 (t) < 0.61

Wide range price series
(1500-1820) 0.11 < Dy(t) < 0.44

II. — PRICE AUTOCORRELATION

1. Signification of the autocorrelation

1.1. — Definition

As already mentioned, the autocorrelation provides a measure of
the memory of a stochastic system. Let us see how this results from
its definition : '
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A(t,t1) = correlation of the
vector : (p(ty = W), ...,p(t1 + W))
and : (p(t; — W +t),...,05(t; + W + t))

For a stationary process, the autocorrelation does not depend upon the
initial value t; ; it depends only upon the time shift ¢ between both
Vectors.

Let us now consider the evolution of the autocorrelation A(t) with
the time shift ¢ : as long as A(t¢) remains close to 1, it means that the
shifted vector (p(t; — W +1), ..., p(t; + W +t)) remains close to the
non shifted vector; in other words the process looks very much the
same after a moment ¢. On the other hand, if A(t) drops near to zero,
this means that the process changed drastically. The autocorrelation
can even become negative meaning then that the two vectors change
“a contrario”.

1.2. — Exponential decrease

We shall see however that for prices the autocorrelation remains
essentially positive, showing a monotonous decrease from 1 toward
zero. Thus, a natural idea is to try to fit this curve with a decreasing
exponential : '

A(t) = e t/™

The relaxation time 7 becomes thus a measure of the memory of
the system :
— if 7 is small, the system has a short memory
— if T is large, the system has a memory like an elephant.

2. Statistical results

2.1. — The autocorrelation function

a) Figure 3a shows for instance the autocorrelation function for the
Miinchen wheat price series in the two years 1806 and 1823. The shape
of both curves are clearly compatible with an exponential decrease,
except for small times. The values of the corresponding relaxation
time are the following, where the correlation coefficient R indicates
the goodness of the fit :

1806 7= 8.3 F 1.2 months R=09250.07
1823 7 = 16.6 + 1.0 months R =0.98 7 0.02

b) Figure 3b represents the autocorrelation curve for precipitations
in Konigsberg for the years 1867 and 1886. It is clear that these curves
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Figure 3a
Autocorrelation function for Miinchen wheat prices
heavy line : 1806, thin line : 1823
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Figure 3b
Autocorrelation function for precipitations in Konigsberg
heavy line : 1867, thin line : 1886
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are very different from those of figure 3a. The cyclic variation, with
period 12 months, has of course its origine in the succession of seasons
from one year to another. Now, we are rather interested in the left part
of the curve and we observe that its decrease is very fast since the
autocorrelation goes from one to zero within 2 months. This confirms
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our statement that the memory of price series is more than ten times
longer than the memory of precipitations series.

2.2. — Variation of the autocorrelation time

a) Ninteteen century series.

Figure 4 gives the variations of the relaxation time 7 for the
nineteen century series. The curve for Miinchen rye has been omitted
since it is very close to Miinchen wheat.

Figure 4
Evolution of the relaxation time (in months) for nineteen
century series; light dots : Grabow, heavy dots : Bruxelles, thin line :
Miinchen wheat (curves for Bruges and Parchim, very close respectively
to the curves for Bruxelles and Grabow, are omitted)
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It is satisfactory that the different curves present parallel evolu-
tions. This conforts us in the idea that these variations are not merely
an effect of the price registration procedure. In saying that we have
in particular in mind some price series (for instance the series for the
market in Eeklo, Belgium given in Verlinden 1959) where some num-
bers occur repeatedly, this would strongly affect the autocorrelation
and we can be sure that such registration bias is absent from the series
we are considering.

Now, it is not straightforward to interpret the peaks and lows of
Figure 4. The clue to the relation between the relaxation time 7 and
the economic process remains to be disclosed.

To conclude this paragraph we give in table 2 the mean values
of the relaxation time 7 and of the correlation coefficient R over
the whole period. We gave also the upper and lower bounds of R to
indicate its variations range. For 7, we omitted the error bounds : they
are comparable to those given in paragraph 1.
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b) Wide range series.

We did not represent the variations of the time constant 7 for the
wide range series; the corresponding curves are still confined to the
interval (10 months, 25 months). They display large variations between
these bounds without any definite trend.

TABLEAU II
Exponential adjustment of the autocorrelation function

Nineteenth century series | R(R min, R max) | 7(months)
Bruxelles (wheat) 0.93 (0.74, 0.99) 14.5
Bruges (wheat) 0.92 (0.54, 0.98) 10.5
Grabow (wheat) 0.95 (0.79, 0.99) 21.8
Parchim (wheat) 0.95 (0.86, 0.99) 19.9
Miinchen (wheat) 0.97 (0.88, 0.99) 16.1
Miinchen (rye) 0.98 (0.94, 0.99) 14.6
Wide range series

Paris (wheat) 0.95 (0.82, 0.99) 17.3
Toulouse (wheat) 0.93 (0.78, 0.99) 11.8

III. — DISTRIBUTION OF PRICES AND DISTRIBUTION OF PRICE-
DIFFERENCES

1. Distribution functions

1.1. — Definitions
A stochastic process P(t) is completely characterized by its distri-
bution functions of order n (for any n) namely :
fP(tl)...P(tn)(platla i Prytn) = Pri{p1 < P(t1) <m
+dp1 A ... App < P(t,) < pn+ dpn}

Needless to say, these functions are in general rather complicated;
so we shall restrict ourselves to n = 1 and n = 2, that is to the
distribution function of the prices :

n=1: fpe)(p1,t1) = Pr{p < P(t1) <p1 +dp1}
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and to the distribution function of the pairs of prices :

n=2: fp),Pt,)(P1, t1; P2, t2) = Pripy < P(t1) <m
+dp Ape < P(ta) < pa2 + dpo}

Remark : If the stochastic process is markovian, the distribution
functions of order 1 and 2 suffice to completely define the process. It
is however almost certain that prices do not form a Markovian process
since they have such a long memory as was showed in previous
section.

1.2. — Economic implication of the distribution of pairs of prices

From an economic point of view, the pairs distribution is of special
interest for the buyer and the seller. Indeed both of them are interested
in the possible price changes which may occur in a given time interval.
Now the distribution of price differences is merely a consequence of
the distribution of the pairs of prices :

Pr{p(t:) — p(tz) =d} = / Fp(t1),P(t:) (P2 + d, 15 P2, 12)dpo
0

2. Logarithms of prices follow a normal distribution

2.1. — Procedure

To test whether a normal distribution can provide a reasonable fit
to the distribution of prices, we used the linearization method applied
to the cumulative distribution function (Morice and Chartier 1954,
p. 105). That is to say, we apply to the cumulative frequencies a
transformation (namely y = Erfc~!(x)) which would change an
ideal normal cumulative function into a straight line. In the new
variable, the test for normality is thus changed into a test for linearity
for which we use the standard correlation coefficient method. .

2.2. — Statistical results

In table 3, we indicate the mean value over the whole period of
the correlation coefficient measuring the goodness of fit. It appears to
be quite satisfactory. We added in each case the least and the highest
correlation coefficient to give an idea of its variation range. Besides,
we give the mean value of the adjusted parameters namely the standard
deviations o and the mean m.

Let us recall that ¢ occurs in the normal density function in the
following form :

fp‘(t) (p) = \/%e
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Adjustment of logarithms of prices to a normal distribution

TABLEAU I

19

Toulouse (wheat)

R(Rmin, Rmax) o m
Nineteenth Century series
Bruxelles (wheat) 0.989 (0.974, 0.997) | 0.25 | 7.68
Druges (wheat) 0.990 (0.977, 0.998) | 0.25 | 5.81
Grabow (wheat) 0.989 (0.972, 0.997) | 0.36 | 6.99
Parchim (wheat) 0.993 (0.993, 0.998) | 0.36 | 6.88
Miinchen (wheat) 0.977 (0.942, 0.995) | 0.38 | 7.38
| Miinchen (rye) 0.966 (0.930, 0.986) | 0.46 | 6.96
Wide range series
Koln (wheat) 0.963 (0.943, 0.998) | 0.24 | 5.55
Koln (rye) 0.979 (0.925, 0,997) | 0.31 | 5.24 |
Koln (oats) 0.989 (0.969, 0.997) | 0.27 | 6.79
Koln (barley) 0.986 (0.953, 0.996) | 0.26 | 7.28
Paris (wheat) 0.972 (0.946, 0.998) | 0.36 | 6.85
0.984 (0.936, 0.999) | 0.32 | 6.39

It is not necessary here to study the evolution with time of the standard

deviation. This was already done in section II-B.

2. Distribution of prices

As a consequence of the normality of the distribution of the log-
arithms, the prices themselves will follow a lognormal distribution.
This distribution occurs frequently in economics and has been ex-
tensively studied (Aitchison and Brown, 1963). Let us recall that its

density function reads as :

f P(t) (p) =

- iég(mp—m)2

1 e

2o p
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3. Pairs of price logarithms follow a two dimensional normal
distribution

Now that we know that the distribution of the logarithms of prices
is well approximated by a Gaussian distribution, it is natural to wonder
if this remains true for the distribution of pairs. If yes, this would be
a good indication for the series of the price logarithms to constitute a
realization of a Gaussian stochastic process.

3.1. — Procedure

To test the normality of the pairs (p(t; ), p(t2)) were are performing
a variable change in the plane P(t;), P(t2))

A=P(t;) cos @ + P(t3) sin ¢
B=—P(t;) sin ¢ + P(t3) cos ¢

The angle ¢ is chosen in such a way that the new random variables
A and B become uncorrelated (H. Ventsel 1973, p. 183) :

27’0‘10‘2
R B

Now if (P(t;), P(t2)) forms a pair of jointly normal variables, A and
B will be two independent normal variables, an assertion which will
be easily tested using the method of the previous paragraph.

2.2. — Statistical results

In table 4, we indicate the average correlation coefficient R be-
tween A and B (which should ideally be zero) along with the average
correlation coefficients R4 and Rpg characterizing the goodness of a
normal fit for variables A and B separately. As in table 2, we give
also the lower and upper bounds.

As can be seen, the adjustement is again quite satisfactory. Table
4 is for t; — to = 7 months; similar results are obtained for other
values of ¢; —t5. The last column indicates the correlation coefficient
r between P(t;) and P(t3). It occurs in the formula of the two
dimensional Gaussian density function in the following way :

1 1
exp |~ —Q@(p1,p
27r0102\/1—7"2 P 2(1 —r)? (P 2)'

Q(p1,p2) = (pn — m1)? /0% — 2r(p1 — M)
(p2 — m2)/0102 + (P2 — m3)? /05

r is nothing else than the autocorrelation, already considered in
section II. Clearly r will approach 1, when the difference ¢; — o

fP(tl),P(tz)(plam) =
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TABLEAU IV

Adjustment of pairs of price logarithms
to a two dimensional normal distribution for a time interval of seven months

21

0.987 (0.93, 0.99)

Ry R (R min, R max) | Rg(Rgmin, Rgmax) | r

Nineteen Century

series

Bruxelles (wheat) | 2.1076 0.992 (0.98, 0.99) 0.991 (0.97, 0.99) 0.75
Bruges (wheat) 10~6 0.993 (0.97, 0.99) 0.991 (0.97, 0.99) 0.65
Grabow (wheat) 10~6 0.988 (0.96, 0.99) 0.988 (0.97, 0.99) 0.75
Parchim (wheat) 106 0.991 (0.98, 0.99) 0.992 (0.98, 0.99) 0.71
Miinchen (wheat) | 2.10~6 0.987 (0.96, 0.99) 0.982 (0.97, 0.99) 0.79
Miinchen (rye) 7.10~7 0.976 (0.95, 0.00) 0.979 (0.93, 0.99) 0.81
Wide range series

K&In (wheat) 10~7 0.984 (0.96, 0.99) 0.988 (0.97, 0.99) 0.75
Koln (rye) 8.1078 0.982 (0.93, 0.99) 0.988 (0.95, 0.99) 0.73
Ko6In (oasts) 3.1077 0.988 (0.97, 0.99) 0.97 (0.96, 0.99) 0.66
Koln (barley) 5._10_7 0.985 (0.94, 0.99) 0.991 (0.94, 0.99) 0.69
Paris (wheat) 3.1076 0.972 (0.94, 0.99) 0.985 (0.98, 099) 0.73
Toulouse (wheat) | 1076 0.990 (0.97, 0.99) | 0.68

goes to zero, hence the smaller ¢; — #2, the more the density function

will be peaked.

3.3. — Distribution of pairs of prices

As a consequence of the normality of the distribution of pairs
of logarithms, the pairs of the prices themselves will follow a two

dimensional Lognormal distribution. Its density function reads :

1

fre), p1,P2) =
P(tl)P(t2)( 1P2) 27r0102\/1——'r3

exp

~1
2(1 — 1)

Q(4np;, Enpg)

D1p2
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To give an intuitive perception of the two dimensional distribution,
we visualized in figure 5 the surface representing the density function
for :

t; — ta = 2 or 6 or 10 months

The differences in the shape are quite apparent. The volume limited
by each surface is of course equal to 1 : what is gained in height must
be lost in breadth.

Figure 5
Representation of the density function of the two dimensional
normal distributions of price logarithms (Grabow).
From the highest to the lowest, the surfaces correpond
to time intervals of 2 an 6 or 10 months.

-4, Distribution of price changes.

4.1. — Distribution of changes of price logarithms

a) From the very beginning, we considered the logarithms rather
than the prices themselves as the significant variables; so it is quite
natural to also consider the differences of logarithms of prices :

D(ty,t2) = P(t1) — P(ts)
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If P(t1), P(t;) are jointly distributed normal variables, it is well
known that D(t;,t;) will be a normal variable too with standard
deviation given by (Ventsel 1973, p. 267) :

o2(D(t, 1)) = 02(Pt1)) — 2ra(P(t1)).0(P(t2)) + o?(P(t2))

Now if t; — t5 goes to zero :

1) r will approach 1 _

2) o(P(t1) will tend to o(P(t2))

Thus o2(D(t1,t2)) will go to zero. This conclusion is indeed
confirmed by statistical tests : see figure 7a. It may be summarized in
the following rule :

Proposition : The changes on a given time interval (t1,t2) of the
logarithms of prices are distributed according to a normal distribution;
its standart deviation decreases to zero when the interval (i3,12)

Remark : Another way to express the same result is to say that
the distribution of the price ratio P(t1)/P(t2) is lognormal.

b) Our previous result differs somewhat from the conclusions of
Fama 1965. For its Stock price changes, he obtained distributions
which are close to normal distributions, with however a slower
decrease for both tails than would be expected for a true normal
distribution.

The same effect seems to be present here (see figure 5a) but to
a smaller extent than for Stock price changes. In other words this
deviation only affects a few extreme, and by the way rare, values.
Finding the distribution giving the best fit is certainly an important
task; but it is as important, or even more, to give that distribution
a theoretical basis. Because the normal distribution has so many
theoretical advantage and provides on the other hand a pretty good fit,
we believe it reasonable first to work in the Gaussian framework and
to take into account the previous deviations as “perturbations”.

¢) Mandelbrot (1963) tried an adjustment of price changes in (log,
log) variables which is well suited to Pareto like distributions. To
allow comparison with those results we give in figure 5b an example
of a (log, log) fit for Brussels wheat price series. The curves of figure
5b are far from being straight lines. That is why a Pareto distribution
does not constitute a good candidate for our series, except perhaps for
the very tail of the distribution.

4.2. — Distribution of price changes

The buyer and the seller may prefer to know the distribution of
the changes of prices themselves. After all, if a wholesale dealer buys
ten thousand brushels of wheat at price p(f;) at time ¢; and sells
them at price p(t2), at time ¢ his profit (or loss) will be given by ten
thousands times the difference p(t2) — p(t1) and not by the difference
of the logarithms !
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Figure 5a
Normal adjustment of price changes (Bruxelles) :
cumulative distribution function.
large dots : 1 month interval, small dots : 4 months interval
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Figure 5b
log-log plot of price changes (Bruxelles) :
number of changes larger than the value indicated on z-axis,
large dots : 1 month interval, small dots : 4 months interval
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As already indicated, once the distribution of pairs of prices is
known, deriving the distribution of changes is merely a matter of
integral calculus. This integral reads

1
h) =
fo(h) 2ro109V 1 — 72

00 1 d
/0 exp [—WQ(&I(M + h), fnp3) 2

p2(p2 + h)

A separate paper will be devoted to it since it is not easily tractable.

CONCLUSION

Our paper was devoted to series of cereal prices. Let us summarize
the results we arrived at, concerning dispersion, autocorrelation and
distribution of prices :

1) The standard deviation (of the logarithms of prices) remains
confined in a narrow interval, namely.

0.10 < D(t) < 0.50

It shows a slow decreasing trend from 1820 on.
2) The autocorrelation is fairly well approximated by a decreasing
exponential of the form :

A(t) = et

where T denotes the relaxation time of the autocorrelation function. It
varies within following limits :

5 months < 7 < 25 months

3) The distribution of the logarithms of prices is fairly well
approximated by a normal distribution. This is true as well for the
distribution of pairs of price logarithms. A Gaussian stochastic process
thus appears as a reasonable candidate for the modelling of wheat price
Series.

From an empirical point of view several questions remain open;
for instance :

Do we have similar results for other goods other agricultural
products or even industrial prices ?

In which way are these results altered in the case of more spec-
ulative prices such as for instance 20th century Commodity Market
prices ?

Now, as already mentioned in the introduction, the empirical outline
given in this paper should be considered as being the first step in the
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construction of a model where interacting markets will be represented
by interdependent Gaussian stochastic processes.

APPENDIX
THE MOVING PISTON MODEL

One could be surprised that we did not investigate the autocorre-
lation function for price changes. In the case of Stock Market prices
this is considered as an important test (Fama, 1965) of the random
walk model which considers successive transitions as independent;
the validity of that model in turn implies that past prices cannot be
used to predict future prices.

When computed from our data, the autocorrelation of price changes
between successive months indeed reveals a very fast decrease to zero
which seems to support the random walk model as in the case of Stock
Market prices. We do not present this result in more details, because
we think that it is not of great significance. To explain this point let
us present what we shall call the “moving piston model”.

We consider a piston moving inside a cylinder (figure 7). The
pressure of the gas on the left (respectively on the right) of the piston
is p; (respectively po). We assume that p; > po. The pressures p; and
po, are supposed to be independent of the position of the piston. The
movement of the piston is thus a translation from left to right with
constant acceleration.

Figure 7
The moving piston

Now suppose it could be possible to observe the movement of
the piston between successive molecular impacts on each side of the
piston. The fact that p; > p will remet in the fact that during a
very short time interval (%;,t2) (of the order of 10—8 seconds), the
probability for the piston to experience a shock from the left will be
larger than for a shock from the right. In other words, the movement
of the piston will be a succession of jumps, alternatively on the right
and on the left but on average more often to the right than to the left.
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We performed a numerical simulation of this experience, and we
computed the autocorrelation function of successive position changes.
Now this function has a fast decrease to zero exactly as the price
autocorrelation function. Nevertheless the movement of the piston is
perfectly predictable on a sufficiently large time scale.

What we would like to point out is not of course that Stock prices or
wheat prices are as predictable as the piston’s movement, but rather
that the autocorrelation of successive changes does not constitute a
convincing test for the random walk hypothesis; a better test would
be to consider the autocorrelation of the prices themselves (which was
given in section IIT) or the autocorrelation of changes on a sufficiently
long time interval. We shall come back to that question in greater
detail in a separate publication.
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