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IONOSPHERE. — La direction de phase stalionnaire dans un miliew absorbant.
Note (*) de MM. Owex Srorey et Brrtrann Roenxer, présentée par
M. Jean Coulomb.

On donne l’expression générale de la direction de phase stationnaire pour un
faisceau d’ondes dans un milieu absorbant, en fonction des parameétres suivants
qui caractérisent la structure du faisceau : directions moyennes des parties réelle
et imaginaire du vecteur d’onde; quatre coefficients qui précisent les corrélations
entre les variations de ces deux directions autour de leurs valeurs moyennes.

La détermination de la direction de propagation d’un faisceau d’ondes,
ce que I'on appelle le tragage de rayon, occupe une place centrale dans
I’étude de la propagation des ondes radioélectriques dans l'ionospheére.
On sait que ce probléme a regu une solution & peu prés compléte dans le
cas d’un milieu anisotrope non absorbant (c’est-a-dire, transparent),
grice notamment aux travaux de Booker ('), Poeverlein (*) et Hasel-
grove (*). Toutefois, 'ionosphére est un milieu absorbant aussi bien
qu’anisotrope, au moins dans les régions D et E ou les collisions électrons-
neutres dissipent ’énergie des ondes. Il est donc de premiére nécessité
de disposer d’une méthode correcte, générale, simple, et pratique permet-
tant le tracé de rayon en milieu absorbant. A notre connaissance une
telle méthode n’existe pas actuellement et nous nous proposons d’en
donner 1ci 'un des éléments fondamentaux.

Celui-c1 concerne la direction du faisceau, que nous identifions avec
la direction de phase stationnaire (D.P.S.), c’est-a-dire la direction dans
laquelle sont conservées les phases relatives des diverses ondes planes
élémentaires dont se compose le faisceau. Toutes les méthodes de tragage
de rayon en milieu transparent utilisent le principe de phase station-
naire. Divers arguments justifient Pextension de emploi de ce principe
au milieu absorbant, du moins dans les limites de validité de Poptique
géométrique, limites qui sont plus étroites que pour un milieu transparent;
ces arguments feront I’objet d’une publication ultérieure. Ici notre propos
est seulement de développer ’expression analytique de la D.P.S. et ce
faisant de dégager certains aspects apparemment méconnus de la struc-
ture d’un faisceau en milieu absorbant.

Dans notre étude nous supposerons, pour des raisons qui apparaitront
par la suite, que le faisceau d’ondes provient (éventuellement par I'inter-
meédiaire d’autres milieux absorbants ou non) d’un milieu transparent
ou 1l a été produit. Afin de traduire amortissement que subit une onde

dans un milieu absorbant, on attribue au vecteur d’onde une partie imagi-
' > > > . »
naire : ainsi k =k, — tk;, Le terme d’amortissement s’écrit alors
> > ‘ > > ' o 1
exp <—k¢-.r>. Les vecteurs k. et k; sont normaux aux surfaces équiphase




(2)

et équi-amplitude respectivement. lis sont reliés par Uéquation de disper-
sion (dans laquelle on omet la fréquence qui restera fixe dans tout ce

> >
qui suit) : D<k,., k,» = 0. On en obtient deux relations distinctes en sépa-
rant les parties réelles et imaginaires :
x> TS
(]) ,I),-</f,<, /I\,> =0, l)L(/‘,, /1) el § 18
Or, 1l en résulte de ’hypothese de I'origine du faisceau dans un milieu
transparent, jointe aux lois de réfraction qui régissent son passage au

}
milieu absorbant, qu’a chaque valeur réelle k, du vecteur d’onde dans
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Fig. 1.

la trés petite gamme que comprend le faisceau original, correspond une
: > >

paire unique -de vecteurs k, et k; dans le milieu absorbant. Ainsi, en chaque
- . - - . . > - -

point de ce milieu, la direction du vecteur k; est une fonction univalente

_>.
de la direction du vecteur k,. Caractérisons ces directions par les vecteurs

unitaires llzi et lAc,.. Nous avons alors
8 b 1R,

En repérant une direction de l’espace par les deux angles ¢ et ¢ des
coordonnées sphériques (fig. 1) on exprime cette relation sous la forme
différentielle de son développement au premier ordre:

(3) dgi= Ay do,+ agy A, A= ayg do, -+ cyy di,.

Ainsi, dans un milieu absorbant, la structure d’un faisceau d’ondes

est définie non seulement par les deux vecteurs k. et k;, mais aussi par

les quatre coefficients ag, acy, @y, et ayy. Cest donc de 'ensemble de
ces parameétres que dépendra la D.P.S., dont nous allons donner mainte-
nant D'expression explicite.



(3)
De Pexpression méme du principe de phase stationnaire, il résulte
>
de suite que la D.P.S. est donnée par la normale & la « surface des f, »,

- e , . , >
¢’est-a-dire la surface que trace Pextrémité du vecteur k. en prenant
toutes ses divections possibles. Dans le cas du milieu transparent, 'équa-

,‘}
tion de cette surface est sumplement D(lf) = 0. Dans le cas du milieu absor-
bant, ce qui précéde va nous permettre de I'écrire sans difficultés. En éli-

} -
minant, en effet, le module k; du vecteur k; entre les deux parties de (r),

> A .
on obtient une relation de la forme G<If,., kil):o; puis le remplacement
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Fig. 2.

de k; par son expression (2) conduit bien & une équation reliant le module £,

du vecteur l?, a sa direction, soit F(k, k)=o0. On peut écrire aussi
k= k. (k.). |

On sait que dans les axes 1, J, K, des coordonnées sphériques (fig. 1),
les composantes de la normale en un point quelconque de la surface d’équa-

9— .
tion F(k,) = o sont proportionnelles & celles du gradient de I' dans 'espace
>
des k, a savoir
4) JF I oF 1 OF
( ok, krcoso do’ k. oy

St 'on choisit le repere (z, y, z) de facon que x soit colinéaire a k, ainsi
qu’il est indiqué sur la figure 2, les axes I-J, K viennent se confondre

avec 7, y, z et la D.P.S. est paralléle au vecteur
X [0k 1 [Ok\.
R AC AR :

qu’on peut normaliser & module unitaire si 'on veut.




C4)
Pour avoir I'expression explicite cherchée, 1l ne reste donc qu’a calculer
les dérivées utilisées dans (5), ceci pour les valeurs suivantes des
variables (fig. 2) : ky=k.,; ki=ku; o.=0; b.=0; 0;=q4,; bi=o0

(I'indice m désigne la valeur moyenne des vecteurs d’onde dans la treés
petite gamme considérée). Nous procédons pour cela de la méme fagon

que nous avons fait pour trouver 'équation de la surface des kr,., mais
en remplacant les relations algébriques par les relations différentielles
correspondantes : on élimine dk; entre les relations dD,=o0 et dD;= o;
dans le résultat obtenu, on reporte les expressions (3) qui donnent do;
et dy; en fonction de dg, et dy,, de facon a ne plus avoir que des termes

?
se rapportant au vecteur k.. On obtient ainsi

) Ok 0D DIy 9) + g5 d i DIk 9 + @y d(Ds, D)/ ki )
d(Pr o 0 (Di) Dr)/d (kh /f/-) ’

(,) d/f,: _ d(Dy, D,)/0 ki, $r) + aCPk!Jd(Di’ D,)/0 (ki, ¢:) + a'!J'Ld(Di» D,)/0 (ki, 1)

750, — 0 (D;, D, /0 (ks, k) ’

ol les termes du type 0(z, y)[d(u, v) sont des jacobiens.

Ces relations achévent le programme qu’on s’était fixé au début de
cette Note. Dans la suite on se propose de développer, a partir des lois
fondamentales de réfraction, les équations qui gouvernent [’évolution

des vecteurs unitaires k. et k;, ainsi que des coefficients ag, gy, yg
et ayy, le long de la trajectoire dont la direction locale est la D.P.S. On
sera alors en mesure de tracer correctement des rayons en milieux absor-
bants. _

Cette étude fait partie d’un programme de recherches financé par le
Centre National d’Etudes Spatiales. Elle a été commencée pendant que
P'un de nous (O. S.) était en visite & I’Université de Toronto, & 'invitation

du Professeur C.O. Hines.
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